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Abstract. We present a general framework for the design of formal on-
tologies, resting on two main principles: firstly, we endorse Rudolf Car-
nap’s principle of logical tolerance by giving central stage to the concept
of logical heterogeneity, i.e. the use of a plurality of logical languages
within one ontology design. Secondly, to structure and combine het-
erogeneous ontologies in a semantically well-founded way, we base our
work on abstract model theory in the form of institutional semantics,
as forcefully put forward by Joseph Goguen and Rod Burstall.

The theoretical foundation in institution theory establishes a close
link to algebraic specification theory. We explore this link by system-
atically applying tools and techniques from this area to corresponding
ontology structuring and design tasks, in particular employ the struc-
turing mechanisms of the heterogeneous algebraic specification language
HetCasl for defining an abstract notion of structured heterogeneous
ontology, leading to the idea of a hyperontology, a heterogeneous, dis-
tributed, highly modular and structured ontology. This approach en-
ables the designer to split up a heterogeneous ontology into semantically
meaningful parts and employ dedicated reasoning tools to them.

Moreover, we distinguish, on a structural and semantic level, sev-
eral different kinds of combining and aligning heterogeneous ontologies,
namely integration, connection, and refinement. The notion of hetero-
geneous refinement can, in particular, be used to provide both a general
notion of sub-ontology as well as a notion of heterogeneous equivalence
of ontologies. Finally, we sketch how different modes of reasoning over
ontologies are related to these different structuring aspects.

This paper is an expanded version of [103], with material drawn from [109, 104, 105, 107].
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1. Introduction

Only later, when I became acquainted with the entirely different language forms of Prin-
cipia Mathematica, the modal logic of C. I. Lewis, the intuitionistic logic of Brouwer and
Heyting, and the typeless systems of Quine and others, did I recognise the infinite variety
of possible language forms. On the one hand, I became aware of the problems connected
with the finding of language forms suitable for given purposes; on the other hand, I gained
the insight that one cannot speak of “the correct language form”, because various forms
have different advantages in different respects. The latter insight led me to the principle
of tolerance.

Rudolf Carnap, Intellectual Autobiography, p. 68, (1963)

There is a population explosion among the logical systems used in computing science.
[. . . ] However, it seems that many general results used in the applications are actually
completely independent of what underlying logic is chosen.

Joseph A. Goguen, Rod M. Burstall, Institutions: Abstract Model Theory for
Specification and Programming, (1992)

Given a species of structure, say widgets, then the result of interconnecting a system of
widgets to form a super-widget corresponds to taking the colimit of the diagram of widgets
in which the morphisms show how they are interconnected.

Joseph A. Goguen, A Categorical Manifesto, 6th dogma, (1991)

Traditionally, investigations of human reasoning have been pursued mainly at
the level of reasoning performed by single individuals or small groups (e.g. in
a dialogue situation). Ontologies can be thought of as establishing common
agreements among numerous experts on the logical meaning of certain terms
in a particular field. It turns out that experience in this rather young field
(when understood as a part of modern knowledge engineering and logic rather
than general philosophy) supports the relativistic perspective suggested by
the title of this paper. Just as in the fields of philosophical logic and non-
classical logic, formal ontology draws on a vast array of formal logics with
varying expressive capabilities and directed towards different kinds, or modes,
of logical reasoning. We here explore their various roles in ontology design,
the reasoning they support, and ways in which ontologies in different such
logics can be combined.

More specifically, this paper is about the foundations of ontological en-
gineering. It is not, however, about ‘best practices’ or discusses specific ap-
proaches to or methodologies for ontology design, such as the OntoClean
methodology [78]. Rather, we outline a general methodological and theoret-
ical environment for the design and construction of formal ontologies, and
the problem of corresponding reasoning support. This framework rests, on a
very general level, on two main principles: firstly, we endorse Rudolf Carnap’s
principle of logical tolerance by giving central stage to the concept of logical
heterogeneity, i.e. the use of a plurality of logical languages within one ontol-
ogy design. Secondly, to structure and combine heterogeneous ontologies in
a semantically well-founded way, we base our work on abstract model theory
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in the form of institutional semantics, as forcefully put forward by Joseph
Goguen and Rod Burstall.

We begin by briefly discussing the notion of an ‘ontology’ itself as it is as-
sumed in modern knowledge engineering. A fundamental distinction, intro-
duced by Guarino and Giaretta in [77], should first be kept in mind, namely
the distinction between ‘Ontology’ (with an uppercase ‘O’) understood as the
philosophical discipline, and the use of ‘ontologies’ (with a lowercase ‘o’ and
a plural reading) as a knowledge engineering artefact.

Amongst the many definitions of ‘Ontology’ as a philosophical discipline,
we present the definition given by Leibniz because of its clarity and brevity:

Ontology or the science of something and of nothing, of being
and not-being, of the thing and the mode of the thing, of
substance and accident. [112, Text n. 126 p. 527]

The contemporary notion of an ‘ontology’ as a technical artefact,1 on
the other hand, grew out of a hypothesis which lies at heart of modern knowl-
edge representation and reasoning, namely Simon & Newell’s physical symbol
system hypothesis: “A physical symbol system has the necessary and sufficient
means for general intelligent action.” [146].2 The general idea of a ‘formal on-
tology’ that emerged from this tradition within Artificial Intelligence, with
Marvin Minsky’s semantic frames as one of the first milestones [134], is a sym-
bolic representation of a specific domain of human general or commonsense
knowledge that is based on general principles and insights from the philo-
sophical discipline ‘Ontology’, based on logical representation languages, and
trimmed or fine-tuned towards intended technical applications and reasoning
scenarios.

An often cited definition of the term ‘ontology’ in this latter sense was
given by Tom Gruber in 1992, taken from [72] and slightly abridged. We
will discuss this in some detail and relate it to what we believe are the most
important aspects of universality w.r.t reasoning with and over ontologies.

A conceptualization is an abstract, simplified view of the
world that we wish to represent for some purpose. Every
knowledge base, knowledge-based system, or knowledge-level
agent is committed to some conceptualization, explicitly or
implicitly.

An ontology is an explicit specification of a conceptu-
alization. The term is borrowed from philosophy, where an

1Different notions of ‘ontology’ as a technical artefact have been extensively discussed in
the literature, and we here do not intend to repeat these discussions. For instance, to expli-
cate the definition given by Gruber in some more detail [77] distinguished seven different
readings of the term ‘ontology’, namely: (1) Ontology as a philosophical discipline; (2)
Ontology as a an informal conceptual system; (3) Ontology as a formal semantic account;
(4) Ontology as a specification of a “conceptualization”; (5) Ontology as a representation of
a conceptual system via a logical theory; (5.1) characterized by specific formal properties;
(5.2) characterized only by its specific purposes; (6) Ontology as the vocabulary used by a
logical theory; (7) Ontology as a (meta-level) specification of a logical theory.
2See [131] for an extensive analysis and historical detail.
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Ontology is a systematic account of Existence. For AI sys-
tems, “what exists” is that which can be represented. When
the knowledge of a domain is represented in a declarative for-
malism, the set of objects that can be represented is called
the universe of discourse. This set of objects, and the de-
scribable relationships among them, are reflected in the rep-
resentational vocabulary with which a knowledge-based pro-
gram represents knowledge. Thus, in the context of AI, we
can describe the ontology of a program by defining a set of
representational terms. In such an ontology, definitions asso-
ciate the names of entities in the universe of discourse (e.g.,
classes, relations, functions, or other objects) with human-
readable text describing what the names mean, and formal
axioms that constrain the interpretation and well-formed use
of these terms. Formally, an ontology is the statement of a
logical theory.

Whilst this definition is widely cited, it has also been criticised for not
being precise enough, in particular concerning the usage of the notion of a
‘conceptualization’ adapted from [61].3 However, it still nicely captures the
main differences between the usage of the term ‘ontology’ in philosophy vs.
computer science and artificial intelligence. Namely, consider the following
snippets from this definition:

1. ‘simplified view of the world that we wish to represent for some pur-
pose’: an ontology as a technical artefact is not intended to cover the
world in its entirety, but only chosen (small) parts, on specific levels of
abstraction, and for given purposes;

2. “ ‘what exists” is that which can be represented’: ontological commit-
ments are dependent on the expressive capabilities of selected represen-
tational formalisms;

3. ‘representational vocabulary’ and ‘human-readable text’: there is a ‘ten-
sion’ between the logical vocabulary used, and the natural language
concepts and terms it is meant to capture;4

3Guarino, in [75], for instance, analysis that it assumes an extensional interpretation,
i.e. referring to particular states of affairs, whilst the intended interpretation of the term
‘conceptualisation’ should be an intensional one, i.e. singling out the class of all admissible
interpretations of the relevant terms used. (As in Montague semantics, where the ‘meaning’
of a concept C can be defined as a function mapping possible worlds to extensions of C at
that world). I.e. in the terminology of [77], a conceptualisation is a semantic structure that
reflects a particular conceptual system, an ontological theory is a set of axioms intended
to express ontological knowledge, and an ontological commitment the set of its models,
which should moreover not be in conflict with the conceptualisation.
4For instance, Brachman, in 1979, introduced a classification of the primitives used in KR
systems at the time [29], distinguishing the following four levels: (i) ‘Implementational’, (ii)
‘Logical’, (iii) ‘Conceptual’, and (iv) ‘Linguistic’. Guarino, in [74, 76] added to these four
layers yet another layer, namely the ‘Epistemological Layer’ for the primitives, situated
between the ‘Logical’ and the ‘Conceptual’ layers.
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4. ‘an ontology is the statement of a logical theory’: on a technical level,
an ontology is seen as equivalent to a logical theory, written in a certain
formalism.

Three questions in particular we would like to extract from this discussion
which are directly related to questions concerning the universality of human
reasoning when applied to ontology engineering:

(1) Can there be a ‘universal ontology’, i.e. a symbolic representation of
ontological or commonsense knowledge that fits all kinds of domains and
possible application and reasoning scenarios?

(2) Correspondingly, even if not all relevant knowledge could be encoded
in one single formal ontology, is there one perfect, ‘true’ formal ontology
language that is adequate for all purposes, e.g. is first-order logic such a
language?

(3) Irrespective of whether or not there is such a language, is there a singular
kind, or mode, of formal reasoning that needs to be performed with and over
formal ontologies, independently of the intended application area and chosen
representational formalism?

In condensed form, our answers to these three questions will turn out
to be ‘No!’, ‘No!’, and ‘No!’, and the core of this paper will provide a de-
tailed technical substantiation of this claim—in the next three section, we
will sketch informally our reasons for supporting a relativistic approach to
ontology design, discussing in particular the need for a plurality of ontologies
vs. a single monolithic ontology, the necessity of employing several different
formal representation languages, as well as the importance of supporting log-
ically diverse reasoning mechanisms.5 In Section 1.4, then, we will provide a
more technical summary of the contributions of this paper and explicate the
terms Carnapian Goguenism and Hyperontology.

1.1. From Universal Common Sense to Domain Ontology.
In Artificial Intelligence, there is a long tradition in attempting to provide
‘universal’ solutions to generic problems, from the concept of a ‘general prob-
lem solver’ (GPS) articulated in 1957 by Simon & Newell [145], the Cyc on-
tology to capture all of human common sense knowledge started by Douglas
Lenat in 1984 [113], to attempts starting in the 1990s at constructing foun-
dational ontologies, such as BFO, GFO, and Dolce. Whilst the latter have
already given up on being universally applicable, Cyc’s vision is to explicitly
‘assimilate’ various data sources and thus to “extend the flexibility and power
of the Cyc product to serve as the universal ontology and knowledge reposi-
tory in any application requiring knowledge based reasoning” [130]. The belief
that such an approach can work might be summarised by a quote attributed
to Lenat: “Intelligence is ten million rules.”

In all cases, it turned out that, whilst being partly successful, the ap-
plicability of these approaches was far from universal; rather, such universal

5In particular, we hold that questions (2) and (3) are inextricably intertwined.
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approaches typically suffer, at the very least, from algorithmic combinatorial
explosion: in the case of the GPS, this led to a diversification of algorithmic
approaches, in the case of Cyc to more modest goals at when and where this
kind of knowledge base could be employed, and in cases of foundational on-
tologies to a diversification not only of targeted application areas for a specific
foundational ontology, but also to different versions of such ontologies, such
as Dolce (first-order) and Dolce-Lite (DL). This corresponds to a relativisa-
tion of the physical symbol system hypothesis, resulting in a more pragmatic
use of ontologies in focused application domains and contexts, and a ground-
ing of ontological concepts (e.g. using sensor data), thus better capturing
the situated, embodied and embedded nature of human concepts (compare
Goguen’s [63] for a similar analysis).

Ontologies generally play an increasingly important role in various areas
of Knowledge Representation, ranging from the life sciences and engineering
domains to linguistic semantics. Ontologies may accordingly be classified with
respect to their intended usage. Guarino [75] (p. 7), for instance, distinguishes
between ‘top-level ontology’ (also called upper or foundational ontology, ax-
iomatising the most general concepts such as ‘space’, ‘time’, and ‘matter’),
‘domain ontology’ and ‘task ontology’ (axiomatising the vocabulary related to
a generic domain, such as medicine, or specific activities respectively, such as
‘diagnosing’), and ‘application ontology’ (describing concepts depending both
on a particular domain and task). Such different kinds of ontologies might
not only require different levels of logical expressivity, but indeed might re-
quire different kinds of reasoning support. In the process, ontologies are being
designed in a broad spectrum of logical languages, with considerably varying
expressivity and supporting quite different reasoning methods.

As a matter of fact, first-order logics and their fragments are very pop-
ular for the specification of ontologies. Many (domain) ontologies are written
in description logics (DLs), like SHOIN (D) (underlying the web ontology
language OWL in its variant OWL-DL 1.0) and SROIQ(D) (underlying
OWL-DL 2.0) [90]. These logics are characterised by having a rather fine-
tuned expressivity, exhibiting (still) decidable satisfiability problems, whilst
being amenable to highly optimised implementations.

In this context, it can be a rather difficult task for an ontology designer
to choose an appropriate logic and formalism for a specific ontology design
beforehand—and failing in making the right choice might lead to the neces-
sity of re-designing large parts of an ontology from scratch, or limit future
expandability.

1.2. Logical Pluralism and Syntactic Heterogeneity.
Heterogeneity (or plurality) of ontology languages is thus clearly an important
issue, and is the first main topic of this paper.

Carnap, in ‘Die logische Syntax der Sprache’ [33, §17], famously put
forward his principle of logical tolerance as follows:

Es ist nicht unser Geschäft, Verbote zu erlassen, sondern zu Konventionen zu gelangen.
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In der Logik gibt es keine Moral. Jeder mag seine Logik, d.h. seine Sprachform, aufbauen
wie er will. Nur muß er, wenn er mit uns diskutieren will, deutlich angeben, wie er es
machen will, syntaktische Bestimmungen geben statt philosophischer Erörterungen.6

In philosophy, the idea of logical pluralism has a long history. Roughly
speaking, this is the position that challenges the singularity of classical logic
as the one true logic, and instead maintains that, for various purposes and
applications, or contexts, other logics (i.e. other consequence relations) than
classical logic are the right ones. While this idea can be traced back through
the whole history of logic, the 20th century saw an abundance of such chal-
lenges to classical logic (see e.g. [81, 82]), such as Brouwer’s intuitionism
(and the various schools of constructivist logic that developed from there),
substructural logics (e.g. relevant and linear logic), paraconsistency, modal,
fuzzy, and many-valued logic, etc.
In a similar spirit, in his study of ‘pre-semantics’7, Belnap [17] argues for the
usefulness of Carnapian tolerance thus

In the first place, pre-semantics helps us become clear that
some of the deepest semantic ideas are quite independent of
notational systems (grammars). Second, in the tolerant spirit
of Carnap, we believe that one is likely to want a variety
of complementary (noncompeting) pre-semantic analyses—
and most especially, a variety of pre-semantic treatments of
one and the same “language”. [. . . ] There can and should be
multiple useful, productive, insightful and pertinent analyses
of the same target. Pre-semantics therefore emphasizes the
usefulness of thinking in terms of a variety of pre-semantic
systems.

Obviously, the idea of logical pluralism can be (and constantly is) heav-
ily debated within philosophical logic (compare e.g. [14, 15], [157, 158], and
[178]). However, the need for the design and application of a lot of special
purpose non-classical logics has been articulated in many areas of computer
science and linguistics, in particular in knowledge representation, artificial
intelligence, semantics of natural language, and the logical foundations of
programming languages and software specification. Here is one such voice
[133]:

[. . . ] it is a fact of life that no single perspective, no single formalization or level
of abstraction suffices to represent a system and reason about its behavior. [. . . ]

6“It is not our business to set up prohibitions, but to arrive at conventions. [. . . ] In logic
there are no morals. Everyone is at liberty to build up his own logic, i.e. his own language,
as he wishes. All that is required of him is that, if he wishes to discuss it, he must state his
methods clearly, and give syntactical rules instead of philosophical arguments.” Translated
1937.
7Belnap [17] argues that “Semantics presupposes grammar.” and therefore that pre-
semantics is the study of “pure theories” of values such as Carnap’s intensions that do
not involve grammar directly, and that are, in this reading, understood as pre-semantic
rather than ‘semantic’ in the strict sense.
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no logical formalism (specification language, prototyping language, etc.) will
be best for all purposes. What exists is a space of possibilities (the universe
of logics) in which careful choice of the formalisms that best suit some given
purposes can be exercised.

Indeed, from this situation, the new field of ‘universal logic’ has emerged
(see e.g. [22], the journal ‘Logica Universalis’, and the book series ‘Studies
in Universal Logic’). Universal logic is to logic what universal algebra is to
algebra: it is concerned with studying the most general features of logics or
classes of logics.

Logical pluralism de facto permeates almost all areas of knowledge engi-
neering; its wide acceptance is clearly a fact we have to acknowledge. Indeed,
we believe that from a methodological viewpoint, and especially from its sheer
practical usefulness, the advantages of adopting a position of logical pluralism
in ontology engineering can hardly be seriously challenged, and maintain, as
Belnap [17] put it, that “One does not have to ‘believe in alternative logics’
to repudiate the sort of absolutism that comes not from logic itself, but from
narrow-gauge metaphysics or epistemology.”.

1.3. Logical Reasoning Modes for Ontologies.

When acknowledging the situation that there are different kinds of ontolo-
gies targeted at various application domains, and being formulated in vary-
ing logical languages, it is obvious that there are also diverse requirements
concerning reasoning support. Indeed, there are many cases where either
weaker DLs are enough, such as sub-Boolean EL, and more specialised (and
faster) algorithms can be employed, or, contrarily, the expressivity has to be
extended beyond the scope of standard description logics. An example for
the former would be the NCI thesaurus (containing about 45.000 concepts)
which is intended to become the reference terminology for cancer research
[173], an example for the latter many foundational ontologies such as Sumo
[147], Dolce [129, 58], GFO [84], BFO [71], and GUM [11, 10]. These are
typically specified in some variant of first-order logic, and their first-order
theories tend to be rather large (Dolce, for instance, consists of a few hun-
dred axioms, and Sumo of several thousand). But also for domain ontologies,
the web ontology language OWL is not always sufficient. Although OWL
is being constantly refined and extended, its main target application is the
Semantic Web and related areas, and it can thus not be expected to be fit
for any purpose: there will always be new, typically interdisciplinary applica-
tion areas for ontologies where the employed (or required) formal languages
do not directly fit into the OWL landscape. A notorious example for this is
OWL’s lack of expressive power to properly define the mereological parthood
relation which is essential e.g. in many medical or biological ontologies.8

8We will discuss formalisations of parthood extensively in Sec. 2.1, but see [94] for an
overview.



10 Oliver Kutz, Till Mossakowski, and Dominik Lücke

The discussion so far offers a pragmatic motivation for logical pluralism:
whilst first-order logic is predominant, there are many variants and frag-
ments in use, with different expressivity, user communities, and tool sup-
port. However, there is also a more fundamental motivation for logical plu-
ralism, namely the open-ended nature of a field such as ontology engineering
that strongly depends on a rapidly changing array of application domains in
which ontologies are deployed, with continuously changing demands on ex-
pressive capabilities and supported reasoning tasks. Sometimes, for example,
first-oder expressivity is deemed insufficient. There are versions of Dolce
that use modal logic and second-order constructs. Moreover, there are cases
where combinations with or connections to formalism with different seman-
tics have to be covered, such as temporal, spatial, or epistemic logics, cf. e.g.
[3, 4, 106, 48, 31].

Although classical reasoning is still predominant in currently imple-
mented systems, it has been realised in recent years that there are many
application scenarios for ontologies where there is an explicit need to leave
the classical mode of reasoning and switch to a different mode, most impor-
tantly to non-monotonic and default reasoning, paraconsistent reasoning, or
various kinds of reasoning with uncertainty. Paraconsistent logic, for instance,
is quite important in ontological engineering, in particular when dealing with
large amounts of ‘data’: in many contexts, one does not want a local incon-
sistency among some facts to have the effect of a global inconsistency [124].
Another non-classical mode of reasoning arises when incomplete or uncertain
information suggests probabilistic or fuzzy reasoning, as for instance studied
in [116, 117], or employing rough mereology to deal with problems of ontolog-
ical granularity [95]. Finally, non-monotonic and default reasoning becomes
important when dealing with ‘rules’ in addition to axioms, when working
with databases that use closed-world semantics, or when one wants to, e.g.,
allow exceptions in concept definitions.

Pluralism of ontology languages also gains importance when consider-
ing the problem of cognitive adequacy of formalism. Some spatial calculi
use linguistic terms to define spatial relations (for instance the Region Con-
nection Calculus RCC8 discussed below in Section 2.1.2), aiming at being
cognitively adequate in the sense that the formal terms provided reflect dis-
tinctions humans would typically make and find relevant. For instance, RCC8
distinguishes relations such as ‘overlap’ and ‘disjointness’, but also ‘tangential
proper part’. The simpler RCC5 does not consider the boundary of a region,
and is thus seen as more cognitively adequate in situations where humans
would not consider this distinction relevant (see [? ] for such an analysis con-
cerning Allen’s temporal interval calculus). Another case would be modal and
temporal operators, whose usage could be seen as cognitively more adequate
than first-order logic as these operators directly reflect natural language (and
its semantics)—quantifying over time points, for most people, perhaps is not
the most straightforward way of writing down a temporal statement. It could
also be argued that paraconsistent logic is more cognitively adequate than
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classical reasoning for the simple fact that, in everyday communication and
reasoning, we do not accept logical explosion.9

1.4. From Carnapian Goguenism to Constructing Hyperontologies
Adopting a position of logical pluralism and notational tolerance by no means
implies that we believe there should be no standards for ontology languages.
To the contrary, establishing standards like the RDF framework (see [115]
for an institutional analysis), the OWL languages [70]10, Common Logic [39,
44]11, or indeed the Casl family [139]12, is essential for deploying ontologies
in the real world. But a general approach to ontology engineering should
not only provide the means to adopt (at the same time) several standards
for ontology languages, it also needs to deliver techniques to systematically
combine and integrate logical modules written in different such languages.

The second focus of the paper is thus on the problems of modularity and
structuring of ontologies, and the related problem area of combining, in var-
ious ways, ontology components, or modules.

A first problem here is the mere size of ontologies making the design
process potentially quite hard and error prone (at least for humans). This
issue has been only partly cured in OWL by the imports construct, and
leaves the problem of ‘debugging’ large ontologies as an important issue [92].
Also, simple operations such as the re-use of parts of an ontology in a dif-
ferent ‘context’ whilst renaming (parts of) the signature are not possible in
the OWL languages. Although matching [51], aligning [183], and re-using
(parts of) ontologies has received considerable attention recently, in partic-
ular concerning algorithms for deciding conservativity in various description
logics [118, 40, 96], there is little work on formal structuring in the presence
of heterogeneity.

