Deutsches

Forschungszentrum Document
tar Kanstliche D-90-06
Intelligenz GmbH

The Window Tool Kit

Andreas Becker

Dezember 1990

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern, FRG D-6600 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Arificial Intelligence (Deutsches Forschungszentrum fir
Kinstliche Intelligenz, DFKI!) with sites in Kaiserslautern und Saarbriicken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Geselischaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using Al methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

a Intelligent Engineering Systems

.| Intelligent User Interfaces

Q Intelligent Communication Networks
Q Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

The Window Tool Kit

Andreas Becker

DFKI-D-90-06

© Deutsches Forschungszentrum fiir Kiinstliche Intelligenz 1990

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright natice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kinstliche Intelligenz.

The Window Tool Kit

Andreas Becker

Universitat Kaiserslautern/

DFKI Kaiserslautern

December 6, 1990

Contents

1 Introduction to the Window Tool Kit 4
1.1 Initializing the Window Tool Kit 4
1.2 Restoring Windows in a Saved Image 5
1.3 Basic Structureso 0o e e e 5

1.3.1 Positions oo 5
132 Extents 0 e 5
1.3.3 Regions 6

1.4 Bitmaps o e e e 6
1.5 Fonts. e 7
1.5.1 Operationson Fonts 8

1.6 Viewports e 8
1.6.1 Creating a Viewport 9

1.6.2 The Viewport Hierarchy 9

1.6.3 Accessing Viewport Data Structures 10

1.7 Bitmap Output Streams 10
1.7.1 UsingtheMouse 12
1.7.2 The Mouse Cursor 12

1.7.3 Polling the Mouse 13
1.7.4 Handling Mouse Events 13

1.8 Active Regions oo 16
1.9 Windows 18
191 Scroll Bars o o oo 18
1.9.2 Operations on Windows 19
1.9.3 Keyboard Input and Interrupt Characters 19

1.10 Pop-Up Menus i 20
2 Window Tool Kit Index 22
A Allegro Window Tool Kit versus X Window Tool Kit 133

Al Fonts. e 133
A2 Bitmap-Size 133
A.3 Exported Functions 133
A4 Input-Functions. 133
A.5 Boole-Constants 133
A.6 Bitmap-Valueo oo 134
A7 Move-Mouse L e 134
A8 Mouse-Cursors 134
Installation of the Window Tool Kit 135
B.1 Installation of the Allegro Window Tool Kit 135
B.2 Installation of the X Window Tool Kit 135

1 Introduction to the Window Tool Kit

The Window Tool Kit allows you to create and access windows, viewports,
and bitmaps, and to access the mouse. It supports both character output
and graphic output, and it displays characters in a variety of fonts.

Actually there are two Implementations of the Window Tool Kit:

1. The Allegro Window Tool Kit
It uses the Allegro Common Lisp Graphics of the MacIntosh Com-
puter.

2. The X Window Tool Kit
It is built upon the CLX (Common Lisp X Windows) - Interface of
the MIT. It runs on all machines, which support CLX and Common
Lisp. So together with KCL (Kyoto Common Lisp) we have a public
domain window system (KCL and CLX are public domain software).

The package "WINDOWS” contains all Window Tool Kit functions.

Sometimes it is necessary to differ the Allegro Window Tool Kit from the X
Window Tool Kit. For this purpose the features :atoolkit and :xtoolkit are
defined. (See the section ”Standard Dispatching Macro Character Syntax”
in the Common Lisp Reference Manual for more information on features.)

1.1 Initializing the Window Tool Kit

To use the Window Tool Kit. vou must first invoke Lisp. You must then
initialize the Window Tool Kit. The function initialize-windows creates
a system window that contains the root viewport. The top level of Lisp is
still accessible from the window fromn which you invoked the function.

The syntax for initialize-windows is as follows:

initialize-windows [Function]

&key :height :width :screen-x :screen-y

See the function page at the end of this chapter for a detailed description of
the keyword arguments.

1.2 Restoring Windows in a Saved Image

If the Window Tool Kit has been initialized and you want to make an image,
please first delete the window environment (with function leave-window-
system). To restore the state of the windows in the newly saved image, call
initialize-windows again and rebuild your window environment.

1.3 Basic Structures

The Window Tool Kit has three basic data structures: positions, extents,
and regions.

1.3.1 Positions

A position is a data structure with two fixnum components, x and y. A
position is specified in Cartesian coordinates in which the x component is
the distance to the right of the origin, and the y component is the distance
below the origin.

The following operations are defined for positions:

make-posilion position-y
position-z positionp

1.3.2 Extents

An extent is a data structure that describes the size of a rectangular area. An
extent has two nonnegative fixnum components called width and height.

The following operations are defined for extents:

extent-height extentp
extent-width make-extent

1.3.3 Regions

A region describes a rectangular area.

The origin of a region is its top-left point. The corner of a region is the
point just below and to the right of its bottom-right point.

The Window Tool Kit includes functions for accessing the attributes of a re-
gion, for finding the corners of a region, for testing containment and equality
for regions, and for testing whether a position is inside a region.

The following operations are defined for regions:

make-region region-size
region-contains-point-p PEgION-UNION
TeYLoN-cont ains-position-) region-width
region-corner region/=
T€GLON-COTNC -2 region<
TE€GLON-COTNET-Y region< =
region-height region=
region-intersection region>
region-origin region> =
Tegion-origin- regionp
Tegion-origin-y

1.4 Bitmaps

In the Window Tool Kit. all graphic operations are performed either directly
nr indiracthi nn_hitmane At mande 1 vactanmulanazrae afchite

Most bitmaps are created with the function make-bitmap. The Window
Tool Kit also provides functions for accessing bitmap data structures, for
setting the width or height of a bitmap and for copying bitmaps.

6

1.5.1 Operations on Fonts

The following operations are defined for fonts:

find- font font-name
font-baseline fontp
Jont-fized-width string-width

font-height

1.6 Viewports

In the Window Tool Kit. a viewport is a mapping between a region of a
bitmap and a region of the screen. The bitmap clipping region is the
piece of a bitmap that a viewport views. The screen clipping region is
the region of the screen onto which the viewport maps. The screen clipping
region and the bitmap clipping region must be the same size.

Whether or not a viewport is actually displayed on the display screen de-
pends on whether the viewport is activated and whether it is occluded (cov-
ered up) by other viewports.

The mapping between the bitmap and the screen is as follows: bits in the
bitmap that are within the bitmap clipping region are mapped into the
viewport’s coordinate svstein by subtracting the origin of the clipping region.
These bits are then mapped onto the screen by adding the origin of the

. iuiv.u”n..éfnJmnna..... P P Did e et 2L _ 4 4t 1. L

{
.
]

-

s
-—r o,)L -)P 6 6 O/7/ ——

bitmap clipping region are undefined under this mapping. Similarly, if a
bitmap position maps onto a screen position that is occluded by another
viewport, the screen position of the bit is undefined.

Whenever the mouse position lies on tan of an unoccluded nortion of some

You can reshape viewports and move them around on the screen.

1.6.1 Creating a Viewport

The following function creates a viewport:

make-viewport

1.6.2 The Viewport Hierarchy

Viewports are arranged in a hierarchy that controls occlusion. The root of
the hierarchy is the root viewport, which is created when the Window Tool
Kit is initialized. The fuuction root-viewport returns the root viewport.
The root viewport is a viewport onto a special bitmap that requires less
memory but has limited capabilities. You cannot modify the bits of this
special bitmap in any way without signaling an error. The root viewport
covers the entire screen. All other viewports occlude the root viewport.

Every viewport except the root viewport has a parent viewport. A view-
port does not need to lie within its parent’s region.

All viewports that are children of one viewport are called sibling view-
ports. They may overlap oun the screen.

Sibling viewports are arranged in a stack. The function viewport-children
returns a list of a viewport’s children in the order that they appear in the
sibling stack, with the sibling at the top of the stack appearing at the begin-
ning of the list. The function expose-viewport moves a viewport to the
top of its sibling stack. The function hide-viewport moves a viewport to
the bottom of its sibling stack.

A viewport may be either active or inactive. A viewport is displayed on
the screen only if it is active. A viewport that is inactive is still in the
viewport hierarchy. but it is not displayed. If a viewport is inactive, none of
its descendants are active.

If two active viewports overlap on the screen, the following rules determine
which viewport occludes the other:

¢ A viewport occludes all of its ancestor viewports.

o If two viewports are siblings, then the viewport that is closest to the
top of the sibling stack and all of its descendants occlude the viewport
that is farther down and all of its descendants.

1.6.3 Accessing Viewport Data Structures

The following operations are defined for viewports:

activate-viewport viewport-bitmap
deactivate-vicwporl viewport-bitmap-offset
expose-viewport vicwport-bitmap-region
hide-viewport viewport-bitmap-z-offset
move-viewport viewport-bitmap-y-offset
reshape-viewport viewport-children
root-viewport viewport-parent
viewport-at-point viewport-screen-region
viewport-at-position viewportp

Any function that takes a bitmap argument can be passed a viewport argu-
ment. The function is then perforined on the viewport’s bitmap.

1.7 Bitmap Output Streams

Because both input and output in Common Lisp are stream oriented, the
Window Tool Kit provides a stream-oriented interface to bitmaps, the
bitmap output stream, which is an output stream that supports all the
Common Lisp character output functions.

Each bitmap output stream maintains an output position that specifies the
next available position for writing to the bitmap. You can modify this
position.

10

Each bitmap output stream also maintains a current font and a current
linefeed distance. The linefeed distance of a stream is initially the character
height of the initial font. If the user does not specify a font, the value of the
variable *default-font* hecomes the initial font.

A bitmap output stream has a default operation for combining new bits with
bits already in the bitmap. This operation can be any of the 16 boolean
constants that can be the first argument to the function boole. Note: For
the Allegro Window Tool Kit only the following operations are defined:
boole-1, boole-and, boole-andcl, boole-cl, boole-eqv, boole-ior,
boole-orcl, boole-xor.

The default value is the value of the constant boole-xor. (See the chapter
"Numbers” in the Common Lisp Reference Manual for more information on
boole.)

The following operations are defined for bitmap output streams:

bitmap-output-sircani-p
make-bitmap-output-stream
stream-current-font
stream-draw-circle
stream-draw-line
stream-draw-polyline

stream-linefeed-distance
stream-operation
stream-position
stream-z-position
stream-y-position

A bitmap output stream can be used as the stream argument in any of the

following functions:

welear-outpul
wfinish-output
wforce-oulput
wformat
wfresh-line
wpprint
wprine

wprinl
wprint
wlerpri
wwrite
wwrite-char
wwrite-string

The syntax of these functions is similar to the svntax of the related Common

Lisp Functions.

11

(See the chapter ”Streams” in the Common Lisp Reference Manual for more
information on Common Lisp streams.)

Any function that takes a bitmap argument can be passed a bitmap out-
put stream. The operation is performed on the bitmap output stream’s
underlying bitmap.

1.7.1 Using the Mouse

The Window Tool Kit provides several ways in which the mouse can be
accessed and used in programs. These include polling the mouse, queuing
mouse events, and specifying active regions.

1.7.2 The Mouse Cursor

The position of the mouse is indicated on the screen by a mouse cursor.
Mouse cursors are manipulated by using mouse cursor ob jects, which are
specifications of mouse cursors.

The following functions access mouse cursor objects:

current-mouse-cursor mouse-cursor-p

The function current-mouse-cursor returns the mouse cursor object that
is currently tracking the mouse on the screen. The setf macro can be used
with current-mouse-cursor to change the cursor.

12

In addition, the following form allows you to move the cursor:

move-mouse (Does not work for the Allegro Window Tool Kit.)

1.7.3 Polling the Mouse

The most basic way to access the mouse is polling-that is, having a program
examine the current state of the mouse. The following functions provide
information about the position of the mouse:

mouse-x mouse-y

The functions mouse-x and mouse-v return the current x- and y-coordinates
of the mouse. which are specified in terms of the root viewport. A mouse
with two buttons has only a left button and right button, and the middle
button is undefined. I you use the Allegro Window Tool Kit, you get
the middle mousc button by pressing the control key and the mouse key
together and the right button by pressing the alternate key and the mouse
key together.

1.7.4 Handling Mouse Events

Queuing mouse events is a more versatile way to access the mouse.

