fiir Kiinstliche D-91-03
Intelligenz GmbH

; & D h
’ ;. ’ Fceprst(s;l‘:ure!sg;szentrum DOC ume nt

RFM Manual:
Compiling RELFUN into the
Relational/Functional Machine
(Second, Revised Edition)

Harold Boley, Klaus Elsbernd
| Hans-Giinther Hein, Thomas Krause

July 1993

L

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiserslautern, FRG 66123 Saarbriicken, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

oooood

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

RFM Manual:
Compiling RELFUN into the Relational/Functional Machine
(Second, Revised Edition)

Harold Boley, Klaus Elsbernd, Hans-Giinther Hein, Thomas Krause

DFKI-D-91-03

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fur Kiinstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that
all such whole or partial copies include the following: a notice that such copying is by permission of Deutsches
Forschungszentrum fir Kinstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fir Kiinstliche Intelligenz.

RFM Manual:
Compiling RELFUN into the Relational /Functional
Machine

Harold Boley, Klaus Elsbernd, Hans-Giinther Hein, Thomas Krause

Universitat Kaiserslautern
Fachbereich Informatik
Erwin-Schrodinger-Str.

67663 Kaiserslautern
Germany

Second Edition

July 28, 1993

Abstract

RELFUN?’s classifier produces a declarative clause language; its code generator
optimizes target code for an underlying WAM emulator, called NyWAM. The parts
are glued together by RELFUN’s user interface. All intermediate steps use explicit
LISP S-expression representations, which can be displayed. The software is part of a
LISP-based compilation laboratory for relational/functional languages.

Contents
1 Introduction

2 The classifier

2.1 Procedurelevel e
2.2 Clauselevel i i i e e
2.3 Chunklevel i e
2.4 Literal level and argumentlevel
2.5 An example with structures 000
2.6 EBNF syntax for Classified clauses
2.7 The user interface and the code generator
2.8 The user interface and the NyWAM
3 The code generator

3.1 Softwareinterface 0.
3.2 classified_procedure oo
3.3 clause_classification 0o oo
3.4 head_chunk_fact, head_chunk_rule, body_chunk
3.5 chunk.descr i i i i e e e e e
3.6 literal_classification,
3.7 variable_classification, local.var.descr
3.8 Globalvariables,
3.9 perm.varlist, temp_varlist
3.10 perm_descr, temp.descro e e
3.1 literaldescr e e e
3.12 lispcall_type, lispcall_classification
3.13 arglist_classification, term_classification, constant_classification

3.14 Getting global information on variables
3.15 Obtaining the procedure arity
3.16 The builtins, is_primitiveo oo
3.17 Y-variable scoreboarding00,

4 The NyWAM

4.1 Terminology o v it e
4.2 The datastructures e
421 Thelocalstack
422 Theheap i
423 Thetrail e
4.3 Theregisters i e
4.4 Theinstructions i i
4.4.1 PUT-instructions« . vt v v v v v v v v v v
4.4.2 GET-instructions o v vt v v
4.4.3 UNIFY-instructions
4.4.4 Indexing instructions
4.4.5 Procedural instructions

CONTENTS

CONTENTS 3

4.4.6 Specialinstructions. e 28
4.4.7 Special builtins - Cuts and Metacall 28
4.4.8 LISPinterface e 29
4.5 User interfaceof the NyWAM 29
4.5.1 The debugger control commands 29
4.5.2 The debugger display commands 30

5 A sample session 31

4 1 INTRODUCTION

1 Introduction

This document describes RELFUN’s classifier, code generator, and the underlying WAM
emulator, called NyWAM. It is assumed that the reader is familiar with WAM architec-
tures ([War83]) and RELFUN([Bol90], [BEH*93]). The software described herein is part
of a compilation laboratory used in projects of the German Research Center for Artifi-
cial Intelligence. The projects are aimed at expert system development in the domain of
mechanical engineering and materials engineering.

Let us give an idea of the compilation laboratory for those unfamiliar with the other
‘documents ([Bol90], [Kra90), [Hei89], [Els90]).

This LISP-based laboratory consists of an interpreter and a 3-pass compiler well-suited
for testing all compilation steps. The compiler is divided into an optional ‘horizontal’
transformer employing program-transformation techniques, a classifier producing an in-
termediate clause language, and a ‘vertical’ code generator producing target code for the
NyWAM emulator. The parts are glued together by a command-line-oriented user inter-
face. All steps produce intermediate output in a user-oriented LISP S-expression form.
Section 2 will explain the classified clauses. Section 3 will describe the code generator. In
Section 4 we will reveal NyWAM’s([Nys]) internal structures.

2 The classifier

The code generator (vertical compiler) needs much information about the clauses and vari-
ables of a program (database), in order to generate RFM (WAM) code efficiently. The
declarative intermediate language Classified Clauses represents this information explicitly;
for this the classifier extends normal RELFUN source clauses with numerous declara-
tions on different levels of description. The following short introduction is based on the
implementation status of the Classified Clauses from November 1990. A more detailed
introduction of an earlier version is presented (in German) in [Kra90]. This Section briefly
describes the Classified Clauses; in section 2.6 the description grammar in an EBNF syntax
is given.

In Classified Clauses we distinguish six levels of description, namely the database, proce-
dure, clause, chunk, literal, and term levels. A knowledge base consists of an unordered
set of procedures each consisting of an ordered set of clauses. All the clauses of procedures
have the same name and arity. Name and arity yield the procedure name ‘name/arity’.
For example the clause (hn (foo _v _w)) belongs to the procedure foo/2.

The Classified Clauses for a RELFUN program (database) are accordingly defined as
follows:

classified_database = (db! {classified_procedure}*)

2.1 Procedure level

Syntax:

classified_procedure = (proc procedure_name clause_count {clause_classification}*)
Description:

proc Each description of a procedure starts with the tag proc.

procedure_name The name and the arity of clauses yield the procedure name.
clause_count Clause_count gives the number of clauses belonging to the procedure.
Example:

Source:

(hn (foo alpha beta))
(ft (foo _t gamma) (bar _t _p) (bar _p _q))

Classified Clauses:

(db (proc foo/2 2
clause_classification
clause_classification)

el

!The db, temp, perm- tags are omitted in the current implementation

Remark:

2 THE CLASSIFIER

It is planned for the future to extend the description of a procedure by information about
the modes of the arguments in all feasible calls to the procedure. In this way it should be
possible that, on the one hand, the user can declare the modes and, on the other hand, a
mode interpreter can compute the modes automatically. Thus the mode interpreter could
check the consistency of the modes generated by the user in exactly the same way.

2.2 Clause level
Syntax:

clause_classification
chunk_sequence
perm_var_list
temp_var_list
global_perm_var_descr
global_temp_var_descr
perm_descr
temp_descr

Description:

(clause_type perm_var.list temp_var.list chunk.sequence)
head_chunk_fact | head_chunk_rule body_chunk_list
(perm {global_perm_var_descr}*)

(temp {global_temp_var_descr}*)

(variable perm_descr)

(variable temp_descr)

(Y-regnr use_head (last_chunk last_chunkliteral))
(X-reg-nr use_head use_premise)

clause_type The clause_type describes the kind of clauses, which are distinguished in

rel0, funlden, funleva, fun*den, fun*eva. We give the type rel0 to a hn-clause
without any body literal. Thus rel0 tags an ordinary fact, as known from PROLOG.
The “1” in the types funlden and funleva indicates that the clause contains only one
chunk. Hence “*” means the clause contains two or more chunks. “den” stands for
denotative foot and “eva” for evaluative foot. It should be noted that an hn-clause
with an evaluative last body literal still is a “den”-like clause, because hn-clauses
implicitly return the value true and not the value of their last premise

perm_var_list (Global information about the permanent variables of the clause) An ele-

ment of the perm_var_list is a pair of the form: (variable perm_descr). The perm_descr
is a 3-tuple describing a.) where the variable has to be located in the local environ-
ment in order to make optimum environment trimming, b.) the occurrences in the
head literal (a list of argument positions), and c.) the last occurrence (the last chunk
and the last literal in this chunk) of the variable in the clause.

temp_var_list (Global information about the temporary variables in the clause) The

temp_var_list describes which register (or X-reg.nr) has to be assigned to the tem-
porary variable for register optimization on the machine level, and furthermore the
occurrence in the head literal (or use_head) and the call literal (or use_premise). A
temporary variable occurs only in one chunk by definition, in this way the call literal
is unique and it is possible that neither use_head nor use_premise are different from
the empty list nil.

