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Abstract. In the area of qualitative spatial reasoning, the
LR calculus is a quite simple constraint calculus that forms
the core of several orientation calculi like the dipole calculi
and the OPRA1 calculus.

For many qualitative spatial calculi, algebraic closure is ap-
plied as standard polynomial time decision procedure. For a
long time it was believed that this can decide the consistency
of scenarios of the quite simple and basic LR calculus (a refine-
ment of Ligozat’s flip-flop calculus). However, [8] showed that
algebraic closure is a quite bad approximation of consistency
of LR scenarios: scenarios in the base relations “Left” and
“Right” are always algebraically closed. So algebraic closure is
completely useless here. Furthermore, [15] have proved that
the consistency problem for any calculus with relative orien-
tation containing the relations “Left” and “Right” is NP -hard.

In this paper we propose a new polynomial time approxi-
mation procedure for this NP -hard problem. It is based on
the angles of triangles in the Euclidean plane. LR scenarios
are translated to sets of linear inequations over the real num-
bers. We evaluate the quality of this procedure by comparing
it both to the old approximation using algebraic closure and
to the (exact but exponential time) Buchberger algorithm for
Gröbner bases.

1 Introduction

Since the work of [1] on temporal intervals, constraint cal-
culi have been used to model a variety of aspects of space
and time in a way that is both qualitative (and thus closer to
natural language than quantitative representations) and com-
putationally efficient (by appropriately restricting the vocab-
ulary of rich mathematical theories about space and time).
For example, the well-known region connection calculus by
[9] allows for reasoning about regions in space. Applications
include geographic information systems, human-machine in-
teraction, and robot navigation.
Relative orientation calculi are quite important examples

of such qualitative calculi, because relative orientation is very
natural in many real world applications. Just consider the
situation that you want to describe the way to some point
of interest in your home-town. You will tell your addressee to
turn left or right at some crossing with respect to their current
orientation. You will neither tell them to change the direction
to e.g. North, nor will you tell them to turn by a certain
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amount of degrees. If you describe the layout of some point
of interest, you will most certainly use the same qualitative
relations either. But how can we make a machine, e.g. a robot,
decide efficiently that you gave it a consistent description?

This is where qualitative spatial calculi come in. Orienta-
tion calculi describe directions mostly in the Euclidean plane.
These directions can be given with respect to a global refer-
ence frame like for the Cardinal directions algebra. The Car-
dinal directions calculus features the (absolute) orientations
North, South, East, and West. On the other hand a (relative)
reference frame can be given locally at any object of the calcu-
lus, like e.g. for the Flip-Flop calculus [7], where the reference
frame is given by an oriented line from a start to an end point.
Another example for this class of calculi is the LR-calculus
[13], which is a refinement of Flip-Flop.

Efficient qualitative spatial reasoning in such calculi mainly
relies on the algebraic closure algorithm. Using relational com-
position and converse, it refines (basic) constraint networks in
polynomial time. If algebraic closure detects an inconsistency,
the original network is surely inconsistent. If no inconsistency
is detected, for some calculi, this implies consistency of the
original network — but not for all calculi. For the cardinal
direction calculus, it can be easily shown that algebraic clo-
sure indeed decides consistency for scenarios. However, Lücke
at al. [8] have shown that the consistency of LR-scenarios
cannot be decided by applying the algebraic closure method.
This result also carries over to the Flip-Flop calculus. To cure
the lack of a decision procedure, [8] have tried a factorization
method along globally consistent 7-point scenarios. However,
they admit that also global consistency is not the same as
consistency; indeed, it seems to be a notion that is much too
strong.

Wolter and Lee [15] give a new explanation of this phe-
nomenon: through a reduction to oriented matroids, they
prove that deciding consistency for scenarios in the LR calcu-
lus is NP -hard. Assuming the generally believed hypothesis
that P 6= NP , this explains why algebraic closure (a poly-
nomimal procedure) does not decide consistency of scenar-
ios: all what we can hope for are polynomial approximations
of consistency. Here, we develop a polynomial approximation
that improves on algebraic closure. Of course, we cannot do
this by staying at the level of abstract relation algebras (where
algebraic closure operates). Rather, we have to take proper-
ties of the “natural” domain of the calculus at hand into ac-
count. Our new approach to approximate the consistency of
LR-scenarios is based on the properties of triangles in the
Euclidean plane, which are formalized algebraically as a set



of linear inequations. Our notion of triangle consistency can
be decided in polynomial time; this essentially follows from
the solvability of the corresponding inequations in polynomial
time [2]. First experiments showed that triangle consistency
approximates consistency of LR scenarios much better than
algebraic closure does. We focus on comparing our approach
to algebraic closure, since tool-support is available for that
method, which is still lacking for e.g. neighbourhood-based
reasoning. Further experiments gave some evidence that the
approach is quite well suited for approximating the consis-
tency of LR scenarios. This approximation procedure also
naturally applies to the DRA-calculi, another family of cal-
culi dealing with relative orientation.