A mouse event occurs when the mouse is nioved or when one of its buttons
is pressed or released. Mouse events recognized by the Window Tool Kit are
the following:

rmouse-lefl-down :mouse-right-up
smouse-middle-down ‘mouse-enter-region
:mouse-right-down ‘mouse-ezit-region

‘wousg-leliaup,

13

The meaning of each mouse event is summarized below:

¢ :mouse-left-down
:mouse-middle-down
:mouse-right-down

The corresponding button has been pressed.

¢ :mouse-left-up
:mouse-middle-up
:mouse-right-up

The corresponding button has been released.

e :mouse-enter-region
‘mouse-exit-region
The mouse has entered or exited an active region. (Active regions are
discussed in the next subsection.)

¢ :mouse-moved

The mouse has been moved.

If your mouse has only two buttons, the two mouse events :mouse-middle-
down and :mouse-middle-up cannot occur.

A mouse event object is a special data structure that is used to encode mouse
events. A mouse event object specifies what mouse event has occurred,
where the mouse was when the event occurred, and which buttons were
pushed at the time.

The following operations are defined for mouse event objects:

mouse-event-event-type mouse-event-y
mouse-event-z mouse-event-p

Special input streams called mouse input streams can queue both char-
acter input and mouse event objects. Characters typed at the terminal and
mouse events are queued on a mouse input stream in the order in which

they occur.

The following functions create and access mouse input streams:

make-mouse-input-stream
mouse-input-streamn-p
mouse-input-stream-queue-mouse-events-p
mouse-input-stream-viewport

When a mouse event occurs, the value of the function mouse-input is
examined; it must be a mouse input stream. You cannot read from a mouse
input stream unless the stream is the value of mouse-input. If the value of
the expression (mouse-input-stream-queue-mouse-events-p (mouse-
input)) is true, then a mouse event object encoding the mouse event is
created and queued on the stream. Otherwise the mouse event is ignored,
and no mouse event object is created. The setf macro can be used with the
function mouse-input to modify the mouse input stream to which mouse
input is sent.

Each mouse input stream is associated with a particular viewport. The val-
ues of the functions mouse-event-x and mouse-event-y for mouse event
objects queued on a mouse input stream are relative to the origin of that
viewport.

The following operations are defined for mouse input streams:

listen-any unread-any
read-any-no-hang read-any
peek-any

These five functions are similar to the Common Lisp functions listen, peek-
char, read-char, read-char-no-hang, and unread-char respectively. (See the
chapter "Input/Output” in the Common Lisp Reference Manual for more
information.) They differ from their Common Lisp analogues in that they
check the input stream for both mouse event objects and characters.

1.8 Active Regions

Specifying active regions is a third way to access the mouse. Active regions
facilitate the creation of menus. scroll bars, and other display objects that
interact with the mouse.

An active region is a region that can be attached to a bitmap and that causes
that region of the bitmap to become mouse sensitive. If that region of the
bitmap is displayed on the display screen and the mouse enters or leaves that
region of the screen, the Window Tool Kit’s mouse handler calls a method
specified by the active region. Similarly, if a mouse event occurs while the
mouse is inside an active region displayed on the screen, a method specified
by the active region is called.

The following operations are defined for active regions:

active-region-bilmap bitmap-active-regions
active-region-method clear-bitmap-active-regions
active-region-p detach-active-region
atlach-active-recion make-active-region

Any function that can be passed a region can be passed an active region
instead.

16

When a mouse event occurs, the process handling the mouse determines
which mouse methods, if any, are invoked. First, the viewport containing
the mouse is found. Then, if the viewport’s bitmap contains any active
regions, they are searched. If the mouse’s projected position on the view-
port’s bitmap is such that it falls inside one or more active regions, then the
following rules apply:

e If the mouse has exited an active region, the active region’s exit method
is invoked.

o If the mouse has entered an active region, the active region’s entry
method is invoked.

o If the mouse is inside one or more active regions, each active region’s
method for the event is invoked.

The method is called with the following sequence of arguments:

o The viewport on which the mouse event occurred
o The active region

The mouse event

¢ The x-coordinate of the position on which the mouse event occurred

e The v-coordinate of the position on which the mouse event occurred

The x- and y-coordinates are given relative to the origin of the active region’s
bitmap.

For all mouse events except :mouse-exit-region, the x-coordinate and y-
coordinate arguments specify a position inside the active region. For :mouse-
exit-region, the specified position lies outside the active region; it may also
lie outside the bitmap.

You can use the macro with-mouse-methods-preempted to force the
Window Tool Kit to ignore all active regions or to ignore all active regions
except those attached 1o a specilic bitmap.

17

Normally, active region methods and interrupt character methods are ex-
ecuted in the order that they occur, and no method is executed until the
code for the previous method has finished. You can use the macro with-
asynchronous-method-invocation-allowed inside a method to allow the
execution of other methods before that method has finished execution.

1.9 Windows

A window is a composite object that combines the functionality of a bitmap,
a viewport, a bitmap output stream, and a mouse input stream. Any func-
tion that takes one of these as an argument can take a window as an argu-
ment.

The predicates viewportp. bitmap-output-stream-p , and mouse-
input-stream-p are true for a window.

Windows are included in the viewport hierarchy and, like viewports, are
mappings from a bitmap onto the screen. A window can have a border and
a title. The border consists of two parts: a black strip around the edge of
the window and a white strip inside the black strip.

The window’s viewport and bitmap output stream write onto the area inside
the border.

1.9.1 Scroll Bars

You can create windows with two scroll bars by using the options provided
for the function make-window. Scroll bars do the following:

They indicate what portion of the bitinap is inside the viewport’s bitmap
clipping region.

They let you move the bitmap clipping region with the mouse.

Scroll bars are generally used when a window’s bitmap is larger than the
bitmap clipping region of the window’s viewport. When this is the case, you
see only a portion of the bitmap at a time.

18

Scroll bars are two gray bars-a vertical bar that appears on the right-hand
side of the window and a horizontal bar that appears at the bottom of the
window. The top and bottom edges of the vertical scroll bar represent the
top and bottom edges of the bitmap respectively. Similarly, the left and

— 1 - e ;
_———,——

the bitmap respectively.

Within each of the two scroll bars is a "bubble”. This bubble represents
the position of the bitmap clipping region within the bitmap. If the bubble
is near the top of the vertical scroll bar, then the visible portion of the
bitmap is near the top of the bitmap. If the bubble is near the center of the
horizontal scroll bar, then the visible portion of the bitmap is about halfway
between the right and left edges of the bitmap.

Scroll bars are mouse sensitive. You can move the bitmap clipping region by
moving the mouse onto the right or bottom scroll bar. When you move the
mouse onto a scroll bar. the mouse cursor changes. The new cursor indicates
that you can now use the mouse to move the bitmap clipping region.

Once you move the mouse off either of the scroll bars, the mouse cursor
changes back to its former shape.

1.9.2 Operations on Windows

The following operations are defined for windows:

make-window window-title

window-frame window-title-font
window-horizontal-scroll-ratio window-vertical-scroll-ratio
window-inner-border-width windowp
window-outer-bordcr-width windows-available-p

192 WVKevhroard Tnniit and Tnterriint (Characrtare

Each mouse input stream can have a set of interrupt characters associated
with it. When they are typed to the mouse input stream, these interrupt
characters do not get queued on the stream. Instead, the Window Tool Kit
immediately calls the function that is associated with that character.

The function mouse-input-stream-interrupt-char accesses the function
that is called when a character is typed to a mouse input stream. Its syntax
is the following:

mouse-input-stream-interrupt-char [Function]

mouse-input-stream char

This function returns nil if the char argument is not an interrupt character
on the stream mouse-input-stream.

The setf macro can be used with mouse-input-stream-interrupt-char
to modify a character’s interrupt function. If you set the value to nil, the
character is no longer an interrupt character. If you set the value to a
function, the character becomes an interrupt character on that mouse input
stream.

j2 881

This process is divided into two steps. The function make-pop-up-menu
creates a new pop-up menu object. When the function pop-up-menu-
choose is passed a pop-up menu object, that menu appears on the screen
near the current location of the mouse. The function returns a value that
depends on what you choose from the menu. A pop-up menu object can be
passed repeatedly to the function pop-up-menu-choose.

The following operations are defined for pop-up menus:

make-pop-up-menu POP-UP-MENU-P
pop-up-meni-choosc

2 Window Tool Kit Index

activate-viewport, deactivate-viewport

Purpose:

The function activate-viewport makes the specified viewport and
all of its ancestors active. If the key activate-children is non-nil, then
all of the viewport’s descendants are also made active.

The function deactivate-viewport makes the specified viewport and
all of its descendants inactive. The viewport viewport maintains its
position in the display stack of its siblings. However, the viewport and
its descendants do not appear on the screen until they are reactivated.

Syntax:

activate-viewport [Function]
viewport Lkey activate-children
deactivate-viewport [Function]
viewport
Remarks:

If a viewport is active, all of its ancestors are active. If a viewport is
inactive, all of its descendants are inactive.

If deactivate-viewport tries to deactivate a viewport that is already
inactive, nothing happens.

If activate-viewport tries 10 activate a viewport that is already ac-
tive, nothing happens.

These functions are extensions to Common Lisp.

23

active-region-bitmap

Purpose:

The function active-region-bitmap returns the bitmap to which the
argument aclive-region is attached. If active-region is not attached to
a bitmap, it returns nil.

Syntax:

active-region-bitmap [Function]
active-region

Remarks:

This function is an extension to Common Lisp.

24

active-region-method

Purpose:

The function active-region-method accesses the method that is
called when a mouse event occurs inside an active region or when
the mouse enters or leaves an active region. The function returns nil
if no method is associated with the event.

Syntax:

active-regioh-met hod [Function]

active-region event-name

Remarks:

The setf method for this function updates the appropriate method. If
you set the value to nil. no method is called when the corresponding
mouse event occurs.

The method is called with the following sequence of arguments:

¢ The viewport on which the mouse event occurred

e The active region

o The mouse event

e The x-coordinate of the position on which the mouse event oc-
curred

o The y-coordinate of the position on which the mouse event oc-
curred

The x- and y-coordinates are given relative to the origin of the active
region’s bitmap. For all mouse events except :mouse-exit-region,
the x- coordinate and y-coordinate arguments specify a position inside
the active region. For :mouse-exit-region, the specified position lies
outside the active region: it may also lie outside the bitmap.

If the mouse’s projected position on the viewport’s bitmap falls inside
one or more active regions, the following methods are invoked in the
order given:

o If the mouse has exited an active region, the active region’s exit
method is invoked.

e If the mouse has entered an active region, the active region’s entry
method is invoked.

o If the mouse is inside one or more active regions, each active
region’s method for the event is invoked.

This function is an extension to Common Lisp.

206

active-region-p

Purpose:

The predicate active-region-p tests whether its argument object is
an active region. It returns true if object is an active region.

Syntax:

active-region-p [Function]
object

Remarks:

This function is an extension to Common Lisp.

27

attach-active-region, detach-active-region,
bitmap-active-regions, clear-bitmap-active-regions

Purpose:

The function attach-active-region attaches an active region to a
bitmap.

The function detach-active-region detaches an active region from
its bitmap.

The function bitmap-active-regions returns a list of all the active
regions that are attached to a hitmap.

The function clear-bitmap-active-regions detaches all active re-

gions that are attached to a hitmap.

Syntax:

attach-active-region [Function)
bitmap active-region
detach-active-region [Function]

active-region

bitmap-active-regions [Function]
bitmap
clear-bitmap-active-regions [Function)]
bitmap
Remarks:

When you attempt to attach an active region to a bitmap, the active
region must be located in the bitmap.

If detach-active-region is called with an active region that is not
attached to a bitmap. nothing happens.

These functions are extensions to Common Lisp.

28

bitblt, bitblt-position, bitblt-region

Purpose:
The function bitblt copies regions from one bitmap to another.
The function bitblt-position is similar to bitblt, except that the

locations in each bitmap are expressed as positions rather than as x-
and y-coordinates.

The function bitblt-region is similar to bitblt, except that the ar-
guments explicitly specify the source and destination regions.