We believe that a lot can be learned in this respect from techniques
developed for (algebraic) specification in software engineering, and will pro-
vide a systematic account that parallels structuring techniques from algebraic
specification with typical problems found in ontology design. The cure that
we propose to the above issues relies strongly on the concept of heterogene-
ity : facing the fact that several logics and formalisms are used for designing
ontologies, we suggest heterogeneous structuring constructs that allow the
combination of ontologies in various but always formally and semantically
well-founded ways. Our approach is based on the theory of institutions and
formal structuring techniques from algebraic specification theory, and gener-
alises and extends ideas of [20], [2], [127], and in particular [64, 65].

9Cognitive adequacy is also related to the succinctness of logical formalisms. For instance,
many first-order statements can be equivalently formalised in various modal or temporal
formalisms, but the first-order formulae may be exponentially shorter (and thus more
intricate).
10See also http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
11See also http://common-logic.org/
12See also http://www.cofi.info/

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://common-logic.org/
http://www.cofi.info/
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Two ideas, then, in their combination, perfectly summarise our approach
to ontological engineering: Carnap’s principle of logical tolerance [33], and
Goguen’s approach to logical integration [62, 64].

According to the former, we acknowledge and approve that different
ontology designs will require different logical languages,13 whilst the latter
maintains that the logical re-combination of ontology modules should rely on
an understanding of the structural or diagrammatic properties of the combi-
nation.

The position that takes logical pluralism and thus relativises it to on-
tological engineering we might call onto-logical pluralism. The position that
takes onto-logical pluralism and applies structuring and modularity princi-
ples based on abstract model theory (institution theory), we call Carnapian
Goguenism.

Just as it has become a truism that good software engineering strongly
involves modular design as well as a choice of appropriate programming lan-
guages for the various modules, we maintain that different kinds of ontologies
require different logical languages, with varying expressivity, and indeed with
different and possibly not directly compatible semantics, and that the com-
bination of such heterogeneous modules requires sophisticated techniques of
structuring and modular re-combination. This position directly leads to the
following three methodological questions:
1. How can large and complex ontologies be built up from parts, being

formulated in different logical languages, and in what ways can those
parts be related?

2. How can the structure of the overall ontology be represented, and how
can various logical properties of the parts be preserved?

3. How can we perform (automated) logical reasoning over such structured
ontologies, and how, or when, can we reduce reasoning in the overall
ontology to the ontology’s component modules?

In this paper, we will give answers to all three questions which may be
sketched as follows. We will

Structured Ontologies. develop a rather abstract view of heterogeneously
structured ontology, encompassing essentially all logics being used in on-
tology design today and allowing for the modelling of the most complex
relationships between ontologies. Technically, we have formalised several
logics that are important from an ontology design perspective as so-
called institutions [66, 67], including the description logic SROIQ(D)
and various variants of first-order logic and different modal logics, and

13Carnap’s version of logical tolerance (‘Toleranzprinzip der Syntax’) argues for the free-
dom to choose appropriate logical languages for various tasks. Carnap’s position also im-
plies, as [160] put it, that “Any difference in logical consequence is due to a difference
in languages.” This is, however, a weaker (or different) position than full blown logical
tolerance as it is sometimes understood, which maintains that there are indeed different
‘right’ consequence relations for different applications for the same language, see [34, 35]
and [160].
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supply institution comorphisms (logic translations) as mappings be-
tween them.

Classification of Combination Techniques. systematise the field of ‘com-
bining ontologies’ by identifying three classes of such combinations: re-
finements, integrations, and connections. The differentiating criteria are
the use of signatures in the overall combination and the corresponding
model-theoretic properties.

Hyperontologies. introduce a notion of heterogeneously structured ontol-
ogy, which also affords distributed networks of ontologies written in
different formalisms, which we call hyperontologies.

Reasoning with Combinations. analyse how various well-known ontology
design and combination techniques fit into these abstract categories,
including structuring through conservative extensions, ontology align-
ments,14 E-connections, and database-scheme–ontology reconciliation.

Tool Support. discuss how the tool Hets (Heterogeneous Tool Set) can
support various reasoning and ontology engineering tasks and indicate
the current and planned tool support for existing ontology languages
and reasoners.

The main features of our approach to ontology design may then be sum-
marised as follows:
• The ontology designer can use description logics to specify most parts of

an ontology, and can use first-order (or even higher-order) logic where
needed. Moreover, the overall ontology can be assembled from (and can
be split up into) semantically meaningful parts (‘modules’) that are
systematically related by structuring mechanisms. These parts can then
be re-used and/or extended in different settings.
• Institution theory provides logic translations between different ontology

languages, translating the syntax and semantics of different formalisms.
• Various concepts of ‘ontological module’ are covered, including simple

imports (extensions) and union of theories, as well as conservative and
definitional extensions. We here consider conservative extensions as a
way of (‘a priori’) structuring ontologies, rather than as a methodology
to (‘a posteriori’) cutting large ontologies into pieces which lie conserva-
tively within the whole. However, we consider the latter (algorithmic)
approach as assistive to, for instance, verifying a desired conservative
design.
• Structuring into modules is made explicit in the ontology and generates

so-called proof obligations, e.g. for conservativity. Proof obligations can
also be used to keep track of desired consequences of an ontology (mod-
ule), especially during the design process.
• Re-using (parts of) ontologies whilst renaming (parts of) the signature

is handled by symbol maps and hiding symbols: essentially, this allows
the internalisation of (strict) alignment mappings.

14Previously discussed in [109].
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• The approach allows heterogeneous refinements: it is possible to prove
that an ontology O2 is a refinement of another ontology O1, formalised
in a different logic. For instance, one can check if a domain ontology is
a refinement of (a part of) a foundational one. There are two interest-
ing by-products of the definition of heterogeneous refinement: firstly, it
provides a rather general definition of heterogeneous sub-ontology, and
secondly, it can be used to give a definition of equivalence of ontologies
across different ontology languages.
• The tool Hets provides parsing, static analysis and proof management

for heterogeneous logical theories. It can visualise the module structure
of complex logical theories, using so-called development graphs. For in-
dividual nodes (corresponding to logical theories) in such a graph, the
concept hierarchy can be displayed. Moreover, Hets is able to prove
intended consequences of theories, prove refinements between theories,
or demonstrate their consistency, and compute normal forms and col-
imits (also for heterogeneous specifications). This is done by integrat-
ing several first-order provers and model-finders (Spass, Darwin), a
higher-order prover (Isabelle), as well as the DL reasoners Pellet
and Fact++.

The structure of the paper is as follows:

In Section 2, we suggest a heterogeneous framework for the design of
ontologies, based on the theory of institutions and the notion of development
graph, and define the notion of ‘abstract structured heterogeneous ontol-
ogy’. We here also introduce several logics used in ontology design, formalise
them as institutions, and discuss their varying expressivity and applicability
(mostly) with respect to the mereological parthood relation. Section 3 then
discusses a number of combination techniques and scenarios known from the
literature from the abstract viewpoint of institution theory, including ref-
erence ontologies, alignments, as well as E-connections and distributed de-
scription logics (DDLs). In particular, we turn our attention to relationships
between ontologies that are (logically) particularly strict, namely the notion
of refinement, the derived notion of heterogeneous sub-ontology, and a notion
of heterogeneous equivalence based on refinements. In Section 4, we supply
some details on the implementation of our abstract framework based on the
tool Hets, and discuss its reasoning support for various ontology languages
ranging from the DL SROIQ(D) to first-order and higher-order logic, in-
cluding ‘non-standard’ operations such as co-limit computation and support
for checking conservativities. We here also give two examples of refinements
together with concrete specifications, based on a relational-schema and de-
scription logic formalisations of a bibliographical database, as well as exam-
ples for ontology integration and alignments. Finally, Section 5 summarises
the paper and discusses future work.
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2. Heterogeneous Ontologies and Structuring
The study of modularity principles can be carried out to a quite large extent
independently of the details of the underlying logical system that is used.
The notion of institutions was introduced by Goguen and Burstall in the late
1970s exactly for this purpose (see [67]). They capture in a very abstract and
flexible way the notion of a logical system by describing how, in any logical
system, signatures, models, sentences (axioms) and satisfaction (of sentences
in models) are related. Here, a signature collects the non-logical (i.e. ‘user-
defined’) symbols that both occur in the sentences and are interpreted in the
models. E.g. in first-order logic, these are predicate symbols, constant and
function symbols, and possibly sorts. Signature morphisms can be thought
of as mappings between two signatures. An insight of institution theory is
the importance of indexing by context (i.e. signature) and change of context
(i.e. signature morphisms), such that satisfaction is invariant under change of
context. Another important insight is the fact that a surprisingly large body
of logical notions and results can be developed in a way that is completely
independent of the specific nature of the underlying institution.15

We assume some acquaintance with the basic notions of category theory
and refer to [1] or [126] for an introduction.

Definition 2.1. An institution is a quadruple I = (Sign,Sen,Mod, |=) con-
sisting of the following:
• a category Sign of signatures,
• a functor Sen : Sign −→ Set16 giving, for each signature Σ, the set

of sentences Sen(Σ), and for each signature morphism σ : Σ −→ Σ′,
the sentence translation map Sen(σ) : Sen(Σ)−→Sen(Σ′), where often
Sen(σ)(ϕ) is written as σ(ϕ),
• a functor Mod : Signop −→ CAT 17 giving, for each signature Σ, the

category of models Mod(Σ), and for each signature morphism σ : Σ−→
Σ′, the reduct functor Mod(σ) : Mod(Σ′) −→Mod(Σ), where often
Mod(σ)(M ′) is written as M ′ �σ, and M ′ �σ is called the σ-reduct of
M ′, while M ′ is called a σ-expansion of M ′�σ,
• a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ : Σ−→ Σ′ in Sign the following satisfaction condition
holds:

(?) M ′ |=Σ′ σ(ϕ) iff M ′�σ|=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant
under change of notation and context.18 a

15For an extensive treatment of model theory in this setting, see [46].
16Set is the category having all small sets as objects and functions as arrows.
17CAT is the category of categories and functors. Strictly speaking, CAT is not a category
but only a so-called quasicategory, which is a category that lives in a higher set-theoretic
universe.
18Note, however, that non-monotonic formalisms can only indirectly be covered this way,
but compare, e.g., [79].
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2.1. A Variety of Logics

Examples of institutions include, among others, first- and higher-order clas-
sical logic, description logics, and various non-classical logics such as (quan-
tified) modal logics or paraconsistent logics. In the following, we give the
institutional formulations of the most important logics used in ontology en-
gineering, and use this occasion to illustrate the varying expressivity and
applicability of these logics in ontology design, and give some historical back-
ground. As a running example, we use the well-known ontological problem of
formalising the mereological parthood relation [171]. This notion is central
not only to foundational ontologies such as Dolce [129], but is important
also in many more applied areas that use ontologies. [94], for instance, dis-
cuss the ontological, linguistic and cognitive aspects of different mereological
and meronymic part-whole relations introduced in the literature and organise
them in a basic formal taxonomy in order to assist an ontology designer in
the ontologically correct usage and selection of these different relations. We
here, in contrast, focus mostly on the classical parthood relation and analyse
and compare the varying expressive capabilities w.r.t. parthood of the logics
that we introduce.

2.1.1. Variants and Fragments of Classical First-Order Logic.

Example. Propositional Logic. The institution Prop of propositional logic
has sets Σ (of propositional symbols) as signatures, and functions σ : Σ1 → Σ2

between such sets as signature morphisms. A Σ-model M is a mapping from
Σ to {true, false}. The reduct of a Σ2-model M2 along σ : Σ1 → Σ2 is the
Σ1-model given by the compositionM2◦σ. Σ-sentences are built from Σ with
the usual propositional connectives, and sentence translation along a signa-
ture morphism just replaces the propositional symbols along the morphism.
Finally, satisfaction of a sentence in a model is defined by the standard truth-
table semantics. It is straight-forward to see that the satisfaction condition
holds.

Propositional reasoning is at the core of ontology design. Boolean ex-
pressivity is sufficient to axiomatise the taxonomic structure of an ontology
by imposing disjointness and sub- or super-concept relationships via impli-
cation and negation, as well as e.g. non-empty overlap of concepts. Here,
the most immediate connection to ontology intuitively is perhaps given when
propositional logic is thought of as diagrammatic reasoning (over unary pred-
icates interpreted as sets) in terms of Venn or Euler diagrams [179]. This style
of reasoning about concepts is already implicit, among others, in Aristotle’s
Syllogisms and in particular in Ramon Llull’s work in the 13th century that
constituted a major milestone towards modern propositional logic by study-
ing, e.g., material implication and conjunction [60].19

19Gardner’s book [60] contains not only material on Llull’s life and his contributions to
logic, but in particular their relationship to diagrammatic reasoning in the style of Venn.
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Figure 1. A taxonomy for basic mereology as Euler dia-
gram (left) and taxonomic tree (right).

As concerns the parthood relation, we might want to fix the basic tax-
onomic information as given in the Dolce ontology. That is, assume basic
mereology is defined over the categories PT (for particular), PD (for per-
durant), T (for time interval), S (for space region), and AR (for abstract
region). PD,S, T,AR are assumed to be pairwise disjoint. Moreover, PT
serves as top-concept, i.e. we have:

S ∨ T ∨AR ∨ PD → PT, S ∧ T → ⊥, T ∧AR→ ⊥, etc.

The basic taxonomy is illustrated in Fig. 1.

a

Example. Untyped First-order Logic. In the institution FOL= of untyped
first-order logic with equality, signatures are first-order signatures, consisting
of a set of function symbols with arities, and a set of predicate symbols with
arities. Signature morphisms map symbols such that arities are preserved.
Models are first-order structures, and sentences are first-order formulas. Sen-
tence translation means replacement of the translated symbols. Model reduct
means reassembling the model’s components according to the signature mor-
phism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure.

Untyped first-order logic is capable of expressing basic mereology. More pre-
cisely, we here sketch the axioms of the theory of classical extensional part-
hood CET, which is part of the Dolce ontology. First of all, the parthood
relation P is declared to be a partial order, that is, satisfies reflexivity, an-
tisymmetry, and transitivity. Moreover, CET satisfies the following axioms,
for each of the categories X = S, T,AR,PD:
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(Proper Part)
∀x, y ∈ X.PP(x, y) ←→ P (x, y) ∧ ¬P (y, x)

(Overlap)
∀x, y ∈ X.Ov(x, y) ←→ ∃z ∈ X.(P (z, x) ∧ P (z, y))

(Atom)
∀x ∈ X.At(x) ←→ ¬∃y ∈ X.(PP(y, x))

(Atomic Part)
∀x, y ∈ X.AtP(x; y) ←→ P (x, y) ∧At(x)

(Binary Sum)
∀x, y, z ∈ X.Sum(z, x, y) ←→ ∀w ∈ X.(Ov(w, z)⇔ (Ov(w, x) ∨Ov(w, y)))

(Binary Difference)
∀x, y ∈ X.¬∀x, y, z ∈ X.Dif (z, x, y) ←→ ∀w ∈ X.(P (w, z)↔ (P (w, x) ∧ ¬Ov(w, y)))

(Extensionality
& Existence of the Difference)

P (x, y) −→ ∃z ∈ X.(Dif (z, x, y))

(Existence of the Sum)
∀x, y ∈ X.∃z ∈ X.(Sum(z, x, y))

Note that the first six axioms are definitional in nature, namely defining
the predicates PP ,Ov ,At ,AtP ,Sum and Dif , whilst only the last two ones
make existential statements. a

Example. Many-sorted First-order Logic. The institution FOLms= of many-
sorted first-order logic with equality is similar to FOL. Signatures are many-
sorted first-order signatures, consisting of sorts and typed function and pred-
icate symbols. The rest is similar to FOL. For details, see [67].

Although not strictly more expressive than single-sorted FOL=, intro-
ducing a sort structure allows a cleaner and more principled design of first-
order ontologies. This was indeed one of the reasons for using FOLms= in the
Casl formulation of the Dolce ontology (see below for details of the Casl
language). The taxonomy introduced in Fig. 1 can be restated by introduc-
ing PD,S, T,AR,PT as five different sorts, with the corresponding sub-sort
relationships. Moreover, axioms involving different sorts can be stated more
succinctly, and static type checking gives more control over correct modelling.
Finally, sorting makes a modular construction of models possible, such that
consistency proofs for large ontologies become feasible, see [104]. a

Example. Common Logic. Common logic has not been formalised as an in-
stitution in the literature so far, but doing so is quite straight-forward. A
common logic signature Σ (called vocabulary in Common Logic terminol-
ogy) consists of a set of names, with a subset called the set of discourse
names, and a set of sequence markers. A signature morphism consists of two
maps between these sets, such that the property of being a discourse name
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is preserved and reflected.20 A Σ-model consists of a set UR, the universe of
reference, with a non-empty subset UD ⊆ UR, the universe of discourse, and
four mappings:

• rel from UR to subsets of UD∗ = {< x1, . . . , xn > |x1, . . . , xn ∈ UD}
(i.e., the set of finite sequences of elements of UD);
• fun from UR to total functions from UD∗ into UD ;
• int from names in Σ to UR, such that int(v) is in UD if and only if v

is a discourse name;
• seq from sequence markers in Σ to UD∗.

Model reducts leave UR, UD , rel and fun untouched, while int and seq are
composed with the appropriate signature morphism component. A Σ-sentence
is a first-order sentence, where predications and function applications are
written in a higher-order like syntax:

t(s)

Here, t is an arbitrary term, and s is a sequence term, which can be a se-
quence of terms t1 . . . tn, or a sequence marker. However, a predication t(s) is
interpreted like the first-order formula R(t, s), and a function application t(s)
like the first-order term F (t, s), where R and F are fictitious symbols denot-
ing the semantic objects rel and fun. In this way, Common Logic provides a
first-order simulation of a higher-order language. Quantification variables are
partitioned into those for individuals and those for sequences. Sentence trans-
lation along signature morphisms is done by simple replacement of names and
sequence markers. Interpretation of terms and formulae is as in first-order
logic, with the difference that the terms at predicate resp. function symbol
positions are interpreted with rel resp. fun in order to obtain the predicate
resp. function, as discussion above. A further difference is the presence of se-
quence terms (namely sequence markers and juxtapositions of terms), which
denote sequences in UD∗, with term juxtaposition interpreted by sequence
concatenation. Note that sequences are essentially a second-order feature. For
details, see [39]. As an example, consider the Dolce formula ∀φ(φ(x)), cor-
responding to

∧
ψ∈Π(ψ(x)), where predicate variables φ, ψ range over a finite

set Π of explicitly introduced universals. In Common Logic, this is written,
using standard logical syntax (note that Common Logic is agnostic about
concrete syntax)

∀φ.Π(φ)→ φ(x)

or in the often used Lisp-like syntax of the Common Logic Interchange Format
CLIF:

(forall (?phi) (if (pi ?phi) (?phi ?x)))

Another example might once again be taken from the area of mereology.
Ridder [161] as well as Herre [85] introduce a notion of second order fusion

20That is, a name is a discourse name if and only if its image under the signature morphism
is.
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as follows, building on the predicate Ov (Overlap) introduced earlier:

Fus(X, a) :←→ ∀y.(Ov(y, a)↔ ∃z.(X(z) ∧Ov(z, a))

saying that a is the fusion of X, i.e. of the items contained in X. Here, X is a
variable for a unary predicate, i.e. the formula is in the language of monadic
second-order logic, but can also be regarded as a formula of Common Logic.

Sequence markers add even more flexibility. For example, it is possible
to express that a list of predicates is mutually disjoint as follows:

mutually-disjoint(P)
mutually-disjoint(P Q . . .)↔

(∀x.¬(P (x) ∧Q(x))) ∧mutually-disjoint(P . . .) ∧mutually-disjoint(Q . . .)

The disjointness axioms for Dolce’s categories can then concisely be stated
as

mutually-disjoint(S T AR PD)

a

Example. Relational Schemes. This logic, first introduced in [103], is about
schemes for relational databases and their integrity constraints. A signature
in this institution consists of a set of sorts and a set of relation symbols,
where each relation symbol is indexed with a string of sorted field names as
in:

paper(key id:pointer, title:string, published_in:pointer)
journal(key id:pointer, name:string, impact_factor:integer)

Some sorts for the relational schema as integer, pointer and string are
predefined and equipped with default interpretations. The identifier key can
be used as a prefix to sorted field names to specify the primary (compound)
key of the schema.

Signature morphisms map sorts, relation symbols and field names in
a compatible way, such that primary keys are preserved. A model consists
of a carrier set for each sort, where some sorts have predefined carrier sets,
and an n-ary relation for each relation symbol with n fields. Model reduction
is like that of many-sorted first-order logic. A sentence is a link (integrity
constraint) between two field names of two relation symbols. For example,
the link

paper[published_in] -> journal[id] one_to_many

requires that the field published_in of any paper coincides with the id of
at least one journal (the many-one character of this relationship is expressed
by the keyword one_to_many). Other possible relationships are one_to_one
and many_to_many. Sentence translation is just renaming of relation symbols
and of sorts. A link r[f] -> s[g] t is satisfied in case of t = one_to_many
if for each element in r[f] there are zero or more occurrences of this element
in s[g], but for each element in s[g] there is at most one occurrence of
an element in r[f]. For t = one_to_one in both cases only one occurrence
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is allowed, and for many_to_many there is no restriction on the number of
occurrences.

Here is an example relational scheme for bibliographies, following [164]:
logic RelScheme
spec Biblio_RS =

Tables
person(key id:integer, name:string)
author_of(person, paper:integer)
paper(key id:integer,title:string,

published_in:integer)
journal(key id:integer,name:string,

impact_factor:float)
Relationships

author_of[person] -> person[id] one_to_many
author_of[paper] -> paper[id] one_to_many
paper[published_in] -> journal[id] one_to_many

a

Example. Description Logics. Signatures of the description logic ALC consist
of a set A of atomic concepts, a set R of roles and a set I of individual
constants, while signature morphisms provide respective mappings. Models
are single-sorted first-order structures that interpret concepts as unary and
roles as binary predicates. Sentences are subsumption relations C1 v C2

between concepts, where concepts follow the grammar

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C
These kind of sentences are also called TBox sentences. Sentences can also be
ABox sentences, which are membership assertions of individuals in concepts
(written a : C for a ∈ I) or pairs of individuals in roles (written R(a, b) for
a, b ∈ I, R ∈ R). Sentence translation and reduct is defined similarly as in
FOL=. Satisfaction is the standard satisfaction of description logics.

ALCms is the many-sorted variant of ALC. ALCO is obtained from ALC
by adding nominals, i.e. concepts of the form {a}, where a ∈ I. Other logics,
like sub-Boolean EL, ALCO or SHOIN , are treated similarly. See [115] for
a formalisation as an institution.

The (sub-Boolean) description logic EL has the same sentences as ALC
but restricts the concept language of ALC as follows:

C ::= B | > |C1 u C2 | ∃R.C
The logic SROIQ [90], which is the logical core of the Web Ontology

Language OWL-DL 2.021 extends ALC with the following constructs: (i)
complex role boxes (denoted by SR): these can contain: complex role inclu-
sions such as R ◦ S v S as well as simple role hierarchies such as R v S,
assertions for symmetric, transitive, reflexive, asymmetric and disjoint roles
(called RBox sentences), as well as the construct ∃R.Self (collecting the set of
‘R-reflexive points’); (ii) nominals (denoted by O); (iii) inverse roles (denoted
by I); qualified and unqualified number restrictions (Q). For details on the

21See also http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/
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rather complex grammatical restrictions for SROIQ (e.g. regular role inclu-
sions, simple roles) compare [90], and see the example given below. SROIQ
can be straightforwardly rendered as an institutions following the previous
examples, but compare also [115].

