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Abstract
Qualitative spatial calculi offer a method to de-
scribe spatial configurations in a framework based
on a finite set of relations that abstracts from the
underlying mathematical theory. But an open issue
is whether they can be employed in applications.
Further their cognitive adequacy is questionable or
not investigated at all. In this paper we investi-
gate the applicability of OPRA to navigation in
street networks that are described via local obser-
vations. Further we scrutinize whether a descrip-
tion of directions that is deemed cognitively ade-
quate and can be described in OPRA can perform
that task. We are using an environment that we de-
veloped ourselves for these experiments, the used
algorithms and the program itself are explained in
detail.

1 Introduction
Since the emergence of Allen’s interval algebra [Allen, 1983]
qualitative spatial and temporal reasoning has become an in-
teresting field in artificial intelligence research. A lot of the
tools used and later refined for reasoning tasks has already
been introduced by Allen, i.e. composition based reasoning.
A multitude of qualitative spatial and temporal calculi have
been defined dealing with different aspects of space and time.
In the field of spatial calculi, we can spot two big classes
of calculi, this is the ones dealing with topological aspects
of space like RCC [Randell et al., 1992] and others dealing
with directions either with a local or global reference frame.
OPRA is a calculus dealing with directions having a local
reference frame. It is based on oriented points, i.e. points in
the plane that have a position and an orientation. A feature of
the OPRA calculus is its adjustable granularity, in fact for
each m ∈ N with m ≥ 1 a version of the OPRA calculus
exists. The reference frame forOPRA2 is shown in Figure 1.
The position of the basic entity of the OPRA calculus, the
oriented point, is shown as the black dot in the middle and
its direction as the arrow. OPRA2 means that the plane is
divided into sectors by two intersecting lines with all angles
between adjacent lines being the same. The lines and their in-
tersection point divide the plane into one sector that is a point
(the intersection point itself) four sectors on the lines and four

Figure 1: OPRA2 reference frame

planar sectors. If we call the point in Figure 1 A and another
point B, we can determine in which sector B with respect to
A lies. With rising granularity the relations of the OPRA
calculus grow finer and finer and their number rises making
reasoning very time consuming.

Although there are many qualitative spatial calculi and
even more publication about them, only initial steps have
been made towards applicability of qualitative spatial calculi
to problems that arise in the real world. Moreover, for many
calculi it is known that algebraic closure only approximates
consistency, but it is not know if this approximation is “good
enough” for tasks at hand.

We investigate the applicability of the OPRA calculus
(with reasonable granularity) to navigation problems in a
street network. For this task, we only rely on knowledge that
a person can observe at the decision points, i.e. the crossings,
of a street network in a qualitative way. In Figure 2 such a
crossing is shown. The person driving in the car knows where

Figure 2: A crossing

she comes from and can observe that the street with the pub
is to the left, the one with the church is straight ahead and the
one with the school is to the right. But she cannot observe
where the airport at the other end of the city is with respect
to this. Further knowledge can be deduced from the observed
one, but that knowledge is only as good as is the reasoning
for the calculus at hand. The have to ask the question, if this
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knowledge is good enough. What helps us in this case is the
fact that we are navigating in a grid that is pre-defined by the
given street network. But there are still open questions, is
the “straight ahead” or “left” defined byOPRA the “straight
ahead” or “left” as perceived by humans.

As an overall scenario consider that a swarm of robots is
exploring an unknown street network (or interior of a build-
ing). The robots can make observations at any crossing with
respect to a qualitative calculus (in our case OPRA) and
they know what a street looks like, i.e. the connections be-
tween crossings. The robots can exchange and integrate the
data they obtained, but they cannot triangulate their positions.
When their work is done, a network of local observations is
obtained, but nothing is known so far about non-local con-
straints. In that this means that all these non-local constraints
are only restricted by the universal relations so far. So the
issue is the non-existence of non-local knowledge in our net-
work. It is desirable to refine those universal relations in a
way that all relations that cannot hold with respect to the al-
gebraic properties of the calculus at hand are thrown out. The
standard approach in qualitative spatial reasoning is applying
algebraic closure on the network. This approach is basically
just an approximation, but this approximation might be good
enough.