Example:

Source:

2.3 Chunk level

(hn (foo alpha beta))

(ft (foo _t gamma)

Classified Clauses:

(db (proc foo/2 2
(relo

(bar _t _p) (bar _p _q))

; hn-clause without body goals

(perm) ; there are no permanent variables
(temp) ; there are no temporary variables
head_chunk_fact)

(fun*eva

; the ft-clause (foo _t ...). The
; clause contains two small chunks
; and an evaluative foot bar/2

(perm (_p (1 nil (2 1)))); Permanent variable _p.

(t

he
bo

2.3 Chunk level
Syntax:

head_chunk_fact u=
head_chunk_rule =

body_chunk list n=
body.chunk
call_literal
chunk_guard
chunk_descr n=

1]

; -p is assigned to the Y-reg 1 in the
; local environment. _p doesn’t occur
; in the head. Its last occurrence is
; in the second chunk and as the first
; literal in the chunk.

emp (_t (1 (1) (1))) ; The temporary variable _t.
; -t is assigned to the X-reg 1. It
; has an occurrence in the head and
; call literal in the chunk at
; in the argument position 1.
(.q (2 nil (2)))) ; _q is assigned to register 2
; because its occurrence in the call
; literal is at argument position 2.
ad_chunk_rule
dy_chunk))

(chunk (head literal {chunk_guard}*) chunk_descr)

(chunk (headliteral {chunk guard}* first_premise_literal})
chunk_descr)

{body_chunk}* [(({chunk_guard}*) chunk_descr)]

(chunk ({chunk guard}* call_literal) chunk_descr)

literal_classification | lispcall_classification

builtin | passive_term

(lu_reg ({(variable permvar_uselit list)}*))

8 2 THE CLASSIFIER

permvar_uselit list = ({argnr}?)
Description:

body_chunk A chunk is a 2-argumented structure composed of the tag chunk, a list of
denotative literals called chunk_guards with an additional evaluative literal called
call literal as the last element, and some information about the chunk called chunk.-

descr.

head_chunk_fact If there are no call_iterals in the body of the clause, then the clause
contains only one chunk ending with a denotative literal. We call this kind of chunk
head_chunk_fact.In fact, all clauses with type rel0 or funlden are constructed with
only the head_chunk_fact.

head_chunk_rule If there is at least one call literal in the clause, then the first chunk
ends with an call literal (first_premise_literal). All clauses with types different from

ables. The information lu_reg tells the code generator which register is the last one
used by the classifier. For example the code generator has to take register numbers

2.4 Literal level and argument level 9

(2 ((_p (2))))); lu_reg = 2 because of the arity

; of the first_premise_literal. The

; permanent variable _p occurs at

; position 2 in the call_literal.

(chunk ; The tag for the second chunk.
(call_literal) ; There is only an call literal.
(2 ((_p (1))))))) ; _p occurs at position 1
; in the call_literal.

2.4 Literal level and argument level

Syntax:

literal_classification 2= (usrlit (functor arglist_classification) literal_descr)

lispcall classification ~ ::= (lispcall_type (lisp-builtin arglist_classification)
lispcall_descr)

builtin = unknown | is_primitive | (refl-Xreg lhs_term)

arglist_classification
term_classification

{term_classification }*

constant_classification | variable_classification
| structure_classification

(is lhs_term rhs_term)

constant_classification | variable_classification
term_classification
constant_name
(variable local_var_descr)
‘(functor arglist_classification)
| (inst (functor arglist_classification))

is_primitive

lhs_term

rhs_term
constant_classification
variable_classification
structure_classification

i

local_var_descr = (occurrence saveness var.class)
literal_descr ;= (arity env_size arg_seq)
lispcall_descr u= (arity env_size arg_seq)

Description:

term_classification A term is a denotative literal. The inst_op (“” or “inst”) indicates
that a literal is a denotative (sometimes called passive) one.

bm‘ﬂ =z [H;%“ %h]‘l .% !%-%“.V ”%{'%i%i%li i i'u,. EM“_“'P Arcuerancon_in thn
PR | ?sq éL —

0 He o 0 0 0 e I

clauses) by the local_var_descr. It is a list of three elements (occurrence saveness
var_class). The occurrence can be first, nonfirst, or reuse. While the meaning of first
and nonfirst is intuitively clear, reuse means that the classifier has assigned a register
to more than one temporary variable. If a variable occurs first it gets the information
reuse (instead of first) when the register was assigned to an other temporary variable
before in the same chunk. This is more an information for the user than for the code
generator. Because of the different possible references of a variable, we describe the
different reference states by the information saveness. The saveness is distinguished
into global (a reference to the heap), safe (a reference to a caller environment or to the

10 2 THE CLASSIFIER

heap), and unsafe (a possible reference to the local environment). The information
var_class tells the code generator whether the variable is temp or perm.

literal_descr The arity gives the number of arguments in the literal.

env_size denotes how many permanent variables have to be survive the all to the literal.
The Y-register assignment in the permvar_list has been done in a way that the env_size
is as small as possible.

arg_seq is a list that tells the code generator in which order the argument positions have
to be represented by RFM instructions. It’s possible that some arguments need no
instructions. A missing argument position in arg-seq indicates such a case.

Example:

Source:

(hn (foo alpha beta))
(ft (foo _t gamma) (bar _t _p) (bar _p _q))

Classified Clauses:

(db (proc foo/2 2
(rel0 (perm) (temp)
(chunk
((usrlit (foo alpha beta)
(2 0 (1 2)))) ; The literal foo has 2
; arguments. The env_size is
; 0. Generate code for alpha
; first.
nil)) ; No chunk description needed
(fun*eva
(perm (_p (1 nil (2 1))))
(temp (_t (1 (1) (1))) (_q (2 nil (2))))
(chunk
((usrlit (foo (_t (first safe temp)); _t occur
; first and is safe because
; it has a reference to the
gamma); caller environment
(2 1 (2))); _t needs no instruction!!
(usrlit (bar (_t (nonfirst safe temp))
(_p (first unsafe perm)))
; _p is potentially unsafe
(21 (2)))); As above!
; No instruction for _t
(2 (cp 2NN D
(chunk

2.5 An example with structures 11

((usrlit (bar (_p (nonfirst unsafe perm))
(_q (first unsafe temp)))

(20 (12))

2 (cp (DN

Remark:

Further information about the meaning of the Classified Clauses is described in paragraph 3,
where an introduction to the code generator is given. The code generator takes as input the
Classified Clauses for RELFUN and produces the RFM code. Therefore, in paragraph 3
you can find more detailed information on how the added descriptions are used for code
generation.