2 Qualitative Calculi
Qualitative calculi are employed for representing knowledge
about a domain using a finite set of labels, so-called base
relations. Base relations partition the domain into discrete
parts. One example is distinguishing points on the time line
by binary relations such as “before” or “after”. A qualitative
representation only captures membership of domain objects
in these parts. For example, it can be represented that time
point A occurs before B, but not how much earlier nor at
which absolute time. Thus, a qualitative representation ab-
stracts, which is particularly helpful when dealing with in-
finite domains like time and space that possess an internal
structure like for example Rn.

In order to ensure that any constellation of domain objects
is captured by exactly one qualitative relation, a special prop-
erty is commonly required:

Definition 1. Let B = {B1, . . . , Bk} be a set of n-ary rela-
tions over a domain D. These relations are said to be jointly
exhaustive and pairwise disjoint (JEPD), if they satisfy the
properties

1. ∀i, j ∈ {1, . . . , k} with i 6= j : Bi ∩Bj = ∅
2. Dn =

S
i∈{1,...,k}Bi

For representing uncertain knowledge within a qualitative
calculus, e.g., to represent that objects x1, x2, . . . , xn are ei-
ther related by relation Bi or by relation Bj , general relations
are introduced.

Definition 2. Let B = {B1, . . . , Bk} be a set of n-ary rela-
tions over a domain D. The set of general relations RB (or
simply R) is the powerset P(B). The semantics of a relation
R ∈ RB is defined as follows:

R(x1, . . . , xn) :⇔ ∃Bi ∈ R.Bi(x1, . . . , xn)

In a set of base relations that is JEPD, the empty rela-
tion ∅ ∈ RB is called the impossible relation. Reasoning with
qualitative information takes place on the symbolical level
of relations R, so we need special operators that allow us to
manipulate qualitative knowledge. These operators constitute
the algebraic structure of a qualitative calculus.

2.1 Algebraic Structure of Qualitative
Calculi

The most fundamental operators in a qualitative calculus are
those for relating qualitative relations in accordance to their

set-theoretic disjunctive semantics. So, for R,S ∈ R, inter-
section (∩) and union (∪) are defined canonically. The set of
general relations is closed under these operators. Set-theoretic
operators are independent of the calculus at hand, further op-
erators are defined using the calculus semantics.

Qualitative calculi need to provide operators for interrelat-
ing relations that are declared to hold for the same set of
objects but differ in the order of arguments. Put differently,
we need operators which allow us to change perspective. For
binary calculi only one operator needs to be defined:

Definition 3. The converse (^) of a binary relation R is
defined as:

R^ := {(x2, x1)|(x1, x2) ∈ R}

Ternary calculi require more operators to realize all possible
permutations of three variables. The three commonly used
operators are shortcut, homing, and inverse:

Definition 4. Permutation operators for ternary calculi:

INV (R) := { (y, x, z) | (x, y, z) ∈ R } (inverse)
SC(R) := { (x, z, y) | (x, y, z) ∈ R } (shortcut)
HM(R) := { (y, z, x) | (x, y, z) ∈ R } (homing)

Additional permutation operations can be defined, but a
small basis that can generate any permutation suffices, given
that the permutation operations are strong (ref. to [3]). A
restriction to few operations particularly eases definition of
higher arity calculi.

Definition 5 ([3]). Let R1, R2, . . . , Rn ∈ RB be a sequence
of n general relations in an n-ary qualitative calculus over the
domain D. Then the operation

◦ (R1, . . . , Rn) := {(x1, . . . , xn) ∈ Dn | ∃u ∈ D,
(x1, . . . , xn−1, u) ∈ R1, (x1, . . . , xn−2, u, xn) ∈ R2,

. . . , (u, x2 . . . , xn) ∈ Rn}

is called n-ary composition.