Research on “wayfinding choremes” by A. Klippel et al.
[Klippel and Montello, 2007; Klippel et al., 2005] claims a
cognitively adequate representation of directions on decision
points, i.e. crossings in our street networks. Basically there
are 7 choremes that describe turning situations at crossings
as depicted in Figure 3. These choremes are ignorant of the

Figure 3: The seven wayfinding choremes

situation of “going back”, which is formalized in OPRA.
Furthermore, for our navigation task the situation of running
into a dead end can always appear and we need the possibility
of turning around and leaving that dead end. The derivation
of these choremes in based upon a sectorization of a circle
as shown in Figure 4. With these sectors we would have

Figure 4: Sectors of a circle for wayfinding choremes

the choice of directions from l, r, f , b in Figure 2, sharp
or half turns do not occur there. This sectorization clearly
has a “back” sector and is quite close to the definition of the
OPRA relations. The main difference is the lack of rela-
tions on a line. The size of the sectors in Figure 4 is only ap-
proximately described by Klippel. We are going to simulate
these sectorization byOPRA relations of adequate granular-
ity. Where the choice of granularity is a tradeoff between the
minimum size of sectors and reasoning efficiency. We will
use these Klippel’s sectors encoded in OPRA to navigate
our street network and examine its impact on the reasoning
qualities.

We apply our techniques for techniques for deriving ob-
servations in OPRA and in the representation of Klippel’s
sectors in OPRA to test data to gain knowledge their fitness
for navigation tasks in street networks. Since we believe that
the best test data for street networks are the real ones, we use
descriptions of street networks compiled out of maps from
OpenStreetMap1.

2 The OPRA calculus
The basic entity of the OPRA calculus are oriented points,
these are points that have a position given by coordinates and
an orientation. This orientation can be given as an angle with
respect to an axis. A configuration of oriented points is shown
in Figure 5.

Definition 1 (Oriented Point). An oriented point is a tuple
〈p, ϕ〉, where p is a coordinate in R2 and ϕ an angle to an
axis.

We also can describe an oriented point as a tuple of points
〈p0, pi〉 being located at p0 and pointing to p1. hence the
direction is given by the vector from p0 to p1. From this de-
scription, we can compute the angle ϕ to the axis easily. By
disregarding the lengths of the vectors, we arrive at Defini-
tion 1. The OPRA calculus defines relations between such

Figure 5: Oriented points

pairs of oriented points. These relations are of adjustable
granularity, where this granularity is denoted by the index
m of OPRAm. For the introduction of relations the plane
around each oriented point is sectioned by m lines with one
of them having the same orientation ϕ as the oriented point.
The angles between all lines have to be equal. The sectors are
numbered from 0 to 4m − 1 counterclockwise. The label 0
is assigned to the direction with the same orientation as the
oriented point itself. Such a sectioning is shown in Figure 6
this is in fact Figure 5 with the sectioning introduced. In fact,
we introduce a set of angles

⋃

0≤i<2m

{[
i
π

m

]
,
[
i
π

m
, (i+ 1)

π

m

]}

1http://www.openstreetmap.org/
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Figure 6: Oriented points with sectors

to partition the plane into the described sections. To introduce
OPRA relations between two oriented points o and q, we
need to distinguish between the two cases, if pr1(o) = pr1(q)
or not, where pr1 is the projection to the first component of a
tuple. I.e. we need to distinguish if both points have the same
position in the plane.

A good auxiliary construction to introduce OPRAm rela-
tions are half relations.
Definition 2. For two oriented points o and q we call o B q
the half relation from o to q.

