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Abstract. This paper investigates the idea to treat repositories of ontologies as inter-
linked networks of ontologies, formally captured by the notion of a hyperontology. We
apply standard matching algorithms to automatically create the linkage structure of the
repository by performing pairwise matching. Subsequently, we define a modular workflow
to construct compositions of alignments for any finite number of ontologies. This work-
flow employs and makes interoperable several tools from the ontology engineering world,
comprising matching, reasoning, and structuring tools. This allows for an automatic con-
struction of ‘ontological synsets’, visualisation of the linkage structure, modular ontology
extraction based on alignment, and a study and empirical analysis of consistency propa-
gation (the Chinese Whispers problem).

Keywords: Hyperontologies; Connected Alignments; Modularity; Consistency

1 Introduction and Motivation

Ontology matching and alignment based on statistical methods is a relatively developed
field, with yearly competitions since 2004 comparing the various strengths and weaknesses
of existing algorithms.5 Such approaches can be quite successful, but ignoring the logical
content of an ontology can yield at least three severely negative outcomes:6 (1) concepts
might be matched because of accidental naming similarity whilst their logical meaning
in the two ontologies might be completely different; (2) different naming conventions
might not allow for matchings based on surface similarity, whilst large parts of two
axiomatised ontologies might be largely identical, or equivalent; (3) an alignment based
on purely empirical measures, although establishing some meaningful connections, is
often inconsistent overall.

OK: harmonise
terminology
throughout!!!

In this paper we aim at exploring the degrees to which statistical alignment may lead
to inconsistency in the merged ontologies. More precisely, we aim at investigating the
5 See http://oaei.ontologymatching.org/2009/
6 The lack of semantics involved in the evaluation of such alignments has been clearly articulated already
in [3,2].

http://oaei.ontologymatching.org/2009/


effects, both theoretically and practically, of connected matching, i.e. aligning several
ontologies that match (non-trivially) pairwise. Our general approach is to treat large
repositories of ontologies (in the order of hundreds of ontologies) as our starting point
to perform pairwise matching in order to obtain an interlinked network of ontologies.
Formally, such networks are captured by the notion of a hyperontology [12].

Our work in progress is intended to answer questions such as the following:

If pairwise alignments are still consistent, how and when can we align fur-
ther ontologies (in various orders) before we drift into inconsistency? Is there a
significant difference between matching thematically closely related ontologies (as
determined by a human) and randomly selected ones? How and when can we re-
duce the question of consistency of aligned ontologies to the consistency of the
aligned sub-ontologies (i.e. modules generated by the matched sub-signatures)?

In this paper, we set up the theoretical background and neccessary engineering envi-
ronment to give meaningful answers to such questions, and study the effects of matching
ontologies in different order by looking at some specific examples. In our related paper
[16], we have studied techniques of information hiding to allow a user to explore the com-
plex structure resulting from pairwise matching on large sets of ontologies. We here focus
on the interoperability problem between matching, modularity, and structuring tools,
and the theoretical problem of reducing the consistency of sets of aligned ontologies to
sets of (corresponding) aligned modules.

2 Hyperontologies and Structuring

2.1 Structured Ontologies and Repositories as Hyperontologies

Structured Ontologies develop a rather abstract view of heterogeneously structured
ontology, encompassing essentially all logics being used in ontology design today and
allowing for the modelling of the most complex relationships between ontologies. Tech-
nically, we have formalised several logics that are important from an ontology design
perspective as so-called institutions [4,5], including the description logic SROIQ(D)
and various variants of first-order logic and different modal logics, and supply insti-
tution comorphisms (logic translations) as mappings between them.

Classification of Combination Techniques systematise the field of ‘combining on-
tologies’ by identifying three classes of such combinations: refinements, integrations,
and connections. The differentiating criteria are the use of signatures in the overall
combination and the corresponding model-theoretic properties.

Hyperontologies introduce a notion of heterogeneously structured ontology, which also
affords distributed networks of ontologies written in different formalisms, which we
call hyperontologies.