Note that for n = 2 one obtains the classical composition
operation for binary calculi (cp. [11]) which is usually noted
as infix operator. Nevertheless different kinds of binary com-
positions have been used for ternary calculi, too, as e.g. for
the LR-calculus.

2.2 Strong and Weak Operations
Permutation and composition operators define relations. Per
se it is unclear whether the relations obtained by application
of an operation are expressible in the calculus, i.e. whether
the set of general relations RB is closed under an operation.
Indeed, for some calculi the set of relations is not closed, there
even exist calculi for which no closed set of finite size can
exist, e.g. the composition operation in Freksa’s double cross
calculus [12].

Definition 6. Let an n-ary qualitative calculus with relations
RB over domain D and an m-ary operation φ : Bm → P(Dn)
be given. If the set of relations is closed under φ, i.e. for ∀ ~B ∈
Bm ∃R′ ∈ RB : φ( ~B) =

S
B∈R′ B, then the operation φ is

called strong.



In qualitative reasoning we must restrict ourselves to a finite
set of relations. Therefore, if some operation is not strong
in the sense of Def. 6, an upper approximation of the true
operation is used instead.

Definition 7. Given a qualitative calculus with n-ary rela-
tions RB over domain D and an operation φ : Bm → P(Dn),
then the operator

φ? : Bm →RB
φ?(B1, . . . , Bk) := {R ∈ B|R ∩ φ(B1, . . . , Bk) 6= ∅}

is called a weak operation, namely the weak approximation of
φ.

Note that the weak approximation of an operation is iden-
tical to the original operation if and only if the original oper-
ation is strong. Further note that any calculus is closed under
weak operations. Applying weak operations can lead to a loss
of information which may be critical in certain reasoning pro-
cesses. In the literature the weak composition operation is
usually denoted by �.

Definition 8. We call an m-ary relation R over Rn convex,
if

{y | R (x1, . . . , xm−1, y) , (x1, . . . , xm−1, y) ∈ Rn}

is a convex subset of Rn.

3 Constraint Based Qualitative Reasoning

Qualitative reasoning is concerned with solving constraint sat-
isfaction problems (CSPs) in which constraints are expressed
using relations of the calculus. Definitions from the field of
CSP are carried over to qualitative reasoning (cp. [4]).

Definition 9. Let R be the general relations of a qualita-
tive calculus over the domain D. A qualitative constraint is a
formula R(X1, . . . , Xn) (also written X1 . . . Xn−1 RXn) with
variables Xi taking values from the domain and R ∈ R. A
constraint network is a set of constraints. A constraint net-
work is said to be a scenario if it gives base relations for all
relations R(X1, . . . , Xn) and the base relations obtained for
different permutations of variables X1, . . . , Xn must be agree-
able wrt. the permutation operations.

One key problem is to decide whether a given CSP has a
solution or not. This can be a very hard problem. Infinity of
the domain underlying qualitative CSPs inhibits searching for
an agreeable valuation of the variables. This is why decision
procedures that purely operate on the symbolic, discrete level
of relations (rather than on the level of underlying domain)
receive particular interest.

Definition 10. A constraint network is called consistent if a
valuation of all variables exists, such that all constraints are
fulfilled. A constraint network is called n-consistent (n ∈ N)
if every solution for n − 1 variables can be extended to a n
variable solution involving any further variable. A constraint
network is called strongly n-consistent, if it is m-consistent
for all m ≤ n. A CSP in n-variables is globally consistent, if
it is strongly n-consistent.

A fundamental technique for deciding consistency in a clas-
sical CSP is to enforce k-consistency by restricting the do-
main of variables in the CSP to mutually agreeable values.
Backtracking search can then identify a consistent variable
assignment. If the domain of some variable gets restricted to
down to zero size while enforcing k-consistency, the CSP is
not consistent. This procedure except for backtracking search
(which is not applicable in infinite domains) is also applied
to qualitative CSPs [11]. For a JEPD calculus with n-ary re-
lations any qualitative CSP is strongly n-consistent unless it
contains a constraint with the empty relation. So the first step
in checking consistency would be to test n+1-consistency. In
the case of a calculus with binary relations this would mean
analyzing 3-consistency, also called path-consistency. This is
the aim of the algebraic closure algorithm which exploits that
composition lists all 3-consistent scenarios.