If we want to annotate a sector i or granularity m to a half
relation, we shall write om Bi q. A half relation determines
the number i of the sector around owhere q lies in if pr1(o) 6=
pr1(q) and the sector around o into q points into, if pr1(o) =
pr1(q). E.g. in Figure 6 the oriented points B lies in sector
13 of A and we obtain the half relation A4 B13 B. And for A
with respect to B we get B4 B3 A.

First we consider the case of pr1(o) 6= pr1(q). We then get
the OPRAm relation from o to q as the product of om Bi q

and om Bj q, we will write this as om∠j
i . And for pr1(o) =

pr1(q), we get theOPRAm relations as the product of o s q
and om Bj q written as om∠j

sq, where s is a special symbol
describing the coincidence of the position of points.

The composition and converse tables for OPRA need to
be calculated for any granularity of this calculus, fortunately
there is a quite efficient algorithm for this task [Mossakowski
and Moratz, to appear].

3 Factorizing the OPRA to cognitive
adequacy

Investigations of Alexander Klippel et al. [Klippel et al.,
2005] investigated sector models as shown in Figure 7 for

Figure 7: Klippel’s relations

navigation tasks and claim their cognitive adequacy. They
are using eight sectors

f front
hl half left
l left
sl sharp left
b back
sr sharp right
r right
hr half right

for their model. Nothing is said about the treatment of the
borders of the sectors, i.e. about which sector the separating
line belongs to, if it belongs to any. This question needs to be
solved for simulating such a sectioning by a qualitative spatial
calculus.

We are encoding Klippel’s approach into OPRA8 (see
Figure 8) and OPRA16 to be able to define f , b, l and r

Figure 8: OPRA8

sectors that are suitably small and to get constraint network
sizes that still can be handled by algebraic reasoners. The rea-
soner GQR [Gantner et al., 2008] already needs 14GB of mem-
ory to start up with the OPRA16 composition table, with-
out precaching the composition table for all general relations.
For having suitably small sectors, we unite the OPRAm

(m ∈ 2n and n > 2) sectors via a mapping d as following.
f 7→ {0, 1, 2, 4m− 1, 4m− 2}
l 7→ {m− 2,m− 1,m,m+ 1,m+ 2}
b 7→ {2m− 2, 2m− 1, 2m, 2m+ 1, 2m+ 2}
r 7→ {3m− 2, 3m− 1, 3m, 3m+ 1, 3m+ 2}

The Klippel sectors hl, sl, sr and hr are formed by the re-
maining OPRA sectors. For n = 2 the sectors would over-
lap with this approach. We decided to add the border lines of
f , b l and r to the respective relations, since this still yields
sectors for these relations for m 7→ ∞ for OPRAm. With
this we would recover OPRA2 from Klippel’s approach for
m 7→ ∞. To apply this sectioning to OPRAm, for all sets
d1, d2 ∈ d(K) apply d1 × d2 where K are Klippel’s sectors,
and add the sets {s} × d1 we call these sets D. From these
sets of sectors we can easily define predicates p1 . . . p8 that
are true if and only if a certain OPRAm relation belongs to
such a set lifted to OPRAm.
Example 3. We want to encode Klippel’s sectioning into the
sectioning of OPRA8, which has the half relations 0 . . . 31.
With the above definitions we obtain the mapping

f 7→ {30, 31, 0, 1, 2}
hl 7→ {3, 4, 5}
l 7→ {6, 7, 8, 9, 10}
sl 7→ {11, 12, 13}
b 7→ {14, 15, 16, 17, 18}
sr 7→ {19, 20, 21}
r 7→ {22, 23, 24, 25, 26}
hr 7→ {27, 28, 29}

This mapping of Klippel’s sectors to the sectors of OPRA8

is shown in Figure 9. Please note that the OPRA8 emula-
tions of f , l, b and r are still quite big sectors with 22.5◦.
Another drawback is that all sectors are the same size.
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Figure 9: Mapping Klippel to OPRA