Reasoning with Combinations analyse how various well-known ontology design and
combination techniques fit into these abstract categories, including structuring through



conservative extensions, ontology alignments,7 E-connections, and database-scheme–
ontology reconciliation.

Tool Support discuss how the tool Hets (Heterogeneous Tool Set) can support various
reasoning and ontology engineering tasks and indicate the current and planned tool
support for existing ontology languages and reasoners.

The main features of our approach to ontology design may then be summarised as follows:

– The ontology designer can use description logics to specify most parts of an ontology,
and can use first-order (or even higher-order) logic where needed. Moreover, the over-
all ontology can be assembled from (and can be split up into) semantically meaningful
parts (‘modules’) that are systematically related by structuring mechanisms. These
parts can then be re-used and/or extended in different settings.

– Institution theory provides logic translations between different ontology languages,
translating the syntax and semantics of different formalisms.

– Various concepts of ‘ontological module’ are covered, including simple imports (ex-
tensions) and union of theories, as well as conservative and definitional extensions.
We here consider conservative extensions as a way of (‘a priori’) structuring ontolo-
gies, rather than as a methodology to (‘a posteriori’) cutting large ontologies into
pieces which lie conservatively within the whole. However, we consider the latter
(algorithmic) approach as assistive to, for instance, verifying a desired conservative
design.

– Structuring into modules is made explicit in the ontology and generates so-called
proof obligations, e.g. for conservativity. Proof obligations can also be used to keep
track of desired consequences of an ontology (module), especially during the design
process.

– Re-using (parts of) ontologies whilst renaming (parts of) the signature is handled by
symbol maps and hiding symbols: essentially, this allows the internalisation of (strict)
alignment mappings.

– The approach allows heterogeneous refinements: it is possible to prove that an on-
tology O2 is a refinement of another ontology O1, formalised in a different logic.
For instance, one can check if a domain ontology is a refinement of (a part of) a
foundational one. There are two interesting by-products of the definition of hetero-
geneous refinement: firstly, it provides a rather general definition of heterogeneous
sub-ontology, and secondly, it can be used to give a definition of equivalence of on-
tologies across different ontology languages.

– The tool Hets provides parsing, static analysis and proof management for hetero-
geneous logical theories. It can visualise the module structure of complex logical
theories, using so-called development graphs. For individual nodes (corresponding to
logical theories) in such a graph, the concept hierarchy can be displayed. Moreover,
Hets is able to prove intended consequences of theories, prove refinements between
theories, or demonstrate their consistency, and compute normal forms and colimits

7 Previously discussed in [11].



(also for heterogeneous specifications). This is done by integrating several first-order
provers and model-finders (Spass, Darwin), a higher-order prover (Isabelle), as
well as the DL reasoners Pellet and Fact++.

2.2 Alignment as Colimit Computation

V-Alignments [23] address the problem of alignment without a common reference on-

OK: introduce sig-
nature morphisms
and some other ba-
sics here formally.

tology. Given ontologies O1 and O2, an interface (for O1, O2)〈
Σ, σ1 : Σ−→Sig(O1), σ2 : Σ−→Sig(O2)

〉
specifies that (using informal but suggestive notation)

– concepts σ1(c) in O1 and σ2(c) in O2 are identified for each concept c in Σ, regardless
of whether the concepts have the same name or not, and

– concepts in O1 \ σ(Σ1) and O2 \ σ(Σ2) are kept distinct, again regardless of whether
they have the same name or not.

The resulting common ontology O is not given a priori, but rather it is computed from
the aligned ontologies via the interface. This computation is a pushout in the sense of
category theory, which in this case is just a disjoint union with identification of specific
parts (namely those given through 〈Σ, σ1, σ2〉).

V-alignments can thus deal with basic alignment problems, such as synonymy (identi-
fying different symbols with the same meaning) and homonymy (separating (accidentally)
identical symbols with different meaning)—see Fig. 1.