An OWL bibliographical ontology could look as follows:

Researcher v ∃name.Thing
Article v ∃authorThing u ∃title.Thing
Journal v ∃name.Thing u ∃hasArticle.Thing u ∃impactFactor.Thing

Apart from some exceptions22, description logics can be seen as fragments
of first-order logic via the standard translation [6] that translates both the
syntax and semantics of various DLs into untyped first-order logic. It is thus
not surprising that parts of the first-order mereology can also be expressed in
DLs. In fact, parthood relations take on a rather prominent role in ontologies
targeted towards the medical or biological domains. For instance, the Galen
ontology covers large parts of anatomy, where parthood relationships are
essential, e.g. if a foot is a part of a leg, and the leg is a proper part of
the body, then the foot will also be a proper part of the body (see below).
Unfortunately, even SROIQ can only partially capture mereology. Whilst
proper parthood can be captured as a symmetric, transitive, and asymmetric
relation, SROIQ cannot express antisymmetry, thus parthood simpliciter
can not adequately be modelled. Moreover, whilst some of the relationships
between parthood and proper parthood can be captured by, e.g., complex
role inclusions, we quickly run into the expressive limitations of a language
such as SROIQ. Kazakov [93] gives the following illustrative example:

1. isProperPartOf v isPartOf
2. isPartOf ◦ isPartOf v isPartOf
3. isPartOf ◦ isProperPartOf v isProperPartOf

Clearly, semantically these are valid role inclusions: (1) says that proper part-
hood is a sub-relation of parthood, (2) says that parthood is transitive, and
(3) says that if x is a part of y and y is a proper part of z then x is a proper
part of z. However, as [93] shows, whilst the role inclusions generated by these
axioms still define regular languages23, the syntactic form of these three role
inclusions are in conflict with the restrictions imposed on the logic SROIQ.

On the other hand, large medical ontologies, such as SNOMED CT and
the NCI thesaurus, largely codify only taxonomical information, with some
existential relational structure. These ontologies can be encoded in rather
weak DLs such as EL and allow effective reasoning and query support despite
their enormous size [175, 120]. a

22For instance, adding transitive closure of roles or fixpoints to DLs makes them decidable
fragments of second-order logic [26].
23This is an important part in the decidability proof for languages such as SROIQ [90].
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2.1.2. Modal and Paraconsistent Logics.

Example. Modal Logics. The modal logic K has signatures as classical propo-
sitional logic, consisting of propositional variables. Sentences are built as in
propositional logic, but add a unary modal operator, �. Models are stan-
dard Kripke structures and satisfaction is standard modal satisfaction. Other
modal logics are handled by varying the construction of sentences and the
model classes accordingly. For instance, in the modal logic S4u, i.e., Lewis’s
modal system S4 with the universal modality added, sentences are now built
using propositional variables and two unary modal operators, � and �. Mod-
els are again Kripke structures, but based on reflexive and transitive relations.
Satisfaction is standard modal satisfaction, but where � is interpreted by the
transitive reflexive relation, and � by universal quantification over worlds.

The logic S4u is also complete with respect to a semantics based on
topological spaces as the intended interpretation. Here, the propositional vari-
ables are interpreted as subsets of a topological space, the necessity operator
� is interpreted as the interior operator I, the possibility operator ♦ as the
closure operator C, and the universal quantifier � quantifies over all points
of the topological space [176, 21, 168].

In this interpretation, it is easily seen that S4u can encode the Region
Connection Calculus RCC8 [159] heavily being used in qualitative spatial
representation and reasoning.24 Figure 2 displays the 8 basic relations of
RCC8, which are mutually exclusive and exhaustive in describing the possible
overlap and touching relationships between two (well-behaved25) regions in
space.

Figure 2. The RCC8 relations

For instance, the relation of partial overlap po(a, b) between regions a
and b is defined in S4u as follows:

�(Ia ∧ Ib) ∧ �(Ia ∧ ¬b) ∧ �(Ib ∧ ¬a)

24And we will give an example later on how this kind of reasoning can be combined with
ontological reasoning, see Sec. 3.3.3.
25This is typically taken to mean regular-closed subsets of a topological space, i.e. regions
X such that X = CIX.
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saying that there is a point in the intersection of the interiors of a and b, a
point in the interior of a not belonging to b, and a point in the interior of b
not belonging to a, and similarly for the other relations.26

Moving on to combining first-order quantification with modality, the stan-
dard and probably simplest formulation of first-order modal logic QS5 (due
to Kripke) has signatures similar to FOL=, including variables and predicate
symbols. Sentences follow the grammar for FOL=-sentences using Booleans,
quantifiers, and identity, while adding the � operator, but leaving out con-
stants and function symbols. Additionally, predicate symbols may be marked
as either flexible or rigid. Models are constant-domain first-order Kripke
structures, with the usual first-order modal satisfaction. Combining modality
with quantification, however, introduces many subtle syntactic and semantic
difficulties, see [54, 30, 100] for overviews.

Modality quickly enters the picture when thinking about parthood, most
obviously perhaps when analysing temporal parts and thinking about the
timeline as a modal dimension [172]. But, more generally, the notions of es-
sentialism (‘is X a part of Y of necessity?’) and dependence (‘is the existence
of an object X, of necessity, dependent on the existence of some other object,
Y ’? [171]) directly involve modal notions in the analysis of parthood, mostly
in combination with first-order quantification (for an overview compare [171];
see also [80]). We here give some of these axioms that are also part of the
Dolce ontology, formalised in the modal first-order logic QS5 introduced
above.

Intuitively, rephrasing [129], the Dolce ontology distinguishes between
qualities (e.g., the colour of a specific rose), and its ‘value’ (e.g., a particu-
lar shade of red). The latter is called a quale, and describes the position of
an individual quality within a certain conceptual space [59] (called quality
space in [129]). We refer the reader to [129] for a full discussion and the rele-
vant axiomatisation of the relations qlT (t, x) (temporal quale) and qlS(s, x, t)
(spatial quale).

The following axioms are part of the Dolce axiomatisation of the the-
ory of dependence, re-using the first-order axioms for parthood and proper
parthood given earlier, and illustrate the use of modal operators in founda-
tional ontologies.
(Being Present at t)
PRE(x, t) :←→ ∃t′.(qlT (t′, x) ∧ P (t, t′))
(Being Present in s at t)
PRE(x, s, t) :←→ PRE(x, t) ∧ ∃s′.(qlS(s′, x, t) ∧ P (s, s′))
(Specific Spatial Dependence)
SDS(x, y) :←→ �(∃t, s.(PRE(x, s, t)) ∧

∀t′, s′.(PRE(x, s′, t′)→ PRE(y, s′, t′)))
(Partial Specific Spatial Dependence)
PSDS(x, y) :←→ �(∃t, s.(PRE(x, s, t)) ∧ ∀t′, s′.(PRE(x, s′, t′)

→ ∃s′′.(PP (s′′, s′) ∧ PRE(y, s′′, t′))))

26See [119] for modal logics that explicitly introduce modal operators for the eight RCC8
relations.
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The first axiom says that x is present at time t if and only if there is a
time t′ of which t is a part, and such that x is a temporal quale at t′. The
second says that x is present at time t at location s if and only if x is present
at t, and there is a location s′ of which s is a part and such that x is a spatial
quale at s′ and t. The third and fourth axiom now also introduce an S5
modality. x is specifically spatially dependent on y if and only if, necessarily
(in all possible worlds), there is a time t and a location s such that x is
present at time t and location s, and for any time t′ and location s′, if x if
present at t′, s′ then y is present at t′, s′. More informally, this axiom says
that, of necessity, y is present at a certain ‘space-time location’ whenever x is
present at that location, thus x can not be present without y being present.
Similarly, the fourth one, finally, says the following: x is partially specifically
spatially dependent on y if and only if, necessarily, there is t and s such that
x is present at t, s and, for any t′, s′ at which x is present there is a location
s′′ which is a proper part of s′ such that y is present at s′′, t′. a

Example. Paraconsistent Logics. In all logics discussed so far, reasoning was
classical in the sense that all these logics adhere to the classical principle of
explosion, also known as ex falsum quod libet. This principle, which might be
rendered as ⊥ |= φ, for any φ, simply maintains that an inconsistency renders
the consequence relation |= explosive in the sense that any arbitrary formula
φ follows.

Paraconsistent logic, which in the most general sense might now be de-
fined as any logic L with a non-explosive consequence relation, has recently
gained quite some attention in the ontology engineering community. This
attention is particularly directed towards the problems of measuring the de-
grees of inconsistency or incoherence in an ontology [123], and to reasoning
[124, 151] and query answering [180, 182] over inconsistent ontologies, or over
finite families of ontologies that are jointly inconsistent. A typical scenario
where dealing with inconsistency becomes essential is when combination or
alignment procedures are applied and result in conflicting information.

Paraconsistent logic might be applied on at least two levels: (i) an on-
tological domain is considered ‘paraconsistent in itself’. Examples might be
taken from the branch of paraconsistent logic called dialetheism, e.g., from
the work, among others, of Graham Priest and Richard Routley, who ar-
gued that there can be metaphysically or logically true inconsistencies [156].
In this case, clearly, such formal inconsistencies could be taken as genuine
ontological axioms of, e.g., a foundational ontology that is grounded in the
philosophy of dialetheism. Another example for this case would be ontologies
that accept the existence of vague objects [52] (e.g. ‘a mountain with vague
boundaries’) or impossible objects [152] (e.g. ‘a round square’). Such objects
require a representation formalism that allows to assign (classically) contra-
dictory properties to objects. (ii) the more pragmatic case, and certainly the
one that is of more importance for mainstream ontological engineering, is the
use of various forms of paraconsistent reasoning for dealing with inconsistent
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ontologies whilst coping with the problem of logical explosion. As mentioned
above, this concerns in the first place the (non-explosive) retrieval of infor-
mation from classically inconsistent ontologies.

We next sketch how a paraconsistent version of the description logic ALC
based on the four-valued semantics of Belnap [19, 18], namelyALC4 [124], can
be rendered as an institution27. The general idea of these logics is to use all
subsets of {T, F} (T = ‘true’, F = ‘false’) as possible truth values, where the
truth value {T, F} is understood as overdetermination, namely being ‘both
true and false’, and ∅ as underdetermination, namely being ‘neither true nor
false’. A key insight now is that these truth values form a lattice, called A4,
under a lattice-ordering understood as ‘approximates the information in’, see
Fig. 3 and [18] for details.

Both

{T, F}

{T} {F}

∅

None

Figure 3. The lattice A4 of truth values in Belnap’s logic

The motivation that Belnap gives for this kind of logical set-up fits
particularly well in our argument for logical pluralism [18]:

[. . . ] it is our impression that hardly any of what individual prac-
titioners of many-valued logic have done is directly concerned with
developing logics to use as practical tools for inference. Hence the
peculiarity of our task, which is to suggest that a certain four-
valued logic ought to be used in certain circumstances as an actual
guide to reasoning. Our suggestion for the utility of a four-valued
logic is a local one. It is not the Big Claim that we all ought al-
ways to use this logic ([. . . ]), but the Small Claim that there are
circumstances in which someone—not you—ought to abandon the
familiar two-valued logic and use another instead.

The signatures of the description logic ALC4 are the same as for ALC, and
the same holds true for signature morphisms. Moreover, the grammar for
complex concepts is the same as for ALC, as well as the shape of Abox
sentences.

27This logic was first introduced explicitly in [124], but 4-valued semantics have been
studied before for terminological logics, e.g. [153, 174, 150].



Carnap, Goguen, and the Hyperontologies 27

However, the sentences of ALC4 now consist of three different kinds of
subsumption relations between concepts (i.e. the Tbox), corresponding to the
three implication connectives present in four-valued logic. Subsumptions can
now be of the forms:

(1) C 7→ D (2) C @ D (3) C → D

where the sentences of type (1) are called material inclusion axioms, (2) are
internal inclusion axioms, and (3) strong inclusion axioms. Sentence transla-
tion is defined similarly as in ALC.

The models of ALC428 are again the same single-sorted first-order struc-
tures I = (∆I , .I) used in ALC, with the same interpretation of individual
names being mapped to elements of the domain, and roles being mapped to
binary relations. However, concepts are interpreted differently. Every atomic
concept A is assigned a pair AI =

〈
AI+, A

I
−
〉
, where AI+, AI− ⊆ ∆I . Model

reduct is defined similarly as in ALC.
Intuitively, to rephrase [125], AI+ is the set of elements known to belong

to the extension of a concept A (under .I), while AI− is the set of elements
known to be not contained in the extension of A. In accordance with 4-valued
semantics, AI+ and AI− need not be disjoint, nor mutually complemental with
respect to the domain. In other words, if a ∈ AI+ ∩ AI− we can think of a
as both belonging and not belonging to A, whilst if a 6∈ AI+ ∪ AI−, then we
are ignorant w.r.t. the question whether a belongs to A, just as illustrated in
Fig. 3.

Satisfaction, of course, is defined differently to standard ALC. Rather
than giving the full semantics we give the truth conditions for conjunction,
negation, existential restriction, and internal inclusion only to illustrate that
the semantics easily fits into the framework of institution theory. Let .I be a
four-valued ALC interpretation with domain ∆I . As explained above, atomic
concepts A are interpreted as pairs

〈
AI+, A

I
−
〉
with AI{+,−} ⊆ ∆I . This map-

ping is inductively extended as follows. First, we set >I =
〈
∆I ,∅

〉
and

⊥I =
〈
∅,∆I

〉
. Next we set for conjunction, negation and existential restric-

tion:
conj. (C uD)I = 〈C+ ∩D+, C− ∪D−〉
neg. (¬C)I = 〈C−, C+〉
restr. (∃R.C)I =

˙
{x | ∃y.(x, y) ∈ RI and y ∈ CI

+}, {x | ∀y.(x, y) ∈ RI implies y ∈ CI
−}

¸
The truth conditions for inclusion statements are now as follows. Note that
the satisfaction condition for institutions can be shown in a straightforward
way.
material inclusion I |= C 7→ D ⇐⇒ ∆I \ C− ⊆ D+

internal inclusion I |= C @ D ⇐⇒ C+ ⊆ D+

strong inclusion I |= C → D ⇐⇒ C+ ⊆ D+ and D− ⊆ C−

28We here present the simplified version of the semantics of ALC4 as given in [122] (since
ALC has no negation on roles we can assume classical semantics for these); this paper also
shows that the semantics can be adapted to more expressive DLs up to SROIQ.
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These three inclusions have thus different formal properties and are each
applicable only in specific cases. This analysis will typically have to be per-
formed by a domain expert. For instance, strong inclusion respects the de-
duction theorem and contraposition reasoning. In a paraconsistent context,
this inclusion might be preferred for cases where a ‘universal truth’ needs
to be formalised, such as Human 7→ Mortal, or indeed ∃isProperPartof .X 7→
∃isPartof .X. Internal inclusion, on the other hand, propagates contradictory
information forward, but not backward as it does not allow for contraposi-
tion reasoning. As [124] argue, it could be characterized as a ‘brave way’ of
handling inconsistency: if it is important to infer the consequent even if the
antecedent may be contradictory, internal inclusion can be used. An obvi-
ous example are safety-critical systems where the consequent of an inclusion
should yield a safety check regardless of inconsistent information in a cer-
tain situation. An example, taken from [124] which contains more extensive
discussion and examples, would be OilLeakage @ RobotMalfunction.

An important feature of Belnap’s semantics is the fact that reasoning
over four-valued models can be reduced to classical reasoning, thus making it
possible to use existing reasoning algorithms for paraconsistent entailment.
This applies both to Belnap’s original logic [162], as well as to the various
DL variants [122].

a

2.1.3. Higher-Order Logics.

Example. Higher-Order Logics. While there are many different first-order
logics, there tend to be even more different higher-order logics. Concerning
untyped variants, Common Logic can be seen as kind of simulation of un-
typed higher-order logic within a first-order framework; however, it does not
feature λ-abstraction. Concerning typed variants, [28] presents an institution
for a higher-order logic extending Church’s type theory [36] with polymor-
phism; this is basically the higher-order logic used in modern interactive
theorem provers like Isabelle/HOL [148]. A feature of Isabelle/HOL that is
not covered by this logic is type classes; the institution of HasCasl [165]
is a polymorphic higher-order logic featuring type classes, as well as partial
functions and subsorting; moreover, it is intuitionistic.

We continue the example of mereology phrased in monadic second-order
logic. David Lewis has investigated a mereological reconstruction of set-theory
[114]. Here, the parthood relation is used to identify the singleton sets as the
smallest parts of any non-empty set, and it is argued that the re-construction
of set theory using plural quantification and mereology is ontologically ‘more
innocent’ than the standard iterative conception of sets, resulting in an ax-
iomatisation resembling the Peano system for arithmetic.

We give a part of this reformulation of set-theory based on an axioma-
tisation by [161] and [85] given in monadic second-order logic. First, recall
the definition of second-order fusion given on page 20:

Fus(X, a) :←→ ∀y.(Ov(y, a)↔ ∃z.(X(z) ∧Ov(z, a))
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This definition may be extended by axioms that use quantification over sub-
sets (or unary relations) and is used to define a theory ‘Mereology plus Sin-
gletons’ which has only two basic relations, namely the parthood relation
(i.e. the subset relation), and a singleton relation singl(x, y) saying that y is
a singleton of x. First, assume the first-order axioms for the parthood rela-
tion given on page 18. On top of these we have the following comprehension
schema, where

∧
,
∨

are the universal/existential monadic second-order quan-
tifiers and ∀,∃ the usual first-order quantifiers. For any formula φ we assume
as axioms:

Compr(φ) : (∃x.φ(x)→
∨
P. ∀x.(P (x)↔ φ(x))

The next axiom says that, for any unary relation (set) P , if P has a member,
then the fusion y of P exists.∧

P. (∃x.P (x)→ ∃y.(Fus(P, y))

Finally, we can enforce the uniqueness of the fusion as follows.∧
P. ∀x, y.(Fus(P, x) ∧ Fus(P, y)→ x = y)

From these axioms, it can now already be shown, using comprehension, that
there exists a greatest entity, denoted by W , containing all entities as a part.
Moreover we may prove the existence and uniqueness of the mereological
sum, of the intersection and the relative complement—see [85] for details. a

Little work has been devoted to the general problem of translation be-
tween ontologies formulated in different logical languages and/or vocabular-
ies. One such approach is given in [49], who discuss translations between
OWL ontologies. They use so-called bridging axioms (formulated in first-
order) to relate the meaning of terms in different ontologies,29 and present
an algorithm to find such translations.

In the following, we introduce the fundamentals of what is a very general
solution with strong theoretical foundations to the problem of theory and
logic translation. Based on institution theory, this completely heterogeneous
framework allows to specify translations (so-called comorphisms) between any
ontologies that are formulated in logics which can be rendered as institutions.

2.2. Structured Ontologies
As mentioned in the introduction, in ontology design and engineering, several
needs for structuring mechanisms arise: firstly, the size of ontologies calls for
methods of combining and re-using ontology components, or modules. Sec-
ondly, adopting logical pluralism calls for a method of heterogeneous ontology
integration; a problem that also is practically important, e.g. when aligning a
domain ontology written in a lightweight logic with a foundational ontology
written in a more expressive logic. Both problems can be solved with means
of the theory of institutions and formal structuring techniques from algebraic
specification theory.

29Not to be confused with the ‘bridge axioms’ in DDL [27].
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The essential advantage of the theory of institutions is the possibility
of providing structuring operations and module concepts independently of
the underlying logical system. Hence, in the sequel, let us fix some arbitrary
institution I = (Sign,Sen,Mod, |=). The basic structuring operation for
ontologies is surely that of importing other ontologies. The notion of devel-
opment graph captures this, and also renaming of symbols.

Definition 2.2. A development graph is an acyclic, directed graph30 DG =
〈N ,L〉. Here, N is a set of nodes. Each node N ∈ N is labelled with a pair
(ΣN ,ΨN ) such that ΣN is a signature and ΨN ⊆ Sen(ΣN ) is the set of local
axioms of N . L is a set of directed links, so-called (global31) definition links

K
σ - N), annotated with a signature morphism σ : ΣK → ΣN . There

are also hiding definition links K
σ

h
- N), annotated with a signature

morphism σ : ΣN → ΣK going against the direction of the link.
Given a node N ∈ N , its associated class ModDG(N) of models (or

N -models for short) is inductively defined to consist of those σN -models M
for which
• M satisfies the local axioms ΨN , and

• for each K
σ - N ∈ DG, M�σ is an K-model, and

• for each K
σ

h
- N ∈ DG, M has a σ-expansion M ′ (i.e. M ′�σ=

M) that is a K-model.
a

This model-based semantics can be complemented by a theory-based se-
mantics: Given a node N ∈ N , its associated theory ThDG(N) is inductively
defined to consist of
• all the local axioms ΨN , and

• for each K
σ - N ∈ DG, all of ThDG(K) translated by σ.

Note that the theory of a node only partially captures its semantics; ModDG(N)
is always a subset of Mod(ThDG(N)), which (in the presence of hiding) can
be proper.

Complementary to definition links, which define the theories of re-
lated nodes, we also allow theorem links with the help of which we are
able to postulate relations between different theories. A (global) theorem

link is an edge K ...................
σ
- N , where σ : ΣK −→ ΣN . DG implies a the-

orem link K ...................
σ
- N (denoted DG |= K ...................

σ
- N) iff for all M ∈

ModDG(N), M�σ∈ModDG(K).

30In [107, 108], we have identified a structured ontology with a diagram in the sense of
category theory. Actually, we often use “graph” and “diagram” interchangeably, though
technically they are defined is slightly different ways.
31There are also local definition and theorem links, which are not needed here.
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A global definition (or also theorem) linkK
σ - N can be strength-

ened to a conservative extension link (denoted as K
σ

cons
- N); it holds

if every K-model has a σ-expansion to an N -model. Such annotations can
be seen as another kind of proof obligations. Definitional and monomor-
phic extensions are introduced in a similar way, annotated with def (mono).
For definitional extensions, the σ-expansion has to be unique. An exten-
sion is monomorphic, if it is conservative and moreover, any isomorphism
h : A�σ→ B�σ between reducts of N -models has a σ-expansion to an isomor-
phism between A and B. In particular, this implies that any K-model has a
unique σ-expansion up to isomorphism.32

Many languages for structuring, modularity and alignment of ontologies
can be mapped into this formalism of development graphs.

Example (OWL ontologies as development graphs). The only explicit struc-
turing mechanism of OWL ontologies is the imports construct. Assume there
is a set of OWL ontologies with some import relations among them, such that
the graph of import relations is acyclic. Each ontology O in this set leads to
a node NO in the development graph, such that NO is labelled with a pair
(ΣN

O

,ΨNO

), where ΣN
O

is the local signature of the ontology O) and ΨNO

is the set of its axioms (assertions), i.e. ABox, TBox, and RBox statements.
Moreover, for every import statement importing ontology P into ontol-

ogy O, there is a directed definition link NP σ - NO. Each such link
is annotated with a signature morphism σ : ΣN

P → ΣN
O

. According to the
OWL semantics, σ is always the signature inclusion map, i.e. sentences are
not changed when translated along σ.

OWL also allows cyclic imports. These can be mapped to development
graphs as follows. Besides the nodes for the individual ontologies, the develop-
ment graph also contains one node for each strongly connected component33

of the ontology import graph; it contains no local axioms. If ontology O im-
ports ontology P and P is not in the strongly connected component of O, this

leads to a definition link NC(P ) - NO, where C(P ) is the strongly con-
nected component of P , and NC(P ) is the corresponding node. Moreover, for

each ontology O, there is a definition link NC(O) - NO. As an example,
suppose that ontologies P1 and P2 import each other, and so do O1 and O2,

32The latter condition is used to define monomorphicity in [38]. For transportable [1] reduct
functors, both conditions are equivalent.
33By ‘strongly connected component’ we mean the usual graph-theoretic notion, i.e. a
directed graph G is strongly connected if there is a path from each vertex in the graph
to every other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs. If each strongly connected component is contracted to a single vertex,
the resulting graph is a directed acyclic graph.
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and moreover, O1 imports P1. Then we get the following development graph:
P1 P2

C1
�-

O1
�

O2

C2
�-

where C1 is the strongly connected component for P1 and P2, while C2 is
that of O1 and O2. Note that while the resulting development graph deviates
from the original import graph, it is much better suited for both semantic
analysis and proof management.

Note that plain OWL ontologies do not make use of theorem links, and
in particular of definitional or conservative extension links. We will discuss
their use in more detail when embedding OWL ontologies in the heteroge-
neous HetCasl environment introduced below.