2.5 An example with structures

We consider the example “demostruc.rf” which is also used in the following paragraphs.
In this example we can study in which way structures are represented in the Classified
Clauses.
Source:

(ft (foo _2 _2 b)
(is _w ‘(g _2))
(is _2 ‘(f b))
(bar b _w))

(hn (bar _r _s))

Classified Clauses:

((proc bar/2 1
(relo ; bar/2 is an hn-fact
(perm) ; No permanent variables
(temp (_r (1 (1) nil)) ; 2 temporary variables
(_s (2 (2) nil)))
(chunk
((usrlit (bar (_r (first safe temp))
(_s (first safe temp)))
(2 0 (1 2)))); Poposed instructions for position 1 and
nil)))) ; 2, but the code generator will make it better

; Start of the description of the next procedure

(db (proc foo/3 1
(funleva ; A one-chunk rule with an evaluative foot
(perm) ;
(temp (_2 (1 (2 1) nil)) ; the variable _2 has no occurrence
; in the call_literal of its chunk

12 2 THE CLASSIFIER

(_w (2 nil (2))
(chunk
((usrlit (foo (_2 (first safe temp))
(_2 (nonfirst safe temp))
b) ; A constant gets no further description
(30 (312))) ; Generate code for the constant first!
(is ; All is-primitives are used denotatively
(_w (first unsafe temp)) ; in the Classified Clauses
‘(g (_2 (nonfirst safe temp)))) ; The structure g/2
; beginning with ‘¢¢*?
(is (_2 (nonfirst global temp))
“(f b)) ; A chunk guard gets no further description
(usrlit (bar b
(_w (nonfirst unsafe temp)))
(2 0 (1)))); No instruction for _w necessary because
; the register 2 is assigned to it
(3 nil)))) ; lu_reg = 3, because of the literal foo/3

2.6 EBNF syntax for Classified clauses

2.6 EBNTF syntax for Classified clauses

classified_database
classified_procedure

clause_classification
chunk_sequence
head_chunk_fact
head_chunk_rule

body_chunk_list
body_chunk
chunk_descr
headliteral
first_premise_literal
call_literal
chunk_guard
passive_term
permvar_uselit_list
literal_classification
lispcall_classification

builtin
arglist_classification
term_classification

is_primitive

lhs_term

rhs_term
constant_classification
variable_classification
structure_classification

perm_var_list
temp_var_list
literal_descr
lispcall_descr
global_perm_var_descr
global_temp_var_descr
perm_descr
temp._descr
local_var_descr
clause_type
lispcall_type

Y-regnr

X-regnr

il

It

]

.

(db {classified_procedure}*)
(proc procedure_name clause_count
{clause_classification}*)

(clause_type perm._var.list temp_varlist chunk_sequence)

head_chunk_fact | head_chunk_rule body_chunklist
(chunk (headiteral {chunk_guard}*) chunk_descr)

(chunk (head literal {chunk_guard}* first_premise_literal})

chunk_descr)
{body_chunk}* [(({chunk_guard}*) chunk_descr)]
(chunk ({chunk_guard}* call literal) chunk_descr)
(lu_reg ({(variable permvar_uselit_list)}*))
literal_classification
call literal
literal_classification | lispcall_classification
builtin | passive_term
term_classification
({argnr}*)
(usrlit (functor arglist_classification) literal_descr)
(lispcall_type (lisp-builtin arglist_classification)
lispcall_descr)
unknown | is_primitive | (refl-Xreg lhs_term)
{term_classification}*
constant_classification | variable_classification
| structure_classification
(is lhs_term rhs_term)
constant_classification | variable_classification
term_classification
constant_name
(variable local_var_descr)
‘(functor arglist_classification)
| (inst (functor arglist_classification))
(perm {global_perm_var_descr}*)
(temp {global_temp_var_descr}*)
(arity env_size argseq)
(arity env_size arg.seq)
(variable perm_descr)
(variable temp_descr)
(Y-reg-nr use_head (last_chunk last_chunkliteral))
(X-reg-nr use_head use_premise)
(occurrence saveness var_class)
rel0 | funlden | funleva | fun*den | fun*eva
cl-func | cl-pred | cl-extra
reg.nr
reg_nr

14

2 THE CLASSIFIER

last_chunk chunk_nr

last_chunkliteral = lit_nr

use_head := ({regnr}*)

use_premise = ({regar}*)

arg.seq := ({argmr}*)

lu_reg = regnmr

occurrence = first | nonfirst | reuse

saveness := global | safe | unsafe

var_class := perm | temp

variable := _name | (vari name)

procedure_name := name/arity

functor = name

lisp-builtin = lisp-fcts | lisp-preds | lisp-extras

lisp-fcts = ;;;;; RELFUN supported LISP functions
lisp-preds := ;5 RELFUN supported LISP predicates
isn-evtras = 12 RELFUN sunnorted LISP functions with side effects
constant_name = name

clause_count := cardinal

arg-nr = cardinal

reg.nr = cardinal

chunk_nr = cardinal

lit_nr := cardinal0

env_size := cardinal0

arity := cardinal0

name ;= letter {letter | digit0}*

cardinal = digit {digit0}*

cardinal0 = 0| cardinal

letter = a|b]|...|z

digit = 1]2]...]9

digit0 = 0| digit

2.7 The user interface and the code generator 15

2.7 The user interface and the code generator

The code generator produces WAM code from classified clauses and it is invoked after
the classifier by typing verti at the RFM prompt. The idea of the classified clauses is
to make the implicit structures of the compiler explicit in a declarative manner, thus
allowing its output to be used in debugging sessions, for educational purposes, or further
knowledge-based compilation steps. At the time of the verti command all tups must have
been transformed into cns structures using the untup command. It is also assumed that
flat clauses are in the database; flattening is performed by typing flatter. The horizon
command comprises mainly these program transformations. See [Kra91] for further possible

' n}!‘nngﬁﬂi) y et Ithar e thia onn b2 dane andamatine N .lminﬂmqmnﬂn.—zg‘ 32 m:gti |

be interested in the individual source-to-source transformations the horizon command is
performing.

The verti command collects all clauses starting with the same name and arity, and groups
them together on the property list of the symbol determined by the procedure name, using
the tag >clauses. This is necessary, because the basic entity in the WAM is a set of clauses
with the same name and arity, a procedure.

Then the classifier and the code generator are called for each set of clauses on a procedure’s
property list. The target code is also stored on the property list, under the tag ’procedure.
It is possible to pretty print the code by typing listcode. The classified clauses are not
stored on property lists, but can be simply reproduced by the listclass command.

The compile command can be called with an extra argument for compiling a single pro-
cedure, thus allowing procedure-based incremental compilation.

2.8 The user interface and the NyWAM

The user interface has two prompts: “rfi>” is displayed when the queries are sent to
the interpreter and the interpreter database, while “rfe> ” shows that the query, which
possibly is a conjunction of literals, is compiled. The code obtained is stored under the
name main, the datastructures for the variables in the query are created and their names
and locations are memoized to get the variable names when the goal succeeds. Finally
the emulator is called producing variable bindings or failures. When a goal succeeds the
bindings are output and the user is asked whether he wants more results, giving him the
opportunity to cause a failure and initiate backtracking so that the next solution may be
computed. When spy is enabled, the query’s compilation is output and the NyWAM is
set into the debugger mode. With nospy this feature is turned off.

3 The code generator

The basic idea of the code generator is to keep it as simple as possible to allow an easy
replacement of the NyWAM emulator by another abstract machine. The classified clauses
should be considered as a ’machine-independent’ representation of RELFUN procedures.
It should be easy to modify the code generator to produce code for a C-based emulator.
The internal program structure of the code generator resembles the structure of the EBNF
syntax. Therefore, in the following we give the EBNF syntax and the corresponding LISP
functions.

16 3 THE CODE GENERATOR

The idea is to have associated with each nonterminal symbol a function returning code for
that specific construct. The returned code is then appended to the other already existing
code. This concept ensures a (more or less) functional structure of the code generator.
But an append wastes time and cons-cells. Therefore, every call to append is done via
the macros doappend and addcode. If runtime problems with the code generator should
occur, these macros may be modified to expand to nconc.

The functions and macros will be introduced in the following. The descriptions of the
function’s parameters will not be given, so the reader should consult the source code,
although the variable names should be self-explaining.

The source of the code generator has been written in a very functional style using only a
small subset of COMMON LISP, having in mind a simple reimplementation of the code
generator in RELFUN. Thus, we make extensive use of CONDs instead of using ecase,
jump tables, and other specialities COMMON LISP is offering.