{Woman,River_Bank,Financial_Bank,Human_Being}

�

O

O1

-

O2

�

�

{Woman,Bank,Person}

�

{Woman,Bank,Human}
Σ

σ2

-�
σ1

=

{Woman_Woman,Person_Human}

Fig. 1. V-alignment: merge through interface (dashed arrows are automatically computed via colimits)

Example 1. In Fig. 1, the interface 〈Σ, σ1, σ2〉 specifies that the two instances of the
concept Woman as well as Person and Human are to be identified. This yields two concepts
Woman and Human_Being in the push-out ontology O obtained along the dashed arrows.
It also determines that the two instances of Bank are to be understood as homonyms,
and thus generates two new distinct concepts. a
However, notion such as polysemy are typically understood to relate terms that have
a different, but related meaning, and can thus not be dealt with by simply identifying



symbols or keeping them apart. This problem can be solved, however, by considering
E-connections as a general form of alignment (see [11]). Similarly, [23] themselves raise
the criticism that V-Alignments do not cover the case where a concept Woman in O1 is
aligned with a concept Person in O2: here, the resulting ontology should turn Woman
into a subconcept of Person. This is not directly possible with the pushout approach.

Someone: de-
scribe how the
results from
a matcher are
rewritten into
a Spec that
codifies a V-
alignment. The
colimit will com-
pute the result
of gluing to-
gether.

An important fact for us is that compositions of alignments are associative.

OK: Explain pic-
ture properly or
make new.

Lemma 1. Compositions of alignments are associative.

Proof. This has been shown by Zimmermann et al. [23] by observing that the composition
of alignments corresponds to spans in category theory, so can be obtained by the use of
the categorical construction called pullback. The associativity of compositions can be
directly seen from the illustration below taken from [23].

at uniting heterogeneous specifications into a larger, more precise one which allows
more information sharing. The categorical formalization of V-alignments allows for a
simple description of the merge, and this can be described in terms of the category-
theoretic pushout∗ construction. [15,13,12] give more details about this construction, and
the present paper also discusses this point in §3.

2.3. Algebra for V-alignments

The need for ontology alignment naturally arises when information from many ontolo-
gies is relevant to a given task. However, since the task of constructing alignments is not
an easy one and can hardly be accomplished in a fully automatic fashion, it is reasonable
to store and reuse known alignments. The purpose of this section is to introduce a sound
algebra of V-alignments that allows for essential operations that enable us to compose,
join, and intersect alignments.

These operations are application of general operations over categorical spans, so
interested readers shall refer to [19] for their general properties. They are also more
detailed in [11]. This is why here we present them briefly.

2.3.1. Composing alignments

Composition is a central operation for the reuse of alignments: if we have alignments
between ontologies O1 and O2, and between O2 and O3, then it should be possible to
obtain an alignment of O1 and O3. The definition is the same as the composition of spans
in category theory (see [19]). So it is obtained by the use of the categorical construction
called pullback∗.

The following commutative diagram∗ shows two V-alignments 〈A,α1, α2〉 and
〈B, β2, β3〉. The composition is the alignment 〈C,α1 ◦ fA, β3 ◦ fB〉, where 〈C, fA, fB〉
is the pullback of α2 and β2.
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Composition is associative and identity exists, which confirms that the proposed
operation is well-behaved as a composition of alignments.

2.3.2. Intersection and union of alignments

Intersection gives the mutually agreed correspondences of two alignments. Union gath-
ers all asserted relations specified in two alignments. These operations are indeed very
useful in the context of the Semantic Web since they allow a modularization of align-
ments. In this respect, one can give a partial alignment with only part of the relevant
correspondences and expect to retrieve more on the Web when needed.

Figure 1 a. gives the diagram of intersected alignments 〈A, f1, f2〉 and 〈B, g1, g2〉.
Object C together with morphisms kA, kB , h1 and h2 make the limit∗ of the diagram
composed of the two alignments. The resulting alignment is 〈C, h1, h2〉.

A. Zimmermann et al. / Formalizing Ontology Alignment and its Operations with Category Theory280

Fig. 2. Composition of alignments is associative

This means that the order in which we apply alignments consecutively does not mat-
ter, rather, it is important just which subset of pairs of ontologies we pick for (pairwise)
matching.