2.3. Heterogeneous Ontologies
In Section 1, we brought forward the argument that since ontologies are
being written in many different formalisms, like relation schemata, description
logics, first-order logic, and modal logics, we should adopt the position of the
logical pluralist in ontology design and treat the notion of heterogeneity as a
first-class citizen in ontology design methodology.

Similarly, [164] have argued convincingly that in such a set-up, ontology-
based semantic integration and semantic interoperability is highly desirable,
and that a framework that successfully captures semantic integration despite
the different existing treatments of semantics should based on institutions
linked by suitable translations.

This heterogeneous semantic integration relies on some given graph of
logics and logic translations, which we will formalise as institutions and so-
called institution comorphisms, see [68, 143]:

Definition 2.3 (Institution Comorphism). Given two institutions I and J with
I = (Sign,Mod,Sen, |=) and J =

(
Sign′,Mod′,Sen′, |=′

)
, an institution

comorphism from I to J consists of a functor Φ : Sign −→ Sign′, and natural
transformations β : Mod =⇒Mod′ ◦Φ and α : Sen =⇒ Sen′ ◦Φ, such that
the satisfaction condition

M ′ |=I′

Φ(Σ) αΣ(ϕ)⇔ βΣ(M ′) |=I
Σ ϕ.

holds.

Here, Φ(Σ) is the translation of signature Σ from institution I to institu-
tion J , αΣ(ϕ) is the translation of the Σ-sentence ϕ to a Φ(Σ)-sentence, and
βΣ(M ′) is the translation (or perhaps better: reduction) of the Φ(Σ)-model
M ′ to a Σ-model.

As an example, consider the well-known translation of OWL into un-
typed first-order logic, mapping concepts to unary and roles to binary pred-
icates. It can easily be organised as an institution comorphism.
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A subinstitution [132] is an institution comorphism with Φ an embed-
ding of categories, αΣ injective and βΣ an isomorphism for each Σ. For exam-
ple, propositional logic, and via the above described comorphism, also OWL,
are subinstitutions of untyped first-order logic.

The so-called Grothendieck institution is a technical device for giv-
ing a semantics to heterogeneous theories involving several institution (see
[45, 135]). The Grothendieck institution is basically a flattening, or disjoint
union, of a logic graph. Fix an arbitrary graph of institutions and institution
comorphisms. A signature in the Grothendieck institution over this graph
consists of a pair (L,Σ) where L is a logic (formalised as an institution) and
Σ is a signature in the logic L. Similarly, a Grothendieck signature morphism
(ρ, σ) : (L1,Σ1)→ (L2,Σ2) consists of a logic translation (formalised as insti-
tution comorphism) ρ = (Φ, α, β) : L1−→L2 plus an L2-signature morphism
σ : Φ(Σ1) −→ Σ2. Sentences, models and satisfaction in the Grothendieck
institution are defined in a componentwise manner.
From [135] we know:

Lemma 2.4. A Grothendieck signature morphism can be split into a comor-
phism (i.e. Grothendieck signature morphism (ρ, id)) followed by a homoge-
neous signature morphism (i.e. Grothendieck signature morphism (id, σ)).

We now arrive at the following:

Definition 2.5. An abstract structured heterogeneous ontology (w.r.t. some
logic graph) is a node O in a development graph DG in the correspond-
ing Grothendieck institution. We sometimes also identify O with its theory
ThDG(O); however, note that then the structuring is lost. a

In order to understand this definition better, let us discuss it in a bit
more detail. An abstract structured heterogeneous ontology consists of indi-
vidual ontologies sitting at the nodes of the development graph, such that
for each ontology, the logic it is formulated in is recorded in the node. The
import relations among the ontologies are given by the links of the graph.
Typically, most links will be homogeneous, that is, they are decorated with
Grothendieck signature morphisms of form (id, σ) that do not change the
logic (id is the identity institution comorphism). Some of the links will run
between ontologies written in different logics, hence they are decorated with
Grothendieck signature morphisms of form (ρ, id), where ρ is an institution
comorphism. The general format (ρ, σ) will typically occur only when com-
posing homogeneous and heterogeneous links.

To be able to write down such heterogeneous ontologies in a concise
manner, we use the language HetCasl. It is a heterogeneous extension of
the Common Algebraic Specification Language Casl [24, 38]. Casl is an
expressive specification language that has been designed by CoFI (http:
//www.cofi.info), an open international initiative. Its aim is to supersede
many existing algebraic specification languages and provide a standard. Casl
consists of several layers, including basic (unstructured) specifications, struc-
tured specifications and architectural specifications (the latter are used to

http://www.cofi.info
http://www.cofi.info
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prescribe the modular structure of implementations), as well as specification
libraries. A crucial feature of Casl is that all of its layers except from that
of basic specifications are institution independent.

Fig. 4 shows a simple subset of the HetCasl syntax. Due to the his-
torical origins of Casl, namely formal methods for software development,
logical theories are called specifications; for our purposes, we can regard the
expression ‘specification’ synonymous with ‘ontology’.

SPEC ::= BASIC-SPEC
| SPEC then SPEC
| SPEC then %implies SPEC
| SPEC then %cons SPEC
| SPEC then %mono SPEC
| SPEC then %def SPEC
| SPEC with SYMBOL-MAP
| SPEC with logic ID
| SPEC hide SYMBOL-LIST
| ID

DEFINITION ::= logic ID
| spec ID = SPEC end
| view ID : SPEC to SPEC = SYMBOL-MAP end
| view ID : SPEC to SPEC = with logic ID end

LIBRARY = DEFINITION*

Figure 4. Syntax of a simple subset of the heterogeneous
specification language. BASIC-SPEC and SYMBOL-MAP have a
logic specific syntax, while ID stands for some form of iden-
tifiers.

A a basic specification BASIC-SPEC is an unstructured presentation of a
signature and list of axioms in some institution, using syntax specific to the
institution. It leads to a node with local axioms in a development graph. An
extension SPEC1 then SPEC2 imports SPEC1 into SPEC2. It leads to a global
definition link from the node for SPEC1 to that for SPEC2, decorated with
an inclusion signature morphism. Extensions thus may add new signature
elements and axioms to existing specifications. They can be declared to be
implied by the first specification, or to be conservative, monomorphic or def-
initional, written SPEC1 then %implies SPEC2, SPEC1 then %cons SPEC2,
SPEC1 then %mono SPEC2 and SPEC1 then %def SPEC2, respectively. The
latter three annotations lead to corresponding annotations at the definition
link from SPEC1 to SPEC2, while the former annotation lead to a theorem
link in the opposite direction. Renamings, written SPEC with SYMBOL-MAP,
rename a specification along a signature morphism (given by some symbol
map with institution-specific syntax); again, this leads to a definition link
in the development graph. Similarly, a specification can be translated along
an institution comorphism, written SPEC with logic ID. Finally, with the
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notation SPEC hide SYMBOL-LIST, some symbols can be hidden from a spec-
ification, which amounts to restricting it to an export interface. This leads to
a hiding definition link in the development graph (the signature of which is
computed from the symbol list).

Such specifications can be used in global definitions, which are then col-
lected into libraries. A definition spec ID = SPEC end stores specification
SPEC under name ID for later concise reference under this name. The current
logic can be changed with logic ID; this fixes the institution of the follow-
ing specifications until that keyword occurs again. With view ID : SPEC1
to SPEC2 = SYMBOL-MAP end, a so-called view (also known as theory mor-
phism or interpretation of theories) from SPEC1 into SPEC2 is introduced and
named ID; its signature morphism is given by the symbol map. This gen-
erates a theorem link between the nodes representing SPEC1 and SPEC2 in
the development graph. Finally, views of form view ID : SPEC to SPEC =
with logic ID end are heterogeneous; here, ID is the name of the institution
comorphism. Again, a theorem link is generated.

Details of the translation to development graphs, as well as a proof cal-
culus, can be found in [138]. The OWL example introduced on Page 22 looks
as follows in HetCasl notation (using Manchester syntax [89] for OWL):
logic OWL
spec Biblio_OWL =

Class: Researcher
SubclassOf: name some Thing

Class: Article
SubclassOf: author some Thing, title some Thing

Class: Journal
SubclassOf: name some Thing, hasArticle some Thing,

impactFactor some Thing
end

Also, the extended examples in Section 4 provide a look-and-feel of Het-
Casl specifications. Of course, abstract structured heterogeneous ontologies
can be formulated in different notations, and HetCasl is only one of them.
Another option would be an extension of OWL’s structuring mechanisms
by keywords dealing with heterogeneity (compare [105] for a discussion). We
can also use the HetCasl constructs to present homogeneous structured
ontologies e.g. in OWL, let us call the thus extended language hOWL.

The notion of conservative extension is a rather important technical
concept to define a notion of ontological module (see e.g. [118, 40]). The defi-
nition of conservative extension link above uses the model theoretic definition
of conservativity, roughly stated as: O2 is a conservative extension of O1 if ev-
ery O1-model can be expanded to an O2-model. Note that this implies (and is
strictly stronger than) proof-theoretic (or better consequence-theoretic) con-
servativity: all sentences in the signature of O1 that are provable in O2 are in
fact already provable in O1. For further discussion and for the closely related
notions of interpolation and amalgamation, and the interaction with colimits
see e.g. [107, 108]. In [155], the interaction of conservativity with ontology
query languages is studied.
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Note, however, that the use of conservativity as a structuring mechanism
has a rather different flavour to its use as an approach to creating modules.
The latter notion is not so much about writing down ontologies in a structured
way (which is our main concern here), but more about taking a given complex
ontology and cutting slices out of it, according to the needs of a particular
application scenario which determines a certain, often small set of concepts
(and relations) from the original ontology. Note that these slices are typically
not ‘natural’ building blocks of the overall ontology; to the contrary, they will
often involve parts from different such building blocks.

The concept of definitional extension generalises the well-known concept
of extension by definitions to an arbitrary institution. Recall that O2 is a
definitional extension of O1 if any O1-model has a unique expansion to an
O2-model. Note that this means that model reduct is a bijection between
O1-models and O2-models. Intuitively spoken, O2 adds neither additional
constraints nor additional freedom of interpretation to O1, but rather the
new symbols in O2 are uniquely defined in terms of the symbols in O1. While
usually, definitional extensions are required to be explicit, the notion used
here also covers implicit definitions. (Note that for first-order logic, by the
Beth definability theorem, every implicit definition can be made explicit. See
[46] for conditions under which this generalises to other institutions and [177]
for results concerning description logics.)

Sometimes, the notion of definitional extension is too strong for captur-
ing definitions (even explicit ones). For example, in many-sorted first-order
logic, new sorts can be defined in terms of old ones. However, such a defini-
tion specifies a model expansion only uniquely up to isomorphism, and hence
the notion of monomorphic extensions fits here.

3. Refinement, Integration, and Connection
The magnitude and diversity of existing ontologies call for the need to relate
and combine given ontologies. Two ontologies can be related in several differ-
ent ways. Focusing on the structural aspects, we see the following three main
possibilities:
1. Two ontologies are related by specifying a mapping between them that

‘translates’ one into the other. We call this refinement, studied in Sec-
tion 3.1.

2. Two ontologies are related by mapping (typically embedding) them into
a third existing reference ontology. We call this integration (of two on-
tologies into a third). We study this in Section 3.2.

3. Two ontologies are related by specifying some interface ontology, which
is typically mapped into the two given ontologies. The interface can then
be used to generate an overall ontology. We call this connection, which
is studied in Section 3.3.

Integrations and connections are essentially symmetric combination tech-
niques in the sense that the order in which component ontologies participate
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in the overall combination is irrelevant. The difference between the two lies in
the way ‘local’ signatures are mapped into the overall signature. In contrast
to this, a heterogeneous refinement is an asymmetric technique, stating that
all axioms of a ‘coarser’ ontology are also true in a ‘finer’ (refined) one.

3.1. Refinements, Sub-Ontologies, and Equivalence
Refinements are well-known in specification theory [5]; here, we generalise
this notion for ontological purposes. Refinements correspond to some form of
logical consequence: roughly, a refinement expresses that the target ontology
is logically implied by the source theory of the refinement. Refinements are
related to interpretations of theories in logic; the term refinement stresses the
fact that the target ontology may have a stronger axiomatization and thus
may make finer distinctions than the source ontology.

3.1.1. Heterogeneous Refinements. We start with an easy but preliminary
definition:

Definition 3.1. Given two ontologies O1 and O2 in the same logic, O2 is called
a standard refinement of O1 if there is a theorem link O1

σ−→ O2 that follows
from the underlying development graph.

This definition is standard in specification theory. Moreover, there is
an easy generalisation to the heterogeneous case: just allow a heterogeneous
theorem link in the above definition. However, this notion is too narrow in
some cases. In particular, we mostly have chosen signature morphisms in
a way that predicates are mapped to predicates, constants are mapped to
constants, while a more general notion of derived signature morphism [163]
would allow mapping predicates to formulas and constants to terms. Since
we do not want to enter into the specific details of any institution here,
we abstractly capture a derived signature morphism as an ordinary signature
morphism into a monomorphic extension. The monomorphic extension would
then provide definitions of new predicates (and sorts), constants, etc. in terms
of formulas, terms, etc. We hence arrive at:

Definition 3.2. Given two ontologies O1 and O2, O2 is called a refinement of
O1 if there is a monomorphic extension O′2 of O2 and a theorem link O1

σ−→
O′2 that follows from the underlying development graph. If the theorem link
is moreover conservative, the refinement is called conservative as well.

O′2

O1
........

........
....σ -

O2

� θ
mono

a

In HetCasl, this concept can be expressed by writing a view into a
monomorphic extension. The standard definition of refinement is recovered
by taking θ to be the identity. See Section 4 for reasoning about refinement.
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(Conservative) refinements are closely related to (faithful) interpreta-
tions of theories for untyped first-order logic in the sense of [50, 73]. Indeed,
the main difference is that interpretations of theories may relativise the uni-
verse of discourse to a predicate; a construction which is difficult to generalise
to the institution independent level. In many-sorted first-order logic, this dif-
ficulty does not arise: here, monomorphic extensions may introduce new sorts
which are defined using predicates on old sorts.

Note that our definition is very general: the monomorphic extension can
also change the logic (as long as it does this in a monomorphic way, e.g. by
moving to a super-logic). An example where this is useful is given in Fig. 17,
where source and target of the refinement live in different logics. These two
logics might be incomparable as concerns expressive power. Consider, as a
simple example, two different description logics with specialised expressive
means. Then the logic of the source ontology might, say, be able to express
transitive roles, while the logic of the target ontology does not, but the latter
might have inverse roles which the former might not have. In such a case,
the monomorphic extension of the target can be used to reach a common
super-logic of both the source and the target logic. Note that it is always
possible to pre-compose the refinement signature morphism with an institu-
tion comorphism moving the source ontology into a different logic; hence, a
monomorphic extension of the source is not needed.
Despite the extra generality, some useful properties of standard refinements
still hold:

Proposition 3.3. For a heterogeneous refinement

O1 ..................
σ
- O′2 �

θ

mono
O2

1. any O2-model can be translated to an O1-model;
2. logical consequence is preserved along refinement:
O1 |= ϕ implies O2 |= θ−1(σ(ϕ));

3. for conservative refinements, any O1-model can be translated to an O2-
model;

4. the target of a conservative refinement has at least as many non-isomorphic
models as the source.

Proof. 1. Since θ is monomorphic, any O2-model has a θ-expansion to an
O′2-model. The latter can be reduced via σ to an O1-model.

2. Let ψ ∈ θ−1(σ(ϕ)), that is, θ(ψ) = σ(ϕ). By the definition of theorem
link, O1 |= ϕ implies O′2 |= σ(ϕ), hence O′2 |= θ(ψ). Since monomorphic
extensions are in particular conservative, O2 |= ψ.

3. We define a mapping from O1-models to O2-models as follows: given an
O1-model A1, let A′ be some σ-expansion to O′ existing by conserva-
tivity (since this is not unique, we need to make some arbitrary choice
here). Then A2 := A′�θ is the desired O2-model.

4. The map defined under 3 is injective on isomorphism classes: Given O1-
models A1 and B1 and their σ-expansions A′ and B′, if A2

∼= B2, i.e.
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A′ �θ∼= B′ �θ, since θ : O2 → O′2 is monomorphic, A′ ∼= B′, and hence
also A′�σ∼= B′�σ, which is A1

∼= B1.
a

Example (Refining Description Logic Parthood). Recall the example of the
parthood relation being axiomatised in ontology languages of varying expres-
sivity, from propositional, to description logic, first- and second-order, and
finally modal logic. Clearly, from an intuitive point of view we would like, e.g.
the first-order theory of parthood to heterogeneously refine the description
logic formalisation. That understanding the relationship between different
such formalisation is important has been realised already e.g. in [25]: they
introduce and differentiate first-order theories of parthood, componenthood,
and containment relations, and then study how description logics can capture
or approximate the first-order properties. In particular, [175] has used com-
plex role-inclusion axioms available in a logic such as SROIQ to properly
capture parthood relations in medical ontologies (rather than ‘simulating’
their semantics, see [166, 167]).

Establishing a heterogeneous refinement is a precise formulation of this
endeavour. Recall the axiomatisations of parthood and proper parthood given
in DL (page 22) and first-order logic (page 18). First, note that whilst proper
parthood is a defined predicate PP in the first-order axiomatisation, the
roles isProperPartof and isPartof are independently axiomatised in DL be-
cause of lack of quantification machinery and the impossibility to completely
capture the parthood relation in the DL SROIQ. To establish the hetero-
geneous refinement, we in fact do not need a monomorphic extension in
this case; the signature morphism σ simply maps σ : isPartof 7→ P and
σ : isProperPartof 7→ PP , where the comorphism is based on the standard
translation from DL to first-order logic.

This refinement is non-trivial in the sense that the translated DL axioms
are not part of the first-order axiomatisation; rather, it has to be established,
for instance, that the first-order axioms together with the definition of proper
parthood entail the translation of the complex role inclusions. As an example,
consider the following complex role inclusion

isPartOf ◦ isProperPartOf v isProperPartOf

the translation of which to single-sorted first-order logic along the standard
translation is

∀x, y, z .
(
P (x, y) ∧ PP(y, z)→ PP(x, z)

)
This is readily proved using the first-order definition of proper parthood
and the transitivity axiom for parthood.34 Note that the theorem link in

34A proof of this in the Hets system using the Spass prover takes less than a second
presenting a proof with 16 derivation steps.
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this heterogeneous refinement is not conservative, more precisely not proof-
theoretically conservative (and therefore also not model-theoretically conser-
vative), i.e. the first-order axiomatisation proves new facts about the trans-
lated symbols isPartOf , isProperPartOf . The arguably simplest example for
this might be the antisymmetry axiom

∀x, y .
(
P (x, y) ∧ P (y, x)→ x = y

)
Indeed, for a relation P , the class of P -irreflexive and antisymmetric models
can not be finitely axiomatised in SROIQ [90, 94]. a

Let us come to a more general discussion of refinements related to the
ontology Dolce, a foundational ontology developed by the Laboratory for
Applied Ontology (LOA) and originally specified in first-order logic. The gen-
eral complexity of the Dolce ontology stems from the fact that it combines
several (non-trivial) formalised ontological theories into one theory, viz. the
theories of essence and identity, parts and wholes (mereology), dependence,
composition and constitution, as well as properties and qualities. Several ver-
sions of Dolce have been designed that are expressible in description logics
of varying expressive power, such as Dolce-Lite, which is an OWL-DL on-
tology.35

Firstly, we might want to establish whether a certain domain ontology,
O, written in OWL-DL, is consistent with respect to the knowledge repre-
sented in this foundational ontology, that is, we want to check whether O
refines the abstract knowledge given in Dolce. To establish this, Dolce’s
axioms, appropriately translated, have to be entailed by O. If we do this
w.r.t. Dolce-Lite, we are trying to establish a homogeneous refinement.

Secondly, given that there are different versions of Dolce itself, the
less expressive versions of Dolce should not only inherit some of the gen-
eral modelling principles of the ‘full’ Dolce version, but, ideally, the full
Dolce version should be a heterogeneous refinement of these less expressive
ones. However, since the existing DL versions are essentially hand-crafted
approximations, it should not be too surprising that the actual logical rela-
tionships between these versions of different expressivity are more complex
than straightforward refinements. Whilst for the part of the OWL-DL ver-
sion whose signature has a direct correspondent in the FOL version (e.g. the
corresponding FOL axioms are simply obtained by the standard translation)
a direct refinement can be easily established, this is not the case for the parts
that are ‘properly approximated’. An example is given by several predicates
that are temporalised in Dolce, and where the temporal aspect is simply
deleted in the OWL-DL version, another example cases where ternary pred-
icates have to be approximated by unary and binary predicates available in
OWL (see also [110]). Note that, generally, finding the largest OWL approx-
imation of a first-order theory is non-trivial.

35See http://wiki.loa-cnr.it/index.php/LoaWiki:Ontologies

http://wiki.loa-cnr.it/index.php/LoaWiki:Ontologies
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We expect that, when the present framework is properly applied to
Dolce, the relation between DOLCE and domain ontologies will be as fol-
lows:

Dolce-Lite ......................................................- Dolce

domain ontology (DL)
?

domain ontology (FOL)
?

We now come to composition of refinements. We need a preparatory notion:

Definition 3.4. An institution is semi-exact [47], if Sign has pushouts, and
moreover, the model functor takes any pushout

Σ - Σ1

Σ2

?
- ΣR

?

in Sign to a pullback of categories
Mod(Σ) � Mod(Σ1)

Mod(Σ2)

6

� Mod(ΣR)

6

of categories. Explicitly, this means that any pair (M1,M2) ∈ Mod(Σ1) ×
Mod(Σ2) that is compatible in the sense thatM1 andM2 reduce to the same
Σ-model can be amalgamated to a unique ΣR-model M (i.e., there exists a
M ∈Mod(ΣR) that reduces to M1 and M2, respectively), and similarly for
model morphisms.

All institutions introduced so far except from HasCasl are semi-exact.
See [46, 136] for conditions under which Grothendieck institutions are semi-
exact.

Proposition 3.5. In semi-exact institutions, heterogeneous refinements com-
pose.

Proof. The composition is as follows, where the rhombus is a pushout:
O′

O′2

-

O′3

�mono

O1
..........

.........σ1 -

O2
..........

.........σ2 -� θ1
mono O3

� θ2
mono

By semi-exactness, monomorphicity lifts along pushouts. a

The notion of heterogeneous refinement now also yields a general defi-
nition of heterogeneous sub-ontology (see also [105]).
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Definition 3.6. We call an ontology O1 a (heterogeneous) sub-ontology of O2

if O2 is a (heterogeneous) refinement of O1 such that
• the monomorphic extension is trivial (i.e. the identity),
• the signature morphism part of the theorem link is a monomorphism

(the category theoretic generalisation of an injection), and
• the institution comorphism part of the theorem link is a subinstitution.

a

The standard notion of sub-ontology, understood as a subset of the
axioms [83, 92], is recovered in the homogeneous case.

3.1.2. Ontology Equivalence. Now, we can take this analysis one step further:
when should we say that two ontologies (or ontology modules) O1 and O2 are
the same, or, more precisely, ‘equivalent’ modulo their syntactic expression
in a specific logic, with axioms phrased in a particular way, etc.? To make
this precise, we have to explicate a notion of (heterogeneous) equivalence
of ontologies.36 In principle, there are several possibilities to define such an
equivalence. Firstly, adapt the notion from [73] to our setting:

Definition 3.7. Two ontologies O1 and O2 are called weakly equivalent, if they
can be conservatively refined into each other.

Secondly, we recall the definition of equivalence from [42, 142] (actually
[42] uses the term synonymity, while in [142], the notion is generalised to the
heterogeneous setting). Intuitively, two ontologies are equivalent if they can
be interpreted in each other. However, often this is not directly possible, but
new concepts need to be defined in one or both ontologies in order to be able
to map the concepts of the other ontology. Hence, we arrive at the following
(replacing definitional extensions of [42, 142], since this is more suitable in
case of many-sorted logics):

Definition 3.8. Two ontologies O1 and O2 are called pre-equivalent, written
O1
∼= O2, if there is a common monomorphic extension O of O1 and O2.