3.1 Software interface

The code generator has two access function from the outside (in the view of software
modules). (code-gen-proc classified procedure) is used to generate WAM code from
a classified procedure. This is the function we use from the outside to compile a procedure
incrementally.

In the future, the compilation of a single clause may become important for dynamic asserts
and retracts. The appropriate function to produce WAM code for a single classified clause
is (code-gen-cc clause_classification).

If extensions to the code generator are made, one should ensure that this interface does
not change.

In the following, functions for code generation are described. Nonterminals are used as
input parameters representing the argument type. The rightarrows prefix the returned
value of the system, which is often represented by nonterminal symbols. The symbols in
bold case are the terminal symbols.

3.2 classified_procedure

classified_procedure ::= (proc procedure_name clause_count {clause_classification}*)

e (s-cg-proc-id classified_procedure)
— proc

(s-cg-procedure_name classified_procedure)
— procedure_name

(s-cg-clause_count classified_procedure)
— clause_count

(s-cg-clause_classifications classified_procedure)
— list of clause_classification(s)

(code-gen-proc classified_procedure)
— NyWAM code for the procedure. This procedure is responsible for generating
try/retry/trust instructions.

3.3 clause_classification 17

3.3 clause_classification

clause_classification ::= (clause_type perm_var list temp_var_list
chunk_sequence)
chunk_sequence = head_chunk_fact | head_chunk_rule body_chunk_list

o (s-cg-clause_typ clause_classification)
— clause_type

e (s-cg-perm_var_ list clause_classification)
— perm_var_list

o (s-cg-temp_varlist clause_classification)
— temp_var_list

o (s-cg-chunks clause_classification)
— list of head_chunk_fact or list of head_chunk_fact or list of head_chunk_rule
body_chunk_rule.

¢ (code-gen-cc clause_classification)
— NyWAM code for a classified clause. This function has to cope with rel0,
funlden, funleva, fun*den and fun*eva and for setting up an appropriate en-
vironment.

3.4 head_chunk_fact, head_chunk_rule, body_chunk

head_chunk fact := (chunk (headliteral {chunk_guard}*) chunk_descr)

head_chunk_rule (chunk (headliteral {chunk_guard}* first_premise_literal}) chunk_descr)
body_chunklist {body_chunk}* [(({chunk_guard}*) chunk_descr)]

body_chunk (chunk ({chunk_guard}* call_literal) chunk_descr)

Let chnk be an abbreviation for head_chunk_fact, head_chunk_rule or body_chunk.

e (s-cg-chunk.d chnk)
— chunk

e (s-cg-chunk_descr chnk)
— chunk_descr

¢ (s-cg-chunk_headliteral chnk)
— head_literal

¢ (s-cg-chunk_hd_cgfpl head_chunk_rule)
— list: ((chunk_guard/s) first_premise_literal)
remark: cgfpl = chunk guard, first premise literal

e (s-cg-chunk-bd_cgcl body_chunk)
— ((chunks_guard/s) call_literal)
remark: cgcl = chunk guard, call literal

18 3 THE CODE GENERATOR

o (code-gen-hdchunk perms temps chunk callexeflg deallocflg chunknr)
This function returns code for the first chunk in the clause. One may notice that
this function is very similar to code-gen-chunk below, although further enhancements
(indexing, global compilation) may result in a complete reformulation of that function,
whereas code-gen-chunk is likely to keep the same.

o (code-gen-chunk perms temps chunk callexeflg deallocflg chunknr)
Returns WAM code for a chunk to be found in the body.

3.5 chunk_descr
chunk_descr == (lu_reg ({(variable permvar_uselit_list)}*))

e s-cg-chunk lu_reg (chk_descr)
— lu_reg

e s-cg-chunk_vpul (chk_descr)
— list of (variable permvar_uselit_list)

3.6 literal_classification

literal_classification ::= (usrlit (functor arglist_classification) literal descr)

o (s-cg-usrlit_id literal_classification)
— usrlit

o (s-cg-literal_descr literal_classification)
— literal_descr

o (s-cg-faclist literal_classification)
— (functor arglist_classification)
remark: fac = functor arglistclassification

o (s-cg-functor fac)
— functor

o (s-cg-arglist_classification fac)
— arglist_classification

o (code-gen-head perms temps fac arg.seq)
Generates code for the first literal in the clause.

— (code-gen-head-arg place temps arg)
Generates code for an argument place in the first literal in the clause.

— (code-gen-head-temp place temps arg)
Generates code for an X-variable in the first literal of a clause.

— (code-gen-head-perm place temps arg)
Generates code for a Y-variable in the first literal of a clause.

3.7 variable_classification, local_var_descr 19

e (code-gen-tail perms temps arity perment fac callexeflg deallocflg cnknr litnr arg._seq)
Generates code for the literals except the first in the clause.

— (code-gen-tail-arg place perms temps arg chknr litnr)
Generates code for an argument place in the literals except the first in the clause.

— (code-gen-tail-temp place temps arg)
Generates code for an X-variable in the body literals of a clause.

— (code-gen-tail-perm place perms arg chknr litnr)
Generates code for the literals except the first in the clause.

3.7 variable_classification, local_var_descr

variable_classification ::= (variable local_var_descr)
local_var_descr = (occurrence saveness var_class)

¢ (s-cg-local-var-descr variable_classification)
— local_var_descr

e (s-cg-local_var_occurrence variable_classification)
— local_var_occurrence

o (s-cg-local_var_saveness variable_classification)
— local_var_saveness

o (s-cg-local_var_class variable_classification)
— local_var_class

3.8 Global variables

¢ Emulator-related variables

— *user-variables*
Contains the user’s variables when a query is issued.

— *registers*
The define-register functions adds each register to this list, causing the de-
bugger to output the variables of this list.

— *read-mode*

This is a global flag in the machine indicating the read/write status, which is
used in the unify instructions.

- emu-debug*
This flag determines whether the emulator is in a debugging state or will just
run through the code.

¢ code generator-related variables

— *lureg*
This variable determines which X-registers can be used by the code generator
without any interference with the classifier’s allocations.

20 3 THE CODE GENERATOR

— y-x-usage-list
An assoc-list mapping Y variables to X-registers.

3.9 perm_var.list, temp_var_list

perm_var list u= (perm {global_perm_var_descr}*)
temp_var_list #:= (temp {global_temp_var_descr}*)
global_perm_var_descr = (variable perm_descr)
global_temp_var.descr ::= (variable temp_descr)

e (s-cg-perm_var global_perm_var_descr)
— variable

o (s-cg-perm_descr global_perm.var_descr)
— perm_descr

o (s-cg-temp_var global temp_var_descr)
— variable

o (s-cg-temp_descr global_temp_var_descr)

— temp-_descr

3.10 perm._descr, temp_descr

perm_descr = (Y-regnr use_head (last_chunk last_chunkliteral))
temp.descr = (X-reg.nr use_head use_premise)

e (s-cg-perm.y.nr perm_descr)
— Y-reg-nr

o (s-cg-perm_use_head perm_descr)
— use_head

o (s-cg-permlast_literal perm_descr)
— last_chunkliteral

e (s-cg-temp_x.nr temp._descr)
— X-reg_nr

o (s-cg-temp_use_head temp_descr)
— use_head

e (s-cg-temp_use_premise temp_descr)
— use_premise

3.11 literal_descr

literal_descr ::= (arity env_size arg_seq)

o (s-cg-arity literal_descr)
— arity

3.12 lispcall_type, lispcall_classification 21

o (s-cg-env_size literal_descr)
— env_size

o (s-cg-arg.seq literal_descr)
— arg.seq

3.12 lispcall_type, lispcall_classification
lispcall_classification ::= (lispcall-type (lisp-builtin arglist_classification) lispcall_descr)

lispcall_type = cl-func | cl-pred | cl-extra | cl-relf

e (cg-lispcall-p lispcall_classification)
— t, if it is an external LISP call, nil otherwise

o (cg-lispcall-fun lispcall_classification)
— lisp-function

o (cg-lispcall-args lispcall_classification)
— arglist_classification

3.13 arglist_classification, term_classification, constant_classification

arglist_classification ::= {term_classification}*
term_classification constant_classification | variable_classification
| structure_classification

constant_classification ::= constant_name
variable_classification ::= see 3.7
structure_classification::= ‘(functor arglist_classification)

| (inst (functor arglist_classification))

o (cg-inst-p term_classification)
— t, if argument is an instantiation operator, nil otherwise

e (cg-s-inst-functor term_classification) (already knowing term is inst-op)
— functor