Example 4. We can get smaller sectors by encoding Klip-
pel’s sectors into the sectors for OPRA16 as

f 7→ {62, 63, 0, 1, 2}
hl 7→ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
l 7→ {14, 15, 16, 17, 18}
sl 7→ {19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}
b 7→ {30, 31, 32, 33, 34}
sr 7→ {35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45}
r 7→ {46, 47, 48, 49, 50}
hr 7→ {51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61}

The sectors for f , l,b and r now have a size of 10.25◦ and
the remaining sectors are bigger than them, what is closer to
Klippel’s intention. The issue with working withOPRA16 is
already the sheer size of the composition table with 41602 en-
tries and the long descriptions of constraint networks in 4160
base relations.

In the end we have a trade-off between staying close to
Klippel’s intentions, which can be done by a high arity
OPRA calculus and the possibility to perform reasoning
over constraint networks. But for our task of navigation the
reasoning results to not have to be perfect, they just need to be
good enough. Hence, we hope that on constraint networks of
reasonable size OPRA8 and OPRA16 do the job. It would
also be nice to have high arity OPRA calculi for having the
possibility of being able to compare the impact of the size of
f , l b and r in more detail.

4 From observations to a constraint network
As stated it is our aim to investigate navigation based on lo-
cal observations using the OPRA calculus. A good source
for realistic data about street networks is the world itself.
We are using street networks that have been retrieved from
OpenStreetMap2, make local observations on them and for-
malize these observations in OPRA. We simplify the Open-
StreetMap data in the sense that we abstract from bends in
streets. Our streets are just straight lines. With algebraic rea-
soning global knowledge can be deduced from local observa-
tions. For algebraic reasoning we use the tools GQR [Gantner
et al., 2008] and SparQ [Wallgrün et al., 2006, 2009]. Us-
ing this overall knowledge, we navigate through the described
street network.

2http://www.openstreetmap.org/

In the rest of this section we are using the street network
in Figure 10 as the source for our examples. In our street

Figure 10: A street network

networks, we label crossings by Ci with i ∈ N. Please note
that our definition of crossings at this point includes dead-
ends. In our example these are the dots. The lines depict
streets between crossings. We call crossings Ci and Cj with
i 6= j that are connected by a street adjacent.

4.1 Local Observations
It is our aim to navigate with knowledge that people can make
at crossings. When walking to a crossing, you know where
you came from and hence your orientation. Further you can
see which orientation the other streets at the crossing have
with respect to your orientation. And of course you know
that streets are streets with a crossing at both ends. You do
not know what the situation at any other crossing looks like.
This is an abstraction from very short streets.

In the first step of the formalization of our local observa-
tions we need to derive oriented points from a given street
network. For any point Ci in the network determine the set
A of adjacent oriented points. For any C ∈ A introduce the
oriented point 〈Ci, C〉. For the sake of brevity, we will also
write CiC for such a tuple. As described in Section 2 this
representation of an oriented point still contains unnecessary
information about the length of the vector from Ci to C, but
this does no harm.
Example 5. Consider the network given in Figure 10
and the point C6. The set of adjacent points to C6 is
{C0, C5, C12}, we hence introduce the set of oriented points
{〈C6, C0〉, 〈C6, C5〉, 〈C6, C12〉} or written in the short form
{C6C0, C6C5, C6C12}.

In the second step, we define the streets. For each oriented
point CiCj , we define the street via the OPRAm relation
CiCj m∠0

0 CjCi. The oriented point CjCi exists, since the
streets in our network are not directed and hence if Cj is ad-
jacent to Ci then Ci is adjacent to Cj .
Example 6. For a street in shown in Figure 11. This is the

Figure 11: A street

street between the points C6 and C0, hence we have intro-
duced the oriented points C6C0 and C0C6 in the previous
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step (see Example 5) at the respective locations to point to
each other. So we introduce the relation C6C0 m∠0