OK: not really
chinese whispers
because not se-
quential

3 Consistency and the Chinese Whispers Effect

The game of Chinese Whispers8 is played as follows: n persons are arranged in a

IN: nice picture of
the hyper

OK: compute the
combinatorics of
iterative alignments
as compared to
pairwise matching:

certain (typically circular) order such that for each person Pi there is a j such that Pi
exchanges a message with Pj . The point of the game is to observe the distortion of the
message as it travelles from P1 along the communication channel. We here are interested
in the effects of playing Chinese Whispers with ontologies, where the pairwise matching
replaces the transmission of a message, i.e. the messages being exchanged are of the form:
“Oi and Oj agree that concept C of Oi is synonymous with concept D of Oj”.

We make the following idealisations concerning ‘matching’ a) we assume that in
pairwise matching the order does not matter, i.e. matching O1 with O2 yields the same
8 In the United States, “Telephon” is the most common name for the game. The name “Chinese whispers”
reflects the former stereotype in Europe of the Chinese language as being incomprehensible. Although
it is sometimes considered offensive in the US, it remains the common British English name for the
game and is not generally regarded as being offensive.



colimit ontology (i.e. alignment) as matching O2 with O1
9; b) matching algorithms are

‘not transitive’, i.e., matching 〈O1, O2〉 and 〈O2, O3〉 and computing the colimit yields,
in general, a different result than matching and aligning 〈O1, O3〉.

With these assumptions in place, given a repository R with N ontologies, we start
with l = N×(N−1)

2 matching pairs.10 Playing chinese whispers on R with k ≤ N players
now means to pick a connected subgraph of the hyperontology graph (to ensure that each
ontology ‘talks’ to at least one other), which we call a matching configuration .

Fig. 3. The number of non-isomorphic matching configurations for N = 3

Given a fixed k, the largest possible matching configuration (measured in pairs of
matched ontologies) corresponds to a clique with k nodes, i.e. a complete subgraph of
the hyperontology graph with k nodes.

We have seen that in practise, not every pair of ontologies will match at all, i.e.
a matcher will report no synonyms. Therefore, for fixed k ≤ N ontologies O1, . . . , Ok,
the number of non-isomorphic matching configurations containing the Oi (i = 1, . . . , k)
corresponds to the number of connected components of the hyperontology graph with
these ontology nodes. The case of N = 3 (assuming a clique) is illustrated in Fig. 3. The
alignment operation on a matching configuration, i.e. the computation of the colimit of
that graph, we call a connected alignment.

4 Modularity in Hyperontologies

• ORATE [17]

OK: What’s up
with ORATE?

In the following, we will make precise what we mean by a module and define the
notion of conservativity. We start with some auxiliary notions. Let Σ be a signature
containing concept names and roles.11 et Sen(Σ) be the set of sentences formulated

OK: Is the foot-
note at the right
place?

using the symbols in Σ in some language. The language depends on the language the
ontologies under consideration are formulated in, e.g. OWL or some fragment thereof.

For defining deductive conservativity, we first introduce the notion of a Σ-theory of
an ontology O:

ThΣ(O) = {φ ∈ Sen(Σ) | O |= φ}.
9 Whether or not this holds for actual matching systems is an implementational artefact which we ignore;
the assumption is certainly reasonable to make as both ‘agreement’ and ‘synonymy’ are symmetric.

10 We assume that we do not match ontologies with themselves.
11 We use the DL terminology concept name and role interchangeably with the OWL terminology class

and property.



Definition 1 (Consequence-theoretic Conservativity). Given two ontologies O1, O2

and a signature Σ, we say that O2 is a consequence-theoretic Σ-conservative extension
of O1 if ThΣ(O2) ⊆ ThΣ(O1).

Notice that we have ThΣ(O1) ⊆ ThΣ(O2) for any O1 ⊆ O2 that are formulated in a
monotonic logic.

Definition 2 (Model-theoretic Conservativity). Given two ontologies O1, O2 and a
signature Σ, we say that O2 is a model-theoretic Σ-conservative extension of O1 if for
all models I of O1, there exists a model J of O2 such that I�Σ= J �Σ.