(cg-s-inst-funargs term_classification) (already knowing term is inst-op)
— arglist_classification

(arg-var-p term_classification)
— t, if argument is a variable_classification, nil otherwise

(arg-nil-p arglist_classification)
— t, if argument is an empty list, nil otherwise

(arg-const-p arglist_classification)
— t, if argument is a constant, nil otherwise

22 3 THE CODE GENERATOR

3.14 Getting global information on variables

When it is known that a variable with a local description occurs, it is useful to look up
the global information. At this level of processing, it is assumed that the code generator
already has stored the global X- and Y-variable information in a local variable further re-
ferred to as perms and temps.

o (get_perm_descr arg_var perms)
get the global information of the permanent variable arg.var.

e (get_temp_descr arg_var perms)
get the global information of the temporary variable arg_var.

3.15 Obtaining the procedure arity

H o aeesiesitbesslossifiodeiioscivituiditutiibid wianded, i‘bisi'imde_d_m_ms orace- \

3.17 Y-variable scoreboarding 23

3.17 Y-variable scoreboarding

The idea of Y-variable scoreboarding is to safe memory bandwidth by remembering which
Y-variable was already loaded into an X-register. Every time a Y-variable is ’touched’, the
corresponding X-register is saved as a pair (Y-variable X-register) on an assoc-list named
y-x-usage-1ist, which is a global variable meaning that the Y-variable can also be found
in an X-register.

The following functions are dealing with Y-variable scoreboarding:

o (is-y-in-x y-vari y-x-usage-list)
This function associates the Y-variable with its X-argument position. If the Y-
variable is not in an X-register, the result is nil.

¢ (add-y-x-list y-vari x-reg y-x-usage-list)
This function adds a (Y-variable X-register) pair to the scoreboard.

¢ (d_yreg-assoc yreg y-x-usage-list)
This is used to eliminate a pair specified by its Y-variable.

¢ (d_xreg_assoc xreg y-x-usage-list)
This is used to eliminate a pair specified by its X-variable.

24 4 THE NYWAM

4 The NyWAM

A LISP-based emulator was obtained from Sven-Olof Nystrgm[Nys], Uppsala University.
The present NyWAM version was modified to work within our Complab approach. This
implementation could be replaced by some WAM implementation in C[Els90]. But the
flexibility would be lost and the turnaround times would increase. Thus the NyWAM is
an ideal prototype implementation choice.

4.1 Terminology

'Global Stack’ and *heap’ as well as ’local stack’, ’stack’ and ’runtime stack’ are synonyms,
an environment and a choice point are portions of the local stack, the push-down list (PDL)
is a stack used temporarily by the unification procedure, but it is not needed within the
NyWAM, since this is done recursively in LISP. In most publications the A-registers are
assumed to be the same as the X-registers and for those authors assuming disjoint A and X
sets of registers the A-regs can be mapped to a single X-register set. Therefore argument
registers will be referred herein as X-registers.

4.2 The datastructures

The WAM model assumes a tagged memory model. This means that memory locations
are ’typed’, e.g. that it is possible to tell which datatype is in the memory location. Since
registers have neither tags nor addresses, with these it is only possible to handle references
(or at most constants) but it is impossible to represent free variables, structures or lists
directly. The tagged memory is handled by the (LISP) structure WORD:

Tag Value
empty undefined
ref a memory address
struct a memory address
list a memory address
const constant symbol
fun a list (function-name arity)
code | a list (procedure-name . rest-of-instruction-list)
trail a list of references to bound variables

The memory layout is shown in table 1. At the top are the low addresses, increasing
downwards.

4.2.1 The local stack

The local stack contains environment and choicepoint frames. An environment must be
created in a clause (using the allocate instruction) as soon as local variables become
necessary.

A choice point is needed if there is more than one clause in a procedure. If a recent goal
failed, the next clause must be explored with all argument registers appropriately (re-)set
and the variables bound later than the invocation of the current clause restored to an
unbound state.

4.3 The registers 25

heap (address 0) «— start-of-heap

heap (address n) — HB
heap (address n+m) | < H

maximum heap address | «— start-of-stack—1
local stack « start-of-stack

environment and
choicepoint frames

local stack — A

«— memory-size

Table 1: The memory layout of the local and global stacks

previous environment pointer (CE) | « new E
previous continuation pointer (CP)
Y-variabley

Y-variable,

«— new A

Table 2: The memory layout of an environment

4.2.2 The heap

The heap holds compound terms. These compound terms may be lists or structures. The
H-register points to the top of the heap, whereas the register HB is the (redundant) heap
backtrack register used for speeding up references to the old heap pointer.

4.2.3 The trail

Contrary to other implementations the trail is realized as a LISP list. This is possible since
no random access may happen on that structure. Either a reference is pushed on the trail
(when a binding occurs) or the information is popped sequentially (when backtracking to
a certain point occurs).

4.3 The registers

A register defined by define-register can be set using (set-reg register value) and
referenced using (reg register). Currently, there are 64 X-registers defined in the array.

26 4 THE NYWAM

X-register;

X-registery,
previous environment pointer (BCE)
previous continuation pointer (BCP)
previous choice point (B1)
next clause pointer (BP)
trail pointer (TR1)
heap pointer (H1) — new B
— new A

Table 3: The memory layout of a choicepoint (backtrack point)

Register || Description points to Definition
P program counter program code || define-register
Ccp continuation pointer | program code || define-register
E last environment local stack define-register
B last choicepoint local stack define-register
A top of stack local stack define-register
TR trail list define-register
H top of heap heap define-register
HB heap backtrack point | heap define-register
S structure pointer heap define-register
X registers heap,stack array

4.4 The instructions

The instructions are written in a LISP-like manner. The indexes of X and Y variables
start with the index 1. Structures are coded by a list (fun arity). The list structures are
coded as nestings of the structure (cns car cdr) on the classified clauses representation

e I T~ T e o =5 - TSl SR Ry st L
PR —_— 3

I

4.4.1 PUT-instructions

(put_variable_perm Y fyom X¢o)

(put-variable_temp X from Xto)

(put-value_perm Y from Xto)

(put_value_temp Xfrom Xio)

(put_unsafe_value_perm Y from X¢o)

(put_constant C X,)

¢ (putmil Xy,)

4.4 The instructions

o (put_structure F X,,)

[(put_list Xto)

4.4.2 GET-instructions

o (get_variable_temp Xn Ai)
e (get.variable_perm Yn Ai)
o (get_value_temp Xn Ai)

o (get_value_perm Yn Ai)

¢ (getnil Xi)

o (get_constant C Xi)

o (getstructure F Xi)

o (getlist Xi)

4.4.3 UNIFY-instructions

e (unify_variable_temp X;)

o (unify_variable_perm Y;)

¢ (unify_void n)

e (unify_value_temp X;)

¢ (unify_value_perm Y;)

¢ (unify local_value_temp X;)
e (unify_local_value_perm Y;)
¢ (unify_nil)

¢ (unify_constant C)

4.4.4 Indexing instructions

o (switch_on_type Lvarunbound Linteger Lsymbol Llist Lstruct Lnil Lother)
o (switch_on_constant Len Table Default)

o (switch_on_structure Len Table Default)

27

28

4 THENYWAM

4.4.5 Procedural instructions

[J

(try L n)

(retry L n)

(trust L n)
(try_me_else L n)
(retry_me_else L n)
(trust_me_else_fail n)
(allocate n)
(deallocate)
(proceed)

(execute proc/n)

(call proc/n envsize)

4.4.6 Special instructions

(has-succeeded)

(has-failed)

4.4.7 Special builtins - Cuts and Metacall

(save_cut_pointer)
This instruction must be generated if there is a cut occurring in the clause except in

the first chunk. This implies that there is more than one chunk and an environment
must be existent.