Syntax:

bitblt [Function]
source-bitmap source-x source-y
destination-bitmap destination-x destination-y
width height operation
&key :clipping-region
bitblt-position [Function]
source-bitmap source-position
destination-bitmap destination-position
width height operation
Lkey :clipping-region
bitblt-region [Function)]
source-bitmap source-region
destination-bitmap destination-region
operation

Remarks:

The arguments sourcc-bitmap and destination-bitmap specify the
bitmap from which the copying is performed and the bitmap to which
the copying is done respectively. They may be the same bitmap.

29

The source-bitmap region that is copied is specified by one of the fol-
lowing:

e The source-z, source-y, width, and height arguments of bit-
blt. The source-2 and source-y arguments specify the x- and
y-coordinates respectively of the region’s origin. The width and
height arguments specify the region’s width and height respec-
tively.

o The source-position, width, and height arguments of bitblt-
position. The source-position argument specifies the position
of the region’s origin. The width and height arguments specify
the region’s width and height respectively.

o The source-region argument of bitblt-region.

The destination-bitmap region that is to be modified is specified by
one of the following:

o The destination-z, destination-y, width, and height arguments of
bitblt. The destination-z and destination-y arguments specify
the x- and y-coordinates respectively of the region’s origin. The
width and height arguments specify the region’s width and height
respectively.

o The destination-position, width, and height arguments of bitblt-
position. The destination-position argument specifies the po-
sition of the region’s origin. The width and height arguments
specify the region’s width and height respectively.

o The destination-region argument of bitblt-region.

Each position in the source bitmap region is combined with the cor-
responding position in the destination bitmap region, and the result
is stored in the destination bitmap. The new value of the destination
bitmap is the value returned when the function boole is applied to
these three arguments: the operation argument, the value of the bit at
the source bitmap position, and the value of the bit at the destination
bitmap position. Note: For the Allegro Window Tool Kit only the fol-
lowing operations are defined: boole-1, boole-and, boole-andc1,
boole-c1, boole-eqv, boole-ior, boole-orcl, boole-xor.

30

The keyword argument :clipping-region specifies a region of the des-
tination bitmap. If this keyword argument is given, only the region
of the destination region that is located inside the clipping region is
modified.

If the source-region and destination-region arguments of bitblt-region
are different widths, the width of the region that is actually copied is
the smaller of the two. Similarly, if the source-region and destination-
region arguments have different heights, the height of the region that
~ is copied is the smaller of the two.

These functions arc extensions to Common Lisp.

31

bitmap-extent, bitmap-height, bitmap-width

Purpose:
These functions access and modify information about a bitmap.
pnfne_tion hitman-extent creates a copv of a bitmap’s extent.

Syntax:
bitmap-extent [Function]
bitmap &optional result-extent
bitmap-height [Function]
bitmap
bitmap-width [Function]

bitman

These functions are extensions to Common Lisp.

Examples:

> (setq my-bitmap (make-bitmap :width 100 :height 200))
#< Bitmap 1002200 25F391>

> (bitmap-extent my-bitmap)

#< Eztent 1002200 25F7TA 7>

> (bitmap-height my-bitmap)

200

> (bitmap-width my-bitmap)

100

;5 Create a 0x0 extond,

> (setq empty-extent (make-cxtent))

#< Extent 020 25F84C>

;s Copy the extent of my-bitmap into empty-extent.
> (bitmap-extent my-bitmap empty-extent)

7] . roBe =XV 4 f7, :
E — {]
\

;s Now look at the value of empty-extent.
> empty-extend
#< Extent 1002200 25F84C>

bitmap-output-stream-p

Purpose:

The predicate bitmap-output-stream-p tests whether its argument
object is a bitmap output stream. It returns true if object is a bitmap

output stream.

Syntax:

bitmap-output-stream-p [Function)]
object

Remarks:

This function is an extension to Common Lisp.

Examples:

> (bitmap-output-ctream-p (make-bitmap-output-stream))
T

> (bitmap-output-stream-p 7)

NIL

34

bitmap-p

Purpose:

The predicate bitmap-p tests whether its argument object is a bitmap.
It returns true if object is a bitmap.

Syntax:

bitmap-p [Function]
object

Remarks:

This function is an extension to Common Lisp.

Examples:
> (bitmap-p (makc-bitmap :height 100 :width 200))
T
> (bitmap-p 7)
NIL

charblt, stringblt

Purpose:

The function charblt paints a character image from a font onto a
bitmap.

The function stringblt paints a string of character images from a font
onto a bitmap.

Syntax:

charblt [Function]
bitmap position font cliar & key :operation

stringblt [Function]
bitmap position font string &key :operation

Remarks:

The :operation keyword argument controls how the font is painted
onto the bitmap. The new value of the destination bitmap is the value
returned by applying the function boole to these three arguments:
the :operation argument, the value of the font’s bit, and the value
of the destination bitmap position. If the :operation keyword argu-
ment is omitted or nil. the default value is the value of boole-1. This
default value causes the bits of the font’s bitmap to overwrite what-
ever was previously on the bitmap. Note: For the Allegro Window
Tool Kit only the following operations are defined: boole-1, boole-
and, boole-andc1, boole-c1, boole-eqv, boole-ior, boole-orc1,
boole-xor.

The position argument specifies the position at which the character
or characters are output. The first character is aligned so that the
left-most point of its baseline is at the point given by the position
argument.

The function stringblt cannot handle tabs and other characters that
have an ambiguous print representation. It can handle newline and
space characters.

37

These functions are extensions to Common Lisp.

See Also:
bitblt

clear-bitmap

Purpose:

The function clear-bitmap clears a bitmap. That is, the value of
every point in the bitmap is set to 0.

Syntax:

clear-bitmap [Function]
bitmap &optional region

Remarks:

If a region argument is specified, only that region of the bitmap is
cleared. Otherwise the entire bitmap is cleared.

39

This function is an extension to Common Lisp.

Examples:

;5 Create a 10210 bitmap.

> (setq btmp (make-bitmap :width 10 :height 10))
#< Bitmap 10zl0 596D5D>

;; Put ones on the diagonal of the bitmap.

> (dotimes (i 10) (setf (bitmap-value btmp 1 1) 1))
NIL

;7 A point on the diagonal has a value of one.

> (bitmap-value btmp 3 3)

1

;5 A point not on the diagonal has a value of zero.
> (bitmap-valuc btmp 3 2)

0

;; Clear a region of the bitmap.

> (clear-bitmap bimp (make-region :z 2 :y 2 :height 3 :width 3))
#< Bitmap 10210 596D5D>

;5 Look at a diagonal point that was cleared.

> (bitmap-value btmp 3 3)

0

;s Look at a diagonal point that was not cleared.
> (bitmap-value btmp 9 9)

1

40

copy-bitmap

Purpose:

The function copy-bitmap copies a bitmap.

Syntax:

copy-bitmap [Function]
bitmap

Remarks:

The original bitmap and the copy can be modified without affecting
each other.

This function is an extension to Common Lisp.

Examples:

;5 Create a 1002200 bitmap.

> (make-bitmap :height 100 :width 200)
#< Bitmap 2002100 5D95F>

5y Make a copy of the bitmap.

> (copy-bitmay *)

#< Bitmap 200100 5D9937>

current-mouse-cursor

Purpose:

The function current-mouse-cursor returns the mouse cursor ob ject
that is currently tracking the mouse on the display screen.

Syntax:
current-mouse-cursor [Function]

Remarks:

You can use the macro setf with this function to modify the mouse
cursor object that is tracking the mouse.

This function is an extension to Common Lisp.

default-font

Purpose:
The value of the variable *default-font* is used as a default value by
the functions make-bitmap-output-stream and make-window.

Syntax: *default-font* [Variable]

Remarks:

This variable is an extension to Common Lisp.

Examples:

;5 Create a bitmap oulput stream.

;s Do not give an :initial-font keyuord argument.

> (make-bitmap-output-stream :width 100 :height 200)

#< Output-Stream to #< Bitmap 1002200 1A45D8> 1A49E0>
;v Check to see that the stream’s font is *default-font*.

> (eq (streamn-curreni-font *) *default-font*)

T

See Also:
find-font

delete-viewport

Purpose:

The function delete-viewport deletes a viewport or window and re-
moves it from the viewport hierarchy. The viewport’s resources can
then be garbage collected if no user-defined data structures refer to
the viewport.

Syntax:

delete-viewport [Function]
viewport

Remarks:

This function is an extension to Common Lisp.

draw-circle, draw-line, draw-polyline, draw-polypoint

Purpose:

The function draw-circle draws a circle whose center is the position
center and whose radius is radius.

The function draw-line draws a line segment from the position start
to the position end.

The function draw-polyline takes a sequence of positions positions
and connects each adjacent pair.

The function draw-polypoint takes a sequence of positions positions
and draws a dot at each one.

Syntax:

draw-circle [Function]
bitmap center radius
&key :width :operation

draw-circle draw-line [Function]
bitmap start end
&key :width :operation

draw-circle draw-polyline [Function)]
bitmap positions
&key :width :operation

draw-circle draw-polypoint [Function]
bitmap positions
Lkey :width operation

Remarks:

NWMnta: Tho finetioadrnsr livo.ia wat ewr asted fecoe ol mmd LS Tm—)

L

N :

)

If the :width keyword argument is given, it defines the line width
that is used for drawing the line segments and circles. For draw-
polypoint, the :width argument specifies the diameter of the dot.
For draw-circle, the border is drawn so that its outer edge is at the
specified radius; the width must be less than or equal to the radius. If
the :width keyword argument is omitted or nil, the default value 1 is
used.

The :operation keyword value is used to control how the values that
are being written onto the bitmap combine with the values that are
already present. If this kevword argument is omitted or nil, the default
value is the value of the constant boole-1 this default value causes the
values that are being written onto the bitmap to overwrite whatever
was already on the bitmap.

These functions are extensions to Common Lisp.

46

expose-viewport, hide-viewport

Purpose:

The function expose-viewport moves a viewport to the top of its
sibling stack. Nothing happens if the viewport is already at the top of
the stack.

The function hide-viewport moves a viewport to the bottom of its
sibling stack. Nothing happens if the viewport is already at the bottom
of the stack.

Syntax:
expose-viewport [Function]
viewport
hide-viewport [Function]
viewport
Remarks:

In complex hierarchies, expose-viewport may not place the viewport
on the screen unoccluded because it may be occluded by its children,
or because its parent may be occluded.

If two active viewports overlap on the screen, the following rules de-
termine which viewport occludes the other:
o A viewport occludes all of its ancestor viewports.

o If two viewports are siblings, then the viewport that is closest to
the top of the sibling stack and all of its descendants occlude the
viewport that is farther down and all of its descendants.

These functions are extensions to Common Lisp.

See Also:

viewport-children

extent-height, extent-width

Purpose:
The function extent-height returns the height of an extent.

The function extent-width returns the width of an extent.

Syntax:
extent-height [Function]
extent .
extent-width [Function)]
extent
Remarks:

You can use the setf macro with these functions to modify the height
and width of an extent.

These functions are extensions to Common Lisp.

Examples:

> (setq z (make-extent 100 200))
#< Eztent 1002200 1A4D04>

> (extent-height z)

200

> (setf (extent-width 2) 300)
300

>z

#< Extent 300x200 1A4D04>

48

extentp

Purpose:

The predicate extentp tests whether its argument object is an extent.
It returns true if object is an extent.

Syntax:

extentp [Function]

object

Remarks:

This function is an extension to Common Lisp.

Examples:

> (extentp (make-crtent))
T

> (extentp 7)

NIL

49

find-font

Purpose:

The function find-font finds the font whose name is the name argu-
ment and returns that font. The function returns nil if it cannot find

a font with that name.
Syntax:

find-font [Function]
name

Remarks:

This function is an extension to Common Lisp.

50

font-baseline, font-height, font-fixed-width

Purpose:

The function font-baseline returns the baseline height of a font. This
number is the baseline height of every character in the font.

The function font-height returns the height of a font. This number
is the height of every character in the font.

The function font-fixed-width returns the width of every character
in a font if the font is a fixed-width font; otherwise it returns nil.

Syntax:

font-baseline [Function]

font

font-height [Function]
font

font-fixed-width [Function)]
font

Remarks:

These functions are extensions to Common Lisp.

See Also:
find-font

51

font-name

Purpose:

The function font-name returns the name of a font.