Note that I�Σ= J �Σ states that both models are equivalent when each is restricted to
the symbols in Σ.

The notion of model-theoretic conservativity is stronger than consequence-theoretic
conservativity. To be precise, the former implies the latter, but not vice versa [13]. The
two notions coincide if we define consequence-theoretic conservativity using Σ-theories
that contain consequences φ ∈ Sen(Σ) formulated in Second-Order Logic.

The computational complexity of deciding conservativity appears to be rather daunt-
ing even if the ontologies are formulated in weak logics. For instance, for ontologies
formulated in the light-weight Description Logic EL, deciding consequence-theoretic con-
servativity is ExpTime-complete, and model-theoretic conservativity is undecidable. The
former problem also becomes undecidable when adding nominals to ALCIQ, for which
it is still 2-ExpTime-complete [15].

We continue with introducing a general notion of a module in the sense that a module
of an ontology is not restricted to be a subset of the ontology. It is crucial, however, that
the module does not say anything that is not already said by the ontology itself (i.e. the
module is required to be a conservative extension of the ontology). We say that a module
covers a signature of interest when it says the same about that signature as the entire
ontology. The next definition makes these intuitions precise.

Definition 3 (Module Generator). Let O be an ontology, and let Σ ⊆ Sig(O) be a
signature. A function

Π : 〈O,Σ〉 7→ Sen(Sig(O))

mapping pairs 〈O,Σ〉 consisting of an ontology O together with a signature Σ to a set of
sentences in Sig(O) is called a Σ-module generator if for all O and Σ:

Π(〈O,Σ〉) is a consequence-theoretic Sig(O)-conservative extension of O.

For a Σ-module generator Π, the set Π(〈O,Σ〉) is called a Σ-module for O.
Π(〈O,Σ〉) is called Σ-covering for O if:

O is a consequence-theoretic Σ-conservative extension of Π(〈O,Σ〉).

OK: Explain why
we use different
terminology (het-
erogeneity) as
known in DL lit-
erature, i.e. safety
and coverage.

We now illustrate the notion of a module with some examples.



subset of axioms translation along signature morphism

σ : T1 −→ T2

T

T1

T2

Fig. 4. Modules as subsets vs. modules as image under translation.

Example 2. (1) Obviously, the simplest possible module generator is the function Πid

mapping each pair 〈O,Σ〉 to O. We have that Πid(〈O,Σ〉) is a Σ -module for O and that
it is Σ-covering for O.
(2) Assume the consequences O |= φ, φ ∈ Sen(Σ) (a countable set) are well-ordered by
ω. Define the following

Πord(〈O,Σ〉) = {φ0, . . . , φn | n is minimal such that {φi | i ≤ n} is conservative}

By construction, Πord is a conservative module generator. Since O is finite, there are
only finitely many (up to exponentially many in the size of O) well-orderings such that
Πord is non-creative, and a continuum of creative ones. (3) Define Con := {O′ | O′ ⊆

OK: check exam-
ples

Sen(Sig(O)) and for all φ ∈ Sen(Σ) : O |= φ =⇒ O′ |= φ}. Choose some O′ ∈ Con and
set Πcon(〈O,Σ〉) = O′. This construction always returns a non-creative and conservative
module generator, but only sometimes a covering one.
(4) A variation of the last example, and one that we will use in detail below, is to use
syntactic checks to establish whether we need to add an axiom to a Π-reduction. More
specifically, we will employ locality-based modules [20,10] as their computation is readily
supported by the OWL-API. Call a function λΣ : Sen(Sig(O)) → 2 = {0, 1} Σ-safe if
the module generator Πapx defined via

Πapx(〈O,Σ〉) = {φ | φ ∈ O and λΣ(φ) = 1}

is Σ-conservative.

OK: What is the
right level of ab-
straction for our
multiple alignment
application: cer-
tainly we need to
consider super-
signatures as we
merge ontologies.