Equivalence (called derived equivalence in [142]) of ontologies is defined to
be transitive closure of pre-equivalence.

Proposition 3.9 ([142]). Derived equivalence is an equivalence relation. In
semi-exact institutions, pre-equivalence is transitive, and hence the notions
of equivalence and pre-equivalence coincide.

Via Grothendieck institutions, these notions automatically apply to het-
erogeneous ontologies as well.

Example (Equivalent mathematical theories). The theory of groups with an
inverse operation is equivalent to the theory of groups with an axiom stating

36The closely related problems of proof-theoretic reductions [53] and of equivalence of
mathematical theories [99, 154] have of course been previously studied in the literature,
but the notion of equivalence allows a broader spectrum of interpretations when applied
to ontologies. Ontology equivalence w.r.t. query languages is considered in [96].
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the existence of inverse elements. The theory of Boolean algebras is equivalent
to that of Boolean rings. Less intuitively, the theory of reflexive relations is
equivalent to the theory of irreflexive relations. The theory of two binary
relations R and Q, axiomatised as

∀x.R(x, x)
∀x.¬Q(x, x)
∀x, y.R(x, y)←→ (Q(x, y) ∨ x = y)

is a monomorphic (even definitional) extension of both the theory of reflexive
relations and that of irreflexive relations. The explanation for this some-
what counter-intuitive equivalence is that for both reflexive and irreflexive
relations, the only information (or freedom of interpretation) contained in a
model is whether two distinct elements are related. a

Example (Equivalent Ontologies). Recall the example given on page 39 where
we showed that the first-order axiomatisation of basic mereology (given on
page 18) is a heterogeneous refinement of a DL ontology (given on page 22)
which captures some connections between parthood and proper parthood. We
have noted that the theorem link in this refinement is not conservative be-
cause the first-order ontology implies antisymmetry of parthood which is not
expressible in DL—therefore these two ontologies are not equivalent. To ob-
tain an equivalent first-order ontology, we need to leave out the definition of
proper parthood through parthood, and instead weaken the axiomatisation
as follows:

(Proper Part) ∀x, y ∈ X.PP(x, y) −→ P (x, y)

(Transitivity) ∀x, y, z ∈ X.P (x, y) ∧ P (y, z) −→ P (x, z)

(Propagation) ∀x, y, z ∈ X.P (x, y) ∧ PP(y, z) −→ PP(x, z)

This is still a rather straightforward example of an ontology equiva-
lence as it can easily be established by considering the standard translation
from DL to first-order logic. It should be clear, however, that more involved
examples can be easily given. a

The following is obvious:

Proposition 3.10. Ontology pre-equivalence implies weak equivalence. In semi-
exact institutions, ontology equivalence implies weak equivalence.

It is an open question whether pre-equivalence is strictly stronger than
weak equivalence.

Proposition 3.11. Weak equivalence implies (but is strictly stronger than)
refinement in both directions.

Proof. The implication is obvious. To prove that it is strict, consider the
untyped first-order theory BinReln, which introduces a binary relation sym-
bol P and an axiom stating that there are at most n individuals. Moreover,
consider its extension Reflexiven, which adds reflexivity: ∀x.P (x, x).
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Then Reflexiven obviously refines BinReln. The converse refinement
uses a definitional extension of BinReln introducing the reflexive closure
RefClP of P axiomatised as

∀x, y.RefClP (x, y)←→ P (x, y) ∨ x = y.

Then Reflexiven refines to this by mapping P to RefClP . However, BinReln
and Reflexiven admit different numbers of (non-isomorphic) models. Hence,
by Prop. 3.12, they are not weakly equivalent. a

Proposition 3.12. (Weakly) equivalent ontologies have the same number of
non-isomorphic models.

Proof. For weakly equivalent ontologies, apply Prop. 3.3. By Prop. 3.10 and
3.11, this carries over to pre-equivalence, and since equality of number of
non-isomorphic models is transitive, it also carries over to equivalence. a

3.2. Integration and Reference Ontologies
Informally, an integration of two ontologies O1, O2 into a third ontology O is
any operation by which O1, O2 are ‘re-interpreted’ from the (global) point of
view of O. In the approach of [164], two ontologies O1 and O2 are aligned by
mapping them into a common reference ontology O as follows: theories O1

and O2 are said to be semantically integrated with respect to a theory O if

1. there exist two consequence-preserving sentence translations:
α1 : O1−→O, and α2 : O2−→O;

2. there exist structure reducts:
β1 : Mod(O)−→Mod(O1), and β2 : Mod(O)−→Mod(O2); and

3. O is consistent.

Here, Mod(S) denotes the class of all models of S.

O

O1 α1

-

O2

�

α2

Figure 5. Integration into reference ontology

Example. [From 164, abridged] Suppose that O1 is a relational scheme. It
contains author_of(person,paper) and person(id,name) with a relation-
ship from person to id. O2 is a description logic theory. It contains Article v
∃author .> u ∃title.>, etc. (In Sect. 2.1.1, we have provided more details.)
The reference ontology O is a first-order theory. It contains, among others:

∀x.(Working_Person(x) → (Tangible_Thing(x) ∧
∃y.(String(y) ∧Name(x , y))))

∀x.(Researcher(x) → Working_Person(x))
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The sentence maps α1, α2 can be given as follows:
α1(person(p, n)) = Researcher(p) ∧ String(n) ∧

Name(p,n)

α1(author_of(p, a)) = Researcher(p) ∧Article(a) ∧
Author(a, p) ∧ ∃j .(Journal(j )

∧Has_Article(j , a))

α2(Article(x)) = Publication(x)

a
We see some problems with this approach: allowing arbitrary sentence maps
αi is simply too liberal. For example, αi could map every sentence to true.37

It seems more reasonable to use signature morphisms and their induced sen-
tence translation maps instead. This approach, however, is less flexible in one
aspect: with the approach of [164] (using first-order logic), a predicate symbol
p may be mapped to a formula ϕ. However, this is usually better captured by
using derived signature morphisms (see [163]), which here are just signature
morphisms into a monomorphic extension (e.g. an extension by the definition
q(x)⇔ ϕ, where q is a new predicate symbol that can be used as the image of
p). Since we have already integrated this into our notion of refinement above,
we arrive at:

Definition 3.13. Given ontologies O1, O2, and an ontology O, in institutions
I1, I2 and I, respectively, we say that O heterogeneously (conservatively)
integrates O1 and O2 if there are (conservative) refinements from both O1

and O2 to O.
In Section 4.3, we cast the above example into this setting and discuss

it in more detail.
In some cases, there may simply be no suitable common reference on-

tology at hand. In these cases, the common super-ontology should be suit-
ably constructed from O1 and O2, identifying certain concepts, while keeping
others distinct, leading to the concept of V-alignment discussed in the next
section. Moreover, the example is reformulated as a heterogeneous refinement
on Page 58.

3.3. Heterogeneous Connection
Intuitively, the difference between ‘integrations’ and ‘connections’ is that in
the former we combine two ontologies O1 and O2 using a typically large and
previously-known reference ontology O. The models of O are typically much
richer than those of O1 and O2. By contrast, connection of two ontologies
is done in such a way that the respective theories, signatures, and models
are kept disjoint, and a (usually small and flexible) bridge theory formulated
(in a bridge language) over a signature that goes across the sort structure of

37[164] suggest to solve this problem by a possible restriction to conservative translations;
however, even then the translation mapping every theorem in Oi to true and every non-
theorem to false still is a valid but useless example.
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the components is used to link together the two ontologies. Using the general
approach of colimits, an overall connection ontology can be automatically
computed from the bridge theory and the involved ontologies. Moreover, the
models of this overall ontology are obtained as amalgamations of models
of the individual ontologies—no new structure is added (expect from new
definitions, which however can always be interpreted uniquely).

3.3.1. Connection through Alignments.

V-Alignments. [183] address the problem of alignment without a common
reference ontology. Given ontologies O1 and O2, an interface (for O1, O2)〈

Σ, σ1 : Σ−→Sig(O1), σ2 : Σ−→Sig(O2)
〉

specifies that (using informal but suggestive notation)
• concepts σ1(c) in O1 and σ2(c) in O2 are identified for each concept c in

Σ, regardless of whether the concepts have the same name or not, and
• concepts in O1 \σ(Σ1) and O2 \σ(Σ2) are kept distinct, again regardless

of whether they have the same name or not.
The resulting common ontology O is not given a priori, but rather it is
computed from the aligned ontologies via the interface. This computation
is a pushout in the sense of category theory, which in this case is just a
disjoint union with identification of specific parts (namely those given through
〈Σ, σ1, σ2〉).

V-alignments can thus deal with basic alignment problems, such as syn-
onymy (identifying different symbols with the same meaning) and homonymy
(separating (accidentally) identical symbols with different meaning)—see Fig-
ure 6.

{Woman,River_Bank,Financial_Bank,Human_Being}

�

O

O1

-

O2

�

�

{Woman,Bank,Person}

�

{Woman,Bank,Human}
Σ

σ2

-�
σ1

=

{Woman,Person}

Figure 6. V-alignment: integration through interface
(dashed arrows mean definition links automatically com-
puted via colimits)

Example. In Figure 6, the interface 〈Σ, σ1, σ2〉 specifies that the two instances
of the concept Woman as well as Person and Human are to be identified. This
yields two concepts Woman and Human_Being in the push-out ontology O
obtained along the dashed arrows. It also determines that the two instances
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of Bank are to be understood as homonyms, and thus generates two new
distinct concepts. a

However, notion such as polysemy are typically understood to relate
terms that have a different, but related meaning, and can thus not be dealt
with by simply identifying symbols or keeping them apart. This problem can
be solved, however, by considering E-connections a general form of alignment
(see [109] and Section 3.3.3 below). Similarly, [183] themselves raise the criti-
cism that V-Alignments do not cover the case where a concept Woman in O1

is aligned with a concept Person in O2: here, the resulting ontology should
turn Woman into a subconcept of Person. This is not directly possible with
the pushout approach.

W-Alignments. In order to solve this problem of V-Alignments, [183] intro-
duce W-Alignments. They consist of two V-Alignments, using an intermediate
bridge ontology B. The latter can be used to specify subconcept relationships
like Woman v Person as mentioned above.

{Woman}

�

{Woman v Person}

�

{Person}

�
O1 B O2

Σ1

-�

Σ2

-
�

=

{Woman}

=

{Person}

Figure 7. W-alignment: integration through bridge ontology

[183] list the behaviour of compositions as a weak point of this approach.
However, we see as the main weak point the rather loose coupling of O1 and
O2; indeed, the bridge ontology is something like a super-ontology of a sub-
ontology and hence can be anything. A tighter coupling can be achieved with
refinements. In [109], we have shown that various kinds of alignments can be
analysed as certain ‘shapes’ of diagrams that can be represented and reasoned
with in Hets.

M-Alignments. A natural generalisation of V-Alignments is to form the V
using arbitrary refinements. Recall that these are theory morphisms into
monomorphic extensions; we relax this here. Given two ontologies O1 and
O2, let O

]
1 and O]2 be (typically conservative) extensions of O1 and O2, re-

spectively, taking into account the possible requirements to (1) define new
symbols (in order to emulate a derived theory morphism), and (2) introduce
new subconcept relationships, such as Woman v Person, as discussed above.
We thus arrive at the concept of an M-alignment, see Fig. 8.

E-connections as a kind of extended (and heterogeneous) M-alignment
will be discussed in Section 3.3.3. Compare also Section 4.2.1 below.
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{Woman,Person,River_Bank,Financial_Bank}

�

O
{Woman v Person}

�

{Person,Bank}
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O]
1
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O]
2

�

O1

-

Σ

-�

O2

�

≺

{Woman,Bank}
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{Person}
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Figure 8. M-alignment: integration through bridge along extensions
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Figure 9. Connection through interface and colimit

3.3.2. Connection through Interface and Colimit. The general idea of com-
bination through an interface by computing a colimit is shown in Fig 9. Here,
Σ1 is a subsignature of ontology O1, Σ2 a subsignature of ontology O2, B
an interface formalised in a bridge logic such as FOLms=, and O the colimit
ontology computed from the diagram.

The example given in Section 3.2 for an integration into a reference on-
tology can be reformulated in this setting by taking O1 to be the relational
scheme formalisation, O2 the description logic knowledge base, and B the
necessary first-order axioms to achieve the desired reconciliation. The ‘refer-
ence ontology’ is now obtained as a pushout. The complete specification for
this scenario will be given in Section 4.4.1.

3.3.3. E-Connections and DDL. Heterogeneous knowledge representation was
a major motivation also for the design of ‘modular ontology languages’, such
as distributed description logics (DDLs, [27]) and E-connections [111, 106].
We here concentrate on the latter. E-connections were originally conceived as
a versatile and computationally well-behaved technique for combining logics,
but were subsequently quickly adopted as a framework for the combination
of ontologies in the Semantic Web [41].

We here show how the combination of ontologies via such modular lan-
guages can be re-formulated as structured heterogeneous ontologies, and in-
dicate how this idea can be generalised to the institutional level.

The general idea behind this combination method is that the interpre-
tation domains of the connected logics are interpreted by disjoint (or sorted)
vocabulary and interconnected by means of link relations. The language of
the E-connection is then the union of the original languages enriched with
operators capable of talking about the link relations.

E-connections, just as description logics, offer an appealing compromise
between expressive power and computational complexity: although powerful
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enough to express many interesting concepts, the coupling between the com-
bined logics is sufficiently loose for proving general results about the transfer
of decidability: if the connected logics are decidable, then their connection
will also be decidable.

We first sketch the formal definitions for the 2-dimensional case and then
outline a general institutional reformulation of E-connections. The reader is
referred to [106] for involved examples and technical results on the computa-
tional properties of various specific E-connections.

To formulate a 2-dimensional E-connection between two ontologies O1

and O2 formulated e.g. in two different DLs DL1 and DL2 (here, an ontology
is a set of axioms in the respective DL), we assume that the signatures L1 =
Sig(DL1) and L2 = Sig(DL2) of the two DLs, i.e. their sets of atomic concepts,
roles, and object names, are pairwise disjoint.

To form a connection CE(DL1,DL2), fix a non-empty set E = {Ej | j ∈
J} of binary relation symbols. The basic E-connection, then, has as signature
the disjoint union of L1,L2 and E ; its concept language is two-sorted with
sorts s1 and s2 and defined by simultaneous induction as follows.
• (i) If C is a concept in DL1, then C is of sort s1; (ii) if D is of sort s2

then 〈Ej〉1D is of sort s1; (iii) s1 is closed under the concept-forming
operations of DL1.
• (i) If D is a concept in DL2, then D is of sort s2; (ii) if C is of sort s1

then 〈Ej〉2 C is of sort s2; (iii) s2 is closed under the concept-forming
operations of DL2.

Here, the E-connection-operators 〈Ej〉1 and 〈Ej〉2 are new concept-formation
operators, interpreting the added link relations. The formal semantics is as
follows: the class of models of CE(DL1,DL2) comprises all structures of the
form

M =
〈
W1,W2, EM = (EM

j )j∈J
〉
,

where Wi = (Wi, .
Wi) is an interpretation for DLi for i ∈ {1, 2} and EM

j ⊆
W1 ×W2 for each j ∈ J .

Given concepts Ci of ontology DLi, for i = 1, 2, denoting subsets of Wi,
the semantics of the basic E-connection operators is

(〈Ej〉1 C2)M = {x ∈W1 | ∃y ∈ CM
2 (x, y) ∈ EM

j }

(〈Ej〉2 C1)M = {x ∈W2 | ∃y ∈ CM
1 (x, y) ∈ EM

j }

It remains to clarify what the sentences of a basic E-connection are. These
just follow the same grammar as the component logics (in the case of DLs
concept subsumptions, ABox and RBox statements), but respect the enriched
concept language, with the obvious semantics interpreted in the local models.
Moreover, we have ABox-like sentences for the link relations such as

M |= (a, b) : Ej ⇐⇒ Ej
M(aM, bM).

Fig. 10 displays the connection of two ontologies by means of a single link
relation E. Here, the concept 〈E〉1 ({a}) of O1 ‘corresponds’ to the nominal



50 Oliver Kutz, Till Mossakowski, and Dominik Lücke

{a} of ontology O2: it collects the set of all those points in O1 that ‘can be
seen’ from a (in O2) along the relation E.

t

Domain 1 Domain 2

〈E〉1 ({a})
{a}

〈E〉2 (t)

E

Figure 10. A two-dimensional connection.

Example (Connecting two ontologies). Suppose two ontologies O1 and O2,
formulated in different DLs DL1 and DL2, contain the concept Window. Now,
ontology O1 might formalise functionalities of objects found in buildings,
while ontology O2 might be about the properties of materials of such objects.
The intended relation between the two instances of Window might now be
one of polysemy (meaning variation), i.e., Window in O1 involves ‘something
with views that can be open or closed’:

Window v ∃has_state.(Open t Closed) u ∃offers.Views,

while the meaning of Window in O2 might be ‘something that is bulletproof
glass’:

Window ≡ Glass u ∃has_feature.Bulletproof.

A systematic integration of these two ontologies could now require a mapping
of objects in O1 to the material they are made from, using a link relation
‘consists_of ’. A concept of the form 〈consists_of 〉1 C then collects all objects
of O1 that are made from something in C, while a concept 〈consists_of 〉2 D
collects the materials in O2 some object in D consists of. A sensible align-
ment between the two instances of Window, introducing disjoint vocabulary
Window1 and Window2, could now be formalised in E-connections as:

〈consists_of 〉2 Window1 v ∃has_feature.Transparent

〈consists_of 〉1 Window2 v Window1 u ∃provides_security .Inhabitant

assuming that windows in O1 might also be made of plastic, etc. a

Although this example is heterogeneous in the sense that two different
description logics are involved, both dimensions in this E-connection still con-
form to the same semantic paradigm. More interesting heterogeneous E-con-
nections are obtained when mixing logics with different ‘reasoning modes’,
e.g. when combining conceptual with spatial reasoning, as for instance nec-
essary in modelling architectural design as sketched in the next example.
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Example (Modelling Architectural Design). The use of E-connections for
modelling architectural design involving both conceptual and spatial dimen-
sions has been investigated in [23, 86]. Extending the previous example, let
us suppose that we have a third dimension, a knowledge base formalised in
the Region Connection Calculus RCC8 (as encoded in the modal logic S4u)
that we have introduced on Page 23. The following constraint is taken from
[86] and illustrates the kind of modelling that can be performed in this setup.

[. . . ] sensors have to cover certain regions around doors. These are
functional regions that are defined by the doors and instantiated
in the qualitative layer. The region of the sensor range has to be
an inverse proper part of this functional region.

Here, ‘door’ and ‘sensor’ are taken as concepts door, sensor that live in ontol-
ogy O1 introduced above. Moreover, we introduce two new relations bridging
ontology O1 and the RCC8 domain, namely has_functional_space that re-
lates the instances of door with their functional space, i.e. regions in RCC8,
and has_range_space, again giving the regions covered by the sensors, see
Fig. 11.

fs

fs

range

fs

fs

fs

fswatch

fstouch ops ops

ops

Door WindowPanel

SensorWall

Wall

Figure 11. Spatial extensions of ontology terms in R2

Here, models for an E-connection of ontology O1 and RCC8 are of the form

M =
〈
W1,W2, EM =

(
has_range_spaceM, has_functional_spaceM)〉 ,

where W1 interprets ontology O1, W2 interprets RCC8, and the link relations
are interpreted as subsets of the cartesian products of the domains of W1,W2.
The constraint can now be formalised thus:38

PP−1(〈has_range_space〉3 sensor, 〈has_functional_space〉3 door)

Here, e.g. 〈has_range_space〉3 sensor defines a region by collecting, for
a given model M of the E-connection, all points in the RCC8 model that are
‘connected’ by the role has_range_space to an element of the concept sensor.
a

38PP−1 here is the abbreviation for the union of tPP−1 and ntPP−1.
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E-connections can be considered as many-sorted heterogeneous theo-
ries: component ontologies can be formulated in different logics, but have to
be built from many-sorted vocabulary, and link relations are interpreted as
relations connecting the sorts of the component logics.

The main difference between distributed description logics (DDLs) [27]
and various E-connections now lies in the expressivity of the ‘link language’ L
connecting the different ontologies. While the basic link language of DDL is
a certain sub-Boolean fragment of many sorted ALC, the basic link language
of E-connections is ALCIms.39

Such many-sorted theories can easily be represented in a diagram as
shown in Fig. 12. Here, we first (conservatively) obtain a disjoint union
Sm

1 ] Sm
2 as a pushout, where the component ontologies have been turned

into sorted variants (using an institution comorphism from the single-sorted
to the many-sorted logic), and the empty interface guarantees that no sym-
bols are shared at this point. An E-connection knowledge base (KB) in lan-
guage CE(Sm

1 ,Sm
2 ) is then obtained as a (typically not conservative) theory

extension.

CE(Sm1 ,Sm2 )

Sm1 ] Sm2

6

Sm1

-

Sm2

�

∅

-
�

S1

6

S2

6

Figure 12. E-connections as a structured heterogeneous theory

The idea to ‘connect’ logics can be elegantly generalised to the institu-
tional level (compare [7] who note that their ‘connections’ are an instance of
a more general co-comma construction). Without giving the details of such
a generalisation, it should be clear from the above that our Grothendieck
institution approach is general enough to formally capture such connections:
intuitively, we need to formalise the idea that an abstract connection of two
logics S1 and S2 is obtained by defining a bridge language L(E), where the
elements of E go across the sort-structure of the respective logics, and where
theory extensions are defined over a new language defined from the disjoint
union of the original languages together with L(E), containing certain ex-
pressive means applied (inductively) to the vocabulary of E .

Note that this generalises the E-connections of [111], the DDLs of [27], as
well as the connections of Baader and Ghilardi [7] in two important respects:
first, the institutional level generalises the term-based abstract description

39But can of course be weakened to ALCms or sub-Boolean DL, or indeed strengthened to
more expressive many-sorted DLs involving e.g. number restrictions or Boolean operators
on links, see [101, 106] for details.
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languages (ADS) that are an abstraction of modal and description logics,
and the rather general definition of bridge theory similarly abstracts from
the languages previously employed for linking that were similarly inspired by
modal logic operators.

While there are no implemented, specialised algorithms available decid-
ing satisfiability in E-connections (except limited support in some versions
of the Pellet system [41]), semi-decidable reasoning for more expressive
E-connections is provided by Hets through suitable translation by a comor-
phisms in a supported logic. For instance, an E-connection of a description
logic ontology with an RCC8 knowledge base can be translated into many-
sorted first-order logic, providing semi-decidable reasoning using, e.g., the
Spass prover.

Given that E-connections have a relatively intuitive and simple seman-
tics (compared e.g. to some multi-dimensional logics [57] or fibrings [56]),
they remain quite popular as a modelling paradigm for heterogeneous com-
binations of ontologies with other formalisms. Apart from being applied in
Semantic Web related research [69, 41], they have been employed to model
heterogeneous combinations of linguistic ontologies and spatial calculi [88],
to model architectural design [86], or to ambient environments [23].

[88], for instance, analyse the problem of relating an ontology encoding
the linguistic spatial semantics of natural language utterances as represented
in the linguistic ontology GUM [11, 10, 12] with spatial calculi, using the
example of the double-cross calculus DCC [55] for projective relations (ori-
entations). The general relation between GUM and DCC is a loose coupling
as can be adequately modelled by an E-connection. However, two entirely
independent layers need to be added for a ‘complete’ formal representation
of a spatial configuration: domain knowledge including naïve physics infor-
mation is added in a KB D, while contextual information (such as intrinsic
orientations, reference system, etc.) is added by a KB O. Both these layers of
information are typically formalised in different (heterogeneous) logics. The
overall integration is obtained via a pushout operation, as shown in the upper
part of Fig. 12, taking S1 = GUM and S2 = DCC. [87] take this kind of mod-
elling approach a step further by defining a variant of E-connections, called
S-connections, which introduces notions of similarity both to the component
logics as well as to the link relations, based on work on similarity [170] and
distance logics [102]. Here, ‘local similarity’ compares objects within one do-
main, whilst comparing objects across domains leads to similarity measures
that are motivated by and based on counterpart-theoretic semantics [100].