Syntax:

font-name [Function]
font

Remarks:

Note: The function font-name is not exported from the X Window
Tool Kit, when KCL (Kyoto Common Lisp) is used! Please refer to it
with windows::font-name.

This function is an extension to Common Lisp.

See Also:
find-font

52

fontp

Purpose:
The predicate fontp tests whether its argument object is a font. It
returns true if object is a font.

Syntax:

fontp [Function]

object

Remarks:

This function is an extension to Common Lisp.

Examples:

> (fontp *default-font*)
T

> (fontp 7)

NIL

53

initialize-windows

Purpose:

The function initialize-windows initializes the Window Tool Kit.

Syntax:

initialize-windows [Function]
&key :height :width :screen-x :screen-y

Remarks:

You must call the function initialize-windows to initialize the win-
dow system.

The keyword arguments :height and :width specify the size of the
usable portion of the system window that will be the root viewport.
Because the usable portion does not include the window border and
legend, the size of the created system window will be larger than the
specified size. The :width and :height keywords both default as the
maximum width and the maximum height.

The keyword arguments :screen-x and :screen-y specify the position
of the upper left corner of the usable portion of the system window.

If you try to initialize the Window Tool Kit but it has already been
initialized, nothing happens.

If the Window Tool Kit has been initialized and you want to make
an image, please first delete the window environment (with function
leave-window-system). To restore the state of the windows in the
newly saved image, call initialize-windows again and rebuild your win-
dow environment.

This function is an extension to Common Lisp.

See Also:

leave-window-system

keyboard-input

Purpose:

The function keyboard-input determines where keyboard input is
sent. Any character typed at the keyboard is sent to the mouse input
stream that is the value of this function.

Syntax:
keyboard-input [Function)]

Remarks:

The setf macro can be used with this function to change the stream
to which keyboard input is sent. The second argument to setf must
be a mouse input stream.

This function is an extension to Common Lisp.

N
3

leave-window-system

Purpose:

The function leave-window-system exits the Window Tool Kit.

Syntax:
leave-window-system [Function]

Remarks:

If you exit the window environment by calling leave-window-
system, you cannot return to it. If you wish to use the Window
Tool Kit after calling this function, you must set up new windows by
invoking initialize-windows.

This function is an extension to Common Lisp.

See Also:

initialize-windows

listen-any

Purpose:

The predicate listen-any is true if a character or mouse event object
can be read from the given mouse input stream; otherwise it is false.

Syntax:

listen-any [Function]
&optional mouse-input-stream

Remarks:

Note: For the X Window Tool Kit the input functions may return
keywords like rescape, nineta-a, or :f1 instead of characters.

The argument mousc-input-stream specifies a mouse input stream. If
this argument is omitted or nil. the mouse input stream that is the
value of the function mouse-input is used. If the mouse-input-stream
argument is t, the mouse input stream that is the value of the function
keyboard-input is used.

This function is an extension to Common Lisp.

See Also:

keyboard-input
mouse-input
peek-any
read-any
read-any-no-hang

(1}
-1

make-active-region

Purpose:

The function make-active-region creates an active region for the
region region; as an option it can attach that active region to a bitmap.

Syntax:

make-active-region [Function]
region &key :bitmap
:mouse-left-down
:mouse-left-up
:mouce-middle-down
:mouse-middle-up
:mouse-right-down
anouse-right-up
:mouse-moved
:mouse-enter-region
:mouse-exit-region

Remarks:

region should be attached. If this keyword argument is omitted or nil,
then the active region is not attached to any bitmap. Later it may be
attached to a bitmap by using the function attach-active-region.

The rest of the kevword arguments specify the methods for each of
the nine types of mousce events. The value of each keyword argument
must be a function of five arguments. The method is called whenever
the corresponding mouse event occurs inside the created active region.

If a mouse event keyword argument is omitted or nil, no method is
associated with the mouse event. No function is called when the mouse
event occurs inside the created active region.

The method is called with the following sequence of arguments:

¢ The viewport on which the mouse event occurred
¢ The active region
e The mouse event

e The x-coordinate of the position on which the mouse event oc-
curred

o The y-coordinate of the position on which the mouse event oc-
curred

The x- and y-coordinates are given relative to the origin of the active
region’s bitmap.

For all mouse events except :mouse-exit-region, the x-coordinate
and y-coordinate arguments specify a position inside the active region.
For :mouse-exit-region. the specified position lies outside the active
region; it may also lie outside the bitmap.

This function is an extension to Common Lisp.

See Also:

attach-active-region

make-bitmap

Purpose:

The function make-bitmap creates a bitmap.

Syntax:

make-bitmap [Function)]
&key :extent :width :height

Remarks:

Note: The function make-bitmap is not exported from the Allegro
Window Tool Kit! Please refer to it with windows::make-bitmap.

The width and lieight of the bitmap are specified by using the :width
and :height kevword arguments or by supplying an extent with the
:extent keyword argument. Note: For the Allegro Window Tool Kit
the maximum width is ccl:*screen-width* and the maximum height
is ccl:*screen-height*.

Unspecified dimensions default to 0.

This function is an extension to Common Lisp.

Examples:

> (make-bitmap : height 100 : width 200)
#< Bitmap 200:100 856 EEG>

60

make-bitmap-output-stream

Purpose:

The function make-bitmap-output-stream creates a bitmap output

wlhjhmpwriqf_rm:ﬁm o ko nttanhnd 4a _.,_.?fi‘*

existing bitmap, or it can be attached to a new bitmap created by this
function.

Syntax:

make-bitmap-output-stream [Function]
&key :bitinap
:extent :width :height
:operation
;initial-font

Remarks:

The value of the :bitmap keyword argument must be a bitmap. The
bitmap output stream is attached to that bitmap. If this keyword
argument is omitted or nil. a new bitmap is created. The new bitmap’s
size can be specified with either the :width and :height keyword
arguments or with the :extent keyword argument (whose value should
be an extent). An unspecified width or height defaults to 0. Note:
For the Allegro Window Tool Kit the maximum width is ccl:*screen-
width* and the maximum height is ccl:*screen-height*.

The :operation keyword argument is the boolean operation used by
the stream to write onto the bitmap. Its default value is the value of
the constant boole-xor.

The :initial-font keyword argument is the font in which characters
are painted onto the bitmap. The value of this keyword argument
must be a font, a string, or a symbol. If the argument is a string or a
symbol, the function find-font is called to find the font whose name is
the string or symbol. The default value is the value of *default-font*.

The stream position of a newly created bitmap output stream is the
position whose x-coordinate is 0 and whose y-coordinate is the baseline
height of the initial font. Its linefeed distance is the height of the initial
font.

61

Note: Do not attach an output stream to the bitmap that is associated
with the root viewport.

This function is an extension to Common Lisp.

62

make-extent

Purpose:

The function make-extent creates an extent whose width is width
and whose height is height.

Syntax:

make-extent [Function]
Loptional width height

Remarks:

The arguments to make-extent are fixnums. If either argument is
omitted, the default value 0 is used.

This function is an extension to Common Lisp.

Examples:
> (make-extent)
#< Extent 020 855B5B>
> (make-extent 100 200)
#< Eztent 1002200 855B80>

63

make-mouse-input-stream

Purpose:

The function make-mouse-input-stream creates a mouse input
stream. A mouse input stream can queue both characters and mouse

event objects.

Syntax:

mal{e.]mnjnllnnnf-cfrea m [Fiunction] ’

L L

this mouse input stream initially queues mouse event objects. The
default value for this keyword argument is nil, which means that only
characters are qucued on the newly created mouse input stream.

The :viewport keyword argument is the viewport associated with the
mouse input stream that is being created. If this keyword argument
is omitted or nil. the mouse input stream is associated with the root
viewport.

make-pop-up-menu

Purpose:

The function make-pop-up-menu creates a pop-up menu object.
Syntax:

make-pop-up-menu [Function]

choice-list &optional default-value

Remarks:
The argument choice-list is a list. Each element of the list is either a

symbol or a cons whose car is a string.

If the element is a symbol, then when the function pop-up-menu-
choose displays the pop-up menu, the print name of the element is
displayed as one of the choices. If chosen, the element is returned as
the value of pop-up-menu-choose.

If the element is a cons, then the car of the element, which must be a
string, is displayed as one of the choices. If the element is chosen, the
value of pop-up-menu-choose is the cdr of the cons.

If the mouse is moved off the choice menu, the default-value argument
is returned. If this argument is omitted, the default value is nil.

This function is an extension to Common Lisp.

See Also:

pop-up-menu-choose

make-position

Purpose:
The function make-position creates a position. The coordinates of
this position are the z and y arguments.

Syntax:

make-position [Function]

Loptional x v

Remarks:

The arguments must be nonnegative fixnums. If either argument is
omitted, the default value 0 is used.

This function is an extension to Common Lisp.

Examples:
> (make-position)
#< Position (0.0) 855C2D>
> (make-position 100 200)
#< Position (100,200) 855C3E>

606

make-region

Purpose:

The function make-region creates a new region.

Syntax:

make-region [Function]
&key origin :x :y
:extent :width :height
:corner :corner-x :corner-y

Remarks:

To create a region. vou must specify two of the following three at-
tributes of a region: its origin, its corner, and its size. A region’s
origin is its top-left position. A region’s corner is the point just below
and to the right of its bottom-right position. A region’s size is its
height and width.

You specify the origin of a region by specifying the position of the
origin with the :origin keyword argument or by specifying the :x-
and y-coordinates of the origin separately with the :x and :y keyword
arguments.

You specify the corner of a region by specifying the position of the
corner with the :corner keyword argument or by specifying the :x-
and y-coordinates of the corner separately with the :corner-x and
:corner-y kevword arguments.

You specify the size of a region by specifying the region’s extent with
the :extent kevword argument or by specifying the width and height
of the region separately with the :width and :height keyword argu-
ments.

67

This function is an extension to Common Lisp.

Examples:

;; You can specify a region whose origin is the point (400,500)
;5 and whose corner is the point ({80,690) in several different ways.
;; mid-screen is the position of the origin.

> (setq mid-screen (make-position 400 500))

#< Position (400,500) 855D50>

;; ext is the size of the region.

> (setq ext (make-extent 80 90))

#< Extent 80x90 855D64>

;7 Give the origin and size of the region.

> (setq regl (make-region :origin mid-screen :extent ext))

#< Region 80290 at ({00.500) 855D84>

;1 Give the origin and size but specify each coordinate separately.
> (setq reg? (make-region :x 400 :y 500 :width 80 :height 90))
#< Region 80290 at (400.500) 855DBE>

;5 Give the size and the corner.

> (setq reg3 (make-region rextent ext

rcorner (make-position 480 590)))

#< Region 80290 at (400.500) 855DEB>

;; Verify that all three regions specify the same region.

> (region= regl reg? reg3)

T

68

make-viewport

Purpose:

The function make-viewport creates a viewport. The viewport is
attached to an already existing bitmap or to a newly created bitmap.

The function returns two values: the newly created viewport and the
bitmap to which the viewport is attached.

Syntax:

make-viewport [Function]
&key :bitmap :width :height
:bitmap-region
:parent :fixed
:screen-position
ISCreen-x screen-y
:activate

Remarks:

The keyword options to this function are described as follows:

¢ :bitmap
This keyword argument specifies the bitmap to which the view-
port is attached. Its value must be a bitmap made with the
function make-bitmap.
If this keyword argument is omitted or nil, the viewport is at-
tached to a new bitmap whose dimensions are specified by :width
and :height.

¢ :width, :height
These keyword arguments specify the width and height of the
bitmap to which the viewport is attached. The value of each
must be a nonnegative fixnum. If either is omitted or nil, its
default value is 0. Note: For the Allegro Window Tool Kit
the maximum width is ccl:*screen-width* and the maximum
height is ccl:*screen-height*.

69

You only need to use :width and :height if :bitmap is omitted
or nil.