The idea to use entrapping module generators is to massively reduce the size of
a colimit ontology whilst preserving the semantics completely. We will give examples
below.OK: define and

proof

Lemma 2 (Locality based modules). Locality based modules are entrapping module
operators.
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Fig. 5. Propagation of modular structure through one matching
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Fig. 6. Propagation of modular structure through matching network

Proof. Show that locality-based modules produce entrapping modules.module propaga-
tion: introduce
and discuss

Theorem 1 (Combination of two modules). Assume a semi-exact institution. Con-
sider Fig. 5, and assume that Õ and O are obtained by pushouts (with base Σ). Then O
is a model-theoretic conservative extension of Õ. In particular, O is satisfiable iff Õ is.

Proof. Let M̃ be a model of Õ. For i = 1, 2, letMi be an Oi-expansion of the Π(O1, Σi)-
reduct of M̃ (which exists by conservativity of Oi over Π(O1, Σi)). M1 and M2 obvi-
ously agree on Σ, hence they have an amalgamation M which is an O-model. Now the
Π(O1, Σi)-reducts of M agree with those of M̃ , hence by uniqueness of amalgamation,
the Õ-reduct of M is M̃ . a

OK: TM: Should
we work for arbi-
trary institutions,
or in a fixed one?
All usual DLs are
semi-exact and
have an initial sig-
nature, see our
ECAI paper.

OK: TM: We can
use unions instead
of pushouts, if all
arrows are inclu-
sions and Σ is the
intersection of O1

and O2. However,
I doubt that this
is the case, since
this would enforce
a “same name -
same concept”
principle, contra-
dicting the remarks
about synonymy
and homonymy.
Hence, we need to
work with true sig-
nature morphisms
when defining con-
servativity.

Theorem 2 (Combination of multiple modules). Assume a semi-exact institution
with an initial signature. Consider a family of ontologies (Oi)i∈I indexed by a finite non-
empty set I and a loop-free connected symmetric graph G ⊆ I×I, such that for (i, j) ∈ G,



Oi and Oj are interfaced by

Oi �
θi,j

Σi,j
θj,i - Oj

Define
Σi :=

⋃
j∈I\{i}

θi,j(Σi,j)

and σi : Σi → Π(Oi, Σi) the module in Oi for Σi. Let σi,j : Σi,j → Π(Oi, Σi) be the
restriction of θi,j, namely θi,j : Σi,j → Σi, composed with σi, see Fig. 6. Assume that Õ
(resp. O) is obtained by the colimit of the diagram of all σi,j (resp. all σi,j composed with
the inclusion of Π(Oi, Σi) into Oi). Then O is a model-theoretic conservative extension
of Õ. In particular, O is satisfiable iff Õ is.

Proof. By Prop. 4.4.15 of [19], in any semi-exact institution with an initial signature, all
finite non-empty connected diagrams enjoy the amalgamation property. With this, the
proof is a straightforward generalisation of the proof of Thm. 1. Note that connectedness
of G ensures connectedness of the diagrams for obtaining Õ and O. a

Note that Thm. 1 does not hold for consequence-theoretic conservativity. Consider
the following example, adpated from [14]. In ALCO, let O1 be

IntroTCS v ∃has_subject.AutomataTheory
IntroTCS v ∃has_subject.ComplexityTheory
AutomataTheory u ComplexityTheory v ⊥

and O2 be
IntroTCS v ∀has_subject.{moore_automata}
IntroTCS v ∃has_subject.{moore_automata}

Let Σ be {IntroTCS, has_subject}. Then assuming a consequence-theoretically conserva-
tive (minimal) module generator, Π(O1, Σ) = Π(O2, Σ) = Õ is

IntroTCS v ∃has_subject.>
But this is consistent, while O1 ∪O2 is not.