4. Modes of Reasoning over Ontologies vis-à-vis Structuring

Ontologies afford and require various modes of reasoning. These range from
more classical reasoning tasks, such as consistency checks, deduction and
computing a classification, to less traditional operations on ontologies such
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as conservativity checks, colimit computation, or theory interpretation, re-
lated to such problems as module construction and gluing together of and
separating vocabulary.

The focus of this paper has been on structuring aspects for ontologies,
and various operations to combine ontologies together according to these
structuring techniques. From a bird’s eye perspective, a main aspect of this
line of research is that the semantics of the ‘combined system’ depends func-
tionally only on the semantics of the participating components and the se-
mantics of the structuring/combination operations. In contrast to this, the
large field of multi-dimensional logics [128, 57], which is not in the scope of
this paper, designs special purpose formalisms by combining the syntax and
semantics of component logics into a new logical formalism. Relevant exam-
ples from the ontology engineering point of view, among many others, are
for instance temporal description logics [121], description logics incorporat-
ing a notion of similarity [169, 170], or logics integrating DLs with action
formalisms [8].

The distinction between these two approaches to combining ontologies
is not necessarily a sharp one. For instance, E-connections can be seen both as
a many-dimensional formalism as well as the result of a two-step structuring
operation (see Sec. 3.3.3). However, as opposed to typical multi-dimensional
logics, E-connections still leave untouched the semantics (model classes) of
their components.

Relatively little work has been devoted to the study of combining differ-
ent logical reasoning techniques into one system. Baumgartner [13] discusses
first-order reasoning applied to ontologies, but not in combination with e.g.
DL reasoning. Similarly, Voronkov [181] has used first-order reasoners to es-
tablish inconsistencies in ontologies.

The structured approach to ontology design and reasoning that we have
developed in this paper allows for a richer interaction of reasoning methods.
In the following, we will sketch some of these reasoning modes, show how
they relate to various structuring aspects, and detail the support provided
for them in the Heterogeneous Tool Set Hets (see [140, 141]). We begin
by giving a brief description of the Hets system, and then look at specific
examples of refinements, integrations, alignments and connections. Hets, as
well as a library of examples including many of those presented in this paper,
can be obtained freely at http://www.dfki.de/sks/hets.

4.1. Reasoning Support in Hets
Hets supports a multitude of logics, given as institutions, that can be used
in formal specification.

From the list of logics introduced in Section 2.1, the following are sup-
ported by Hets: Propositional logic, untyped first-order logic (in an extended
variant called softly typed first-order logic, SoftFOL), many-sorted first-order
logic FOLms= (in an extended variant called Casl), Common Logic, Rela-
tional Schemes, the description logic SROIQ(D) underlying OWL 2 DL
(with several concrete syntaxes, including Manchester Syntax [89]), modal

http://www.dfki.de/sks/hets
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Figure 13. Hets’s logic graph

first-order logic (called ModalCASL) and the higher-order logics Isabelle/HOL
and HasCasl. Hets’s logic graph is depicted in Fig. 13. The nodes repre-
sent the logics currently available in Hets, while the arrows represent the
comorphisms between them.

Recall that there are several ways available of creating proof obligations
in HetCasl; in particular, they can be created via extensions SPEC1 then
%implies SPEC2 and via views. Both techniques result in theorem links in
the development graph. Moreover, with the keyword %implied, a formula can
be marked to be a proof goal, which is actually marked in the corresponding
development graph node. Such annotations can be quite useful for an ontology
designer as a control mechanism to keep track of desired consequences: in case
such a proof obligation fails, a design error has been made.

A heterogeneous proof calculus (see [38]) for development graphs, as
they have been defined in Section 2.2, can be used for shifting proof obliga-
tions expressed by theorem links into local proof goals for nodes. This calculus
has been implemented in Hets. In many cases the development graph cal-
culus can be applied automatically to a structured specification to yield the
desired results.

Finally, in order to discharge local proof goals for development graph
nodes, specific theorem provers need to be called. For several of these logics
proof support is directly available, as shown in Table 1. If there is no prover
available for a logic directly, a prover can be “borrowed” from another logic, if
a (composition of) comorphisms is available that maps the logic of the proof
goal into a prover-supported logic.
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Logic Connected Prover(s)
Propositional zChaff, MiniSat, TruthTables

OWL Pellet, Fact++
SoftFOL Spass, Darwin, Vampire, EKrHyper

VSE VSE
Isabelle Isabelle

Table 1. Supported provers

After having discussed the theory and proof-support for heterogeneous
ontologies in some detail, we now illustrate how to define an ontology het-
erogeneously from three parts formalised in different languages.

Example (A simple heterogeneous ontology). Firstly, consider a basic speci-
fication written in OWL, given in Fig. 14 on the left hand side, describing
Tigers being carnivores and cats of prey. Secondly, consider another basic

logic OWL
spec Predators =

Class: Carnivore

Class: Tiger
SubclassOf: Carnivore,

CatsOfPrey
end

logic CASL
spec Prey =

Prey_Animals
then %implies

forall a,b : Thing
. Hare(a) /\ Mouse (b) => not isTastier (b,a)

end

Figure 14. Predators and their prey

specification in Casl describing their prey given in Fig. 14 on the right hand
side, and reusing another Casl ontology Prey_Animals given in Fig 15 on
the left.

spec Prey_Animals =
sort Thing
pred Hare : Thing
pred Mouse : Thing
pred isTastier : Thing * Thing
forall a,b :Thing
. isTastier (a,b) =>

not isTastier (b,a)
. Hare(a) /\ Mouse (b) =>

isTastier (a,b)
end

logic CASL
spec Animals =

Predators and {Prey with Hare |-> Lepus}
then

pred prefers : Thing * Thing * Thing
forall a,b,c : Thing
. Tiger(a) /\ isTastier (b,c) <=> prefers (a,b,c)

then %implies
forall a,b,c : Thing
. Tiger(a) /\ Lepus(b) /\ Mouse (c) => prefers (a,b,c)

end

Figure 15. Prey Animals in Casl

The keyword %implies here introduces a proof obligation, namely a
theorem link expressing that the part after %implies logically follows from
the parts before. This particular proof obligation follows from the asymme-
try of isTastier which is specified in Fig. 15. Such annotations can be quite
useful for an ontology designer as a control mechanism to keep track of de-
sired consequences: in case such a proof obligation fails, a design error has
been made. Thirdly, consider the specification in Fig. 15 on the right. This
is the union of the above ones and adds a new 3-ary predicate that cannot
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Prey Predators

Animals

Figure 16. Development Graph of the Heterogeneous specification

directly be expressed in SROIQ(D). In the process of uniting the specifi-
cations, Predators is mapped along the comorphism from OWL to Casl.
Further, Hare is being renamed to Lepus. The development graph of this
heterogeneous specification is displayed in Hets as shown in Fig. 16. Please
note that the solid black arrows depict definition links (the double-lined ar-
rows indicate heterogeneous definition links), whilst the light green arrows are
theorem links (and the dotted green arrows local theorem links introduced
by the development graph calculus [138]). The unnamed nodes, which con-
tain the proof obligations, can now be proved by running a theorem-prover
on them, i.e., on their local theories. This way, we do not have to deal with
axioms that are introduced later and that are not important for this theory.
Please note that the theory of the unnamed node with a theorem link from
Prey is formalised in a DL, thus allowing it to be proved by a DL reasoner.
With this approach, many ‘conjectures’ can already be proven in a smaller,
‘local’ environment. Further, this approach helps the designer of an ontology
to find inconsistencies: if the overall ontology turns out to be inconsistent, it
is possible to check the consistency of the theories of all nodes in the develop-
ment graph that contribute to the overall specification. If one of them turns
out to be inconsistent, it might already be possible to fix the inconsistency
in this smaller, local theory. Note that this ‘scales down’ the search space
for finding inconsistencies in a way that is independent from the techniques
developed in [92]. a

The development graph calculus integrated into Hets can be used for all the
integration, connection, and refinement techniques for ontologies discussed
in this paper: the verification of semantic integrations as well as refinements
are directly supported via the development graph calculus and the connected
provers. In the case colimit computation is needed, as in W-alignments, this
can be calculated via Hets’ built-in colimit feature described in [37], that
also allows the approximation of heterogeneous colimits.
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4.2. Reasoning About Refinements
A refinement between two ontologies is another special case of an interpreta-
tion of theories, again written as views in HetCasl and visualised as theorem
links in development graphs. We will now describe two heterogeneous refine-
ments involving the bibliographic ontologies introduced in Section 2.1.

4.2.1. From Relational Scheme to Ontology. Recall the example (taken from
[164]) of a semantic integration into a reference ontology given in Section 3.2.
The kind of integration required here can be dealt with much more ele-
gantly as a heterogeneous refinement. Consider the OWL specification given
in Fig. 18. Recall that in Section 2.1 we have introduced Biblio_OWL, an on-

Biblio_OWL′ �............... Biblio_RS′

Biblio_OWL

def 6

Biblio_RS

def6

Figure 17. A view from RelScheme to OWL.

tology about bibliographical information, written in a concrete syntax close
to OWL-DL Manchester Syntax [89], and Biblio_RS, the scheme of a rela-
tional database intended to capture similar knowledge. Assume we want to
show that the ontology is a refinement of the database schema, as illustrated
in Fig. 17. A view Biblio_RS_in_OWL is used for this purpose, stating that

logic CASL
view Biblio_RS_in_OWL : Biblio_RS to

{ Biblio_OWL with logic OWL -> CASL
then %def

preds
journal(j,n,f:Thing) <=>

Journal(j) /\ name(j,n) /\ impactFactor(j,f);
paper(a,t,j:Thing) <=>

Article(a) /\ Journal(j) /\ hasArticle(j,a) /\
title(a,t);

author_of(p,a:Thing) <=>
Researcher(p) /\ Article(a) /\ author(p,a);

person(p,n:Thing) <=> Researcher(p) /\ name(p,n)
} = logic RelationalScheme -> CASL

end

Figure 18. Heterogeneous specification in HetCasl.

the ontology satisfies the relational scheme axioms (referential integrity con-
straints). Of course, this is not possible literally, but rather the ontology is
mapped to first-order logic (Casl) and then definitionally (look at the %def)
extended to Biblio_OWL′ with a definition of the database tables in terms
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of the ontology classes and properties. Also, Biblio_RS is translated to first-
order logic, yielding Biblio_RS′, and the view expresses a theory morphism
from Biblio_RS′ to Biblio_OWL′.

The involved signature and theory morphisms live in the Grothendieck
institution. Thus, we can avoid the use of arbitrary formula maps αi as in
Fig. 5 and [164], and instead rely entirely on (Grothendieck) signature mor-
phisms. Actually, the above view is not provable— the ontologies do not
match here. The view can, however, be proved after an appropriate revision
of the ontology Biblio_OWL: an inverse of the role hasArticle needs to be
introduced and used to restrict the class Article in the following way:

ObjectProperty: hasArticle
InverseOf: hasJournal

Class: Article
SubclassOf: author some Thing, title some string,

hasJournal some Journal

4.2.2. From Ontology to Relational Scheme. Dually, assume we are given an
ontology that is supposed to logically describe a database scheme.

Biblio_OWL′ ...............- Biblio_RS′

Biblio_OWL

def 6

Biblio_RS

def6

Figure 19. A view from OWL to RelScheme.

We again use Biblio_RS and Biblio_OWL, as given in Fig. 18. We now
have a heterogeneous refinement from Biblio_OWL to Biblio_RS, as depicted
in Fig. 19, analogous to that of the previous section.

The view Biblio_OWL_in_RS is written in many-sorted first-order logic,
using the notation of Casl (see [38]).
logic CASL
view Biblio_OWL_in_RS : Biblio_OWL to
{ Biblio_RS with logic RelScheme -> CASL
then %def
preds Researcher(x:pointer) <=>

(exists n:string; a:pointer.
person(x,n) /\ author_of(x,a));

Article(x:pointer) <=>
(exists t:string; j:integer.paper(x,t,j));

Journal(x:pointer) <=>
(exists n:string; i:float.journal(x,n,i));

name(x:pointer;n:string) <=>
person(x,n);

hasArticle(x,j:pointer) <=>
(exists n,t:string; i:integer .
journal(x,n,i) /\ paper(j,t,x));

hasJournal(j,x:pointer) <=>
(exists n,t:string; i:integer .
journal(x,n,i) /\ paper(j,t,x));

author(a,p:pointer) <=>
(exists t,n:string; p:pointer .
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paper(a,t,p) /\ person(p,n));
title(a:pointer; t:string) <=>

(exists p:pointer . paper(a,t,p));
impact_factor(j:pointer;f:integer) <=>

(exists n:string . journal(j,n,f));
}

end

Such a specification can be parsed and analysed by the tool Hets, which
displays it as a development graph as in Fig. 20.

Figure 20. Development graph in Hets.

In this picture, red arrows are theorem links, and outlined thick black
arrows are definition links. The picture shows the situation shown in the
diagram of Fig. 19.

To prove this view, the development graph calculus has to be applied
first. Then a prover needs to be invoked on the upper left node, that by now
has become red: a node with proof obligations. The proof obligations can e.g.
be proved with the SPASS theorem prover.

Related Work on Databases. Integrating DL reasoning and database rea-
soning is not trivial due partly to open world vs. closed world semantics, and
is a very active area of research, e.g. using database technology to provide
DL query answering. See e.g. [32, 144, 98] for recent work in the area. In [32],
for instance, an approach to link ontologies and relational database systems
is presented where ontologies are used for the conceptual layer and databases
for the data layer. A DL with limited expressivity is defined which allows
efficient reasoning with such a system. Similarly, [144] give an analysis of
the formalisms of description logics and databases and study the problem of
closed-world description logics semantics vs. open world database semantics.
They argue that ABoxes correspond to incomplete databases, introduce a
language for integrity constraints for description logics, and investigate sev-
eral methods of constraint satisfaction in this context.

Rather than contributing to such algorithmic problems, the example
provided above shows how the structuring technique of refinements can be
applied to specify consistency constraints between a database schema and an
ontology. Our approach has a more general setting than the work mentioned
above since we bring together several logics and reasoning tools, and the no-
tion of (heterogeneous) refinement is universally applicable, independently
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of the specifics of the chosen formalisms, where institution comorphisms are
used to establish corresponding logic translations. The example discussed us-
ing databases and ontologies heterogeneously just involves T Boxes however.
When dealing with ABoxes, we would need to add an additional layer to the
heterogeneous specifications, addressing the problems discussed in [144].

4.3. Reasoning About Integrations
Following the discussion in Section 3.2, integrations of ontologies into a com-
mon reference ontologies are expressed via two refinements into monomorphic
extensions, written as views in HetCasl and visualised as theorem links in
development graphs. In our example we use our known ontologies Biblio_OWL
and Biblio_RS and integrate them into the first-order ontology about bibli-
ographies from [164].
logic CASL

spec BiblioR =
sorts Thing, DATA
preds Nothing, Thing : Thing
preds Researcher, Publication, Composite_Publication : Thing
preds Working_Person, Tangible_Thing : Thing
preds Journal, Article, Proceedings, Paper : Thing
pred String, Integer : DATA
pred Name, Title, Impact_Factor : Thing * DATA
preds Has_Publication, Author, Has_Article, Has_Paper : Thing * Thing
forall s,t:Thing
. not (Nothing(t))
. Thing(t)
. Working_Person(t) => Tangible_Thing(t) /\
exists y:DATA.(String(y) /\ Name(t,y))
. Researcher(t) => Working_Person(t)
. Composite_Publication(t) => Tangible_Thing(t) /\

exists y:DATA. (String(y) /\
Name(t,y)) /\

exists z:Thing. (Publication(z) /\
Has_Publication(t,z))
. Journal(t) => Composite_Publication(t) /\

exists y:Thing. (Article(y) /\ Has_Article(t,y)) /\
exists i:DATA . (Integer(i) /\
Impact_Factor(t,i))

. Has_Article(s,t) => Has_Publication(s,t)

. Proceedings(t) => Composite_Publication(t) /\
exists y:Thing. (Paper(y) /\ Has_Paper(t,y))

. Has_Paper(s,t) => Has_Publication(s,t)

. Publication(t) => Tangible_Thing(t) /\
exists y:Thing. (Researcher(y) /\ Author(t,y)) /\

exists z:DATA. (String(z) /\ Title(t,z))
. Article(t) => Publication(t)
. Paper(t) => Publication(t)

end

view OWL2R : Biblio_OWL to
{BiblioR
then %def
preds
researcher (p : Thing) <=> Researcher(p);
name (p:Thing; n:DATA) <=> String(n) /\ Name(p,n);
article(a:Thing) <=> Publication(a);
author(a:Thing; p:Thing) <=> Researcher(p) /\ Article(a) /\

Author(a,p) /\
exists j:Thing . (Journal(j) /\

Has_Article(j,a));
hasArticle(j:Thing; a:Thing) <=> Journal(j) /\ Has_Article(j,a) /\
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Publication(a) /\ exists n:DATA .
(String(n) /\ Name(j, n)) /\ exists
i:DATA . (Integer(i) /\ Impact_Factor(j,i));

hasJournal(a:Thing; j:Thing) <=> Journal(j) /\ Has_Article(j,a) /\
Publication(a) /\ exists n:DATA .
(String(n) /\ Name(j, n)) /\ exists
i:DATA . (Integer(i) /\ Impact_Factor(j,i));

impactFactor(j:Thing; i:DATA) <=> Journal(j) /\ Integer(i) /\
Impact_Factor(j,i) /\ exists n:DATA .
(String(n) /\ Name(j,n)) /\ exists
i:DATA . (Integer(i) /\ Impact_Factor(j,i));

journal(j:Thing) <=> Journal(j);
title(a:Thing;t:DATA) <=> String(t) /\ Article(a) /\ Title(a,t) /\

exists p:Thing . (Researcher(p) /\
author(a,p)) /\

exists j:Thing . (Journal(j) /\
Has_Article(a,j))

}
end

view RS2R : {Biblio_RS with pointer |-> Thing, integer |-> DATA, string |-> DATA
hide author_of_paper, author_of_person, journal_id, journal_impact_factor,
journal_name, paper_id, paper_published_in, paper_title,
person_id, person_name} to

{BiblioR
then %def
preds
person(p:Thing; n:DATA) <=> Researcher(p) /\ Name(p,n) /\ String(n);
author_of(p:Thing; a:Thing) <=> Author(a,p) /\ Article(a) /\ Researcher(p);
paper(a:Thing; n:DATA; j:Thing) <=> Article(a) /\ String(n) /\ Journal(j) /\

Title(a,n) /\ Has_Article(j,a);
journal(j:Thing; n:DATA; i:DATA) <=> Journal(j) /\ String(n) /\ Integer(i) /\

Name(j,n) /\ Impact_Factor(j,i);
}

The mappings from Biblio_OWL and Biblio_RS to BiblioR respectively
are implemented via logical equivalences. Hets displays the development
graph of this specification as shown in Fig. 21.

Figure 21. Development graph in Hets.

Unnamed nodes in the development graph correspond to definitional
extensions. Note that after translating Biblio_RS to first-order logic, we need
to hide some auxiliary operations that are generated by the comorphism.
Hets’s proof calculus for the development graph can be applied to such a
graph as shown in Fig. 21 shifting the proof obligation between nodes into
the nodes at their arrows. A prover for the specific logic of those nodes (in our
case first-order logic) can be applied to those nodes to prove the correctness
of the integration.
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4.4. Reasoning About Connections
Hets also offers an algorithmic method for computing colimits of theories in
various logics, based on an implementation for computing colimits of arbitrary
sets, which is further applied to sets of signature symbols, like sorts, operation
and predicate symbols (the latter two divided according to profiles). As a
general strategy, names are kept identical to their original as far as possible
(see the example below). If this is not possible, the common origin of symbols
is indicated by a (shared) number appended to their name.

Example. Considering the V-alignment introduced in Example 3.3.1, Figure
22 presents the Hets concept graphs of the theories combining it, as well as
the one of the push-out ontology obtained with Hets (the top one).

Figure 22. Colimit of a V-alignment in Hets.

a

The construction of colimits for heterogeneous diagrams is considerably
more difficult. We refer the reader to [137, 37] for a detailed analysis of
sufficient conditions for obtaining colimits of heterogeneous theories, and for
a discussion of weaker notions that are useful in cases where heterogeneous
colimits do not exist.

4.4.1. Integration through Interface and Colimit. In this section, an ex-
ample specification for a W-alignment is given. We assume that the on-
tology Biblio_OWL is split into its signature Biblio_OWL_Sign, of which
Biblio_OWL is an extension. Likewise, Biblio_RS_Sign is the signature of
Biblio_RS. The following specification provides a first-order bridge between
the signatures of the two ontologies, without relying on their axioms. The
integration with the axioms is obtained via a colimit.
logic CASL
spec Interface =

{Biblio_RS_Sign with logic RelScheme -> CASL}
and

{Biblio_OWL_Sign with logic OWL -> CASL
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with Thing |-> pointer}
then

forall a,j,p,x:pointer;n,t:string;f:integer
. journal(j,n,f) <=> Journal(j) /\ name(j,n)

/\ impactFactor(j,f)
. paper(a,t,j) <=> Article(a) /\ Journal(j)

/\ hasArticle(j,a) /\ title(a,t)
. author_of(p,a) <=> Researcher(p) /\ Article(a)

/\ author(p,a)
. person(p,n) <=> Researcher(p) /\ name(p,n)
. Researcher(x) <=> (exists q:pointer;m:string .

person(x,m) /\ author(x,q))
. Article(x) <=> (exists q:pointer;m:string .

paper(x,m,q))
. Journal(x) <=> (exists m:string;i:integer .

journal(x,n,i))
end

The picture in Figure 23 shows the development graph of the above
specification in Hets.

Figure 23. W-alignment in Hets.

In this figure, the outlined thick black arrows are heterogeneous defi-
nition links, while the normal black arrows are non-heterogeneous definition
links. The picture shows the situation depicted in the diagram of Fig. 7. Its
colimit can be automatically computed by Hets.

In the previous sections, we have analysed in detail a specific example hetero-
geneous ontology from the literature, consisting of a bibliographical database
and a related ontology. We have shown that these ontologies can be hetero-
geneously combined in different ways:
1. via refinement, which provides the strongest relation between the on-

tologies: namely, that each bibliographical database satisfying the given
relational scheme’s integrity constraints also gives rise to a model of
the ontology, and vice versa (after some appropriate extension of the
ontology).

2. via integration in a common reference ontology, which is known before-
hand, and

3. via connection through a bridge theory, which operates directly on the
involved ontologies and allows the automatic construction of a combined
ontology via colimits.
It is not surprising that the strong combination via refinement is only

possible after extending the ontology in a suitable way, leading to a better
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matching between the relational scheme and the ontology. Certainly, these
general patterns of ontology combination can also be found in other examples,
also involving completely different application domains (and not necessarily
being connected with databases).

5. Discussion and Outlook
In the introduction, we formulated three questions—from the ontology design
and reasoning perspective—, and informally sketched our answers to these
questions. The core of this paper developed a framework for ontology design
that provides the theoretical underpinnings and gave technical argument for
these answers. Briefly, they can be summarised as follows:

. Is there a universal ontology? No. Different application domains require
different levels of expressivity and abstraction in an ontology. While
‘universal’ attempts to capture ontological or commonsense knowledge
such as the Cyc ontology have produced impressive results, they are
difficult to adapt to specific purposes and application areas. The need
for diversity is nowadays acknowledged even in the area of foundational
ontologies that provide very high-level ontological vocabulary and ax-
iomatisation, such as BFO, GFO, and Dolce—they are directed towards
different application areas such as Biology, Medicine, or general Infor-
mation Systems, and no easy integration is conceivable as they disagree
on a high conceptual level. Moreover, real world applications of ontolo-
gies often require the heterogeneous combination of ontologies.