¢ :bitmap-region
This keyword argument specifies the viewport’s bitmap clipping
region. Its value must be a region made with the function make-
region.
If this keyword argument is omitted or nil, the bitmap clipping
region is the entire bitmap; thus, the viewport and bitmap have
the same size.

e :parent
This kevword argument specifies the parent viewport of the new
viewport. Its value must be an existing viewport. If it is omitted
or nil. the root viewport becomes the parent viewport. The new
viewport is put at the top of its sibling stack.

e :screen-position
This kevword argument specifies the position of the viewport’s
top-left corner. Its value must be a position made with the func-
tion make-position.
The :screen-x and :screen-y keyword arguments can be used
as an alternative to :screen-position. The default value for the
:x- and y-coordinates is 0.

e :screen-X, :screen-y
These kevword arguments specify the coordinates of the view-
port’s top-left corner relative to the root viewport. The value
of each must be a nonnegative fixnum. If either is omitted, its
default value is 0.

¢ :activate
This keyword argument specifies whether the viewport is active
or inactive. If it is omitted or non-nil, the viewport is active. If
it is specified and nil, the viewport is inactive.

Note: A viewport’s screen clipping region is the region whose top-left
corner is the point specified by either :screen-position or :screen-x
and :screen-y. and whosc extent is the same as that of the viewport’s
bitmap clipping region.

make-window

Purpose:
The function make-window creates and returns a window.

A window combines the functionality of a viewport, a bitmap, a bitmap
output stream, and a mouse input stream. On the display screen, a
window appears as a viewport. It may be surrounded by a border and
may have a title. A window may also have a scroll bar.

Syntax:
make-window [Function]
&key :position :x :y
:extent :width :height
:inner-border-width :outer-border-width
:viewport-width :viewport-height
:initial-font :operation
;title :title-font
:parent :scroll :activate
:calculate-vertical-scroll-ratio
:calculate-horizontal-scroll-ratio
:vertical-scroll :horizontal-scroll
:calculate-horizontal-bubble-width
:calculate-vertical-bubble-height
Remarks:

The keyword options to this function are described as follows:

¢ :position
This keyword argument specifies the position of the window’s top-
left corner. Its value must be a position made with the function
make-position.

72

The :x and :y keyword arguments can be used as an alternative
to :position. The default value for the x- and y-coordinates is 0.
X, iy

These keyword arguments specify the coordinates of the window’s
top-left corner relative to the root viewport. The value of each
must be a nonnegative fixnum. If either is omitted, its default
value is 0.

textent

This keyword argument specifies the size of the window’s bitmap.
Its value must be an extent made with the function make-
extent.

The :width and :height keyword arguments can be used as an
alternative to :extent.

:width, :height

These keyword arguments specify the size of the window’s
bitmap. The value of each must be nonnegative fixnum. If either
is omitted or nil, its default value is 0. Note: For the Allegro

Window Tanl Kit the ma‘ﬁmnm width _ig rt‘"*gmﬂizh*:r—

¢ :inner-border-width, :outer-border-width

These keyword arguments specify the width of the window’s inner
and outer borders. The inner border is strip of white space that
surrounds the viewport, and the outer border is a black box that
surrounds the inner border. If :inner-border-width is omitted
or nil, its default value is 1. If :outer-border-width is omitted
or nil, its default value is 2.

:viewport-width, :viewport-height

These keyword arguments specify the width and height of the
window’s viewport. These dimensions can be different from those
of the window’s bitmap (specified with either :width and :height
or :extent). However. if :viewport-width and :viewport-
height are omitted or nil. their default values are the width and
height of the bitmap respectively.

The total width of the window is the width of the viewport plus
twice the thickness of the inner border plus twice the thickness
of the outer border. The total height of the window is the height
of the viewport plus twice the thickness of the inner border plus
twice the thickness of the outer border plus the height of the title.
:initial-font

This keyword argument specifies the initial font used by the win-
dow’s bitmap output stream. If it is omitted or nil, its default
value is the value of the variable *default-font*.

:operation

This keyword argument specifies the boolean operation that the
bitmap output stream uses to write onto the bitmap. Its value
must be an acceptable first argument to the boole function. Ifit is
omitted or nil, its default value is the value of the constant boole-
xor. Note: For the Allegro Window Tool Kit only the following
operations are defined: boole-1, boole-and, boole-andcl,
boole-c1, boole-eqv, boole-ior, boole-orcl, boole-xor.
ititle

This keyword argument specifies the title of the window. Its value
must be a string. If the window has a title, it appears in a title
bar at the top of the window. If this keyword argument is omitted
or nil, the window has no title.

:title-font

This keyword argument specifies the font in which the title is
displayed. If it is omitted or nil, its default value is the value of
the :initial-font keyword argument.

:parent

This keyword argument specifies the parent viewport of the new
viewport. Its value must be an existing viewport. If it is omitted
or nil, the root viewport becomes the parent viewport. The new
viewport is put at the top of its sibling stack.

:activate -

This keyword argument specifies whether the viewport is active
or inactive. If it is omitted or non-nil, the viewport is active. If
it is nil, the viewport is inactive.

e :scroll
This keyword argument specifies whether the window has scroll
bars. If it is t, the window is created with scroll bars on the right
and bottom. If it is omitted or nil, the window is created without
scroll bars. Do not give this keyword any value other than t or
nil.

e :calculate-horizontal-scroll-ratio,
:calculate-vertical-scroll-ratio
These keyword arguments calculate the vertical and horizontal
scroll ratio respectively. The scroll ratio is a Common Lisp ratio
between 0 and 1. Generally, the scroll ratio is the ratio of the
current location of the window to the size of the window’s under-
lying bitmap. However, window system developers may redefine
the methods for scrolling and for calculating these ratios so that
scrolling may be performed over an abstract bitmap or extent. If
either keyword argument is specified, it must be a function that
takes the window as an argument. The functions cannot be used
with the macro setf to specify the respective ratios; they can only
return a ratio or nil.

o :vertical-scroll, :horizontal-scroll
These keyword arguments replace the default scrolling methods
for the window. If either is given, it must be a function that
takes two arguments: the window to be scrolled and a vertical or
horizontal scroll ratio that describes the location of scrolling.

¢ :calculate-horizontal-bubble-width,

:calculate-vertical-bubble-height

These keyword arguments replace the default scrolling methods
for the window. If either is given, it must be a function that takes
two arguments: the window to be scrolled and the maximum
width of the vertical scroll bar bubble or the maximum height
of the horizontal scroll bar bubble. By default the bubble size
corresponds to the ratio of the size of the viewport to the size of
the window’s underlying bitmap.

This function is an extension to Common Lisp.

Examples:

:; To run this example, you must have already initialized the

;; Window Tool Kit.

> (setq w (make-window :width 100 :height 200 :title "hello”))
#<WINDOW JACOAB>

> (windowp w)

T

See Also:

window-vertical-scroll-ratio
window-horizontal-scroll-ratio

mouse-xX, mouse-y

Purpose:

The functions mouse-x and mouse-y return the current x- and y-
coordinates of the mouse. Tlese positions are relative to the root

viewport.
Syntax:
mouse-X [Function]
mouse-y [Function]
Remarks:

These functions are extensions to Common Lisp.

See Also:

mouse-event-x
mouse-event-y
move-mouse

mouse-cursor-p

Purpose:

The predicate mouse-cursor-p tests whether its argument object is a
mouse cursor object. It returns true if object is a mouse cursor ob ject.

Syntax:

mouse-cursor-p [Function]

object

Remarks:

This function is an extension to Common Lisp.

-d

«

mouse-event-p

Purpose:

The predicate mouse-event-p tests whether its argument object is a
mouse event object. It returns true if object is a mouse event ob ject.

Syntax:

mouse-event-p [Function]
object

Remarks:

This function is an extension to Common Lisp.

mouse-event-x, mouse-event-y, mouse-event-event-type

Purpose:
These functions access the fields of a mouse event object.

The functions mouse-event-x and mouse-event-y give the x- and y-
coordinates of the mouse when the mouse event occurred that created
the mouse event object. These coordinates are relative to the viewport
that owns the mouse input stream on which the mouse event object
was read.

The function mouse-event-event-type returns a keyword that indi-

cates what mouse event created a particular mouse event ob ject.

Syntax:

mouse-event-x [Function]
mouse-event-ob ject

mouse-event-y [Function]

mouse-event-ob ject

mouse-event-event-type [Function)]
mouse-event-ob ject

Remarks:

These functions are extensions to Common Lisp.

mouse-input

Purpose:

The function mouse-input determines where mouse input is sent.

Syntax:
mouse-input [Function)

Remarks:

The value of the function mouse-input is examined when a mouse
event occurs. If the expression (mouse-input-stream-queue-
mouse-events-p (mouse-input)) is non-nil, an object encoding
the mouse event is appended to the mouse input stream that is the
value of the expression (mouse-input) .

The setf macro can be used with this function to change the stream
to which mouse input is sent. The second argument to setf must be

monse innut stregm .

This function is an extension to Common Lisp.

81

mouse-input-stream-interrupt-char

Purpose:

The function mouse-input-stream-interrupt-char returns the
function that is called when the given character is typed to a mouse
input stream.

Syntax:

mouse-input-stream-interrupt-char [Function)]

mouse-input-stream char

Remarks:

The function returned by mouse-input-stream-interrupt-char
takes two arguments: mouse-input-stream and char. The function
is called as soon as char is typed to mouse-input-stream.

If the char argument is not an interrupt character, this function returns
nil.

You can use the setf macro to modify a character’s interrupt handler.
If you set the function value to nil, char is no longer an interrupt
character on mouse-input-stream. 1If you set the function value to a

function of two arguments, char becomes an interrupt character, and
the function is called when charis typed.

This function is an extension to Common Lisp.

82

mouse-input-stream-p

Purpose:

The predicate mouse-input-stream-p tests whether its argument
object is a mouse input stream. It returns true if object is a mouse
input stream.

Syntax:

mouse-input-stream-p [Function]
object

Remarks:

This function is an extension to Common Lisp.

83

mouse-input-stream-queue-mouse-events-p

Purpose:

When a mouse event occurs, the predicate mouse-input-stream-
queue-mouse-events-p is called on the mouse input stream that is
the value of the function mouse-input. If the value returned is non-
nil, a mouse event object encoding the mouse event is queued on the
mouse input stream that is the value of the function mouse-input.

Syntax:

mouse-input-stream-queue-mouse-events-p [Function)
mouse-input-stream

Remarks:

You can use the setf macro with this function to cause a mouse input
stream to start or stop queueing mouse event ob jects.

The initial value for this function can be set in the function make-
mouse-input-stream with the :queue-mouse-events-p keyword
argument,

This function is an extension to Common Lisp.

See Also:

make-mouse-input-stream read-any

84

mouse-input-stream-viewport

Purpose:

The function mouse-input-stream-viewport returns the viewport
that is associated with a mouse input stream.

Syntax:

mouse-input-stream-viewport [Function]

mouse-input-strean

Remarks:

This function is an extension to Common Lisp.

move-mnmouse

Purpose:

The function move-mouse moves the mouse cursor from its current
position to the position specified by the z and y arguments.

Syntax:

move-mouse [Function]
Xy

Remarks:

This function does not work for the Allegro Window Tool
Kit.

This function is an extension to Common Lisp.

86

move-viewport

Purpose:

The function move-viewport moves a viewport’s origin so that its
top-left corner is at the point whose screen coordinates are specified
by the z and y arguments.

Syntax:
move-viewport [Function]

viewport X y

Remarks:
The root viewport cannot be moved.

This function is an extension to Common Lisp.

peek-any

Purpose:
The function peek-any peeks at and returns the next character or

mouse event object in a mouse input stream without reading it. The
character or mouse event object is read at a later time.

You can also use peek-any for skipping over characters and mouse
event obsjects in the input stream until a particular character is en-
countered.

Syntax:

peek-any [Function]
&optional peek-type mouse-input-stream

Remarks:

Note: For the X Window Tool Kit the input functions may return
keywords like rescape, :meta-a, or :fI instead of characters.

The argument mouse-input-stream specifies a mouse input stream. If
this argument is omitted or nil, the mouse input stream that is the
value of the function mouse-input is used. If the mouse-input-stream
argument is t, the mouse input stream that is the value of the function
keyboard-input is used.

The peek-type argument specifies the type of object searched for on
the mouse input stream. If peek-type is specified, it must be either nil,
t, or a character. If this argument is omitted, the peek-type argument
defaults to nil.

If the peek-type argument is nil, peek-any looks at and returns the
next character or mouse event object in the mouse input stream with-
out reading it from the stream.