Definition 11. A CSP over binary relations is called alge-
braically closed if for all variables X1, X2, X3 and all relations
R1, R2, R3 the constraint relations

R1(X1, X2), R2(X2, X3), R3(X1, X3)

imply
R3 ⊆ R1 �R2.

To enforce algebraic closure, the operation R3 := R3∩R1 �R2

(as well as a similar operation for converses) is applied for all
variables until a fixed-point is reached.

Enforcing algebraic closure preserves consistency, i.e., if the
empty relation is obtained during refinement, then the quali-
tative CSP is inconsistent. However, algebraic closure does not
mandatorily decide consistency: a CSP may be algebraically
closed but inconsistent — even if composition is strong [10].

Algebraic closure has also been adapted to ternary calculi
using binary composition [6]. Binary composition of ternary
relations involves 4 variables, it may not be able to represent
all 4-consistent scenarios though. Scenarios with 4 variables
are specified by 4 ternary relations. However, binary composi-
tion R1�R2 = R3 only involves 3 ternary relations. Therefore,
using n-ary composition in reasoning with n-ary relations is
more natural (cp. [3]).

4 The LR-calculus

In this section we introduce the LR-calculus [13], a coarse
relative orientation calculus. We use it as our starting point
to develop new decision procedures for relative orientation
calculi. This calculus defines nine base relations which are
depicted in Fig. 1. The LR-calculus deals with the relative
position of a point C with respect to the oriented line from
point A to point B, if A 6= B. The point C can be to the left of
(l), to the right of (r) the line, or it can be on a line collinear
to the given one and in front of (f) B, between A and B with
the relation (i) or behind (b) A; furthermore, it can be on the
start-point A (s) or an the end-point B (e). If A = B, then we
can distinguish between the relations Tri , expressing that A =
C and Dou, meaning A 6= C. Freksa’s double cross calculus
DCC is a refinement of the LR-calculus and, henceforth, our
findings for the LR-calculus can be directly applied to the
DCC-calculus as well.
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Figure 1. The nine base relations of the LR-calculus; tri
designates the case of A = B = C, whereas dou stands for

A = B 6= C.

5 Algebraic Closure is no Decision
Procedure

[8] have shown that algebraic closure does not decide consis-
tency for the LR-calculus, i.e., not every algebraically closed
scenario is consistent. We will repeat the most crucial results
here, for the proofs refer to the particular paper. The most
staggering result is:

Proposition 12. All scenarios only containing the relations
l and r and agreeing on the permutation operations are alge-
braically closed wrt. the LR-calculus with binary composition.

This result almost disqualifies algebraic closure as a decision
procedure for LR. Moreover, neither classical nor for ternary
algebraic closure can decide consistency for LR.

Theorem 13. Classical algebraic closure does not enforce
scenario consistency for the LR-calculus.

Proof. [8] have used the scenario

SCEN := {(AB r C), (AE r D), (DB r A),

(DC r A), (DC r B), (DE r B),

(DE l C), (EB r A), (E C r A),

(E C r B)}

which is algebraically closed wrt. the LR-composition (binary
and ternary) but not realizable to show this theorem.

Theorem 14. Algebraic closure wrt. ternary composition
does not enforce scenario consistency for the LR-calculus.

A next approach to get a decision procedure was to stick to
global consistency, as e.g. used in [4], and to factorize scenarios
along certain globally consistent sub-scenarios. This approach
turned out to be not very fruitful. Proposition 16 shows that
that approach is a mere approximation, too.

Proposition 15. For CSPs over convex {LR,DCC}-
relations strong 7-consistency decides global consistency.

Proposition 16. For the LR-calculus not every consistent
scenario is globally consistent.

6 Triangle Consistency: a New
Approximation of Consistency for LR

Our approach is inspired by the simple observation that if

given n points in the Euclidean plane and all
n · (n− 1)

2
undi-

rected lines connecting each point with every other point in
such a configuration, the connecting lines between arbitrary
3 points form a (possibly degenerated, if all points lie on the
same line) triangle. Because of that for any such triple of
points and their connecting lines, all well known properties
of triangles need to be fulfilled. Left and right can be dis-
tinguished by the orientation (read sectors of a circle) of the
involved angles (ref. to. Fig. 2). We currently restrict ourselves
to the interesting cases of the relations l and r for which alge-
braic closure performs very badly, as we have seen in section
5. This means that we will not have to deal with any degen-
erate triangles. Our approach works for all base-relations of
the LR-calculus, but the restriction to the “interesting” cases
is necessary due to space limitations. The extension to all
base-relations is performed by just adding inequations for the
properties of degenerate triangles.