. Is there a universal ontology language? There is no ‘one true ontology
language’ that will fit all purposes. The choice of an ontology language
is directly linked to a corresponding logic and a restriction to possible
reasoning support, from very fast lightweight DL reasoning to (semi-
decidable and semi-automatic) first-order and higher-order reasoning;
this concerns in particular a trade-off between axiomatic expressiveness
and dealing efficiently with large amounts of data (as e.g. in biomedical
ontologies).

. Is there a universal ontology reasoning? In the highly populated world of
heterogeneous ontologies, not only the languages may vary from mod-
ule to module, but also the way the modules interact with each other
and the way the ‘flow of information’ [91] is controlled. This necessi-
tates proper, semantically well-founded foundations for various kinds of
inter-ontology links. Moreover, such a heterogeneous set-up obviously
affects the various reasoning modes that can and need to be supported.
This includes combination of conceptual reasoning with, e.g., tempo-
ral, spatial, or epistemic information, as well as dealing with problems
such as inconsistency tolerance employing paraconsistent inference, non-
monotonic inference dealing with changing facts that need to be accom-
modated, or fuzzy and approximate reasoning in cases where ‘precise’
reasoning is either too expensive or just undesirable.
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Taking these general answers to basic methodological questions concerning
ontological engineering and reasoning as our starting point, we have pre-
sented the fundamentals of a framework for ontology design that rests on
two main principles, namely an endorsement of (onto-)logical pluralism for
ontology design in the spirit of Carnap’s logical tolerance, and an adoption of
Goguen’s institutional semantics as a backbone for heterogeneous structuring
and combination—this approach we have termed Carnapian Goguenism.

The abstract framework for the study of structured heterogeneous on-
tologies that we have introduced allows a systematic analysis of conceptual
and algorithmic problems in heterogeneous environments that were previ-
ously considered rather disparate. Essentially all logics used in ontology de-
sign today can be rendered as an institution, and the heterogeneous struc-
turing devices that we have described allow ontology designers to build their
ontologies accordingly in a modular, heterogeneous and structured fashion,
splitting the overall design up into several meaningful modules and joining
them together (in various ways) to make up the overall ontology. Here, the
heterogeneous approach allows to define various parts of an ontology in dif-
ferent logics, depending on the needed expressivity and desired reasoning
support.

Furthermore, the approach allows in particular a description and clas-
sification, in an abstract way, of most ontology combination and integra-
tion approaches known from the literature, namely alignments, integrations
into reference ontologies, loose combinations of ontologies such as DDLs and
E-connections, as well as refinements. The notion of heterogeneous refinement
has in particular been employed to define a general notion of sub-ontology,
where the super-ontology might not only be ‘larger’ or axiomatised differ-
ently, but indeed might be formalised in a different logic. This provides a
powerful, syntax-agnostic approach to the comparison of ontologies across
different institutions. Indeed, it can also be employed to define notions of
equivalence, or synonymity, between ontologies formulated in different logics.
Unlike related approaches like Common Logic [39], our approach provides ex-
plicit structuring mechanisms, and logic translations are treated as first-class
citizens. Moreover, as we have discussed in Section 2.1 (Example 2.1.1), due
to the highly modular and extensible architecture of Hets, Common Logic
was added as a new logic to the Hets logic graph with relative ease.

Indeed, the structured reasoning support that our approach allows has
already been used for answering questions that ‘standard’ automated rea-
soning can not tackle: the consistency of the first-order version of the foun-
dational ontology Dolce (reformulated as a HetCasl specification) can
be verified by model-checking a view into a finite specification of a model
for Dolce: here, the structuring techniques supported by Hets allow for a
modular construction of models for large first-order ontologies such as Dolce
[104] (called architectural specifications).
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A general challenge that will need to be addressed in the future is the
integration of various ontology tools, editors and reasoners, as well as their in-
teroperability with large ontology repositories that contain ontologies in var-
ious formalisms. To mention just a few, the COLORE repository maintains
Common Logic ontologies40, the ORATE repository41 mostly lightweight on-
tologies related to assistive ontologies, BioPortal42 ontologies for the biomed-
ical communities, and the TONES ontology repository43 OWL ontologies
with varying expressivity intended mostly for tool developers.

Our relativistic approach to ontology design, and the theoretical frame-
work outlined in this paper suggest a picture that, we believe, will eventu-
ally supersede monolithic ontology design as well as earlier ‘universal’ ap-
proaches to capturing ontological knowledge, such as the Cyc effort. Similar
to the World Wide Web itself, hyperontologies44 are envisaged to be highly
modular, richly structured and interlinked resources of formalised ontological
knowledge. Some of the key desiderata for hyperontologies will be semantic
versioning control and evolution, and ways to retrieve and extract ontologi-
cal knowledge based not only on formal logical principles, but also steered by
application area, level of abstraction and granularity, and intended reasoning
scenario. This extends the Semantic Web vision in at least the following two
aspects: (1) (various) links between ontologies become first-class citizens and
are themselves endowed with rich semantics, and (2) different formalisms can
be heterogeneously connected.

Concrete future work in this direction includes an integration of Hets
with the protégé system45, incorporating a tool for the discovery of theory
morphisms (as developed in [149]) into the Heterogeneous Tool Set, as well
as adding various modularisation algorithms as developed e.g. in [97, 40, 43].
Moreover, we are experimenting with combining statistics-based matching
algorithms for ontologies with logic-based modularisation techniques and
category-theory-based automatic alignment construction, applied to large
repositories of ontologies. Such techniques give a first handle on important
operations on hyperontologies, such as to allow for the extraction of themat-
ically related ontology modules from across several ontologies, the (semi)-
automatic structuring of ontologies, and the discovery of ontology overlaps
modulo alignment mappings.

Acknowledgements
Work on this paper has been supported by the DFG-funded collaborative
research center SFB/TR 8 ‘Spatial Cognition’ and by the German Federal
Ministry of Education and Research (Project 01 IW 07002 FormalSafe).

40See http://stl.mie.utoronto.ca/colore/
41See http://ontologies.informatik.uni-bremen.de/
42See http://bioportal.bioontology.org/
43See http://owl.cs.manchester.ac.uk/repository/
44The concept of a hyperontology is also central in the European OASIS project
[16, 9], see http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.2.1/
OASIS-D121.pdf.
45See http://protege.stanford.edu/

http://stl.mie.utoronto.ca/colore/
http://ontologies.informatik.uni-bremen.de/
http://bioportal.bioontology.org/
http://owl.cs.manchester.ac.uk/repository/
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.2.1/OASIS-D121.pdf
http://www.oasis-project.eu/docs/OFFICIAL_DELIVERABLES/SP1/D1.2.1/OASIS-D121.pdf
http://protege.stanford.edu/


68 Oliver Kutz, Till Mossakowski, and Dominik Lücke

We thank John Bateman, Stefano Borgo, Mihai Codescu, Michael Grüninger,
Joana Hois, Immanuel Normann, and Lutz Schröder for fruitful discussions.

References
[1] Adámek, J., Herrlich, H., and Strecker, G. Abstract and

Concrete Categories. Wiley, New York, 1990. Freely available at
http://www.math.uni-bremen.de/~dmb/acc.pdf.

[2] Alagić, S., and Bernstein, P. A. A Model Theory for Generic
Schema Management. In Proc. of DBPL-01 (2002), vol. 2397 of LNCS,
Springer, pp. 228–246.

[3] Artale, A., and Franconi, E. A survey of temporal extensions of
description logics. Annals of Mathematics and Artificial Intelligence
30, 1-4 (2000), 171–210.

[4] Artale, A., Kontchakov, R., Lutz, C., Wolter, F., and Za-
kharyaschev, M. Temporalising tractable description logics. In Proc.
of the 14th Int. Symposium on Temporal Representation and Reasoning
(TIME) (Washington, DC, USA, 2007), IEEE, pp. 11–22.

[5] Astesiano, E., Kreowski, H.-J., and Krieg-Brückner, B. Al-
gebraic Foundations of Systems Specification. Springer, 1999.

[6] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. F., Eds. The Description Logic Handbook.
Cambridge University Press, 2003.

[7] Baader, F., and Ghilardi, S. Connecting Many-Sorted Theories.
The Journal of Symbolic Logic 72, 2 (2007), 535–583.

[8] Baader, F., Lutz, C., Milicic, M., Sattler, U., and Wolter, F.
Integrating Description Logics and Action Formalisms: First Results.
In Proceedings of the Twentieth National Conference on Artificial In-
telligence (AAAI-05) (Pittsburgh, PA, USA, 2005).

[9] Bateman, J., Castro, A., Normann, I., Pera, O., Garcia, L.,
and Villaveces, J.-M. OASIS common hyper-ontological framework
(COF). Deliverable D1.2.1, EU Project OASIS, 2010.

[10] Bateman, J., Hois, J., Ross, R., and Tenbrink, T. A Linguistic
Ontology of Space for Natural Language Processing. Artificial Intelli-
gence (2010). To appear.

[11] Bateman, J., Tenbrink, T., and Farrar, S. The Role of Concep-
tual and Linguistic Ontologies in Discourse. Discourse Processes 44, 3
(2007), 175–213.

[12] Bateman, J. A. Ontological diversity: the case from space. In Formal
Ontology in Information Systems - Proceedings of the Sixth Interna-
tional Conference (FOIS 2010), A. Galton and R. Mizoguchi, Eds.,
vol. 209. IOS Press, 2010.

[13] Baumgartner, P., and Suchanek, F. M. Automated reasoning
support for first-order ontologies. In Principles and Practice of Se-
mantic Web Reasoning 4th International Workshop (PPSWR 2006),

http://www.math.uni-bremen.de/~dmb/acc.pdf


Carnap, Goguen, and the Hyperontologies 69

Revised Selected Papers (2006), J. Alferes, J. Bailey, W. May, and
U. Schwertel, Eds., vol. 4187 of LNAI, Springer.

[14] Beall, J., and Restall, G. Defending Logical Pluralism. In Logical
Consequences: Rival Approaches. Proceedings of the 1999 Conference
of the Society of Exact Philosophy, B. Brown and J. Woods, Eds. Stan-
more, Hermes, 2001.

[15] Beall, J., and Restall, G. Logical Pluralism. Clarendon Press,
Oxford, 2006.

[16] Bekiaris, E., and Bonfiglio, S. The OASIS Concept. In Universal
Access in Human-Computer Interaction. Addressing Diversity (2009),
C. Stephanidis, Ed., vol. 5614 of Lecture Notes in Computer Science,
Springer, pp. 202–209.

[17] Belnap, N. Under Carnap’s Lamp: Flat Pre-semantics. Studia Logica
80, 1 (2005), 1–28.

[18] Belnap, N. D. How a computer should think. In Contemporary
Aspects of Philosophy, G. Ryle, Ed. Oriel Press, 1977.

[19] Belnap, N. D. A useful four-valued logic. In Modern Uses of Multiple-
Valued Logics, J. Dunn and G. Epstein, Eds. Reidel, Dordrecht, 1977,
pp. 8–37.

[20] Bench-Capon, T. J. M., and Malcolm, G. Formalising Ontologies
and Their Relations. In Proc. of DEXA-99 (1999), vol. 1677 of LNCS,
Springer, pp. 250–259.

[21] Bennett, B. Modal logics for qualitative spatial reasoning. Journal
of the Interest Group on Pure and Applied Logic 4 (1996), 23–45.

[22] Béziau, J.-Y., Ed. Logica Universalis: Towards a General Theory of
Logic. Birkhäuser Verlag, Basel, 2005.

[23] Bhatt, M., Dylla, F., and Hois, J. Spatio-Terminological Inference
for the Design of Ambient Environments. In Conference on Spatial
Information Theory (COSIT’09) (2009), K. S. Hornsby, C. Claramunt,
M. Denis, and G. Ligozat, Eds., Springer-Verlag, pp. 371–391.

[24] Bidoit, M., and Mosses, P. D. Casl User Manual. LNCS Vol. 2900
(IFIP Series). Springer, 2004.

[25] Bittner, T., and Donnelly, M. Computational ontologies of part-
hood, componenthood, and containment. In IJCAI (2005), L. P. Kael-
bling and A. Saffiotti, Eds., Professional Book Center, pp. 382–387.

[26] Borgida, A. On the Relative Expressiveness of Description Logics
and Predicate Logics. Artificial Intelligence 82, 1–2 (1996), 353–367.

[27] Borgida, A., and Serafini, L. Distributed Description Logics: As-
similating Information from Peer Sources. Journal of Data Semantics
1 (2003), 153–184.

[28] Borzyszkowski, T. Higher-order logic and theorem proving for struc-
tured specifications. In WADT (1999), D. Bert, C. Choppy, and P. D.
Mosses, Eds., vol. 1827 of Lecture Notes in Computer Science, Springer,
pp. 401–418.



70 Oliver Kutz, Till Mossakowski, and Dominik Lücke

[29] Brachman, R. J. On the Epistemological Status of Semantic Net-
works. In Associative Networks: Representation and Use of Knowledge
by Computers, N. V. Findler, Ed. Academic Press, 1979.

[30] Braüner, T., and Ghilardi, S. First-Order Modal Logic. In Hand-
book of Modal Logic, J. v. Benthem, P. Blackburn, and F. Wolter, Eds.
Elsevier, Amsterdam, 2006.

[31] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,
and Rosati, R. Epistemic first-order queries over description logic
knowledge bases. In Proc. of the 2006 Description Logic Workshop
(DL 2006) (2006), vol. 189 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-189/.

[32] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M.,
Poggi, A., and Rosati, R. Ontology-based database access. In
Proc. of SEBD (2007), pp. 324–331.

[33] Carnap, R. Logische Syntax der Sprache. Kegan Paul, 1934. English
translation 1937, The Logical Syntax of Language.

[34] Carnap, R. Empiricism, Semantics, and Ontology. Revue Interna-
tionale de Philosophie 4 (1950), 20–40.

[35] Carnap, R. Intellectual Autobiography. In The Philosophy of Rudolf
Carnap, P. A. Schilpp, Ed., vol. 11 of The Library of Living Philoso-
phers. Open Court, La Salle, IL, 1963.

[36] Church, A. A Formulation of the Simple Theory of Types. Journal
of Symbolic Logic 5, 1 (1940), 56–69.

[37] Codescu, M., and Mossakowski, T. Heterogeneous colimits.
In MoVaH’08 Workshop on Modeling, Validation and Heterogeneity
(2008), F. Boulanger, C. Gaston, and P.-Y. Schobbens, Eds.

[38] CoFI (The Common Framework Initiative). Casl Reference
Manual. LNCS Vol. 2960 (IFIP Series). Springer, 2004. Available at
http://www.cofi.info.

[39] Common Logic Working Group. Common Logic: Abstract syntax
and semantics. Tech. rep., 2003.

[40] Cuenca Grau, B., Horrocks, I., Kazakov, Y., and Sattler,
U. Modular Reuse of Ontologies: Theory and Practice. Journal of
Artificial Intelligence Research (JAIR) 31 (2008), 273–318.

[41] Cuenca Grau, B., Parsia, B., and Sirin, E. Ontology Integration
Using E-connections. In Ontology Modularization, H. Stuckenschmidt
and S. Spaccapietra, Eds. Springer, 2009. To Appear.

[42] de Bouvère, K. Logical Synonymity. Indagationes Mathematicae 27
(1965), 622–629.

[43] Del Vescovo, C., Parsia, B., Sattler, U., and Schneider,
T. The modular structure of an ontology: an empirical study. In
Modular Ontologies—Proceedings of the Fourth International Workshop
(WoMO 2010) (Toronto, Canada, 2010), O. Kutz, J. Hois, J. Bao, and
B. Cuenca Grau, Eds., vol. 210 of Frontiers in Artificial Intelligence
and Applications, IOS Press, pp. 11–24.

http://www.cofi.info


Carnap, Goguen, and the Hyperontologies 71

[44] Delugach, H. S. Towards Conceptual Structures Interoperability
Using Common Logic. In Proc. of the Third Conceptual Structures
Tool Interoperability Workshop, held at the 16th International Confer-
ence on Conceptual Structures (ICCS 2008), July 7, 2008, UTM (Uni-
versité Toulouse Le Mirail), Toulouse, France) (2008), M. Croitoru,
R. Jäschke, and S. Rudolph, Eds.

[45] Diaconescu, R. Grothendieck institutions. Applied Categorical Struc-
tures 10 (2002), 383–402.

[46] Diaconescu, R. Institution-independent Model Theory. Studies in
Universal Logic. Birkhäuser, 2008.

[47] Diaconescu, R., Goguen, J., and Stefaneas, P. Logical Support
for Modularisation. In Papers presented at the second annual Workshop
on Logical environments, Edinburgh, Scotland, G. Huet and G. Plotkin,
Eds. Cambridge University Press, New York, 1993, pp. 83–130.

[48] Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and
Schaerf, A. An epistemic operator for description logics. Artif. Intell.
100, 1-2 (1998), 225–274.

[49] Dou, D., and McDermot, D. Towards theory translation. In Declar-
ative Agent Languages and Technologies IV (2007), Springer.

[50] Enderton, H. B. A Mathematical Introduction to Logic. Academic
Press, 1972.

[51] Euzenat, J., and Shvaiko, P. Ontology Matching. Springer, Heidel-
berg, 2007.

[52] Evans, M. Can there be vague objects? Analysis 38 (1978), 208.
reprinted in his Collected Papers, Oxford, Clarendon Press 1985.

[53] Feferman, S. Hilbert’s program relativized: Proof-theoretical and
foundational reductions. The Journal of Symbolic Logic 53, 2 (1988),
364–384.

[54] Fitting, M., and Mendelsohn, R. L. First–Order Modal Logic.
Kluwer Academic Publishers, Dordrecht, 1998.

[55] Freksa, C. Using orientation information for qualitative spatial rea-
soning. In Theories and methods of spatio-temporal reasoning in geo-
graphic space, vol. 639 of LNCS. Springer, 1992, pp. 162–178.

[56] Gabbay, D. Fibring Logics, vol. 38 of Oxford Logic Guides. Clarendon
Press, Oxford, 1999.

[57] Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M.
Many-Dimensional Modal Logics: Theory and Applications. No. 148 in
Studies in Logic and the Foundations ofMathematics. Elsevier Science
Publishers, Amsterdam, 2003.

[58] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and
Schneider, L. Sweetening Ontologies with dolce. In Proc. of EKAW
2002 (2002), LNCS Vol. 2473, Springer, pp. 166–181.

[59] Gärdenfors, P. Conceptual Spaces - The Geometry of Thought.
Bradford Books. MIT Press, 2000.

[60] Gardner, M. Logic Machines and Diagrams. McGraw-Hill, 1958.



72 Oliver Kutz, Till Mossakowski, and Dominik Lücke

[61] Genesereth, M. R., and Nilsson, N. J. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, Los Altos, 1987.

[62] Goguen, J. A. A Categorical Manifesto. Mathematical Structures in
Computer Science 1 (1991), 49–67.

[63] Goguen, J. A. Ontology, Society, and Ontotheology. In Formal On-
tology in Information Systems: Proceedings of the Third International
Conference (FOIS-2004) (2004), A. C. Varzi and L. Vieu, Eds., Fron-
tiers in Artificial Intelligence and Applications, IOS Press, pp. 95–105.

[64] Goguen, J. A. Data, Schema, Ontology and Logic Integration. Logic
Journal of the IGPL 13, 6 (2005), 685–715.

[65] Goguen, J. A. Information Integration in Institutions. In Jon Barwise
Memorial Volume, L. Moss, Ed. Indiana University Press, 2006. To
appear.

[66] Goguen, J. A., and Burstall, R. M. Introducing institutions. In
Proc. Logics of Programming Workshop (1984), E. Clarke and D. Kozen,
Eds., vol. 164 of LNCS, Springer, pp. 221–256.

[67] Goguen, J. A., and Burstall, R. M. Institutions: Abstract Model
Theory for Specification and Programming. Journal of the ACM 39
(1992), 95–146.

[68] Goguen, J. A., and Roşu, G. Institution morphisms. Formal aspects
of computing 13 (2002), 274–307.

[69] Grau, B., Parsia, B., Sirin, E., and Kalyanpur, A. Automatic
Partitioning of OWL Ontologies Using E-connections. In Proc. of De-
scription Logic Workshop (DL) (2005).

[70] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-
Schneider, P., and Sattler, U. OWL 2: The next step for OWL.
Web Semantics: Science, Services and Agents on the World Wide Web
6, 4 (2008), 309–322. Semantic Web Challenge 2006/2007.

[71] Grenon, P., Smith, B., and Goldberg, L. Biodynamic Ontology:
Applying BFO in the Biomedical Domain. In Ontologies in Medicine,
D. M. Pisanelli, Ed. IOS Press, Amsterdam, 2004, pp. 20–38.

[72] Gruber, T. R. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Journal of Human-Computer Studies
43, 4-5 (1995), 907–928.

[73] Grüninger, M., Hahmann, T., Hashemi, A., and Ong, D. Ontol-
ogy Verification with Repositories. In Formal Ontology in Information
Systems—Proceedings of the Sixth International Conference (FOIS-
2010) (2010), A. Galton and R. Mizoguchi, Eds., vol. 209 of Frontiers
in Artificial Intelligence and Applications, IOS Press, pp. 317–330.

[74] Guarino, N. The ontological level. In Philosophy and the Cognitive
Sciences (1994), R. Casati, B. Smith, and G. White, Eds., Hölder-
Pichler-Tempsky, pp. 443–456. Proc. of the 16th Wittgenstein Sympo-
sium, Kirchberg, Austria, Vienna, August 1993.

[75] Guarino, N. Formal Ontology and Information Systems. In Formal
Ontology in Information Systems, Proc. of FOIS-98, Trento, Italy, June



Carnap, Goguen, and the Hyperontologies 73

6–8 (Amsterdam, 1998), N. Guarino, Ed., IOS Press, pp. 3–15.
[76] Guarino, N. The Ontological Level: Revisiting 30 Years of Knowledge

Representation. In Conceptual Modelling: Foundations and Applica-
tions. Essays in Honor of John Mylopoulos, A. Borgida, V. Chaudhri,
P. Giorgini, and E. Yu, Eds. Springer Verlag, 2009, pp. 52–67.

[77] Guarino, N., and Giaretta, P. Ontologies and Knowledge Bases:
Towards a Terminological Clarification. In Towards Very Large Knowl-
edge Bases: Knowledge Building and Knowledge Sharing, N. Mars, Ed.
IOS Press, Amsterdam, 1995, pp. 25–32.

[78] Guarino, N., and Welty, C. Evaluating ontological decisions with
OntoClean. Commun. ACM 45, 2 (2002), 61–65.

[79] Guerra, S. Composition of Default Specifications. J. Log. Comput.
11, 4 (2001), 559–578.

[80] Guizzardi, G. Modal Aspects of Object Types and Part-Whole Rela-
tions and the de re/de dicto Distinction. In Advanced Information Sys-
tems Engineering, 19th International Conference (CAiSE-07) (2007),
J. Krogstie, A. L. Opdahl, and G. Sindre, Eds., vol. 4495 of Lecture
Notes in Computer Science, Springer, pp. 5–20.

[81] Haack, S. Philosophy of Logics. Cambridge University Press, 1978.
[82] Haack, S. Deviant Logic, Fuzzy Logic: Beyond the Formalism. Cam-

bridge University Press, 1996.
[83] Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H.,

and Sure, Y. A framework for handling inconsistency in changing
ontologies. In Proc. of the 4th International Semantic Web Conference
(ISWC-05) (2005), vol. 3729 of LNCS, Springer, pp. 353–367.

[84] Heller, B., and Herre, H. Ontological Categories in GOL. Ax-
iomathes 14, 1–3 (2004), 57–76.

[85] Herre, H. The Ontology of Mereological Systems. In Theory and Ap-
plications of Ontology - Volume 1: Philosophical Perspectives, R. Poli,
J. Seibt, M. Healy, and A. Kameas, Eds. Springer, 2010.

[86] Hois, J., Bhatt, M., and Kutz, O. Modular Ontologies for Archi-
tectural Design. In Proc. of the 4th Workshop on Formal Ontologies
Meet Industry, FOMI-09, Vicenza, Italy (2009), vol. 198 of Frontiers
in Artificial Intelligence and Applications, IOS Press.