0 C0C6.
In the third step, we add the local observations. For each

oriented point CiCj form the set P of oriented points with
for each p ∈ P the properties pr1(p) = Ci and pr2(p) 6=
Cj hold. Where pr1 is the projection to the first component
of a tuple and pr2 to the second one. For each p ∈ P , we
form the OPRAm relation CiCj m∠CiCjBp

s p. Since Ci =
pr1(p), the first half-relation is clearly s, the computation of
the second one will be explained in section Section 4.2.
Example 7. We again refer to Figure 10 and the oriented
points introduced in Example 5. Consider the oriented point
C6C0. For this point we get P = {C6C5, C6C12} and the
relations

C6C0 m∠C6C0BC6C5
s C6C5

C6C0 m∠C6C0BC6C12
s C6C12

In Algorithm 1 we show a slightly optimized version of the
described algorithm where steps two and three are amalga-
mated.

Algorithm 1 Deriving Observations

1: C is the set of nodes of a street network
2: S the set of streets as tuples of start and end points
3: O is the set of oriented points
4: R is the set of relations
5: m is the granularity of the OPRA calculus

Require: O = ∅ and R = ∅ and m > 0
6: Require a correct description of a street network

Require: ∀C ∈ C.∃s ∈ S.C = pr1(s) ∨ C = pr2(s)
Require: ∀s ∈ S.∃C1 ∈ C.∃C2 ∈ C.s = 〈C1, C2〉 ∧ C1 6=

C2

7: Introduction of oriented points
8: for all C ∈ C do
9: for all s ∈ S do

10: if pr1(s) = C then
11: O := O ∪ {〈C,pr2(s)〉}
12: end if
13: end for
14: end for
15: Definition of streets and local observations
16: for all o ∈ O do
17: R := R ∪

{
om∠0

0〈pr2(o),pr1(o)〉
}

18: for all p ∈ O do
19: if pr1(o) = pr1(p) and pr2(o) 6= pr2(p) then
20: R := R ∪ {om∠oBp

s p}
21: end if
22: end for
23: end for
24: return R

If we are working with an approach as suggested by Klip-
pel, we add another step that replaces the OPRA-relations
by sets of relations as described in Section 4.3.

4.2 Deriving OPRA-relations
For our observations taken in Section 4.1, we need a way to
derive OPRA-relations from tuples of points (or line seg-

ments). In particular we need is computation in Algorithm 1
Line 20, where oB p was not determined so far.

By scrutinizing the definitions of the OPRAm relations,
we see that for any CkCl m∠j

i CtCv , there is little depen-
dence between the i and j. In fact, the only dependence is
on i being s or not. We can distinguish these cases easily by
determining if Ck = Ct or not. If Ck = Ct, we know that
i = s and can determine j as a half relation. If Ck 6= Ct,
there is no dependence between i and j and we can deter-
mine both via half relations. We can apply Algorithm 2 to de-
termine OPRA-relations between two oriented points CkCl

and CtCv . The main issue that is still open is the derivation

Algorithm 2 Computing OPRA-relations

1: CkCl oriented point
2: CtCv oriented point
3: m granularity of OPRA

Require: m > 0
4: if Ck = Ct then
5: return m∠CkClBCtCv

s
6: else
7: return m∠CtCvBCkCl

CkClBCtCv

8: end if

of the half relations. In fact the needed calculation for the
OPRA relations in Algorithm 1 can be reduced to this step
(refer to Algorithm 1 Line 20). All other information in the
involved OPRA relations can already be derived directly in
that algorithm.

To determine theOPRAm half relations between oriented
points CkCl and CtCv , we determine sectors of the unit cir-
cle3 in the Euclidean plane that correspond to those relations.
Then, we compute the angle from CkCl to CtCv and de-
termine into which sector this angle belongs. This directly
yields the half relation. In Figure 12 these sectors are shown
for OPRA1 to OPRA4. By inspecting the definition of

(a) (b) (c) (d)

Figure 12: Sectors of the circle for OPRA1 (a), OPRA2

(b), OPRA3 (c), and OPRA4 (d)

OPRA relations, we also see that half relations with an even
identifier are relations on a line, while the ones with an odd
identifier are relations in a plane. For an example inspect Fig-
ure 12.