In our new approach, we translate any LR-scenario (which
has to contain all base relations between all permutation of
all triples of distinct points) into a set of inequations over
triangles in the Euclidean plane. We normalize all angles to
the interval (−π, π) to simplify later calculations. Let 3 points
A,B and C in relation (AB r C) be given. For such a relation,
we get a scenario in space as in Fig 2. From this, we can derive

Figure 2. (A B r C) in the plane

that the angle from C to B at A, which we call CAB, is in
the open interval (0, π). The derivation for (AB l C) is similar
and yields angles in the interval (−π, 0). Further, by a simple
geometrical argument, we can show, that:

Lemma 17. For a non-degenerate triangle in the Euclidean
plane with points A, B, C, if any of the angles BAC, ACB
and CBA is in the interval (0, π), so are all of the others.
The same is true for angles from the interval (−π, 0).

With this and the well known properties of triangles in the
plane, we can derive our system of inequations INEQNB(BAC)
for any arbitrary angle BAC which depicted in Fig. 3.

To the inequations INEQNB(BAC), we add the ones derived
from lemma 17

0 < BAC < π ⇔ 0 < ACB < π ⇔ 0 < CAB < π.

With them, we obtain the set INEQN(BAC) for any angle
BAC. Such sets of inequations are generated for each triple



Distinction l/r
0 < BAC < π if (AB l C)
−π < BAC < 0 if (AB r C)
Opposite angles
BAC = −CAB
Sum of angles
BAC + CBA+ACB = π if (AB l C)
BAC + CBA+ACB = −π if (AB r C)

BAC + CAD = BAD + 2 · π if

(
(AB l C)
(AC l D)
(AB r D)

BAC + CAD = BAD − 2 · π if

(
(AB r C)
(AC r D)
(AB l D)

BAC + CAD = BAD otherwise

Figure 3. INEQNB(BAC)

of points in an LR-scenario. By INEQN we denote the set of
all inequations for such a scenario.

Definition 18. We call an LR-scenario triangle consistent,
if there is at least one solution for all of its inequations INEQN.

The “compression” of knowledge is done at this point by not
considering any lengths of lines. Considering them would yield
non-linear (in)equations that cannot be solved efficiently. We
want to use as little knowledge in this approach as possible
to make it computationally efficient.

Theorem 19. Systems of linear equations can be decided in
polynomial time.

Proof. This follows from [2].

Triangle consistency yields a decision procedure consisting
of just 2 steps:

1. Translate the LR-scenario to a system of linear inequa-
tions (this is just a substitution in the number of relations
contained in the scenario and can clearly be performed in
linear time),

2. Check the solvability of the system with a standard polyno-
mial algorithm. (In fact, also the simplex can be applied in
this step, it has exponential worst-case running time, but
often performs very well.)

With Thm. 19 we obtain:

Proposition 20. Triangle consistency has polynomial run-
ning time.

Each geometric realization of an LR szenario ovbiously
leads to a system of angles for the involved point triples; it
is easy to show that system of angles is a solution for the
inequations INEQN. We thus arrive at:

Proposition 21. Consistency implies triangle consistency.

By Prop. 20 and the fact that deciding consistency is NP -
hard, we obtain that under the assumption P 6= NP , the con-
verse implication (triangle consistency implies consistency)
does not old. However, we have not found a counterexample
yet.

7 Experiments
We have done intensive experiments evaluating the quality of
our approach of triangle consistency. We have implemented
a prototype solver in Haskell for deciding whether a given
LR-scenario is triangle consistent. This tool can generate all
complete LR-scenarios is n-points and calculate the corre-
sponding set of inequations INEQN. As the reasoning engine
this tool currently uses the yices SMT-solver [5]. We decided
to use an external possibly not completely optimal reason-
ing engine for the prototype to overcome the issue of pro-
gramming bugs and intensive debugging. However, the per-
formance of the actual equation solver dominates the running
time. Further, we have written a Haskell program that enu-
merates n-point LR-scenarios using a grid of m ×m points.
This program starts with a specified value of m0 and calcu-
lates all possible LR-scenarios, then it increases the current
bound and calculates again. This is continued until the user
requests to terminate it. If the list of scenarios from run l and
l+ 1 differ, the new list of scenarios is displayed, otherwise a
message, that the scenarios are the same. To list all 5 point
scenarios completely, it turned out, that a grid of 8× 8 point
already is sufficient, which can be shown by an involved ge-
ometric argument. We also have used the Gröbner reasoner
that is available in Sparq [14]. It led to the same set of consis-
tent scenarios. However, the exponential runtime of both the
grid method and the Gröbner reasoner prevented a computa-
tion of all consistent 6 point scenarios. For algebraic closure,
we used the tool Sparq [14]. However, we constructed scenar-
ios of sizes up to nine points, and if the Gröbner reasoner was
able to decide it gave the same answer as triangle consistency.
We even double checked some scenario by hand.