[87] Hois, J., and Kutz, O. Counterparts in Language and Space—
Similarity and S-Connection. In Formal Ontology in Information Sys-
tems (FOIS 2008) (2008), C. Eschenbach and M. Grüninger, Eds., IOS
Press, pp. 266–279.

[88] Hois, J., and Kutz, O. Natural Language meets Spatial Calculi. In
Spatial Cognition VI. Learning, Reasoning, and Talking about Space.
6th International Conference on Spatial Cognition (2008), C. Freksa,
N. S. Newcombe, P. Gärdenfors, and S. Wölfl, Eds., LNCS, Springer,
pp. 266–282.

[89] Horridge, M., Drummond, N., Goodwin, J., Rector, A.,
Stevens, R., and Wang, H. H. The Manchester OWL Syntax. In



74 Oliver Kutz, Till Mossakowski, and Dominik Lücke

OWL: Experiences and Directions (2006).
[90] Horrocks, I., Kutz, O., and Sattler, U. The Even More Ir-

resistible SROIQ. In Proc. of the 10th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR2006) (June 2006),
AAAI Press, pp. 57–67.

[91] Kalfoglou, Y., and Schorlemmer, M. The Information Flow Ap-
proach to Ontology-Based Semantic Alignment. In Theory and Ap-
plications of Ontology: Computer Applications, R. Poli, M. Healy, and
A. Kameas, Eds. Springer, 2010.

[92] Kalyanpur, A., Parsia, B., Horridge, M., and Sirin, E.
Finding all Justifications of OWL DL Entailments. In Proc. of
ISWC/ASWC2007 (2007), LNCS Vol. 4825, Springer, pp. 267–280.

[93] Kazakov, Y. An Extension of Regularity Conditions for Complex Role
Inclusion Axioms. In Proc. of DL-09 (2009), B. C. Grau, I. Horrocks,
B. Motik, and U. Sattler, Eds., vol. 477 of CEUR Workshop Proceedings,
CEUR-WS.org.

[94] Keet, C. M., and Artale, A. Representing and Reasoning over a
Taxonomy of Part-Whole Relations. Applied Ontology 3, 1-2 (2008),
91–110.

[95] Klinov, P., and Mazlack, L. J. On possible applications of rough
mereology to handling granularity in ontological knowledge. In Proceed-
ings of the 22nd National Conference on Artificial Intelligence (AAAI-
07) (2007), AAAI Press, pp. 1876–1877.

[96] Konev, B., Lutz, C., Walther, D., and Wolter, F. Formal
properties of modularization. In Ontology Modularization, H. Stucken-
schmidt and S. Spaccapietra, Eds. Springer, 2008.

[97] Konev, B., Lutz, C., Walther, D., and Wolter, F. Semantic
Modularity and Module Extraction in Description Logics. In 18th Eu-
ropean Conf. on Artificial Intelligence (ECAI-08) (2008).

[98] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Za-
kharyaschev, M. The Combined Approach to Query Answering in
DL-Lite. In Proceedings of the 12th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR2010) (2010),
F. Lin and U. Sattler, Eds., AAAI Press.

[99] Kotas, J., and Pieczkowski, A. Allgemeine logische und mathema-
tische Theorien. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik (now ‘Mathematical Logic Quarterly’) 16, 6 (1970),
353–376.

[100] Kracht, M., and Kutz, O. Logically Possible Worlds and Counter-
part Semantics for Modal Logic. In Philosophy of Logic, Handbook of
the Philosophy of Science, D. Jacquette, Ed., vol. 5. Elsevier, Amster-
dam, 2007, pp. 943–996.

[101] Kutz, O. E-Connections and Logics of Distance. PhD thesis, The
University of Liverpool, 2004.

[102] Kutz, O. Notes on Logics of Metric Spaces. Studia Logica 85, 1 (2007),



Carnap, Goguen, and the Hyperontologies 75

75–104.
[103] Kutz, O., Lücke, D., and Mossakowski, T. Heterogeneously

Structured Ontologies—Integration, Connection, and Refinement. In
Advances in Ontologies. Proceedings of the Knowledge Representation
Ontology Workshop (KROW 2008) (Sydney, Australia, 2008), T. Meyer
and M. A. Orgun, Eds., vol. 90 of CRPIT, ACS, pp. 41–50.

[104] Kutz, O., Lücke, D., and Mossakowski, T. Modular Construc-
tion of Models—Towards a Consistency Proof for the Foundational On-
tology Dolce. In 1st Int. Workshop on Computer Science as Logic-
Related (ICTAC 2008, Istanbul, Turkey, 2008).

[105] Kutz, O., Lücke, D., Mossakowski, T., and Normann, I. The
OWL in the Casl—Designing Ontologies Across Logics. In OWL:
Experiences and Directions, 5th International Workshop (OWLED-08)
(co-located with ISWC-08, Karlsruhe, Germany, October 26–27, 2008),
C. Dolbear, A. Ruttenberg, and U. Sattler, Eds., CEUR-WS, Vol-432.

[106] Kutz, O., Lutz, C., Wolter, F., and Zakharyaschev, M.
E-Connections of Abstract Description Systems. Artificial Intelligence
156, 1 (2004), 1–73.

[107] Kutz, O., and Mossakowski, T. Modules in Transition: Conserva-
tivity, Composition, and Colimits. In 2nd Int. Workshop on Modular
Ontologies (WoMO-07) (2007). K-CAP, Whistler BC, Canada.

[108] Kutz, O., and Mossakowski, T. Conservativity in Structured On-
tologies. In 18th European Conf. on Artificial Intelligence (ECAI-08)
(Patras, Greece, 2008), IOS Press.

[109] Kutz, O., Mossakowski, T., and Codescu, M. Shapes of Align-
ments: Construction, Combination, and Computation. In Proc of the
1st Workshop on Ontologies: Reasoning and Modularity (WORM-08)
(ESWC, Tenerife, Spain, 2008), U. Sattler and A. Tamilin, Eds., CEUR-
WS, Vol-348.

[110] Kutz, O., and Normann, I. Context Discovery via Theory Inter-
pretation. In Proc. of the IJCAI Workshop on Automated Reasoning
about Context and Ontology Evolution, ARCOE-09, Pasadena, Califor-
nia (2009).

[111] Kutz, O., Wolter, F., and Zakharyaschev, M. Connecting ab-
stract description systems. In Proc. of the 8th Conference on Principles
of Knowledge Representation and Reasoning (KR-02) (2002), Morgan
Kaufmann, pp. 215–226.

[112] Leibniz, G. W. Sämtliche Schriften und Briefe—VI Sektion:
Philosophische Schriften, Band IV, 1680-1692. Akademie Verlag,
Berlin, 2001.

[113] Lenat, D. B., and Guha, R. V. Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project. Addison-
Wesley, Reading (Massachusetts), 1990.

[114] Lewis, D. Parts of Classes. Basil Blackwell, Oxford, 1991. With an
appendix by J. P. Burgess, A. P. Hazen, and D. Lewis.



76 Oliver Kutz, Till Mossakowski, and Dominik Lücke

[115] Lucanu, D., Li, Y.-F., and Dong, J. S. Semantic Web Languages—
Towards an Institutional Perspective. In Algebra, Meaning, and Com-
putation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday (2006), K. Futatsugi, J.-P. Jouannaud, and J. Meseguer,
Eds., vol. 4060 of Lecture Notes in Computer Science, Springer, pp. 99–
123.

[116] Lukasiewicz, T. Expressive probabilistic description logics. Artificial
Intelligence 172, 6-7 (2008), 852–883.

[117] Lutz, C., and Schröder, L. Probabilistic Description Logics for
Subjective Uncertainty. In Proceedings of the 12th International Con-
ference on Principles of Knowledge Representation and Reasoning
(KR2010) (2010), F. Lin and U. Sattler, Eds., AAAI Press.

[118] Lutz, C., Walther, D., and Wolter, F. Conservative Extensions
in Expressive Description Logics. In Proceedings of IJCAI-07 (2007),
AAAI Press, pp. 453–458.

[119] Lutz, C., and Wolter, F. Modal Logics of Topological Relations.
Logical Methods in Computer Science 2, 2 (2006).

[120] Lutz, C., and Wolter, F. Mathematical Logic for Life Science
Ontologies. In WoLLIC (2009), H. Ono, M. Kanazawa, and R. J.
G. B. de Queiroz, Eds., vol. 5514 of Lecture Notes in Computer Science,
Springer, pp. 37–47.

[121] Lutz, C., Wolter, F., and Zakharyaschev, M. Temporal descrip-
tion logics: A survey. In Proceedings of the Fourteenth International
Symposium on Temporal Representation and Reasoning (2008), IEEE
Computer Society Press.

[122] Ma, Y., and Hitzler, P. Paraconsistent Reasoning for OWL 2. In
RR ’09: Proceedings of the 3rd International Conference on Web Rea-
soning and Rule Systems (Berlin, Heidelberg, 2009), Springer-Verlag,
pp. 197–211.

[123] Ma, Y., and Hitzler, P. Distance-based Measures of Inconsistency
and Incoherency for Description Logics. In Proceedings of the 23rd
International Workshop on Description Logics (DL-2010) (Waterloo,
Canada, 2010, 2010), V. Haarslev, D. Toman, and G. Weddell, Eds.,
vol. 573, CEUR Workshop Proceedings, pp. 475–485.

[124] Ma, Y., Hitzler, P., and Lin, Z. Algorithms for Paraconsis-
tent Reasoning with OWL. In ESWC (2007), E. Franconi, M. Kifer,
and W. May, Eds., vol. 4519 of Lecture Notes in Computer Science,
Springer, pp. 399–413.

[125] Ma, Y., Hitzler, P., and Lin, Z. Paraconsistent resolution for
four-valued description logics. In Proceedings of the 2007 International
Workshop on Description Logics (DL-2007), Brixen-Bressanone, Italy,
June 2007 (Juni 2007), vol. Vol-250 of CEUR Workshop Proceedings,
pp. 395–402.

[126] Mac Lane, S. Categories for the Working Mathematician, 2nd ed.
Springer, Berlin, 1998.



Carnap, Goguen, and the Hyperontologies 77

[127] Madhavan, J., Bernstein, P., Domingos, P., and Halevy, A.
Representing and reasoning about mappings between domain models.
In Proc. of AAAI 2002 (Edmonton, Canada, 2002).

[128] Marx, M., and Venema, Y. Multi-dimensional modal logic. Kluwer
Academic Publishers, Dordrecht, 1997.

[129] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltra-
mari, A. WonderWeb Deliverable D18: Ontology Library. Tech. rep.,
ISTC-CNR, 2003.

[130] Masters, J. Structured Knowledge Source Integration and its appli-
cations to information fusion. In Proceedings of the Fifth International
Conference on Information Fusion (FUSION 2002) (Annapolis, MD,
2002), IEEE.

[131] McCorduck, P. Machines Who Think: A Personal Inquiry into the
History and Prospects of Artificial Intelligence. Peters, Wellesley, 2004.
2nd rev. ed.

[132] Meseguer, J. General logics. In Logic Colloquium 87. North Holland,
1989, pp. 275–329.

[133] Meseguer, J., and Martí-Oliet, N. From abstract data types to
logical frameworks. In Selected papers from the 10th Workshop on Spec-
ification of Abstract Data Types Joint with the 5th COMPASS Work-
shop on Recent Trends in Data Type Specification (London, UK, 1995),
Springer-Verlag, pp. 48–80.

[134] Minsky, M. A framework for representing knowledge. In The Psy-
chology of Computer Vision, P. Winston, Ed. McGraw-Hill, 1975.

[135] Mossakowski, T. Comorphism-based Grothendieck logics. In Mathe-
matical Foundations of Computer Science, vol. 2420 of LNCS. Springer,
2002, pp. 593–604.

[136] Mossakowski, T. Comorphism-based Grothendieck logics. In Math-
ematical Foundations of Computer Science, K. Diks and W. Rytter,
Eds., vol. 2420 of LNCS. Springer, 2002, pp. 593–604.

[137] Mossakowski, T. Institutional 2-cells and Grothendieck institutions.
In Algebra, Meaning and Computation. Essays Dedicated to Joseph A.
Goguen (2006), K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, Eds.,
LNCS 4060, Springer, pp. 124–149.

[138] Mossakowski, T., Autexier, S., and Hutter, D. Development
graphs—proof management for structured specifications. Journal of
Logic and Algebraic Programming 67, 1–2 (2006), 114–145.

[139] Mossakowski, T., Haxthausen, A., Sannella, D., and Tar-
lecki, A. CASL: The Common Algebraic Specification Language. In
Logics of Formal Specification Languages, M. H. D. Bjorner, Ed., Mono-
graphs in Theoretical Computer Science. Springer-Verlag Heidelberg,
2008, ch. 3, pp. 241–298.

[140] Mossakowski, T., Maeder, C., and Lüttich, K. The Heteroge-
neous Tool Set. In TACAS 2007 (2007), O. Grumberg and M. Huth,
Eds., vol. 4424 of LNCS, Springer, pp. 519–522.



78 Oliver Kutz, Till Mossakowski, and Dominik Lücke

[141] Mossakowski, T., Maeder, C., and Lüttich, K. The Heteroge-
neous Tool Set. In VERIFY 2007, B. Beckert, Ed., vol. 259. CEUR-WS,
2007.

[142] Mossakowski, T., and Tarlecki, A. Heterogeneous logical envi-
ronments for distributed specifications. In WADT 2008 (2009), A. Cor-
radini and U. Montanari, Eds., vol. 5486 of Lecture Notes in Computer
Science, Springer, pp. 266–289.

[143] Mossakowski, T., Tarlecki, A., and Diaconescu, R. What is a
logic translation? Logica Universalis 3, 1 (2009), 95–124. Winner of
the Universal Logic 2007 Contest.

[144] Motik, B., Horrocks, I., and Sattler, U. Bridging the Gap
Between OWL and Relational Databases. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web 7, 2 (2009), 74–
89.

[145] Newell, A., Shaw, J. C., and Simon, H. A. Report on a general
problem-solving program. In Proceedings of the International Confer-
ence on Information Processing (IFIP) (1959), pp. 256–264.

[146] Newell, A., and Simon, H. A. Computer Science as Empirical In-
quiry: Symbols and Search. Communications of the ACM 19, 3 (1976),
113–126.

[147] Niles, I., and Pease, A. Towards a Standard Upper Ontology. In
FOIS-01: Proc. of the International Conference on Formal Ontology in
Information Systems (New York, NY, USA, 2001), ACM, pp. 2–9.

[148] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL—A
Proof Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer,
2002.

[149] Normann, I. Automated Theory Interpretation. PhD thesis, Depart-
ment of Computer Science, Jacobs University, Bremen, 2009.

[150] Odintsov, S. P., and Wansing, H. Inconsistency-tolerant Descrip-
tion Logic. Motivation and Basic Systems. In Trends in Logic. 50 Years
of Studia Logica (Dordrecht, 2003), V. Hendricks and J. Malinowski,
Eds., no. 21 in Trends in Logic, Kluwer Academic Publishers, pp. 301–
335.

[151] Odintsov, S. P., and Wansing, H. Inconsistency-tolerant Descrip-
tion Logic. Part II: A tableau algorithm for CALCC . Journal of Applied
Logic 6, 3 (2008), 343–360.

[152] Parsons, T. Nonexistent Objects. Yale University Press, New Haven
and London, 1980.

[153] Patel-Schneider, P. F. A Four-Valued Semantics for Terminological
Logics. Artifical Intelligence 38, 3 (1989), 319–351.

[154] Pieczkowski, A. Über Theorien im erweiterten Sinne. Studia Logica
33, 4 (1974), 317–331.

[155] Pokrywczyński, D., and Malcolm, G. Towards a Functional
Approach to Modular Ontologies using Institutions. In Modular
Ontologies—Proceedings of the Fourth International Workshop (WoMO



Carnap, Goguen, and the Hyperontologies 79

2010) (Toronto, Canada, 2010), O. Kutz, J. Hois, J. Bao, and
B. Cuenca Grau, Eds., vol. 210 of Frontiers in Artificial Intelligence
and Applications, IOS Press, pp. 53–66.

[156] Priest, G. In Contradiction: A Study of the Transconsistent, vol. 39 of
Nijhoff International Philosophy Series. Dordrecht, Martinus Nijhoff,
The Hague, 1987.

[157] Priest, G. Logic: One or Many? In Logical Consequences, B. Brown
and J. Woods, Eds. Hermes, 2001.

[158] Priest, G. Logical Pluralism Hollandaise. The Australasian Journal
of Logic 6 (2008), 210–214.

[159] Randell, D. A., Cui, Z., and Cohn, A. G. A Spatial Logic Based
on Regions and Connection. In Proceedings of the 3rd International
Conference on the Principles of Knowledge Representation and Rea-
soning (KR’92) (1992), Morgan Kaufmann, Los Altos, pp. 165–176.

[160] Restall, G. Carnap’s Tolerance, Language Change and Logical Plu-
ralism. Journal of Philosophy 99 (2002), 426–443.

[161] Ridder, L. Mereologie—Ein Beitrag zur Ontologie und Erkenntnis-
theorie, vol. 83 of Philosophische Abhandlungen. Vittorio Klostermann,
Frankfurt am Main, 2002.

[162] Rodrigues, O., and Russo, A. A Translation Method for Belnap
Logic. Research Report Doc 98/7, Imperial College London, September
1998.

[163] Sannella, D., and Burstall, R. Structured theories in LCF. In
Proc. 8th Colloq. on Trees in Algebra and Programming (1983), vol. 159
of Lecture Notes in Computer Science, Springer, pp. 377–391.

[164] Schorlemmer, M., and Kalfoglou, Y. Institutionalising
Ontology-Based Semantic Integration. Journal of Applied Ontology 3,
3 (2008).

[165] Schröder, L., and Mossakowski, T. HasCASL: Integrated Higher-
Order Specification and Program Development. Theoretical Computer
Science 410, 12-13 (2009), 1217–1260.

[166] Schulz, S., Romacker, M., and Hahn, U. Part-whole reason-
ing in medical ontologies revisited—introducing SEP triplets into
classification-based description logics. Proc. AMIA Symposium (1998),
830–834.

[167] Seidenberg, J., and Rector, A. L. Representing Transitive Propa-
gation in OWL. In Proc. of ER 2006, 25th International Conference on
Conceptual Modeling, Tucson, AZ, USA, November 6–9 (2006), D. W.
Embley, A. Olivé, and S. Ram, Eds., vol. 4215 of LNCS, Springer,
pp. 255–266.

[168] Shehtman, V. “Everywhere” and “Here”. Journal of Applied Non-
Classical Logic 9 (1999).

[169] Sheremet, M., Tishkovsky, D., Wolter, F., and Za-
kharyaschev, M. A Logic for Concepts and Similarity. J. of Logic
and Computation 17, 3 (2007), 415–452.



80 Oliver Kutz, Till Mossakowski, and Dominik Lücke

[170] Sheremet, M., Wolter, F., and Zakharyaschev, M. A modal
logic framework for reasoning about comparative distances and topol-
ogy. Annals of Pure and Applied Logic 161, 4 (2010), 534–559.

[171] Simons, P. Parts: A Study in Ontology. Clarendon Press, Oxford,
1987.

[172] Simons, P. On Being Spread Out in Time: Temporal Parts and the
Problem of Change. In Existence and Explanation (Dordrecht, 1991),
W. S. et al., Ed., Kluwer Academic Publishers.

[173] Sioutos, N., de Coronado, S., Haber, M. W., Hartel, F. W.,
Shaiu, W.-L., and Wright, L. W. NCI Thesaurus: A semantic
model integrating cancer-related clinical and molecular information.
Journal of Biomedical Informatics 40, 1 (2007), 30–43.

[174] Straccia, U. A Sequent Calculus for Reasoning in Four-Valued De-
scription Logics. In Proc. of TABLEAUX-97: Int. Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods, Pont-
à-Mousson, France, May 13–16 (1997), D. Galmiche, Ed., vol. 1227 of
LNCS, Springer, pp. 343–357.

[175] Suntisrivaraporn, B., Baader, F., Schulz, S., and Spackman,
K. Replacing SEP-Triplets in SNOMED CT Using Tractable Descrip-
tion Logic Operators. In AIME ’07: Proceedings of the 11th confer-
ence on Artificial Intelligence in Medicine (Berlin, Heidelberg, 2007),
Springer-Verlag, pp. 287–291.

[176] Tarski, A. Der Aussagenkalkül und die Topologie. Fundamenta Math-
ematicae 31 (1938), 103–134.

[177] ten Cate, B., Conradie, W., Marx, M., and Venema, Y. Defin-
itorially Complete Description Logics. In Proceedings of KR 2006
(2006), P. Doherty, J. Mylopoulos, and C. Welty, Eds., AAAI Press,
pp. 79–89.

[178] van Benthem, J. Logical dynamics meets logical pluralism? The
Australasian Journal of Logic 6 (2008), 182–209.

[179] Venn, J. Symbolic Logic. The MacMillan Company, London, 1881.
[180] Villadsen, J. Paraconsistent Query Answering Systems. In FQAS

’02: Proceedings of the 5th International Conference on Flexible Query
Answering Systems (London, UK, 2002), Springer-Verlag, pp. 370–384.

[181] Voronkov, A. Inconsistencies in Ontologies. In JELIA-06 (2006),
p. 19.

[182] Zhou, L. ., Huang, H., Qi, G., Ma, Y., Huang, Z., and Qu,
Y. Paraconsistent Query Answering Over DL-Lite Ontologies. In Pro-
ceedings of the Third Chinese Semantic Web Symposium (CSWS-09)
(2009).

[183] Zimmermann, A., Krötzsch, M., Euzenat, J., and Hitzler, P.
Formalizing Ontology Alignment and its Operations with Category
Theory. In Proc. of FOIS-06 (2006), pp. 277–288.



Carnap, Goguen, and the Hyperontologies 81

Oliver Kutz
SFB/TR 8 Spatial Cognition, University of Bremen, Cartesium, Enrique-Schmidt
Strasse, 28359, Bremen, Germany
e-mail: okutz@informatik.uni-bremen.de

Till Mossakowski,
DFKI GmbH and SFB/TR 8 Spatial Cognition, University of Bremen, Cartesium,
Enrique-Schmidt Strasse, 28359, Bremen, Germany
e-mail: Till.Mossakowski@dfki.de

Dominik Lücke
SFB/TR 8 Spatial Cognition, University of Bremen, Cartesium, Enrique-Schmidt
Strasse, 28359, Bremen, Germany
e-mail: luecke@informatik.uni-bremen.de


	1. Introduction
	1.1. From Universal Common Sense to Domain Ontology.
	1.2. Logical Pluralism and Syntactic Heterogeneity.
	1.3. Logical Reasoning Modes for Ontologies.
	1.4. From Carnapian Goguenism to Constructing Hyperontologies

	2. Heterogeneous Ontologies and Structuring
	2.1. A Variety of Logics
	2.1.1. Variants and Fragments of Classical First-Order Logic
	2.1.2. Modal and Paraconsistent Logics
	2.1.3. Higher-Order Logics

	2.2. Structured Ontologies
	2.3. Heterogeneous Ontologies

	3. Refinement, Integration, and Connection
	3.1. Refinements, Sub-Ontologies, and Equivalence
	3.1.1. Heterogeneous Refinements
	3.1.2. Ontology Equivalence

	3.2. Integration and Reference Ontologies
	3.3. Heterogeneous Connection
	3.3.1. Connection through Alignments
	V-Alignments
	W-Alignments
	M-Alignments
	3.3.2. Connection through Interface and Colimit
	3.3.3. E-Connections and DDL


	4. Modes of Reasoning over Ontologies vis-à-vis Structuring
	4.1. Reasoning Support in Hets
	4.2. Reasoning About Refinements
	4.2.1. From Relational Scheme to Ontology
	4.2.2. From Ontology to Relational Scheme

	4.3. Reasoning About Integrations
	4.4. Reasoning About Connections
	4.4.1. Integration through Interface and Colimit


	5. Discussion and Outlook
	Acknowledgements

	References