If the peek-type argument is a character, then peek-any discards char-
acters and mouse event ob jects from the front of the input stream until
it encounters a character that is equal to (char=) the peek-type argu-
ment. That character is returned without being read from the stream.

This function is an extension to Common Lisp.

See Also:

keyboard-input
listen-any
mouse-event-p
mouse-input
read-any
read-any-no-hang

89

pop-up-menu-choose

Purpose:

The function pop-up-menu-choose displays a pop-up menu speci-
fied by the pop-up-menu-object argument. The menu appears on the
display screen near the current position of the mouse. You can choose
one of the objects on the menu by clicking a mouse button on top of
the selected item, or you can move the mouse off the menu.

Syntax:

pop-up-menu-choose [Function]
pop-up-menu-object

Remarks:

Once you have made a choice or moved the mouse off the menu, the
menu disappears and two values are returned. The first value is the
item that you selected, and the second is a keyword that indicates
which button you used to select the item. If you did not make a
selection and the menu has a default value, the default value and nil
are returned; if the menu does not have a default value, both of the
values returned are nil.

This function is an extension to Common Lisp.

See Also:

make-pop-up-menu

90

pop-up-menu-p

Purpose:

The predicate pop-up-menu-p tests whether its argument object is
a pop-up menu. It returns true if object is a pop-up menu.

Syntax:

pop-up-menu-p [Function]
object

Remarks:

This function is an extension to Common Lisp.

91

position-x, position-y

Purpose:

The functions position-x and position-y return the :x- and y-
coordinates respectively of a position.

Syntax:
position-x [Function]
position
position-y [Function]
position
Remarks:

You can use the setf macro with the functions position-x and
position-y to set the x- and y-coordinates of a position.

These functions are extensions to Common Lisp.

Examples:

> (setq pos (make-position 100 200))
#< position (100,200) 595ba3>

> (position-x pos)

100

> (setf (position-y pos) 300)

300

> pos

#< position (100,300) 595ba3>

92

Qositigwﬁ

Purpose:
The predicate positionp tests whether its argument object is a posi-
tion. It returns true if object is a position.

Syntax:

positionp [Function]
object

Remarks:

This function is an extension to Common Lisp.

Examples:

> (positionp (make-position 100 200))
T

> (positionp 7)

NIL

93

read-any, read-any-no-hang

Purpose:

The functions read-any and read-any-no-hang read either a single
character or a single mouse event object from a mouse input stream.

Syntax:

read-any [Function]

&optional mouse-input-stream

read-any-no-hang [Function]

&optional mouse-input-stream

Remarks:

Note: For the X Window Tool Kit the input functions may return
keywords like :escape, :meta-a, or :fI instead of characters.

The argument mouse-input-stream specifies a mouse input stream. If
this argument is omitted or nil, the mouse input stream that is the
value of the function mouse-input is used. If the mouse-input-stream
argument is t. the mouse input stream that is the value of the function
keyboard-input is used.

If there is no character or mouse event object ready to be input, the
function read-any waits until a character is typed to the stream or a
mouse event occurs on the stream mouse-input-stream. In this same
situation, the function read-any-no-hang returns the value nil with-
out waiting.

94

These functions are extensions to Common Lisp.

See Also:

keyboard-input

listen-any

make-mouse-input-stream

mouse-event-p

mouse-input
mouse-input-stream-queue-mouse—events—p
peek-any

unread-any

95

refresh-windows

Purpose:

The function refresh-windows runs all pending active region meth-
ods and interrupt character methods. Call refresh-windows inside
the body of a with-asynchronous-method-allowed macro to guar-
antee that interrupts can occurr asynchronously.

Syntax:
refresh-windows [Function)

Remarks:

This function is an extension to Common Lisp.

See Also:

with-asynchronous-method-invocation-allowed

96

region-contains-point-p, region-contains-position-p

Purpose:

The predicates region-contains-point-p and region-contains-

O 0 Lo et QR 7 G DR w0 i L i —

J

The predicate region-contains-point-p is true if the position whose
coordinates are z and y is in the given region.

The predicate region-contains-position-p is true when the position
position is in the given region.

Syntax:
region-contains-point-p [Function)]
Tegion X y
region-contains-position-p [Function]

region position

Remarks:

These functions are extensions to Common Lisp.

Examples:

;; Create a region whose origin is (100,100)

;; and whose corner is (400,300).

> (setq reg (make-region :x 100 :y 100 :width 300 :height 200))
#< region 300x200 at (100.100) 596507>

> (region-contains-point-p reg 150 299)

T

> (region-contains-position-p reg (make-position 150 300))
NIL

97

region-corner, region-corner-x, region-corner-y, region-height,
region-width, region-origin, region-origin-x, region-origin-y,
region-size

Purpose:

Each of these functions returns a component of a region.

Syntax:

region-corner region [Function]
&optional result-position

region-corner-x [Function]
region

region-corner-y [Function]
region

region-height [Function]
region

region-width [Function]
region

region-origin [Function]
region &optional result-position

region-origin-x [Function]
region

region-origin-y [Function)]
region

region-size [Function)

region &optional result-extent

Remarks:
You can use the macro setf with all these functions.

If a result-position argument is given for region-corner and region-
origin, that position is modified to the region’s corner position or
origin position and returned. Otherwise a new position is created and
returned.

If a result-extent argument is given for region-extent, that extent is
modified to the region’s extent and then returned. Otherwise a new
extent is created and returned.

These functions are extensions to Common Lisp.

Examples:

;; Create a region whose origin is (400,500)
;; and whose corner is (480,590).
> (setq r (make-region :z 400 :y 500 :width 80 :height 90))
#<region 80190 at (400.,500) ada2{3>
> (region-corner r)
#< position ({80,590) ada2¢3>
> (region-corner-z r)
480
> (region-corner-y r)
590
> (region-height r)
90
> (region-width r)
80
> (region-origin r)
#<position (400,500) adbidb>
> (region-origin-z r)
400
. > (renion-origin-v rl

> (region-size r)
#< extent 80290 adb253>

99

region-intersection, region-union

Purpose:

The function region-intersection returns the region covered in com-
mon by all of the given regions. If there is no intersection, it returns
nil.

The function region-union returns the smallest region that contains
all of the supplied regions.

Syntax:

region-intersection [Function)]
region region &rest regions

region-union [Function]
region region Lrest regions

Remarks:

These functions are extensions to Common Lisp.

Examples:

> (setq r1 (make-region :z 0 :y 0 :width 100 :height 200))
#<region 1002200 at (0,0) 5ac098>

> (setq r2 (make-region :x 50 :y 150 :width 100 :height 100))
#<region 1002100 at (50,150) 5ac0bd>

> (region-union rl r2)

#<region 1502250 at (0.0) sacOce>

> (region-intersection rl r2)

#<region 50250 at (50,150) Sac0e3>

100

region<, region<=, region=, region/=, region>, region>=

Purpose:
These functions test containment and equality for regions.

The predicate region< is true if each argument except the last is
contained in the following argument.

The predicate region<= is true if each argument except the last is
contained in or equals the following argument.

The predicate region= is true if every argument is the same region.

The predicate region/= is true if no two arguments are the same
region.

The predicate region> is true if each argument except the last con-
tains the argument that follows it.

The predicate region>= is true if each argument except the last con-
tains or is equal to the argument that follows it.

Syntax:

region< [Function]
region region &rest regions

region<= [Function]
region region &rest regions

region= [Function]
region region &rest regions

region/= [Function]
region region &rest regions

region> [Function]

region region &rest regions

101

region>= [Function]

region region &rest regions

Remarks:

These functions are extensions to Common Lisp.

Examples:
> (setq
regionl (make-region :z 0 :y 0 :corner-z 100 :corner-y 100)
region2 (make-region :x 0 :y 0 :corner-z 100 :corner-y 101)
region3 (make-region :z 50 :y 50 :corner-z 200 :corner-y 300)
region4 (make-region :z 200 :y 300 :corner-z 500 :corner-y 700)
regions (make-region :x 150 :y 299 :corner-z 500 :corner-y 701)
region6 (make-region :x 150 :y 299 :corner-z 500 :corner-y 700)
)
#< Region 3502401 at (150.299) 4850CB>
> (region< regionl region?

T

> (reqion< regionl regionl)
NIL

> (region< = regionl region2)
T

> (region< = regionl regionl)
T

> (region> region? regionl)
T

> (region> region? region?2)
NIL

> (region>= region?2 regionl)
T

> (region> = region?2 region2)
T

102

;; For region/= to be true, the regions must be all different.

> (region/= regionl region? region3d regionj region5 regiont)

T

> (region/= regionl region2 regiond regionj regions region6 regionl)
NIL

> (region= regionl regionl regionl regionl regionl)

T

> (region= regionl region2)

NIL

103

regionp

Purpose:

The predicate regionp tests whether its argument object is a region.
It returns true if object is a region.

Syntax:

regionp [Function]

object

Remarks:

This function is an extension to Common Lisp.

Examples:
> (regionp (make-region :x 0 :y 0 :width 100 :height 200))
T
> (regionp 8)
NIL

104

reshape-viewport

Purpose:

The function reshape-viewport moves and reshapes a viewport so
that its screen region is the region specified by the keyword arguments.

Syntax:

reshape-viewport [Function]
viewport &key :region :x :y
:width :height
corner-x :corner-y

Remarks:

The keyword arguments are used to specify the new region. All co-
ordinates are given in terms of the root viewport. You must specify
enough keyword arguments to identify the region uniquely.

The :x and :y keyword arguments specify the x- and y-coordinates
respectively of the top-left corner of the region.

The :corner-x and :corner-y keyword arguments specify the x- and
y-coordinates respectively of the point just below and to the right of
the region.

The :width and :height keyword arguments specify the width and
height respectively of the region.

Moving a viewport also moves all of its descendants.

This function is an extension to Common Lisp.

105

root-viewport

Purpose:

The function root-viewport returns the root viewport.

Syntax:
root-viewport [Function)]

Remarks:

The root viewport is a viewport onto a special bitmap that requires
less memory but has limited capabilities. You cannot modify the bits
of this special bitmap in any way without signaling an error.

This function is an extension to Common Lisp.

106

stream-current-font

Purpose:

The function stream-current-font returns the current font of a
bitmap output stream.

Syntax:

stream-current-font [Function]
bitmap-output-stream

Remarks:

You can use the macro setf to modify the stream’s current font. The
second argument to setf must be a font. Changing a stream’s current
font does not modify the stream’s linefeed distance.

This function is an extension to Common Lisp.

Examples:

;5 Create a 1002200 bitmap.

> (setq btmp (make-bitmap :height 100 :width 200))

#< Bitmap 2002100 5ACEC3>

;v Create a bitap output stream to that bitmap.

> (setq b-o-s (make-bitmap-output-stream :bitmap btmp))

#< Output-Stream to #< Bitmap 2002100 5ACEC3> 5AD21D>
;7 The bitmap output sream’s current font is *default-font*.

> (eq (stream-current-font *) *default-font*)

T

See Also:

stream-linefeed-distance

107

stream-draw-circle, stream-draw-line, stream-draw-polyline

Purpose:

The function stream-draw-circle draws a circle of radius radius
around a bitmap output stream’s current position.

The function stream-draw-line draws a line segment from a bitmap
output stream’s current position to the position end. The bitmap
output stream’s new current position becomes the position end.

The function stream-draw-polyline draws a series of connected line
segments, starting at a bitmap output stream’s current position and
then going through each position in a sequence of positions. The cur-
rent position of the bitmap output stream is left at the final position.

Syntax:

stream-draw-circle [Function]
bitmap-output-stream radius
&key :width :operation

stream-draw-line [Function]
bitmap-output-stream end
&key :width :operation

stream-draw-polyline [Function]

bitmap-output-stream positions
&key :width :operation

Remarks:

If the :width keyword argument is specified, it defines the line width
that is used for drawing the line segments and circles. For the function
stream-draw-circle. the border is drawn so that its outer edge is at the

this keyword_ argument is omitted or nil, the default value 1 is used.

The value of the keyword argument :operation controls how the bits
that are written onto the bitmap are combined with the bits that are
already there. If this keyword argument is omitted or nil, the bitmap

[P R R T D T . S, | A VR Lo d el b o e Y

These functions are extensions to Common Lisp.