5 An Interoperability Workflow and Prototypical ImplementationIN: Check whether
Falcon is symmet-
ric or not?

IN: Abbreviations
for systems.... 5.1 The Component Tools

Matching. Falcon [8]
Reasoning. Pellet [21], Racer [6], FaCT++ [22].
Modularity. OWL-API [18]
Structuring and Iterative Matching. Hets [7]



5.2 Workflow Description

Our workflow of multiple ontology alignment consists of two phases: 1) the preprocessing
of the whole repository to a complete list of pairwisematching records and 2) the align-
ment of a (user selected) connected hyperontology graph. The meaning of the two tech-
nical terms "matching record" and "hyperontology graph" will become clear in the fol-
lowing. Fig. 5.2 shows the whole workflow in pseudo code. We are going to explain it now
line by line. Procedure preprocess_repository takes each pair of ontologies (o1,o2)
and applies the procedure match_ontologies to it, i.e., it matches pairwise all ontolo-
gies from the repository. The output of match_ontologies is a matching_record more
than just the mapping between two ontologies: the matching system Falcon computes
the mapping between the two ontologies o1 and /verb+o2+. Depending on predefined
configuration the mapping is revised to mapping’ (e.g. by dismissing mappings whose
confidence is below a given threshold). From the revised mapping’ the concept cs1 (cs2)
belonging to ontology o1 (o2) are extracted. Based on the concepts cs1 (cs2) the module
m1 (m2) is extracted from ontology o1 (o2). The mapping’, the concepts cs1 and cs2, the
corresponding modules m1 and m2 are packed into a record matching_record equipped
with an entry "o1_to_o2" to reconstruct later on which ontologies were matched in this
record. A matching_record can be viewed as a link between two ontologies. By applying
match_ontologies pairwise on all ontologies in the repository preprocess_repository
we link all ontologies with each other. We call this network whose nodes are ontologies
and whose edges are the matching records hyperontology graph. Although all ontologies
are matched pairwise the graph is not complete, i.e., some pairs of ontologies (in practise
even the majority) are not linked, namely when the matching system cannot find any
mappings.

Once the hyperontology graph of the ontology repository is computed we can align
any combination of modules that is stored in the hyperontology graph during the pre-
processing phase. The align_modules_from_graph procedure specifies how this is done:
its input is a subgraph of the hyperontology graph. This subgraph determines which
modules (its nodes) and which matching records (its edges) should be taken into account
in the alignment.

preprocess_repository = {
foreach (o1,o2) in repository
match_ontologies o1 o2

end
}

match_ontologies o1 o2 = {
mapping = falcon o1 o2
mapping’ = revise mapping
cs1 = extract_concepts_from_o1 mapping’
cs2 = extract_concepts_from_o2 mapping’
m1 = extract_module cs1 o1 % pellet modularity --signature o1_concepts o1
m2 = extract_module cs2 o2
matching_record = ("o1_to_o2",cs1,cs2,m1,m2,mapping’)
if (not_empty mapping’) store_in_hyperontology_graph matching_record



}

align_modules_from_graph hyperontology_subgraph = {
modules = get_ontologies hyperontology_subgraph
interfaces = {compute_interface edge | edge in hyperontology_subgraph}
views = {compute_views edge | edge in hyperontology_subgraph}
spec = write_V_alignment_spec ontologies interfaces views
V_alignment = compute_V_alignment spec % hets

}

5.3 Selecting Reusable Knowledge from the Hyperontology Graph

In this section we describe how an ontology developer Otto can make reuse of appropriate
modules from an repository OOR in order to develop a new ontology Onto. Let us call
the tool for this support ontology composer Before any interaction between OttoIN: tolle Namen ;-)

and the ontology composertakes place, the whole OOR is preprocessed by the matching
system: each ontology from the OOR is matched against each other thus building the
hyperontology graphFor our current experiments we use Falcon as matching system,

IN: schon
definiert?