The sectioning for OPRAm is done by identifying an an-
gle interval with every element of the cyclic group Z4m as

[i]m =

{ ]
2π i−1

4m , 2π i+1
4m

[
if i is odd{

2π i
4m

}
if i is even

3In fact the radius of the circle does not matter, since we are
disregarding lengths.
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Please note that these intervals are normalized to the repre-
sentation of angles in the interval [0, 2π[. For an implemen-
tation one can create a look-up-table with the borders of the
respective intervals and the respective values for i.

To compute the needed angle from CkCl and CtCv , we
form the vectors

~a =

(
(Ck)x − (Cl)x
(Ck)y − (Cl)y

)
~b =

(
(Ck)x − (Ct)x
(Ck)y − (Ct)y

)

if Ck 6= Ct and

~a =

(
(Ck)x − (Cl)x
(Ck)y − (Cl)y

)
~b =

(
(Ct)x − (Cv)x
(Ct)y − (Cv)y

)

if Ck = Ct. The operations (_)x and (_)y denote the projec-
tions to the x and y coordinate of a point. The case distinction
takes credit to the fact that in the case of positional equality
of oriented points the angle between the orientations is used
as an OPRA half relation. We determine the angle φ′ from
~a to ~b, we use the atan2 function which yields values in the
interval ]−π, π] as:

φ′ = atan2(~ax~by − ~ay~bx,~ax~bx + ~ay~by)

we normalize our angles to the interval [0, 2π[ by

φ =

{
φ′ + 2π if φ′ < 0
φ′ if φ′ ≥ 0

to get an angle that φ that is compatible to the intervals in
our definition of [i]m. To determine the half relation for φ,
we just need look up the appropriate interval that has been
pre-calculated.

4.3 Factorizing the OPRA-relations to cognitive
adequacy

Additionally to investigating navigation with OPRA rela-
tions, we also want to emulate relations as proposed by Klip-
pel [Klippel et al., 2005] inOPRAm. For this reason, we use
n unary predicates pi with 1 ≤ i ≤ n that partition the set of
the OPRAm base relations. If an OPRAm relation om∠t

sq
has been determined between o and q with Algorithm 2, we
form the new relation relations

o
{
r | pi(r) = pi(m∠t

s) for 1 ≤ i ≤ n
}
q

where r is an OPRAm relation. We do this for all pairs
of oriented points that haven been introduced in Section 4.2.
All other pairs are in the universal relation anyways. For this
factorization adjacent sectors will be united to a single rela-
tion, but the operation involved works for all kinds of pred-
icates, even tough the usefulness might be questionable in
many cases.

5 Navigation
Having obtained a description of a street network as an
OPRA constraint network, we are able to apply algebraic
closure on them to obtain refined constraint networks. Since
we are starting from consistent descriptions, we do not have
to fear that algebraic closure detects inconsistencies. In fact,
in the descriptions from Section 4.2 and Section 4.3 many

Algorithm 3 Factorization (to Klippel’s description)

1: R set of determined OPRAm relations
2: pi with 1 ≤ i ≤ n set of predicates
3: R′ set of output relations

Require: R′ = ∅
4: for all om∠t

sq ∈ R do
5: Rtmp = ∅
6: for all m∠y

x ∈ OPRAm do
7: prop = true
8: for 1 ≤ i ≤ n do
9: prop := prop ∧ pi(m∠t

s) = pi(m∠y
x)

10: end for
11: if prop then
12: Rtmp := Rtmp ∪ {m∠y

x}
13: end if
14: end for
15: R′ := R′ ∪ {oRtmpq}
16: end for
17: return R′

universal relations are contained, since we only made local
observations. E.g. the relation between C13C9 and C6C5

is universal, since these oriented points cannot be observed
together locally at a crossing. Algebraic closure only approx-
imates consistency for OPRA, hence our refined constraint
networks might be too big, but this is no issue for our naviga-
tion task, it might just lead to detours.