(first_cut)

This instruction is used when the cut is in the first chunk and the first chunk is no

pseudochunk. It contains a call to another procedure and thus is not the only subgoal
in the clause.

(lonely_cut)

This instruction stands for a clause with a cut at the end of the first and only chunk.
(So a call to another procedure is not present.)

(last_cut)

last_cut is to be used in a clause, which has a chunk (and hence a call to a procedure)
and a cut at the very end of the last (pseudo)-chunk.

(cut n)

This instruction represents a cut occurring in a chunk except the first and the last
chunk. The parameter n indicates the size of the environment used (for trimming).

4.5 User interface of the NyWAM 29

¢ (mcall X;)
This a metacall where X; references a structure (not a list!) representing the call to
be invoked.

4.4.8 LISP interface

Only ground arguments (not variables) can be converted to LISP. The LISP functions are
not allowed to return structures (nor variables). Al NyWAM-LISP interface instructions
convert arity argument registers into a LISP list and apply the function fun to this list.
Only RELFUN tups - but not structures - can be converted.

¢ (cl-func fun arity)
This function returns the value obtained from LISP to the argument register X1.

o (cl-pred fun arity)
This instruction generates a failure if the returned value is nil. 2

¢ (cl-extra fun arity)
This instruction is used for side-effect LISP calls. 3

4.5 User interface of the NyWAM

The user may define a procedure using the definstr macro. Queries are dynamically com-
piled by flattening, classifying and generating code for a procedure named ‘main/arity’.
The arity of this procedure is determined by the number of variables originally found in
the user query.

4.5.1 The debugger control commands

The debugging behavior of the NyWAM can be controlled by the variable *emu-debugx,
which is normally set to nil to just run through the WAM code. If the user wishes to have
WAM debugging information, this global variable may be set to t by the RFE-command

spy.

All control commands consist of one character.

E,e Terminate and go to LISP.

F,f Generate a fail. (Sometimes this command may
cause trouble.)

? Output this Help-Menu.

X,x Execute until program succeeds.

S,s,newline Single step execution.

vV,v Output values before single step.

%In the interpreter a false is produced, which generates a failure if used as a body premise.
3X1 will not be changed.

30 4 THE NYWAM

4.5.2 The debugger display commands

This mode will be enabled by typing v in the control mode.

All display commands consist of one character.

? Output this Help-Menu.

X,x Output n (to be read) argumentregisters X(1)..X(n).
H,h Output Heap.

R,r Output all registers except argumentregisters.

S,s Output stack.

31

5 A sample session

We consult and compile the well known naive reverse benchmark, run an nrev-query and
then demonstrate the usage of the debugger using a simple append-query.

rfi> emul

rfe> consult "exa/bench"

rfe> 1

(hn (app nil _1 _1))

(ft (app (ecns _h _11) _12 (cns _h _13))
(app _11 _12 _13))

(hn (nrev nil nil))

(ft (nrev (cns _h _11) _13)
(nrev _11 _12)
(app .12 ‘(cns _h nil) _13))

The database has been consulted and listed. In the following we do some horizontal trans-
formations and list the result.

rfe> horizon

rfe> 1

(hn (app nil _1 _1))

(ft (app _1 _12 _2)
(is _2 ‘(cns _h _13))
(is _1 ‘(cns _h _11))
(app _11 _12 _13))

(hn (nrev nil nil))

(ft (nrev _1 _13)
(is _1 “(cns _h _11))
(nrev _11 _12)
(is _2 ‘(cns _h nil))
(app .12 _2 _13))

The horizontal transformations are followed by the vertical transformations into WAM
code. The resulting code is shown by the 1istcode command. If you want to see classified
clauses, type 1istclass.

rfe> verti
rfe> listcode app/3
((try_me_else 0 3)
(get_nil 1)
(get_value_temp 2 3)
(put_constant true 1)
(proceed)
0
(trust_me_else_fail 3)
(get_list 3)

32 5 A SAMPLE SESSION

(unify_variable_temp 4)
(unify_variable_temp 5)
(get_list 1)
(unify_value_temp 4)
(unify_variable_temp 6)
(put_value_temp 6 1)
(put_value_temp 5 3)
(execute app/3))

rfe> listcode nrev/2
((try_me_else 0 2)
(get_nil 1)
(get_nil 2)
(put_constant true 1)
(proceed)

0
(trust_me_else_fail 2)
(allocate 3)
(get_variable_perm 3 2)
(get_list 1)
(unify_variable_perm 2)
(unify_variable_temp 3)
(put_variable_perm 1 2)
(put_value_temp 3 1)
(call nrev/2 3)
(put_list 2)
(unify_value_perm 2)
(unify_nil)
(put_unsafe_value_perm 1 1)
(put_value_perm 3 3)
(deallocate)
(execute app/3))

We are now finished compiling the database. Next we perform an nrev-query.

rfe> (nrev ‘(cns 1 (cns 2 (cns 3 nil))) _x)
true
(.x = (tup 3 2 1))

More solutions? (y or n) y

unknown

Now we are interested in obtaining a trace of a simple query, displaying the internal struc-
tures when something interesting happens. The query is compiled and then the debugger
is invoked.

33

rfe> spy
rfe> (app ‘(cns 1 nil) ‘(cns 2 nil) _x)
((proc
main/1
1
(funleva
nil
((.x (3 (1) (3))) (.1 (4 nil (1))) (.2 (2 nil (2))))
(chunk
((usrlit (main (_x (first safe temp))) (1 0 (1)))
(is (.1 (first unsafe temp)) ‘(cns 1 nil))
(is (.2 (first unsafe temp)) ‘(cns 2 nil))
(usrlit
(app
(.1 (nonfirst unsafe temp))
(.2 (nonfirst unsafe temp))
(_.x (nonfirst safe temp)))
(30(13)))
(4 nil))))N
((get_variable_temp 3 1) (put_list 4) (unify_constant 1) (unify_ nil)
(put_list 2) (unify_constant 2) (unify_nil) (put_value_temp 4 1)
(execute app/3))

The following is a debugger trace.

= [code : (TRY PROC 0) in TOP-LEVEL] :v
Value of?s
mem[20000]=[777 : 77?77 == E <== B

Initially there is not much on the stack. Registers E and B point to the beginning of the

;\rl{ The nevt inctrnetinn rrastac a rhaicannint and tha ramictnarc_ar

34

P =

P =

Value of?a

[code
[code
[code
[code
[code
[code
[code
[code
[code
[code

[code

PROC in TOP-LEVEL]

: (CALL MAIN/1 0) in TOP-LEVEL]

.8

: (GET_VARIABLE_TEMP 3 1) in MAIN/1]

(PUT_LIST 4) in MAIN/1]

: (UNIFY_CONSTANT 1) in MAIN/1]

(UNIFY_NIL) in MAIN/1]

(PUT_LIST 2) in MAIN/1]

: (UNIFY_CONSTANT 2) in MAIN/1]

(UNIFY_NIL) in MAIN/1]

.8

.8

.8

: (PUT_VALUE_TEMP 4 1) in MAIN/1]

: (EXECUTE APP/3) in MAIN/1]

v

Type number of argumentregisters to output:3

A(1) = [list : 2]
A(2) = [1ist : 4]
A(3) = [ref : 1]
P = [code : (EXECUTE APP/3) in MAIN/1]
Value of?h
mem[0]=[777 : ??777?7] <K==
mem[1]=[ref : 1] <==
mem[2]=[const : 1]
mem[3]=[const : NIL]
mem{[4]=[const : 2]
mem[5]=[const : ’ NIL] <«==
P = [code : (EXECUTE APP/3) in MAIN/1]

= W

v

.8

.8

.8

.8

:8

5 A SAMPLE SESSION

The code above allocates the structures for the query in the data space and sets the ar-
gument registers accordingly. Register X1 points to a list at memory locations 2 and 3,

representing the list (1 .

nil), and register X2 points to the list at memory locations

4 and 5. The third argument (X3) is a reference to memory location 1, whose contents
points to the same location. This is the representation of a free variable.