See Also:

draw-circle
draw-line
draw-polyline
stream-operation

109

stream-linefeed-distance

Purpose:

The function stream-linefeed-distance accesses the linefeed dis-
tance of a bitmap output stream.

Syntax:

stream-linefeed-distance [Function)

bitmap-output-stream

Remarks:

You can use the setf macro with this function to modify a bitmap
output stream’s linefeed distance.

When a bitmap output stream is created, its linefeed distance is the
height of the initial font.

A stream’s linefeed distance is used when one of the Common Lisp out-
put functions sends a newline character to the bitmap output stream.
The bitmap output stream’s y-coordinate is incremented by the line-
feed distance, and the x-coordinate is set to 0.

This function is an extension to Common Lisp.

110

stream-operation

Purpose:

The function stream-operation returns a bitmap output stream’s
default bitblt operation, which is used in writing characters or figures
to the bitmap output stream’s bitmap.

Syntax:

stream-operation [Function]
bitmap-output-stream

Remarks: You can use the macro setf with this function to set a new
value. The new value must be an acceptable first argument to the
boole function. Note: For the Allegro Window Tool Kit only the fol-
lowing operations are defined: boole-1, boole-and, boole-andcl,
boole-cl, boole-eqv, boole-ior, boole-orcl, boole-xor.

This function is an extension to Common Lisp.

Examples:

;; Create a 1002200 bitmap.

> (setq z (make-bitmap :height 100 :width 200))

#< Bitmap 2002100 AD4{76B>

;; Create a bitmap output stream to that bitmap.

;5 Specify an operation.

> (setq b-o-s (make-bitmap-output-stream :bitmap z :operation boole-

1))
#< Qutvut-Stream to #< Bitmap 200x100 ADL76B> AD54B3>

) = I —
o J
L R
{

ﬂ]

o

-“., =
y

.

_

|

7 f

J

7 e E———————

E

1

, , -
T

stream-position, stream-x-position, stream-y-position

Purpose:

These functions return the output position of a bitmap output stream.
The output position specifies the next position for writing to the

bitmap output stream’s bitmap.

The function stream-position returns a position.

The function stream-x-position returns the x-coordinate of the po-
sition.

The function stream-y-position returns the y-coordinate of the po-
sition.

Syntax:

stream-position [Function]
bitmap-output-stream
&optional result-position

stream-x-position [Function)
bitmap-output-stream

stream-y-position [Function]
bitmap-output-stream

Remarks:

If a result-position argument is given for the function stream-
position, that position is modified to the output position and then
returned. Otherwise a new position is created and returned.

You can use the setf macro with these functions to modify a bitmap
output stream’s position.

When a bitmap output stream is created, its stream position is the
position whose x-coordinate is 0 and whose y-coordinate is the baseline
height of the initial font.

112

These functions are extensions to Common Lisp.

Examples:

;; Create a bitmap and a bitmap output stream.

> (setq b-0-s (make-bitmap-output-stream :width 100 :height 200))
#< Output-Stream to #< Bitmap 1002200 AD75BB> AD8463>

;; Check the initial value.

> (and (= 0 (stream-z-position b-0-s))

(= (font-baseline *default-font*) (stream-y-position b-0-s)))

T

;; Set the z position to a new value.

> (setf (stream-z-position b-o-s) 50)

50

113

string-width

Purpose:
The function string-width determines how many bits wide the string

string is when printed in the font font.

Syntax:

string-width [Function)
string font

Remarks:

Note: The function string-width is not exported from the Allegro
Window Tool Kit! Please refer to it with windows::string-width.

The function may give false results if the string contains any characters
that cannot be printed, such as the newline character. The space
character is a printable character. ‘

This function is an extension to Common Lisp.

114

unread-any

Purpose:

The function unread-any returns a character or mouse event ob ject
to the front of a mouse input stream’s queue. The character or mouse
event object must be the same object that was last read from the
queue.

Syntax:

unread-any [Function]

char-or-mouse-event &optional mouse-input-stream

Remarks:

The argument mouse-input-stream specifies a mouse input stream. If
this argument is omitted or nil, the mouse input stream that is the
value of the function mouse-input is used. If the mouse-input-stream
argument is t, the mouse input stream that is the value of the function
keyboard-input is used.

This function is an extension to Common Lisp.

See Also:

keyboard-input
mouse-input
read-any

115

viewport-active-p

Purpose:

The function viewport-active-p returns true if the viewport viewport
is active. If the viewport is not active the function returns nil.

Syntax:

viewport-active-p [Function]

viewport
Remarks:
This function is an extension to Common Lisp.

See Also:

activate-viewport
deactivate-viewport

116

viewport-at-point, viewport-at-position

Purpose:

The function viewport-at-point interprets z and y as the coordinates
of a point on the screen. It returns as its value the viewport that is
displayed at that point on the screen.

The function viewport-at-position is identical to viewport-at-
point except that it is passed a single position argument rather than
x- and y-coordinates.

Syntax:
viewport-at-point [Function]
XYy
viewport-at-position [Function]
position
Remarks:

These functions are extensions to Common Lisp.

117

viewport-bitmap

Purpose:

The function viewport-bitmap returns a viewport’s underlying
bitmap.

Syntax:

viewport-bitmap [Function)]

viewport

Remarks:

This function is an extension to Common Lisp.

118

viewport-bitmap-offset, viewport-bitmap-x-offset, viewport-
bitmap-y-offset

Purpose:

The function viewport-bitmap-offset returns the position that rep-
resents the offset (from the bitmap’s origin) of a viewport’s origin.
This offset indicates what part of the bitmap is being displayed in the
viewport.

The functions viewport-bitmap-x-offset and viewport-bitmap-
y-offset return the x- and y-coordinates of the offset respectively.

Syntax:

viewport-bitmap-offset [Function]
viewport &optional result-position

viewport-bitmap-x-offset [Function]
viewport
viewport-bitmap-y-offset [Function]
viewport
Remarks:

If a result-position argument is given for the function viewport-
bitmap-offset, that position is modified to the viewport’s offset and
returned. Otherwise a new position containing the viewport’s offset is
created and returned.

You can use the setf macro with these functions to change the view-
port’s offset. In particular, modifying viewport-bitmap-y-offset
causes vertical scrolling.

These functions are extensions to Common Lisp.

119

viewport-bitmap-region, viewport-screen-region

Purpose:
The function viewport-bitmap-region returns a copy of a view-
port’s bitmap clipping region.
The function viewport-screen-region returns a copy of a viewport’s
screen clipping region.

Syntax:
viewport-bitmap-region [Function)]
viewport &optional result-region
viewport-screen-region [Function]
viewport &optional result-region
Remarks:

If a region is passed as the second argument to these functions, the
result is copied into that region object and returned; otherwise a new
region is created.

These functions are extensions to Common Lisp.

120

viewport-children, viewport-parent

Purpose:

The function viewport-children returns a list of a viewport’s chil-
dren. The list is in the same order as the children’s sibling stack.

The function viewport-parent returns a viewport’s parent.

Syntax:
viewport-children [Function]
viewport
viewport-parent [Function]
viewport
Remarks:

The setf macro for viewport-parent changes a viewport’s parent.
The viewport is put at the top of the sibling stack of its new parent’s
children.

You cannot use the setf macro with the function viewport-children.

These functions are extensions to Common Lisp.

121

viewportp

Purpose:

The predicate viewportp tests whether its argument object is a view-
port. It returns true if object is a viewport.

Syntax:

viewportp [Function)]
object

Remarks:

This function is an extension to Common Lisp.

Examples:

:+ To run this example, you must have already initialized the

;; Window Tool Kit.

; Create a 10210 bitmap and a viewport onto that bitmap.

:+ Note that make-viewport returns two values,

;; the viewport and the bitmap.

> (multiple-value-setq (vwpt btmp) (make-viewport :width 10 :height
10))

Viewport 10z10 at (0.0) onto #< Bitmap 10x10 40D4E5> 40D51D>
> (viewportp vwpt)

T

> (viewportp btmp)

NIL

122

window-frame

Purpose:
The function window-frame returns the window frame that is asso-

ciated with a given window.

Syntax:

window-frame [Function]
window

Remarks:

The window frame can be thought of as a special bitmap; the image
that this bitmap displays on the screen is the window’s frame. You
cannot modify the bits of this special bitmap in any way without
signaling an error. You may attach active regions to window frames
in the same way that you normally attach active regions to bitmaps.
You cannot use the setf macro with this function.

This function is an extension to Common Lisp.

123

window-inner-border-width, window-outer-border-width

Purpose:
The function window-inner-border-width returns the width of the

inner border of the window.

The function window-outer-border-width returns the width of the
outer border of the window.

The window border consists of two strips: the black strip around the
edge of the window is the outer border, and the white strip inside the
black strip is the inner border.

Syntax:
window-inner-border-width [Function]
window
window-outer-border-width [Function]
window
Remarks:

The setf macro can be used with these functions to modify the widths
of the inner and outer borders of a window.

These functions are extensions to Common Lisp.

124

window-title, window-title-font

Purpose:
The function window-title returns the title of a window as a string.

The function window-title-font returns the font in which a window’s
title is displayed.

Syntax:
window-title [Function]
window
window-title-font [Function]
window
Remarks:

Note: The function window-title is not exported from the Allegro
Window Tool Kit! Please refer to it with windows::window-title.

You can use the setf macro with the function window-title to modify
the title of a window. The second argument to setf must be a string.

You can use the setf macro with the function window-title-font.
Doing so redraws the title of the window in the new font.

125

These functions are extensions to Common Lisp.

Examples:

:+ To run this example, you must have already initialized the
;; Window Tool Kit.

;; Create a window with the title "hello”.

> (setq w (make-window :width 100 :height 200 :title "hello”))
#<WINDOW JACOAB>

> (windov-title w)

*hello”

;; Note that the title font is *default-font*.

> (eq (window-title-font w) *default-font*)

T

;; Modify the title.

> (setf (window-title w) "new-name”)

"new-name”

> (window-title w)

"new-name”

126

window-vertical-scroll-ratio, window-horizontal-scroll-ratio

Purpose:

The functions window-vertical-scroll-ratio and window-hori-
zontal-scroll-ratio return the vertical and horizontal scroll ratio
respectively of a given window.

Syntax:
window-vertical-scroll-ratio [Function]
window
window-horizontal-scroll-ratio [Function]
window
Remarks:

The scroll ratio is a Common Lisp ratio between 0 and 1. Generally
the scroll ratio is the ratio of the current location of the window to
the size of the window’s underlying bitmap. However, window system
developers may redefine the methods for scrolling and for calculating
these ratios so that scrolling may be performed over an abstract bitmap
or extent.

These functions may be used with the macro setf to specify a vertical
or horizontal ratio for the given window.

These functions are extensions to Common Lisp.

See Also:

make-window

127

windowp

Purpose:

The predicate windowp tests whether its argument object is a window.
It returns true if object is a window.

Syntax:

windowp [Function]

object

Remarks:

This function is an extension to Common Lisp.

Examples:

;s To run this ezample, you must have already initialized the

;s Window Tool Kit.

> (setq w (make-window :width 100 :height 200 :title ”hello”))
#< WINDOW 4ACOAB>

> (windowp w)

T

> (windowp 7)

NIL

128

windows-available-p

Purpose:
The function windows-available-p checks the Lisp environment for
a window system that is capable of supporting the Window Tool Kit.

Syntax:
windows-available-p [Function]

Remarks:

The function windows-available-p returns as values the display
width in pixels and the display height in pixels if a window system
can be run from the current process; otherwise the function returns
nil. The returned display parameters can be used in subsequent calls
to initialize-windows.

This function is an extension to Common Lisp.

129

with-asynchronous-method-invocation-allowed

Purpose:

The macro with-asynchronous-method-invocation-allowed al-
lows active region methods and interrupt character methods to occur
asynchronously rather than sequentially.

It is only used inside the body of an active region method or an in-
terrupt character method. The form arguments are evaluated. Any
pending active region methods and any interrupt character methods
that would normally be queued until the current method terminated
are instead run immediately.

Syntax:

with-asynchronous-method-invocation-allowed [Macro]

{form}*

Remarks:

See

Normally. all active region and interrupt character methods are ex-
ecuted sequentially. However, sometimes an active region or inter-
rupt character method needs to wait for the action taken by another
active region method or interrupt character method to occur. The
macro with-asynchronous-method-invocation-allowed provides
for this.