Starting from a refined constraint network of a street net-
work, we want to navigate through it (hopefully without tak-
ing too many detours). We are going to apply a least angle
strategy for navigation with imprecise and maybe faulty data.
We can base the navigation on half relations. Just remember
the definition of OPRA relations. If CkCl m∠j

i CtCv , then
CtCv is in sector i of CkCl with granularity m. The way
backwards is of no interest for forward navigation. Based on
this we introduce weights on half OPRA relations. Going
forward and taking slight bends is normally good for such a
navigation, taking sharp bends and going back is bad. We can
assign the weights w(i) to OPRAm half relations i as

w(i) =

{
i if 0 ≤ i ≤ 2m
4m− i if 2m < i < 4m

this yields a weight distribution that assigns the lowest
weights to going forward and making slight bends.
Example 8. Consider again the sectors for OPRA4 in Fig-
ure 12d. Applying weights with respect to our formula yields
the distribution

w(0) = 0 w(5) = w(11) = 5
w(1) = w(15) = 1 w(6) = w(10) = 6
w(2) = w(14) = 2 w(7) = w(9) = 7
w(3) = w(13) = 3 w(8) = 8
w(4) = w(12) = 4

which is depicted in Figure 13. We can observe that going
forward or taking slight bends has small weights whereas go-
ing backwards and taking sharp bends leads to high weights.

In the navigation task, we start at a point from and want
to reach a point to. The current point is start initialized
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Figure 13: OPRA4 weight distribution

by from . These are point that represent crossings in the
street scenario, not oriented points. We determine the set
of all OPRA relations om∠j

ip with pr1(o) = start and
pr1(p) = to. We then form the half relations oB to as

oB to =
∑

pr1(p)=to

{
om Bi to | om∠j

ip
}

We then normalize the weights as

w =

∑
i=oBto

w(i)

|oB to| · penalty

where penalty is a property of pr2(o) that is initialized with
1 and incremented by 1 each time pr2(o) is visited on a path.
This is introduced to make loops bad ways to go and to get
out of dead ends. We now take all o with the minimum w, if
there is more than one, we choose by fortune. pr2(o) becomes
our new point start and its penalty is increased since it is
visited. We repeat this, until to is reached. The algorithm for
navigation is shown in Line 4.

Algorithm 4 Navigation

1: from start point
2: to end point
3: start = from
4: ROUTE := start
5: while start 6= to do
6: R := ∅
7: W := ∅
8: for all p with pr1(p) = to do
9: for all o with pr1(o) = start do

10: if R contains a relation oB p then
11: R := (R \ oB p) ] o(B ] omBi)p if om∠j

ip
12: else
13: R := R ] om Bi p if om∠j

ip
14: end if
15: end for
16: end for
17: for all r ∈ R do
18: W :=W ∪ (r,weight(r))
19: end for
20: cand := r ∈ R with w(r) = min
21: next := random element from cand
22: increase pr2(next).penalty
23: start := pr2(next)
24: ROUTE := ROUTE ◦ start
25: end while
26: return ROUTE

The assignment of weights is shown in Algorithm 5. Please
note that we have used disjoint unions of the half relation

symbols in Line 4, since those lead to better navigation results
in our first experiments, even for low granularities.