because it can be used in a batch mode and thus it can be easily plugged into the
whole process. Once the hyperontology graph is calculated Otto starts working on the
hyperontology graph editor to identify those parts of the graph that are relevant for
Onto. More specifically this means to identify those concept names in the graph that
should occur in Onto. Through the synonymy links between concept nodes these input
concept names will be connected to various other concept names not explicitly selected
by Otto. Since matching systems are never completely reliable Otto needs to repair the
focused fragment of the hyperontology graph; i.e., some of the automatically generated
synonym links are wrong and thus should be deleted manually. Other pairs of concept
names are not recognised by the matching system, hence synonym links can be also
added to the graph in the hyperontology graph editor. A detailed design discussion of
the graphical user interface of such a hyperontology graph editor is given in [16]. When
Otto has completed the adjustment on the hyperontology graph the provided fragment
of the graph is used to induce those modules from ontologies in the repository that will
be taken to create Onto: for each ontology node all directly connected concept nodes are
the concepts that are used as input for the module extractor. The extracted modules
and the synsetsf the hyperontology graph form the input for the final the V-alignment:IN: defined?

for each synset an arbitrary concept name is selected (or alternatively determined by the
user) and from that singled out concept name to each other concept name of this synset a
signature morphism is generated to each ontology where that other concept name belongs
to—Fig. 7 shows an example.

IN: Statistiken
zum matching in
OASIS hier hin?

6 Merging

After the matching of two or more ontologies, we obtain an alignment that contains
correspondences between the signatures of the input ontologies. The alignment can now



Fig. 7. Fragment of a hyperontology graph inducing an interface for a V-alignment. Blue rectangles =
ontology nodes, yellow ellipses = concept nodes. Edge between concept nodes = synonym.

spec Interface =
Class: goods
Class: track

end

view v1 : Interface to transportation =
goods |-> freight

end

view v2 : Interface to public_transport =
track |-> platform

end

Fig. 8. Induced interface and signature morphisms (=view in CASL notation) from the hyperontology
graph in Fig. 7

be used for data translation or merging. In this section, we are interested in the latter.
and, in particular, we are interested in how

In [1] the authors introduce and investigate applications of ontology re-use under the
notion of safety of an ontology.

Definition 4 (Safety wrt. an ontology [1]). Given two ontologies O1, O2, we say that
O1 can safely be imported into O2 if O1 ∪O2 is a deductive Σ-conservative extension of
O1 with Σ = Sig(O1).

Intuitively, O1 can safely be imported into O2 states that the meaning of the terms
defined in O1 does not change when O1 is put into the context of O2.

Definition 5 (Safety wrt. a signature [1]). Given an ontology O2 and a signature
Σ, we say that O2 is safe for Σ if O1 can safely be imported into O2, for all ontologies
O1 with Sig(O1) ∩ Sig(O2) ⊆ Σ.

That is, any changes in the external ontology O1 wont conflict with the locally de-
veloped ontology O2, because O2 does not “say anything” about the terms defined in
O1.

In other words, O2 says nothing about the terms in Σ; formally, O2 is a model Σ-
conservative extension of ∅.

DW: Relationship
between Matching
and Safety: after
matching ‘imported
ontology’ is safe for
union...



Locality.. syntactic condition that is sufficient (but not necessary) to ensure safety.
In [9] a semi-automatic procedure is presented for the integration of ontologies that

involves revision of mappings. This approach is implemented as the Protégé 4 plugin
ContentMap. At first a selected ontology matcher is used to compute mappings between
signature symbols of the two ontologies that are to be integrated. The mappings are
explicitly represented as axioms in an OWL 2 ontology. The result of the integration is
taken to be the union of the original ontologies together with axioms for the mappings.
The integration said to be successful if there are no unintended logical consequences. It
is then up to the user to identify the unintended consequences. This decision is guided by
justifications (explanations for entailment) that can automatically be computed, e.g., by
ContentMap and the confidence values created by the matcher for the mapping axioms. To
eliminate the unintended consequences, a repair plan is created describing which axioms
from the original ontologies or the mapping should be removed. It should be noted that
such a plan does not always exist and that a desired integration may require the iteration
of these steps.

– visualisation

7 Outlook

We could only scratch the surface of the area of problems related to matching in networks
of ontologies. We have laid out the engineering infrastructure...

Semantic matching; similarity E-connection as internalising the confidence values in
matchings?

full statistical analysis of major ontologies and repositories is future work Chinese
whispers: results for related ontologies, results for randomised selections... magic incon-
sistency numbers.
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