The form arguments are evaluated in an an environment where pend-
ing active region methods and interrupt character methods are allowed
to run. These methods are executed sequentially with respect to each
other unless one of them contains a with-asynchronous-method-
invocation-allowed form, that contains the expression (refresh-
windows). In this case all pending methods are executed before that
method terminates.

This macro is an extension to Common Lisp.

Also:

refresh-windows

130

with-fast-drawing-environment

Purpose:

The macro with-fast-drawing-environment groups display opera-
tions. Overhead operations that are required to produce output are ex-

clite ! OIS, her wmﬁal ANATAHND Tt hAR 170 i ————

|

|

Syntax:

with-fast-drawing-environment [Macro]
{form}*

Remarks:

The output for the group may not appear on the screen until the
macro is exited. Therefore, you should not use this macro to group
operations that require user input or that will run for a long time.

This macro is an extension to Common Lisp.

131

with-mouse-methods-preempted

Purpose:

The with-mouse-methods-preempted macro evaluates each of its
form arguments. While these forms are being evaluated, any active

region that is not attached to the bitmap argument is disabled. Its
methods are not called even if a mouse event occurs inside it.

The bitmap argument can also be nil. In this case, all active regions
are disabled.

Syntax:

with-mouse-methods-preempted [Macro]
bitmap {form}*

Remarks:

The results of evaluating the last form are returned as the results of
with-mouse-methods-preempted.

This macro is an extension to Common Lisp.

132

A Allegro Window Tool Kit versus X Window

Tool Kit
A.1 Fonts
o yvhon cnarifuing o fant- All n ifF: t o
2
P, . - "o 3 e g .

|

A.2 Bitmap-Size

For the Allegro Window Tool Kit the maximum width is ccl:*screen-
width* and the maximum height is ccl:*screen-height*.

A.3 Exported Functions

The following functions are not exported from the Allegro Window Tool Kit:
make-bitmap, string-width, window-title.

The following functions are not exported from the X Window Tool Kit:
draw-line font-name.

A.4 Input-Functions

For the X Window Tool Kit the input functions may return keywords like
rescape, :meta-a, or :escape instead of characters.

A.5 Boole-Constants

Far tho Allaoran WWitndAaw TAnl i+ Anlv +ho fAllAaursinag Aanaraticrne ara AaofProad:

A.6 Bitmap-Value

The setf macro is not defined for use with function bitmap-value for the
X Window Tool Kit.

A.7T Move-Mouse

The function move-mouse does not work for the Allegro Window Tool Kit.

A.8 Mouse-Cursors

Be careful, when specifying a mouse-cursor: Allegro and X have different
%}‘!!EPE:“BL“} Ucn (currant maonracainesn) fa mala unara nrem== jrada

7

pendent from the machine type.

134

B Installation of the Window Tool Kit

B.1 Installation of the Allegro Window Tool Kit

Double-click the icon of the file ”atoolkit.image.anlegen”. This creates
the Allegro Window Tool Kit Image ”atoolkit.image”. (Note: When the
?atoolkit.image” is started, it first tries to load the file ”init.fasl” from
the home directory. If this fails it tries to load the file ?init.lisp”) from the
home directory.)

When the window system is initialized (see initialize-windows) it tries to
load the mouse-cursor resource-file ”mouse-cursor.lisp” from the direc-
tory, where ?atoolkit.image” was created. If you want the window system
to load the mouse-cursor resource-file from somewhere else you can either
copy that file to ”ccl;A-window-toolkit:mouse-cursor.lisp” or you can
change the value of the variable user::*windows.dir* to the directory-path
of the resource-file.

B.2 Installation of the X Window Tool Kit
1. Start Common Lisp.
2. Make sure that CLX is loaded; otherwise load it.

3. Load file ”load-xtoolkit.lisp”.

4. Create an image of the X Window Tool Kit.

(For KCL this means: (save ”xwtk”))

135

Deutsches

far Kanstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veréffentlichungen oder die
aktuelle Liste von erhiltlichen Publikationen
koénnen bezogen werden von der oben angegebenen
Adresse.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

Forschungszentrum

DFKI

-Bibliothek-

PF 2080

6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of
currently available publications can be ordered from
the above address.

The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-90-01 RR-90-08
Franz Baader: Terminological Cycles in KL-ONE- Andreas Dengel: A Step Towards Understanding
based Knowledge Representation Languages Paper Documents
33 pages 25 pages
RR-90-02 RR-90-09
- Urop lize-m Gijuafg-s dwltossjr-gp) Py _sjuie 5 Cm— 77 n;,,..%vv - Plan r‘!me?-qi?'gg Tlcino a Mpthpd
=
-
-
L

25 pages

RR-90-03

Andreas Dengel, Nelson M. Mattos: Integration of
Document Representation, Processing and
Management

18 pages

RR-90-04

Bernhard Hollunder, Werner Nutt: Subsumption
Algorithms for Concept Languages

34 pages

RR-90-05
Franz Baader: A Formal Definition for the

17 pages

RR-90-10

Franz Baader, Hans-Jiirgen Biirckert, Bernhard
Hollunder, Werner Nutt, Jorg H. Siekmann:
Concept Logics

26 pages

RR-90-11

Elisabeth André, Thomas Rist: Towards a Plan-
Based Synthesis of Illustrated Documents

14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets

RR-90-16

Franz Baader, Werner Nutt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification

25 pages

RR-90-17

Stephan Busemann

Generalisierte Phasenstrukturgrammatiken und ihre
Verwendung zur maschinellen Sprachverarbeitung
114 Seiten

RR-91-01

Franz Baader, Hans-Jiirgen Biirckert, Bernhard
Nebel, Werner Nutt, and Gert Smolka :

On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations

20 pages

RR-91-02

Francesco Donini, Bernhard Hollunder, Maurizio
Lenzerini, Alberto Marchetti Spaccamela, Daniele
Nardi, Werner Nutt:

The Complexity of Existential Quantification in
Concept Languages

22 pages

RR-91-03

B.Hollunder, Franz Baader: Qualifying Number
Restrictions in Concept Languages

34 pages

RR-91-04

Harald Trost

X2MORF: A Morphological Component Based on
Augmented Two-Level Morphology

19 pages

RR-91-05

Wolfgang Wahlster, Elisabeth André, Winfried
Graf, Thomas Rist: Designing Iliustrated Texts:
How Language Production is Influenced by Graphics
Generation.

17 pages

RR-91-06

Elisabeth André, Thomas Rist: Synthesizing
INustrated Documents

A Plan-Based Approach

11 pages

RR-91-07
Giinter Neumann, Wolfgang Finkler: A Head-
Driven Approach to Incremental and Parallel

Generation of Syntactic Structures
13 pages

RR-91-08

Wolfgang Wahister, Elisabeth André, Som
Bandyopadhyay, Winfried Graf, Thomas Rist

WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation

23 pages

RR-91-09

Hans-Jiirgen Biirckert, Jiirgen Miiller, Achim
Schupeta

RATMAN and its Relation to Other Multi-Agent
Testbeds

31 pages

RR-91-10

Franz Baader, Philipp Hanschke

A Scheme for Integrating Concrete Domains into
Concept Languages

31 pages

RR-91-11
Bernhard Nebel
Belief Revision and Default Reasoning: Syntax-

Based Approaches
37 pages

RR-91-12

J.Mark Gawron, John Nerbonne, and Stanley Peters
The Absorption Principle and E-Type Anaphora

33 pages

RR-91-13

Gert Smolka

Residuation and Guarded Rules for Constraint Logic
Programming

17 pages

RR-91-15

Bernhard Nebel, Gert Smolka

Attributive Description Formalisms ... and the Rest
of the World

20 pages

RR-91-16

Stephan Busemann

Using Pattern-Action Rules for the Generation of
GPSG Structures from Separate Semantic
Representations

18 pages

RR-91-17

Andreas Dengel & Nelson M. Mattos

The Use of Abstraction Concepts for Representing
and Structuring Documents

17 pages

RR-91-20

Christoph Klauck, Ansgar Bernardi, Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-23

Prof. Michael Richter, Ansgar Bernardi, Christoph
Klauck, Ralf Legleitner

Akquisition und Repriésentation von technischem
Wissen fiir Planungsaufgaben im Bereich der
Fertigungstechnik

24 Seiten

RR-91-25

Karin Harbusch, Wolfgang Finkler, Anne Schauder
Incremental Syntax Generation with Tree Adjoining
Grammars

16 pages

RR-91-26
Y Baigr_

TM-91-02

Knut Hinkelmann

Bidirectional Reasoning of Horn Clause Programs:
Transformation and Compilation

20 pages

TM-91-03

Otto Kiihn, Marc Linster, Gabriele Schmidt
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization

of a KADS Conceptual Model

20 pages

TM-91-04
Harold Boley

f.somnlar nf Rolntinnal/knartionnl Nafinitione

!

Koehler, G. Merziger

Integrated Plan Generation and Recognition
- A Logic-Based Approach -

17 pages

DFKI Technical Memos

TM-89-01

Susan Holbach-Weber: Connectionist Models and
Figurative Speech

27 pages

TM-90-01

Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse

18 pages

TM-90-02

Jay C. Weber: The Myth of Domain-Independent
Persistence

18 pages

TM-90-03

Franz Baader, Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-

15 pages

T™M-90-04

Franz Baader, Hans-Jiir gen Biirckert, Jochen
Heinsohn, Bernhard Hollunder, Jiirgen Miiller,
Bernhard Nebel, Werner Nutt, Hans-Jiirgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic

7 pages

T™M-91-01

Jana Kohler .

Approaches to the Reuse of Plan Schemata in
Planning Formalisms

52 pages

12 pages

TM-91-05

Jay C. Weber, Andreas Dengel and Rainer
Bleisinger

Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters

10 pages

DFKI Documents

D-89-01

Michael H. Malburg, Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypermedia-
Informationssystem

43 Seiten

D-90-01

DFKI Wissenschaftlich-Technischer Jahresbericht
1989

45 pages

D-90-02
Georg Seul: Logisches Programmieren mit Feature

-Typen
107 Seiten

D-90-03

Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD

36 Seiten

D-90-04

Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: STEP: Uberblick iiber eine zukiinftige
Schnittstelle zum Produktdatenaustausch

69 Seiten

D-90-05

Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: Formalismus zur Reprisentation von
Geo-metrie- und Technologieinformationen als Teil
eines Wissensbasierten Produktmodells

66 Seiten

D-90-06
Andreas Becker: The Window Tool Kit
66 Seiten

D-91-01

Werner Stein , Michael Sintek
Relfun/X - An Experimental Prolog
Implementation of Relfun

48 pages

D-91-03

Harold Boley, Klaus Elsbernd, Hans-Giinther Hein,
Thomas Krause

RFM Manual: Compiling RELFUN into the
Relational/Functional Machine

43 pages

D-91-04

DFKI Wissenschaftlich-Technischer Jahresbericht
1990

93 Seiten

D-91-06

Gerd Kamp

Entwurf, vergleichende Beschreibung und
Integration eines Arbeitsplanerstellungssystems fiir
Drehteile

130 Seiten

D-91-07

Ansgar Bernardi, Christoph Klauck, Ralf Legleitner
TEC-REP: Reprisentation von Geometrie- und
Technologieinformationen

70 Seiten

D-91-08

Thomas Krause

Globale DatenfluBanalyse und horizontale
Compilation der relational-funktionalen Sprache
RELFUN

137 pages

D-91-09

David Powers and Lary Reeker (Eds)

Proceedings MLNLO91 - Machine Learning of
Natural Language and Ontology

211 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-10

Donald R. Steiner, Jiirgen Miiller (Eds.)
MAAMAW 91: Pre-Proceedings of the 3rd
European Workshop on ,,Modeling Autonomous
Agents and Multi-Agent Worlds*

246 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-11

Thilo C. Horstmann
Distributed Truth Maintenance
61 pages

D-91-12
Bernd Bachmann
HI®TaC . - a Knowledge Representation System

with Typed Hierarchies and Constraints
75 pages

D-91-13

International Workshop on Terminological Logics

Organizers: Bernhard Nebel, Christof Peltason, Kai
von Luck .

131 pages

The Window Tool Kit UnOO..Qm
Andreas Becker Document