Algorithm 5 Weight assignment: weight

1: oB p is given
2: W := 0
3: for all r ∈ B do
4: if 0 ≤ r ≤ 2m then
5: W :=W + r
6: else
7: W :=W + 4m− r
8: end if
9: end for

10: W := W
|B| · pr2(o).penalty

11: return W

6 Experiments
Finding good data for experiments with navigation based on
local observations is a hard task. A big issue is that the max-
imal size of a street network that we can use for navigation
is limited by the number of nodes and by the granularity of
the underlying OPRA calculus. The time needed for apply-
ing the algebraic closure algorithm rises steeply with any of
these two parameters growing. As a rule of thumb we can say
that we can e.g. handle street networks with around 120 to
170 points with OPRA8 in a reasonable time (2 to 4 hours)
when computing algebraic closure with GQR. (However, note
that this has to be computed only once, and can then be used
for as many navigation tasks as wanted.) On the other hand a
network in 170 points in our representation (the reduction of
data is described in Figure 4) does not cover big areas in most
cases. For example the network shown in Figure 14 that de-
rived from the data on OpenStreetMap (latitude 51.8241200
longitude 9.3117500) for a village with about 1400 inhabi-
tants already has 117 points. Large cities like Paris of course
have many more points in our representation and cannot be
handled efficiently with the algebraic reasoners. But on the

Figure 14: A street network of a village
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other hand, we want to observe navigations along paths of
very differing lengths, including very long paths to be able to
judge the navigation properties of our networks based on lo-
cal observations under very differing circumstances. For long
paths networks of a sufficiently big size are needed. Unfor-
tunately this problem grows even bigger by the fact that the
closer we get to boundary of our street network the worse our
local observations and refinements will be. For a point in the
middle of a street network (as in the inner circle in Figure 14
there are many points around it in all directions with observa-
tions being made, putting this point into its place in a qualita-
tive sense. In the middle circle the observations around a cer-
tain point already get sparser and information about the points
gets less certain, this gets worse in the outer circle. Outside
of the outer circle information about the points is very bad.
In fact, it turned out, that navigating into the dead ends at the
boundary of the map is very alluring, since their position with
respect to other points is not very restricted. For meaning-
ful experiments about the navigation performance, the need
street networks that are big enough to provide an area in the
center for which enough information can be derived.

Our test data has hence to consist of street networks that
are small enough to be manageable with qualitative reasoners
and that are big enough to yield enough information. For the
first requirement networks in no more than 20 points would
be nice, for the second one the whole world, since then there
would be no boundary problem.

The results of our experiments are available at
http://www.informatik.uni-bremen.de/
~till/fuerstenau_K8.html (for Klippel8) and
http://www.informatik.uni-bremen.de/
~till/fuerstenau_O8.html (for OPRA8). We
have made 66 navigation experiments. The average path
length was 16.0 (using OPRA8 factorized due to Klippel’s
sectorization of the circle) and 16.2 (using OPRA8) with
our algorithm based on local observations, while that of
a shortest path (using the complete map) was 13.2, and
that of a uniform shortest path (counting all way lengths
as 1) was 11.0. The average length of a random walk
was 718.0. As expected, the standard deviation of our
algorithm is significantly higher than that of shortest paths:

Klippel8 OPRA8 shortest
path

uniform
shortest
path

random
walk

mean 16.0 16.2 13.2 11.0 718.0
standard
deviation

9.3 9.3 5.1 3.5 519.9

However, our algorithm still performs quite well when
compared with shortest paths.

Conclusion
Our experiments show that navigation based on local obser-
vations of an agent performs fairly well when compared with
shortest paths computed using global map knowledge, and
orders of magnitude better than randowm walk.

When making the experiments, we quickly reached the
limits of the standard qualitative spatial reasoning tools. The

constraint networks generated by our algorithms thus could
been seen as a challenge for (further) improving performace
of these tools.

Further experiments should be done with different test
data. Particularly interesting would be street networks of di-
verse style. It is e.g. interesting to use layouts of planned and
grown cities and villages. Further gyratory traffics (e.g. at
Place-Charles-de-Gaulle) of increased interest. With a larger
set of experiments, the approach could be used to systemati-
cally evaluate street networks with respect to their local nav-
igation quality, and study which features of street networks
influence this quality.
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