In fact, we know by the properties of algebraic closure that
the set of all consistent scenarios is a subset of all algebraically
closed ones. In our first experiments, we have translated the
scenarios for which we knew that algebraic closure fails to
yices’ input syntax and checked them, in fact the tool was
able to detect the inconsistency.

Then we stepped on to testing triangle consistency on all
5-point scenarios in the relations l and r3. We could identify
1955 consistent LR-scenarios (scon) of this kind, algebraic
closure with binary composition yields 3095 scenarios (sbin)
while ternary algebraic closure leads to 2355 scenarios (ster).
We found exactly 1955 triangle consistent scenarios (s∆), and
when inspecting them, we found out that scon = s∆. These
numbers are depicted in Fig. 4. Please note that the numbers
of the scenarios are given modulo swapping of the names of
the points. Further experiments lead us to the realm of 6 point
scenarios, were we could not identify all consistent scenarios,
mainly because of hardware restrictions. But we were still be
able to identify a subset of consistent LR-scenarios. So far we
were able to classify 429449 scenarios with our approach, of
which 4698 are deemed triangle consistent. Not all of them
are in the list of our pre-calculated scenarios, but we have to
remember that that list is incomplete. We took some samples
from the list of triangle consistent scenarios that were not in
the pre-calculated list, and it turned out that we could find a

3 Smaller scenarios are not really interesting, since we can already
detect inconsistencies with algebraic closure with ternary compo-
sition for 4 point scenarios, all smaller ones do not need additional
consideration, since they are just base relations. The 14 scenarios
in 4 points are detected by our method.



Figure 4. Comparison of algebraic closure with triangle
consistency

realization for all of them. Many of those samples had a cloud
of points lying close together, with at least one point lying
very far away from the others. This is a case that could not
be found with our grid method in limits that yield a feasible
computation time.

Most other polynomial time decision procedures failed
when we had scenarios with one more point than the number
of points captured by their composition table/equations; this
is fortunately not true for triangle consistency.

All of these experimental results imply that triangle con-
sistency approximates better than binary as well as ternary
algebraic closure. Compared to Tarski’s quantifier elimination
and Gröbner Reasoning, it has a much better running time,
since it is a polynomial time algorithm. Indeed, the Gröbner
reasoner integrated into Sparq often fails to determine con-
sistency for scenarios if the number of points grows too big.
For scenarios in more than nine or ten points the Gröbner
reasoner gives up more often than it can decide. By contrast,
triangle consistency works well with scenarios consisting of
dozens of points, which is a size that is quite realistic for e.g.
robot navigation applications.

8 Conclusion/Outlook
We have approximated the NP -hard problem of deciding con-
sistency of scenarios in the LR calculus. Algebraic closure
is a tool that has severe limits: for the LR-calculus it ap-
proximates consistency in its intended domain (the Euclidean
plane) only quite badly. We tend to conjecture that algebraic
closure has problems with the information provided by the
property of relative orientation, which often leads to non-
linear inequations when describing the relations of the calculi
algebraically. Such systems of non-linear inequations over R
can of course be decided by Tarski’s quantifier elimination.
Gröbner reasoning is another applicable procedure, but the
running time of both of them is exponential and far too slow
for many real world applications, e.g. in mobile robots. In
fact, we need a reasoning procedure that is computationally
feasible and as accurate as possible. In designing such a pro-
cedure, the incorporation of properties of the domain of the
calculus at hand for simplifying the problem seems to be a
sane way to go. Currently, our method of triangle consistency
outperforms algebraic closure by far on LR-scenarios.

Future work will extend triangle consistency to the DRA-
calculus, which feels very natural, since DRA is defined using

LR-relations.
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