P

P

[code

[code

: (TRY_ME_ELSE 0 3) in APP/3]

(GET_NIL 1) in APP/3]

.8

:S

35

Please note that the get_nil fails and jumps to label 0 in app/3 to continue. The choice-
point can now be removed since the next clause is the last clause in the procedure. So
trust_me_else_fail removes the choicepoint.

P = [code : 0 in APP/3] :s

P = [code :(TRUST_ME_ELSE_FAIL 3) in APP/3] :v

Value of?s

mem[20000]=[?77 : 7Y <== E
mem[20001]=[ref : 20000]
mem[20002]={?77? : 777777

mem[20003] =[ref : 200001
mem[20004]=[code : (TRUST FAIL 0) in TOP-LEVEL]
mem[20005]=[trail : NIL]
mem[20006]=[ref : 1]

mem[20007]=[ref : 1]
mem(200081=[1] :

mem[20010]={ref : 20000]
mem[20011]=[code : (HAS-SUCCEEDED) in TOP-LEVEL]
mem[20012]=[ref : 20006]
mem[20013]=[code : 0 in APP/3]
mem[20014]=[trail : NIL]
mem[20015]=[ref : 5] «==

P = [code :(TRUST_ME_ELSE_FAIL 3) in APP/3] :s

P = [code : (GET_LIST 3) in APP/3] :vs
Value of?
mem[20000]=[777 : ?7??7?] <== E
mem[20001]}=[ref : 20000]
mem[20002]=[777? : ?PP??T
mem[20003]=[ref : 20000]
mem[20004]=[code : (TRUST FAIL 0) in TOP-LEVEL]
mem[20005] =[trail : NIL]
mem[20006]=[ref : 1] <==B

In the following the next procedure invocation of app/3 is prepared.

P = [code : (GET_LIST 3) in APP/3] :s
P = [code :(UNIFY_VARIABLE_TEMP 4) in APP/3] :s
P = [code :(UNIFY_VARIABLE_TEMP 5) in APP/3] :s
P = [code : (GET_LIST 1) in APP/3] :s

36 5 A SAMPLE SESSION

P = [code :(UNIFY_VALUE_TEMP 4) in APP/3] :s

P = [code :(UNIFY_VARIABLE_TEMP 6) in APP/3] :s
P = [code :(PUT_VALUE_TEMP 6 1) in APP/3] :s

P = [code :(PUT_VALUE_TEMP 5 3) in APP/3] :s

P = [code : (EXECUTE APP/3) in APP/3] :v

Value of?a
Type number of argumentregisters to output:3

A(1) = [const : NIL]

A(2) = [list : 4]

A(3) = [ref : 7]

P = [code : (EXECUTE APP/3) in APP/3] :v
Value of?h

mem[0]=[777 : 777777

mem[1]=[list : 6]
mem[2]=[const : 1]

mem[3]=[const : NIL] <== S
mem[4]=[const : 2]
mem[5]=[const : NIL] <== HB
mem[6]=[const : 1]
mem[7]=[ref : 7] == H

P = [code : (EXECUTE APP/3) in APP/3] :s

Now app/3 is called with the following arguments: X1 is nil, X2 is (2.nil) and X3 is a free
variable. Clearly, the first clause of app/3 must be applied.

P = [code :(TRY_ME_ELSE O 3) in APP/3] :s
P = [code : (GET_NIL 1) in APP/3] :s
P = [code :(GET_VALUE_TEMP 2 3) in APP/3] :s
P = [code :(PUT_CONSTANT TRUE 1) in APP/3] :s
P = [code : (PROCEED) in APP/3] :s
P = [code : (HAS-SUCCEEDED) in TOP-LEVEL] :v

Value of?s

mem[20000]=[777 : ?7?777] <==E

mem[20001]=[ref : 20000]

mem[20002]=[777
mem[20003]=[ref
mem[20004] =[code

mem[20005]=[trail :

mem[20006] =[ref
mem [20007]=[ref
mem[20008]=[1ist

mem[20009]=[const :

mem[20010] =[ref
mem[20011]=[code
mem[20012] =[ref
mem[20013]=[code

mem[20014]=[trail :[ref

mem{20015]=[ref
P = [code
true

(.x = (tup 1 2))

More solutions?

?2??°??7?

20000]

NIL]
1]

7]

4]
NIL]
20000]

20006]

0 in APP/3]
111

7] <==

(HAS-SUCCEEDED) in TOP-LEVEL1]

(Yor N) y

(TRUST FAIL 0) in TOP-LEVEL]

: (HAS-SUCCEEDED) in TOP-LEVEL]

37

In the following some other possibilities are tested, but fail. Finally the unknown message

is generated due to the failure pointer in the very first choicepoint entry.

P = [code 0 in APP/3] :s

P = [code :(TRUST_ME_ELSE_FAIL 3) in APP/3]
P = [code (GET_LIST 3) in app/3] :s

P = [code :(UNIFY_VARIABLE_TEMP 4) in APP/3]
P = [code :(UNIFY_VARIABLE_TEMP 5) in APP/3]
P = [code (GET_LIST 1) in app/3] :s

P = [code : (TRUST FAIL 0) in TOP-LEVEL]

P = [code FAIL in TOP-LEVEL]

P = [code (HAS-FAILED) in TOP-LEVEL]
unknown

rfe> lisp

:8

.S

'8

.8

.8

.8

38

REFERENCES

References

[BEH*93] Harold Boley, Klaus Elsbernd, Michael Herfert, Michael Sintek, and Werner

[Bol90]

[E1s90]

[Hei89)]

[Kra90]

[Kra91)

[Nys]
[War83]

Stein. RELFUN Guide: Programming with Relations and Functions Made
Easy. Document D-93-12, DFKI GmbH, July 1993.

Harold Boley. A Relational/Functional Language and Its Compilation into the
WAM. SEKI Report SR-90-05, Universitit Kaiserslautern, Fachbereich Infor-
matik, April 1990.

Klaus Elsbernd. Effizienzvergleiche zwischen einer LISP- und C-codierten WAM.
SEKI Working Paper SWP-90-03, Universitiat Kaiserslautern, Fachbereich In-
formatik, Juni 1990.

Hans-Giinther Hein. Adding WAM-Instructions to support Valued Clauses for
the Relational/Functional Language RELFUN. SEKI Working Paper SWP-90-
02, Universitit Kaiserslautern, Fachbereich Informatik, December 1989.

Thomas Krause. Klassifizierte relational/funktionale Klauseln: Eine deklar-
ative Zwischensprache zur Generierung von Register-optimierten WAM-
Instruktionen. SEKI Working Paper SWP-90-04, Universitit Kaiserslautern,
Fachbereich Informatik, Mai 1990.

Thomas Krause. Globale DatenfluBanalyse und horizontale Compilation der
relational-funktionalen Sprache RELFUN. Diplomarbeit, DFKI D-91-08, Uni-
versitiat Kaiserslautern, FB Informatik, Postfach 3049, D-6750 Kaiserslautern,
Marz 1991.

Sven Olof Nystrgm. Nywam - a WAM emulator written in LISP.

David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309,
SRI International, Menlo Park, CA, October 1983.

Deutsches

far Kdnstliche
intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.,

Forschungszentrum

DFKI

-Bibliothek-

PF 2080

67608 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.

The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-92-35

Manfred Meyer:

Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36

Franz Baader, Philipp Hanschke:

Extensions of Concept Languages for a Mechanical
Engineering Application

15 pages

RR-92-37

Philipp Hanschke: Specifying Role Interaction in
Concept Languages

26 pages

RR-92-38

Philipp Hanschke, Manfred Meyer:

An Alternative to H-Subsumption Based on
Terminological Reasoning

9 pages

RR-92-40
Philipp Hanschke, Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for

Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards

Group Scheduling
32 pages

RR-92-42

John Nerbonne:

A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43

Christoph Klauck, Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44

Thomas Rist, Elisabeth André: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP

15 pages

RR-92-45

Elisabeth André, Thomas Rist: The Design of
Illustrated Documents as a Planning Task

21 pages

RR-92-46

Elisabeth André, Wolfgang Finkler, Winfried Graf,
Thomas Rist, Anne Schauder, Wolfgang Wahister:
WIP: The Automatic Synthesis of Multimodal
Presentations

19 pages

RR-92-47

Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios

24 pages

RR-92-48

Bernhard Nebel, Jana Koehler:

Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective

15 pages

RR-92-49

Christoph Klauck, Ralf Legleitner, Ansgar Bernardi:
Heuristic Classification for Automated CAPP

15 pages

RR-92-50

Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR-92-51

Hans-Jiirgen Biirckert, Werner Nutt:

On Abduction and Answer Generation through
Constrained Resolution

20 pages

RR-92-52

Mathias Bauer, Susanne Biundo, Dietmar Dengler,
Jana Koehler, Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems

14 pages

RR-92-53
Werner Stephan, Susanne Biundo:

A New Logical Framework for Deductive Planning
15 pages

RR-92-54

Harold Boley: A Direkt Semantic Characterization
of RELFUN

30 pages

RR-92-55

John Nerbonne, Joachim Laubsch, Abdel Kader
Diagne, Stephan Oepen: Natural Language
Semantics and Compiler Technology

17 pages

RR-92-56

Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics

34 pages

RR-92-58

Franz Baader, Bernhard Hollunder:

How to Prefer More Specific Defaults in
Terminological Default Logic

31 pages

RR-92-59
Karl Schlechta and David Makinson: On Principles

and Problems of Defeasible Inheritance
13 pages

RR-92-60

Karl Schiechta: Defaults, Preorder Semantics and
Circumscription

19 pages

RR-93-02

Wolfgang Wahister, Elisabeth André, Wolfgang
Finkler, Hans-Jiirgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation

50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard Nebel,
Hawr Lizgen Prafitlich Fprico Ergproni,

RR-93-05
Franz Baader, Klaus Schulz: Combination Tech-

niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jiirgen Biirckert, Bernhard Hollunder, Armin

Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jiirgen Biirckert, Bernhard Hollunder, Armin

Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge

Representation and Compilation Laboratory
64 pages

RR-93-09

Philipp Hanschke, Jorg Wiirtz:

Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10

Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems

35 pages

RR-93-11

Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:

A Maximal Tractable Subclass of Allen's Interval
Algebra

28 pages

RR-93-12

Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion

51 pages

RR-93-13

Franz Baader, Karl Schlechta:

A Semantics for Open Normal Defaults via a
Modified Preferential Approach

25 pages

RR-93-14
Joachim Niehren, Andreas Podelski Ralf Treinen:

Fanntignaland Mgmbgrshio Gonstraints for Infinite

————————————

RR-93-17

Rolf Backofen:

Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the

Propositional pi-Calculus
32 pages

RR-93-20

Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22

Manfred Meyer, Jorg Miiller:

Weak Looking-Ahead and its Application in
Computer-Aided Process Planning

17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy:

Comparative Study of Connectionist Simulators
20 pages

RR-93-24

Rainer Hoch, Andreas Dengel:

Document Highlighting —

Message Classification in Printed Business Letters
17 pages

RR-93-26

Jorg P. Miiller, Markus Pischel: The Agent

Architecture InteRRaP: Concept and Application
99 pages

RR-93-27

Hans-Ulrich Krieger:

Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,

Hannes Pirker: Feamre-Based Allomorphy
8 pages

pori.a

DFKI Technical Memos

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated

Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:

ODA-based modeling for document analysis
14 pages

TM-91-15

Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01

Lijuan Zhang: Entwurf und Implementierung cines
Compilers zur Transformation von
Werkstiickrepriisentationen

34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and

Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:

A Cognitiv Analysis of Event Structure
21 pages

T™M-92-04

Jiirgen Miiller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jérg Thoben:
The refitting of plans by a human expert

10 pages

TM-92-06

Otto Kiihn, Franz Schmalhofer: Hierarchical
skeletal Plan refinement: Task- and inference

DFKI Documents

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft-

warekomponenten fiir natiirlichsprachliche Systeme
189 Seiten

D-92-17

Elisabeth André, Robin Cohen, Winfried Graf,
Bob Kass, Cécile Paris, Wolfgang Wahlster (Eds.):
UMB92: Third International Workshop on User
Modeling, Proceedings

254 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten

Diagnose technischer Systeme
109 Seiten

D-92-19

Stefan Dittrich, Rainer Hoch: Automatische,
Deskriptor-basierte Unterstiitzung der Dokument-
analyse zur Fokussierung und Klassifizierung von
Geschiftsbriefen

107 Seiten

D-92-21

Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

D-92-22
Werner Stein: Indexing Principles for Relational

Languages Applied to PROLOG Code Generation
80 pages

D-92.23
Michael Herfert: Parsen und Generieren der Prolog-

artigen Syntax von RELFUN
51 Seiten

D-92-24

Jiirgen Miiller, Donald Steiner (Hrsg.):
Kooperierende Agenten

78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations- und

Koordinationsmodelle
31 Seiten

D-92-26

Enno Tolzmann:

Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX

28 Seiten

D-92-27

Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB

40 pages

D-92-28

Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Reprisentation von Nachrichtentypen

56 Seiten

D-93-01

Philipp Hanschke, Thom Friihwirth: Terminological
Reasoning with Constraint Handling Rules

12 pages

D-93-02

Gabriele Schmidt, Frank Peters,

Gernod Laufkotter: User Manual of COKAM+
23 pages

D-93-03

Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings

74 pages

D-93-04

DFKI Wissenschaftlich-Technischer Jahresbericht
1992

194 Seiten

D-93-05

Elisabeth André, Winfried Graf, Jochen Heinsohn,
Bernhard Nebel, Hans-Jiirgen Profitlich, Thomas
Rist, Wolfgang Wabhlster:

PPP: Personalized Plan-Based Presenter

70 pages

D-93-06

Jiirgen Miiller (Hrsg.):

Beitriige zum Griindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbriicken 29.-
30. April 1993

235 Seiten

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-07

Klaus-Peter Gores, Rainer Bleisinger:

Ein erwartungsgesteuerter Koordinator zur partiellen
Textanalyse

53 Seiten

D-93-08

Thomas Kieninger, Rainer Hoch: Ein Generator mit
Anfragesystem fiir strukturierte Worterbiicher zur
Unterstiitzung von Texterkennung und Textanalyse
125 Seiten

D-93-09

Hans-Ulrich Krieger, Ulrich Schifer:
TDL ExtraLight User's Guide

35 pages

D-93-12

Harold Boley, Klaus Elsbernd, Michael Herfert,
Michael Sintek, Werner Stein:

RELFUN Guide: Programming with Relations and
Functions Made Easy

86 pages

RFM Manual: Compiling RELFUN into the Relational/Functional Machine D-91-03
(Second, Revised Edition) Document

Harold Boley, Klaus Eisbernd, Hans-Ganther Hein, Thomas Krause

