
����������

�

An Investigation of the Applicability of

Terminological Reasoning to

Application�Independent Software�Analysis

Holger Peine

May ��� ����

Abstract

This work is a �rst investigation of an observation noted as possibly promising�

The problem of application	independent recognition of given elements from the
architecture of an unknown software system to be analyzed can be conceived
as a special case of the classi�cation problem in a terminological reasoning
system if supplied with a suitably de�ned taxonomy for software
elements�

This problem� however� has been solved in certain terminological reasoning systems
�TRSs�

To the end of investigating this idea� the availability of a TRS was necessary �pro	
vided at DFKI by virtue of the KRIS
system as well as stating clearly the envisaged
application	independent software	elements� followed by a concept taxonomy expressible
in KRIS and delivering the desired results� Furthermore� a tool had to be developed
to analyze software �i�e�� the source code and generate the input information for the
taxonomy from that�

Stating application	independent complete and correct conditions for the role of an
element within a software system turned out to be feasible for only a few basic concepts�
because software employs at least up to now too few standardized concepts� The trans	
lation of the feasible concepts to KRIS resulted in problems of the expressive power of
TRSs that were recognized as fundamental� The root of this problem spawned a new
language construction for KRIS�

Under the assumption of this new construction� a taxonomy of software	elements was
formulated� However� as the incorporation of this construct� while recognized as feasible�
would exceed the scope of this work and is therefore still to come� it has not been possible
so far to test the formulated taxonomy�

Hoping this will become possible in the future� the tool for input generation was
developed nonetheless� The chosen programming language to be processed is C� as there
was an initial tool already available for it�

Thus the concluding judgment of this investigation is still to come�

�

Contents

� The Field �

��� Reverse Engineering �

��� Terminological Reasoning Systems �

� The Idea ��

��� A Central Need of Reverse Engineering ��

��� The Vision ��

��� The Plan ��

� The Starting Equipment ��

��� The RE	Tool Arch�xpass ��

��� The Knowledge Representation System KRIS � � � � � � � � � � � � � � � � ��

��� The Coupling ��

� The Process ��

��� Concept Formulation ��

��� Translation to KRIS ��

� The Results ��

��� TBox ��

��� ABox	generator ��

	 The Insights �	

A Source Code of the TBox ��

B Example Program with its ABox ��

�

Acknowledgement

This work was hosted within the German Research Center for Arti�cial Intelligence
�DFKI as a part of the AKA
WINO project� It was initiated by an informal cooperation
with Siemens AG� Munich� Germany� dpt� ZFE IS SOF ���

The author thanks the concerned members of both groups for their support� particu	
larly Bernhard Hollunder for numerous advice and Dan Nesmith for corrections concerning
the English language�

What the reader may expect

The present work is a �rst step in a process whose very viability it investigates� Further�
the investigation does not conclude unequivocally� because it shows the task to demand
much deeper work and also stronger tools than were possible here� Speci�cally� the inves	
tigation is incomplete in that its main concrete result cannot yet be veri�ed� as it proved
to require a new tool which is described but has not yet been implemented� Clearly it
does not o�er here a programming system or a formalism proved as useful here�

Therefore the reader be warned that he will �nd on the following pages ideas� ex�
periences and insights� but no directly usable results and also less pleasing results than
sobering ones�

In the text� an understandable and thus in places redundant development of the inves	
tigation was emphasized in contrast to a concise description in the style of a deduction�

At last� it is remarked here that the gender	sensitive pronouns �he�� �she� etc� are
used alternatingly by section�

�

� The Field

This section gives an overview of the two �elds whose possible connection is investigated
in this paper� The reader familiar with one or both may skip the respective subsection�s�

��� Reverse Engineering

This section gives an overview of Reverse Engineering with regard to the need for it and
to its basic conception�

�
�
� Need

The notion of �cost for software� immediately brings to mind the cost for software de	
velopment� Upon a little re�ection one remembers the expense for software maintenance�
This expense� however� constitutes the bulk of software expense in reality �GLKT���� as
increasing software complexity elongates the time of use �and thus of maintenance for
economical reasons and the sheer amount of human expertise bottled	up there�as does the
desire for continuous upward compatibility rather than installing something completely
new� Furthermore� the rapidly increasing costs and risks of a new development suggest
the extension of old software rather than designing something from scratch�

But there is also a corresponding shift within the activities of maintenance� Whereas
the adaptation of the given software to increasing requirements was once the main task
and understanding the current software was merely a less crucial preparation� today this
understanding of the software to be maintained has come to consume about half of the
maintainer�s time �Hru����GMN����� and because of the growing complexity of software
this fraction can be expected to increase even further�

What does it mean to understand a program one is assigned to maintain� one which
was written by other people� This is a complicated e�ort and hard to verbalize at all� and
will therefore probably never be completely automated� as it involves getting a �picture�
of another person�s mind and its way of conceiving and solving programming problems
which have no uniform solutions� Nonetheless� there is a consensus that a fundamental
part of this task is acquiring �from whatever sources available a conception of the overall
structure of the program� i�e�� its main building blocks� their purpose and their intercon	
nections� the policies of control and data �ow and of all the �customs� followed there

in short� of the program�s architecture� Understanding the concrete algorithms employed
there is easier� as they are usually the best known and best documented pieces
 and
after all� we all recognize a polling loop and the like when we see them� The di�culty
of this architecture acquisition however is the core reason for the expense consumed by
understanding�

Why should it be so di�cult to recapture a program�s architecture� In fact� it need
not necessarily be so� but in practice it is� and this is caused by the typical handling of the
software life	cycle� The life	cycle ought to be completely reiterated from the requirements
speci�cation through design to the implementation and documentation� every time a new
requirement is incorporated� But instead of that� reality looks about like this�

The original design of the software system was likely still clear and perhaps even
amenable to maintenance
 there was a �good� architecture� Unfortunately� there is still
no general method �at least no generally agreed one of representing and recording an ar	

�

chitecture �short of natural language� let alone the sad reality that no information at all
was recorded in a form applicable to maintenance� Thus the architecture representation
consists in an essential part of �folklore�� i�e�� things you are told or� even worse� demon	
strated� Inevitably� information communicated in this way erodes over time� In the course
of a software project �decades when including maintenance programmers come and go�
and the once	clear conception of the system�s architecture fades a bit more with each
new programmer� not completely informed about the system architecture and conducting
extensions and supposed �improvements� �changes improving the system only locally in
a way which makes the software more and more complicated and entangled� although
of course usually preserving its functionality� In short� An architecture that is hard to
acquire will be increasingly eroded� The incomplete architecture conception in the main	
tainer�s mind will lead her to modi�cations which violate the original architecture� Worse
still� as the changes are conducted only locally� i�e�� at the code level� and not at the design
level� design and implementation soon diverge� thus invalidating any documentation� In
the end� the code is the only reliable information about the system� The software life	cycle
is interrupted� it ends at the code in a blind alley� Future maintenance is referred to the
Sisyphean task of understanding other people�s ill	documented code�

�
�
� Aim and Concept

Of course the best remedy to an evil is always prevention� and thus the most e�cient and
elegant solution for making software systems easier to understand lies in better software
development� including for example a rigorous conduct of the life	cycle with actual recy	
cling of the formally represented documents of every stage� which would� however� �rst
require developing such representation formalisms for life	cycle documents and probably
much more
 but all this� even if it were ever to become reality� would pertain only to
new software� So what about the mass of existing software� It must be maintained� it
is maintained by whatever means� and there is an urgent need for tools to assist this
task� As stated above� the central di�culty is architecture acquisition� This should be
achieved on a path that is most suggestively described as the reversal of the software
engineering process from the existing system back to the roots of its original design�
Reverse Engineering�RE aims at the development of tools for this process� It is thus
a sub�eld of software engineering�

The principle of RE can be summed up as follows� Software development results are
identi�able and traceable� as the development process follows certain rules� i�e�� the map�
architecture � existing system is invertible to some extent� This immediately raises
two questions�

� How much can be inverted ��reversed�� How much of the implicit architecture can
be recaptured�

� How can the possible reversion be performed�

Both questions are recent areas of research� Theoretically� the term �existing system�
embraces not only the source code� but also any kind of documentation and available
information in general about the system� But since source code is the only universally
formalized format of such information� all attempts of RE
tools have so far been based
on a �possibly human assisted source code processing �tools for utilizing natural lan	

�

guage documentation are still ahead of conception� Therefore� in the following� RE is
understood only in this context of source code analysis�

Contributing to the �rst question� it is not too much of a gamble to predict that the
vision of a fully automated RE	machine which is fed with the source code of a system and
then prints its architecture �in some formalism yet to be de�ned is not realistic� because
the implementation of a software embodies not only software development knowledge�
but also application	speci�c knowledge that cannot be reconstructed from the source�
just imagine understanding the source of a compiler without knowing about grammars�
All knowledge of this kind would have to be available to this RE	machine� Since such
knowledge is far from being formalized� we cannot reasonably expect fully automated RE�

But this observation of the need for application	speci�c� but program	independent
knowledge gives a hint to the second question� to a �divide and conquer�
approach to
RE� After all� there is a place where this knowledge is present� and this is the human user�
the �reverse engineer�� She knows about the program�s domain� but needs assistance in
structuring the sheer mass of source code� and this in turn is where the RE	tool could
come to assistance� Thus the operating mode of an RE	system should be interactive �as
opposed to single tools which can of course be fully automated� e�g� a cross reference
generator� To be of novel help in analyzing the source code� the system must however
possess some knowledge of the mentioned �rules� of software development� speci�cally of
software architecture�

The task of RE in the described context can thus be rephrased as making the rules of
software architecture explicit and casting them into tools�

��� Terminological Reasoning Systems

This section outlines TRSs in general� A concrete example is given in Section ����

�
�
� Origin and Purpose

No long after the euphoric beginning of arti�cial intelligence �AI in the late ����s� se	
rious problems were encountered which were soon recognized as instances of a general
phenomenon� As soon as a program which nicely solved the problems its designers had
in mind during construction was confronted with a slight variation of the problem� it
failed with sometimes ridiculous results� This happened because the program �did not
know what it was doing�� i�e�� it did not possess knowledge of the context of its task
within a whole world of things
 the whole world� in the extreme case� The vagueness
of this knowledge requirement gives a glimpse of its tremendous di�culty
 neverthe	
less� programs deserving the badge of intelligence need such knowledge� and thus one of
the fundamental areas of research in AI has since then been �nding means of expressing
knowledge� or� more accurately� formalisms for knowledge representation�

In the ����s� the research in natural language understanding isolated a special kind
of knowledge needed to recognize the entities occurring in a sentence� This is neces	
sary� e�g�� to disambiguate words� To understand the di�erent meanings of �arm� in the
two otherwise virtually identical sentences �the girl�s arm moved� and �the clock�s arm
moved�� knowledge is necessary about what a thing is� e�g� what a girl and a clock are�
or technically� by what concepts �i�e�� abstractions they are subsumed
 in our example�
say� HUMAN and DEVICE� The same kind of knowledge is needed to infer general prop�

�

erties of things� properties which may be crucial for understanding but are not explicitly
mentioned in the sentence because they are well known to any human� e�g�� that girls
are children� clocks tell the time� children may not know how to read a clock� etc� Once
again� such knowledge is a property of the involved concept and can be inferred if it is
clear what concept subsumes the given entity� Such knowledge of concepts and their re	
lationships is today called conceptual knowledge or terminological knowledge� The latter
term is preferred in this paper�

Furthermore� it was observed that concepts are prominently related by the subconcept

superconcept
relationship �e�g� HUMANs are ANIMALs� thus forming a hierarchy of
subsumption� This suggested an e�cient implementation of concept properties by inher	
itance �see next subsection and since the applicability of the concept idea in language
processing was immediate� it initiated much programming with many concept de�nition
methods coming under a confusing variety of names like semantic nets� frames� scripts�
conceptual dependency graphs� units� or schemata �most of these embraced more than
what is today meant by terminological logics� but were so ill	de�ned with respect to se	
mantics that it is justi�ed to list them here in the context of conceptual reasoning� More
and more new features were added to the basic idea of conceptual entities� again con	
fusing and intersecting to a large extent� while the expressive power of all these features
remained as vague as their use� But all this had been just a way of programming� not
a formalism for knowledge representation� because these methods did not o�er what is
demanded from a true formalism� uniformity� clarity� and generality� This was because
they lacked formal semantics� their meaning being de�ned only in terms of their behaviour
in their applications� Things asked for clari�cation now�

�
�
� Terminological Languages

The need for uniformity and generality in terminological knowledge representation was
soon realized� and in response more systematic methods were developed� The most promi	
nent among them was the idea of kl�one�BS���� which can be called the father of to	
day�s terminological reasoning systems� together with its numerous modi�cations �NvL����
�Neb���� �BBMR���� �PS���� �Vil���� �BPGL���� �MB���� �KBR���� �Kob����

kl�one o�ers concepts and roles �relationships between concepts� Beginning with a
small set of primitive concepts� e�g� Procedure� Variable� and roles� e�g� uses� the language
o�ers operators to form recursively more complex concepts and roles� Concepts can be
combined� among others� by Boolean operators� however� the familiar notation with � and
� is not used here� as these should be reserved for combining assertions whose interpreta	
tion is a truth value� whereas the interpretation of a concept or a role will be explained as
something di�erent� Therefore square symbols like u or t are used here� Until the formal
de�nition of their semantics� the reader is encouraged to rely on her intuition concerning
the meaning of these symbols�

Examples of operators are conjunction�
GlobalProcedure �� Procedure u GlobalConstruct�

or quantifying restrictions on some� all or a certain number of the partners by a role�
CleanProcedure �� Procedure u �uses construct� OwnConstruct�

meaning a procedure using only its own �local constructs� or �nally demanding condi	
tions between partners by two di�erent roles�

�

LocalVariable �� Variable u �de�nedBy � usedBy��
�This demands equality between the de�nedBy	partner and the usedBy	partner� Proper	
ties of concepts are expressed in kl�one by the presence of roles like Variable �� � � �u
�has type�
Roles can be formed by composition� conjunction or disjunction of other roles� also by
inversion of another role like usedBy �� uses���
or by restricting the allowed partners of another role� calls �� uses�Procedure� making calls
mean uses with the restriction that the used thing be a Procedure��

The de�nitions of the concepts imply subsumption relationships between them� e�g�
a GlobalProcedure is a Procedure� so that all these concepts can then be ordered in a
subsumption hierarchy by an algorithm in a process called classi�cation� �Note that this
hierarchy is generally not a tree� as a concept may possess several superconcepts� a Glob�
alProcedure is also a GlobalConstruct� The system is then ready to answer questions or�
more generally� infer implicit knowledge about the represented domain� like subsumption
relationships and concept properties� The intention behind these capabilities is not so
much an interactive system questioned directly by a human user� but an inference com	
ponent within a larger system solving a problem in the domain� such as understanding a
sentence�

In order to also deal with concrete individuals as well as abstract concepts� in kl�one
a distinction between a T�Box ��terminological box� and an A�Box ��assertional box�
is made� A TBox is a collection of concept and role de�nitions �like those of Procedure
and Variable above� whereas an ABox contains assertions about concrete individuals
and concrete role
relationships between them �e�g� that init Controller is a Procedure�
init Controller calls check State� init Controller is a GlobalConstruct etc�� These actual
individuals are called instances of those concepts whose de�nitions they ful�ll� and so
init Controller is an instance of GlobalProcedure �you had to look around shortly why this
is so� hadn�t you�
 This gave you a glimpse of what classi�cation is�� The services
were consistently expanded to incorporate the ABox� o�ering classi�cation and queries
concerning individuals� too� The technical term for classifying an individual ���nding
out what it is� is realization� The system could now infer information about individuals
like init Controller which is not explicitly present in the ABox� but may be stored with a
concept like Procedure
 say� that check State is a Procedure� too� this may be the result
of classifying check State or of exploiting the calls role� perhaps because is annotated with
the restriction that anything called must be a Procedure� The subsumption hierarchy of
concepts is also called a taxonomy� a term sometimes also applied to the TBox�

The logically next step to make kl�one a true knowledge representation formalism
was the addition of formal semantics� Until then� it was impossible to de�ne a notion of
soundness and completeness for the employed algorithms for classi�cation and the like�
However� the analogy between the concept and role operators and the operators of �rst
order predicate logics suggested that kl�one was indeed some restricted kind of �rst
order logics and thus could be given formal semantics in the same spirit� Actually this
was done in �BL���� giving a model�theoretic semantics� i�e�� a set	theoretic interpretation
over the domain of discourse as the basic set� A concept is interpreted as a subset of
the domain� or� from a logical point of view� a unary predicate �namely the set of all

�This notation will be used through this paper� Note the di�erence between the dot and the colon
and that concept names are capitalized� while role names are not�

�

individuals subsumed by the concept� e�g�� Procedure is interpreted as f init Controller	
check State	 � � � g� A role is interpreted as a binary relation over the domain �logically
a binary predicate� e�g� calls as f �init Controller	 check State�	 � � � g� An individual
symbol is of course interpreted as an individual element of the domain� Set	theoretic
interpretations of the operators as mappings between subsets and relations completed the
kl�one	semantics� interpreting e�g� a conjunction as the intersection of the interpretations
of its conjuncts� This semantics makes it possible to call such an interpretation a model
for an ABox w�r�t to a TBox if and only if it satis�es all of their axioms�

This model	theoretic semantics forms the basis of terminological reasoning today�
which is now clearly recognized as a subset of �rst order predicate logics� thus earn	
ing its term language �terms formed with the above operators the name terminological
logics� The calculi completing the terminological languages �TLs with an ABox� the nec	
essary algorithms and the service interface will be called terminological reasoning systems
�TRSs� in the following�

�
�
� Today�s Services and Performance

In the last decade� a number of kl�one	like knowledge representation systems have been
developed �cited above� their primary di�erence being the characteristic selections of
operators o�ered for concept and role construction� Of course they come with widely
di�ering user interfaces and have been applied in di�erent domains� but their algorithmic
capabilities �not regarding e�ciency� relative to the set of operators are very similar�
mostly classi�cation and related services interfaced to the user by various retrieval func	
tions�

The operator selection is thus the characteristic feature of a TRS
 it implies the
possible expressive power and also the achievable complexity bounds� All full	size TRSs
include concept conjunction� restrictions on role partners ��value restriction�� sometimes
existential� sometimes universal� sometimes both� and restrictions on the upper and lower
bounds of the number of role partners ��number restriction�� The inclusion of concept
disjunction is controversial� as with negation which is sometimes limited in application to
especially simple concepts� An especially controversial issue is the inclusion of the men	
tioned demands imposed on partners by two di�erent roles ��role	value map�� Regarding
the chosen role operators� again conjunction is not debated� as is role restriction� while
the other operators like disjunction� inversion or composition are controversial�

What are then the criteria for deciding on an operator selection� Why not implement
all feasible operators� An assessment of the descriptive power of a concrete selection from
these is a di�cult logical� and even linguistic� task� Concerning� in contrast� an assessment
of the computational complexity of certain selections� it is observed that subsumption is
the terminological analog to logical implication and subsumption decision may thus be
viewed as a kind of theorem proving� This explains a computational behaviour that
should not be a surprise to any logician� The complexity of classi�cation as the central
algorithm� which is basically subsumption decision� usually rapidly increases by adding
operators� This ranges from a polynomial complexity when deciding in a language o�ering
only concept conjunction� number restriction� and universal value restriction� to full un	
decidability� which is entailed by adding role	value maps or by allowing the composition of
general roles� This monotonic function between expressive power and complexity demands
an economic choice of operators and also accounts partly for the variety of languages� as

�

their developers had various preferences in this trade	o��

The complexity of classi�cation should not be overweighted� however� as the subsump	
tion hierarchy is precomputed when reading the concept de�nitions in the TBox� These
do not usually change during operation� so that query answers can be rapidly retrieved
from the precomputed hierarchy� In most applications� the system actually employs such
a �xed set of concepts
 however� it is conceivable to dynamically re�ne some concepts
�say� because a new property has emerged that some instances of the concept possess and
others do not� This would be done by di�erentiation of the existing concept to two new
subconcepts� which are then classi�ed into their proper place in the hierarchy� If this
happens� the consistency of the new concept de�nitions with the old hierarchy must be
checked� using an algorithm whose complexity is comparable to that of classi�cation�

Terminological reasoning is actually still in its adolescence
 now that the theoretical
basis has been cleared� it must be integrated into real problem solving systems� This
integration will show the direction for thoughtful enhancements of operators and im	
provements of the algorithms� The idea investigated in this paper is one such attempt
at applying terminological reasoning to real world problems� Not surprisingly� it actually
required a new operator to be introduced�

A concrete example for the state of the art in TRSs is the KRIS
system described
in section ���

� The Idea

This section motivates the investigation and lays out the plan�

��� A Central Need of Reverse Engineering

In the section introducing RE� its aim was described as recapturing the obscured architec	
ture of an existing software system� This was concisely cast to the formulation of inversion
of the maping� architecture � existing system� The image space of the inverse mapping
will thus be the architecture� in other words� certain source code entities� e�g� a procedure�
must be mapped to certain architectural elements� e�g� an accessor to an abstract data
type� This poses a major question� How is this space of architecture structured� What
are the architectural elements used in software design�

Obviously� the �rst step of a general approach to RE must therefore be laying down the
form of its desired results
 you have to be sure of what exactly you want to build before
you start an engineering process� This trivial requirement is a major hurdle in RE� how	
ever� since it would require an �architectural� language specifying software architecture
as universally and unambigously as a programming language speci�es an algorithm� Re	
garding the di�culties of software engineering in managing architectures� such a language
is� if possible at all� far ahead
 remember that we are talking here about application	
independent software architectures� But this comparison of architectures and programs
is not completely discouraging� The way elementary concepts in programming languages
like subroutines� loops� arrays� or pointers evolved piecewise in the very �rst days of ma	
chine language programming� years before they were abstracted and uni�ed in the �rst
high level programming language� this very way is analogously covered today as we try
to isolate useful elements of software architectures
 the concept of a module is a good

��

example for that�

We search for concepts of software elements then� And since the concrete aim of RE is
to provide machine support in extracting these software elements from the existing system�
the desired concepts must be formally de�ned in order to be algorithmically recognizable�
Assuming a set of such concept de�nitions available� the task of recognizing these de�ned
architecture elements could then be transferred from the human reverse engineer to the
supporting machine� A central need of RE can thus be expressed like this� A set of
de�nitions of software architecture concepts is needed which allow architecture recognition
from the source code	 Software elements should be recognized and classi�ed under these
concepts according to their role in the design� To automate this recognition� the concept
de�nitions� while required to tower to a certain complexity and abstraction towards the
architecture level� must be grounded on simple syntactic entities and relationships which
can be easily extracted from the source code�

��� The Vision

Certainly we cannot expect to �nd de�nitions of the required kind for all such software
concepts �Section ��� gives some reasons for this� therefore this work should be seen
as an exploration of how much is feasible� Anyway� the process of recognition outlined
above indeed appears as a process of classi�cation� being a typical inference problem in
TRSs� The basic idea to model the recognition is to extract source code items �which
are considered as ABox	entities and to classify them as instances of more and more ab	
stract TBox	concepts �which denote architecture elements� Therefore it is an interesting
approach to express the needed concepts as a TBox� the classi�cation would be for free
then�

As an example� consider the concept of a module	local variable being de�ned as such
a variable that all procedures it is used by are de�ned in the same module as the variable�
Then the inference might work like this�

Given the ABox and the TBox

Variable v ModuleLocalVariable ��
Module m Variable u � usedBy� a procedure of the same module
v de�nedBy m �if you think this a bit vague� then feel
Procedure p assented and wait for Section ��� �
p de�nedBy m
v usedBy p
and the fact �somehow derived that p is the only Procedure that v is usedBy�

then v is recognized �classi�ed as a ModuleLocalVariable� which in turn might be later
classi�ed for example as the physical storage of an abstract data object� and so on� climb	
ing the abstraction hierarchy of software architecture�

��

Thus the following vision appears�

A TRS equipped with knowledge of software architecture in the form of its
TBox and with the data of a particular target program in its ABox can form
the basis of an interactive RE	tool� performing classi�cation and answering
queries about properties of the particular concept instances�

Such a system might even allow the user to store his growing insight into the system by
incrementally adding new di�erentiations of concepts in the form of subconcepts which
are not completely ABox	derivable any more but involve domain	speci�c concepts and
roles whose instances are supplied by the user�

�
�
� A Piece of Evidence

How realistic is this vision�

Actually it is not a completely new idea� so that there is some evidence available� The
�LaSSIE� system �DBSB��� was developed at AT�T for reverse engineering their tele	
phone switching software De�nity���TM � which contains about one million non	comment	
lines of source code� LaSSIE uses the TRS kandor �PS��� for classi�cation� LaSSIE�s
TBox models processes and functional units interacting in a switching system� such as
calls� connnections and the like� It contains concept de�nitions like

Connect Action � Network Action u �performedBy� BusController �
The ABox is populated with individuals from the De�nity system� In this application
domain� a large amount of knowledge could be expressed in kandor�s TBox
concepts
�about ��� concepts� and the idea is that these are used and slowly added to dur	
ing further development of the software� The De�nity programmers are encouraged to
specify their work using the concepts� and even de�ne new concepts if necessary� This
standardized description of functional units in De�nity makes it possible to compile a
catalog of such units and provide a catalog browser accepting queries at di�erent levels
of abstraction �corresponding to concepts of di�erent speci�city� This facilitates soft	
ware reuse� Because of its large and tailored knowledge base and because additionally
LaSSIE is equipped with a natural language query interface� it is appreciated as a valu	
able tool by the reverse engineers� However� although there is also a part of the TBox
describing programming conventions independent of the particular De�nity software� like
what kinds of �les there are and what their interconnections are� and although even
application	independent information like cross reference data is included� LaSSIE�s aim is
not to recover software architecture in general� but to provide a most detailed record of
De�nity�s structure� LaSSIE is thus not a general� i�e�� application	independent approach
to software analysis� as its domain is not the space of software elements� but the world of
switching programming�

While this system is therefore only partly comparable� it does give some evidence for
the conjecture that TRSs are useful tools to draw valuable inferences in software analysis�
However� software architecture is a less understood domain than switching� and therefore
the working example of LaSSIE must be appreciated with caution with respect to our
aim�

��

��� The Plan

The investigation of the described idea was planned to proceed as follows�

�� Formulating application	independent de�nitions of software	elements which

� deliver useful information to the reverse engineer which otherwise he would
indeed collect manually�

� are mathematically unambigous�

� correspond to the concepts used by the reverse engineer when thinking about
software�

�� Translating them to a KRIS	TBox such that

� the semantics is preserved when mapping to the restricted TBox	language�

� all the primitive concepts are easily extracted from the source code

�� Developing an ABox	generator which �lls the primitive concepts with individuals
from the analyzed source code

Section � describes the problems and results in realizing this plan�

� The Starting Equipment

In both �elds of this investigation� there exists software which was built upon here� This
section gives overviews of the two applied systems� They may also serve as an example
for the state of the art in the two �elds�

��� The RE�Tool Arch�xpass

Arch ��Architecture Assistant� is an RE	tool for restructuring the modularity of exist	
ing software� It was developed at Siemens Corporate Research �SCR� Princeton� USA
�Sch���� Arch examines the grouping of procedures into modules� discovers potential mod	
ularization errors in the form of misplaced procedures� heuristically regroups procedures
and indicates procedures violating the principle of information hiding �Par����

As Arch groups procedures� it must have a guideline of what should be grouped to	
gether� a sort of similarity measure for procedures� As the primary relationship in the
focus of Arch is design dependency� the employed procedure similarity measure is a de�
sign similarity measure� as opposed to a control �ow or data �ow dependency measure� A
control �ow dependency measure presumes that the �ow of control is the backbone of soft	
ware structure and therefore groups together procedures calling each other� Analogously�
a data �ow dependency measure groups procedures passing data among one another�

While these two dependencies� especially control �ow� used to be �and often still are
the chief guidelines for modularizing software� software engineers nowadays agree that
it is more fruitful to group together procedures sharing design assumptions� i�e�� relying
on common assumptions about certain structures in their outside world� This greatly
facilitates maintenance� as it is easier to change a design decision when all procedures

��

relying on it can be found together� ideally in one module� As an example contrasting
this approach to control �ow dependency� a look at how to modularize a compiler is useful�
control �ow dependency would �as was numerously done group together the procedures
conducting the individual phases of the compiler� with lexical analysis in the �rst module
and its procedures writing into a symbol table� which is then read and further written by
the syntactic analysis in the second module� and so on� Note however that procedures
from several modules use the symbol table and thus rely on its data structure� If the table
structure were changed� all these modules would have to be examined to track down the
required changes there� In contrast to this� design dependency would group all procedures
depending on the symbol table structure in one module� all those dealing with the parse
tree in another� and so on� Note the di�erence to data �ow� too� Two procedures both
writing but not reading the table are not data �ow dependent� but they are certainly design
dependent� Design dependency is not limited to shared data� as commonly used types
or constants establish design links as well� Once again� the dependency is established
by assumptions in whatever form about the procedure�s outside world� This notion of
dependency comes closer to the principle of information hiding� which is agreed to be
essential for good software structure�

What is needed then is a measure of shared information� The above mentioned idea of
collecting procedures� external assumptions leads to the basic principle of Arch� External
assumptions are collected in sets which are then compared to de�ne similarity by the
amount of shared information in terms of common assumptions�

The external assumptions are called features in Arch� and a feature of some procedure
is any non	local name �a name whose scope includes more than one procedure appearing
in the head or body of that procedure� Each feature is given a name which is unique
throughout the whole program� Examples of features are calling a non	local procedure�
declaring a local variable of non	local type� or using a non	local variable� The features
�calls p�� �uses t� and �uses v� would then be attached to the procedure� Each feature
is associated a weight�

The similarity between two procedures is then basically de�ned as a ratio of the
weighted numbers of shared and distinctive features�
Let P and Q be the ��nite feature sets of procedures p and q� Then

sim�p� q
weight�P � Q

weight�P �Q ! wdistinct�weight�P nQ ! weight�Q n P

where weight�X
X

x�X

wx for wx � �

Such a function is used �with some modi�cations introducing control parameters and
corrective terms by Arch to measure the design similarity of two procedures� The weights
wx of the individual features are of course intended to mirror the importance of a feature�
Features can be given default weights based on their number of occurrences �a rare feature
shared by two procedures hints at a close coupling between them� or can be automatically
adjusted to agree with a start	up modularization taken from the old software structure
or from the programmer� or can be hand	tuned in delicate cases� If the similarity of two
procedures is intended� but cannot be inferred by any common feature� the user can add
an arti�cial feature common exactly to them in order to enforce similarity�

Equipped with this distance measure� Arch provides two principal services� Cluster	
ing and maverick analysis� Clustering is the grouping of procedures into modules of high

��

internal similarity� This can be done in batch mode or interactively by asking for con	
�rmation of proposed placements of procedures and proposed introduction or merging
of modules� The process thus results in a new modularization of the examined system�
A maverick is a procedure that appears to be in the wrong module because it is more
similar to members of other modules than to those of its own module� Arch o�ers such a
maverick along with its present and proposed module for inspection of their common and
distinctive features� The user can then agree to Arch�s replacement proposal or adjust
the weights of some feature�s to justify the presence of the alleged maverick in its present
module�

All these services are embedded in a window environment� and dependencies are shown
as pictures of design graphs� call graphs etc�

In its input� Arch needs all the features of all procedures� These features� basically
declarations and uses� must be extracted from the source code in the fashion of a cross	
reference listing� This is performed by a supporting tool called xpass� which is an inde	
pendent source code analyzer delivering a feature listing in the format expected by Arch�
Xpass is thus the programming language dependent part of the Arch system� SCR orig	
inally developed such a tool for the C programming language� corresponding tools for
CHILL and Intel	��x��	Assembler followed� FORTRAN is being considered�

Extensive experiments at SCR have shown Arch to be a valuable tool in restructuring
software modularization�

��� The Knowledge Representation System KRIS

This subsection is based on �BH����

�
�
� Rationale

As explained in the end of the paragraph on history of TRSs �Section ���� the �eld
received its formal grounding with the introduction of the model	theoretic semantics for
concept and role terms� All TRSs developed so far could now be assessed on a uniform
basis� the descriptive power of the various operators could be measured and investigations
of soundness and completeness of the used algorithms were now possible�

The development of a new TRS o�ering a large set of operators with sound and
complete algorithms� was the goal of the AKA	WINO project at DFKI� This project
resulted in the TRS KRIS ��Knowledge Representation and Inference System��

An initial examination of the existing TRSs delivered the insight that all of them
use sound but incomplete algorithms�� which was not just poor programming� but often
inevitable� if subsumption turned out to be undecidable for the respective operator sets�
Sound and complete algorithms were only known for rather trivial TRSs until the de	
velopment of KRIS� The analysis of the exact reasons for undecidability revealed that
composition and role	value maps on general roles causes undecidability� but there is a
special kind of role which preserves decidability� Some roles are actually not full relations
�i�e�� n�m	relationships� but partial functions �n��	relationships� These special roles are
called features or attributes� and their computational behaviour is� as would be expected�

�A sort of exception is �PS���� who ensures completeness not by adjusting the algorithms to the logics
but vice versa by using a four	valued semantics providing also for
unknown�	results of algorithms�

��

more tractable than that of full roles� namely when it comes to chaining them and im	
posing role	value maps upon them� This is decidable for features� but not for general
roles�

Combining these insights� the AKA	WINO project then developed the KRIS	system�
which rests on sound and complete algorithms and yet o�ers a relatively rich choice
of operators� Roughly� its rationale can be described as a TRS striving for a uniform
approximation of a maximally expressive decidable termininological language� According
to this policy� subsumption in KRIS is decidable� but highly intractable �P	space	hard�
This was willingly accepted� because this deterrent worst�case	complexity does not give
convincing evidence about the complexity of average TBoxes and ABoxes� Thus it was
also one of the project goals to explore the average complexity�

Today� KRIS is a working system used as a testbed for various questions in ter	
minological reasoning� o�ering tailored optimized algorithms for di�erent subsets of the
TBox	language� It is intended for a human user and therefore equipped with a graphical
interface� Its query language has not yet been fully scaled up with its inference capabil	
ities� as the work has so far focussed on logical and algorithmical questions� The query
interface will be extended� however� also o�ering interfacing to an embedding system�

KRIS was implemented in Common	Lisp on a Symbolics machine and is being ported
to Macintosh�

�
�
� TBox and ABox

The KRIS	TBox o�ers the following concept	forming operators �for short examples see
Section ���� which are given in KRIS	syntax here�

�and C� � � � Ck conjunction
�or C� � � � Ck disjunction
�not C negation
�all r C �all f C value restriction
�some r C �some f C existential restriction
�atleast n r �atmost n r number restriction
�equal f� f� equality role	value map �features only��

usually called �agreement�
�not�equal f� f� the same for unequality ��disagreement�

The available role	forming operators are

�and r� � � � rk conjunction
�restr r C restriction

The feature	forming operators are

�and f� � � � fk conjunction
�compose f� � � � fk composition

All the above operators may be arbitrarily nested with one another if the resulting term
is still well	formed in that it contains only concept �role� feature terms in concept �role�
feature positions� There is� however one exception� The role argument of an atmost or
atleast must not be a restr�

��

The following statements introduce terms �i�e�� concepts� roles and features by giving
them a name� which is called a terminological axiom �as it involves only concepts� no
individuals�

� Introduction of unrestrictedly interpretable primitive terms�
�defprimconcept C �defprimrole r �defprimattribute f

� Introduction of fully de�ned terms by their de�nition�
�defconcept A A� �defrole r r� �defattribute a a�
where the quoted terms denote term expressions formed with the listed term oper	
ators� This establishes a logical equivalence between t and t��

� Introduction of partially de�ned �and thus still primitive terms by necessary� but
not su�cient conditions�
�defprimconcept C C� �defprimrole r r� �defprimattribute f f�
with the quoted terms as above� This establishes only a logical implication t 	 t��
but not vice versa�

A KRIS	TBox is a �nite sequence of such terminological axioms with the second argu	
ment �the de�ning term constructed� if present� from the term	forming operators above�
These de�nitions must not contain a cycle ��

A KRIS	ABox is a �nite sequence of assertional axioms �making assertions about
individuals of the form

�assert�ind a C �assert�ind a b r �assert�ind a b f
meaning that the individual denoted by a is an instance of concept C� �a name which is
de�ned in the TBox� a is r	related to b� and that the f of a is b�

�
�
� Semantics of KRIS

As mentioned in the section on TRSs in general �sec� ���� their semantics is a model	
theoretic one� interpreting concept and role terms as sets over the domain of discourse�
A concept is interpreted as a subset of the domain� a role as a binary relation over the
domain� and a feature as a partial function over the domain�

What conditions must hold then for these sets� The interpretation of unrestricted
primitive terms is left open �being an instance of such a term must be explicitly stated
in the ABox and cannot be inferred in any way� The interpretation of partially de�ned
terms� however� is restricted by a superset �remember that only a necessary condition is
given as a �de�nition� for these
 the restricting superset is then the set of all individuals
satisfying this condition� Thus an interpretation
I for such a term must grant the
condition

for every �defprimconcept A C in the TBox� AI � CI �
�Analogously with roles and features� Finally� the interpretation of fully de�ned complex
terms is recursively �xed by the interpretations of their constituent subterms� combined
in a well	de�ned way depending on the operators as shown below� Any interpretation for
these terms must grant

for every �defconcept A C� in the TBox� AI CI�

�For a discussion of terminological cycles see �Baa�b� �Neb���

��

Examples for operator semantics are as follows� with
I denoting the interpretation
function and " denoting the domain�

�and C� � � �CkI � CI
� � � � � � CI

k

�not CI � " n CI

�all r CI � fa � " j �b � �a� b � RI 	 b � CIg
�some r CI � fa � " j �b � �a� b � RI � b � CIg
�atleast n rI � fa � " j card� fb � "j �a� b � rg ng
�equal f gI � fa � dom�f I � dom�gI j f I�a gI�ag
�restr r CI � f�a� b � rI j b � CIg
�compose f� � � � fkI � f Ik � � � � � f

I
�

Two remarks are in order concerning the interpretation of the ABox by KRIS� Each
individual constant symbol is assumed to denote a unique individual of the domain� which
is well known from data bases as the �unique names assumption�� In contrast to data
bases� however� KRIS does not assume a closed	world semantics for the ABox ��there
are no other relations than explicitly listed here�� but an open�world semantics to be able
to model incomplete knowledge� An ABox containing nothing but the axiom �assert�ind a
b r does thus not exclude a being also s	related to c or whatever you like� Accordingly�
KRIS does not infer that b is the only r 	related individual of a� Thus ���	statements
and ���	statements cannot be derived by simply checking all concerned ABox	individuals�
Section ��� reports how this feature of KRIS can be a nuisance for some applications�
and how it can be mended�

�
�
� Reasoning Capabilities

As introduced in Section ���� the central algorithm of a TRS is classi�cation� the ordering
of a concept into its proper place in the subsumption hierarchy� and the recognition of
an individual as an instance of some concept�s� While classi�cation gives an intuitive
picture of what the system delivers� it is useful to separate and examine more closely what
services are actually performed� This analysis also leads the way to how the services are
implemented in KRIS� The following six problems are solved by KRIS and constitute
the user�s options �by a knowledge base we mean an ABox and a TBox�

� Is the knowledge base consistent�
Obviously this requirement is essential prior to any inferences� This check is not
trivial for large knowledge bases
 indeed� the subsequent four services will turn
out to be based upon it� The checking algorithm works by incrementally building a
model� iterating over all the axioms�

� Does the concept C subsume the concept D�
This is the central question� A positive answer allows one to infer for D all knowl	
edge valid for C� The question can be rephrased by the simple observation from
propositional logics that it is equivalent to the concept term and D not C being
inconsistent� i�e�� having no model
 so this question turns out to be decidable by
the above consistency check� too�

� What does the subsumption hierarchy look like�
This is built up by placing each concept introduced by a terminological axiom

��

through repeated subsumption decision� in order to classify it more and more accu	
rately until its proper place in the hierarchy is found�

� Is the assertional axiom � implied by the knowledge base KB�
This is a question about an individual� If e�g� � �assert�ind a C� then the user
asks whether or not a is an instance of C� Since
KB j C�a� KB � C�a� �KB 	 C�a valid � KB � �C�a inconsistent
�by soundness and completeness and the deduction theorem�
this can once again be decided by the consistency check�
If � is one of the other two ABox	axioms� the argument is the same�

� What are the most special concepts subsuming the individual a�
This is our old task of �nding out what a is� the classi�cation of a �or better and
technically correct� realization of a�

� What are the individuals subsumed by the concept C�
This is the inverse service to the above�

Thus a KRIS	session looks like this in principle� The user loads the TBox for the domain�
which someone has carefully devised some time ago� and then feeds the ABox with the
concrete data she wants to examine in the present session� The system is now ready to
perform the indicated services �an initial universal consistency check might be the �rst
action�

The reader familiar with data base queries will have noticed that limiting queries to
assertional axioms is a strong restriction� as they can neither contain variables needed to
form queries like �What x are r	related to a�� nor can the result be further processed
by demanding additional conditions etc�� as can be done in relational algebra� KRIS is
presently being extended to o�er such services� too�

��� The Coupling

Arch generates information about the attribution of individual procedures to individual
modules �which appear as ABox	items� it does not generate new software concepts like for
instance a special kind of module or anything of this kind� It is thus a tool at the instance
level� not at the concept level� so that there can be no dynamic connection to the planned
TBox� whose concepts are consequently �xed in advance to Arch and independent of the
data from the particular program under analysis� The concept taxonomy can of course
still be incrementally re�ned by the human user� but not by Arch� The information from
Arch to KRIS will
ow through the ABox	

As the planned TBox receives the primitive relationships through the ABox� all issues
like what procedure belongs to what module must have been decided at the time of reading
the ABox� Running Arch beforehand to improve modularity is therefore optional and not
required by the TBox
 it just takes modularity �as is�� i�e�� as found in the ABox�

What is required� however� is an ABox containing the primitive syntactic relationships
between the individuals� Arch needs quite similar information in the form of its feature
data and uses the xpass tool to generate this� As a transformation of the feature data
to ABox	items is a less laborious task than extracting the ABox data directly from the
source code� this paper takes the way of building the required ABox	generator on top of
xpass in the form of a such transformer from xpass�s output to ABox	assertions�

��

Xpass� however� has its de�ciencies and also bugs �described in Section ���� but they
are limited to the submodular level and therefore judged acceptable with respect to the
goal of the TBox� focussing on modules rather than procedures�

The coupling will thus look like this� The program�s source code is fed to xpass� which
outputs a feature list� which is then transformed to a KRIS	ABox and �nally evaluated
with respect to the TBox�

� The Process

This section reports the experiences in concept formulation and translation to KRIS�

��� Concept Formulation

As our plan is to automate software element recognition by concept classi�cation deriving
from source code information� the �rst step is concept formulation� Laying down what
elements are to be recognized� and how �i�e�� by what exact de�nitions they are to be
recognized from the source�

Regarding the considerable literature on software engineering� there appears to be
plenty of advice on how to proceed in developing software �the waterfall	model and the
like� but remarkably less so on what general elements to build it from� Still� an experi	
enced programmer has his own ways of thinking about software structure� his vocabulary
of software entities� This was used� then� as the target of concept formulation� Now the
idea might be tempting at the �rst glance that no more were needed than �just writing
it down cleanly� �with more or less e�ort to cast this vocabulary into a workable set of
concepts� This optimism was detected to have been implicit in the original idea initiating
this investigation� too�

However� when it comes to tying them down� descriptions �the term �de�nitions�
cannot reasonably be applied here of most software concepts will evade any attempt to
exactly catch their nature in terms of syntax� This has at least three reasons�

� The majority of software concepts do not operate on the syntactic level� but on
a level of purpose� Their distinctive characteristic is their dynamic e�ect on and
use for the other system components at run time� and not their syntactic relations
to them at compile time� Examples for these concepts are security check� control
�ow dispatcher� return code� exception handler� utility function� mailbox structure�
computing function� �ag variable� blackboard variable� demon� � � �
 certainly syn	
tactic descriptions for these are conceivable� but no such de�nitions� as experience
has shown that there is always some exceptional case not covered there�

Since the characteristic of these concepts is their meaning as opposed to their form� it
appears justi�ed to call them semantic concepts here� as opposed to the source	code	
de�nable syntactic concepts� Not surprisingly� especially the most fruitful concepts
for architecture fall under this category of semantic concepts
 just think of the
concept of a dispatcher procedure calling the next action procedure� which cannot
easily be distinguished from that of a generic computation procedure just calling
the appropriate specialized procedure to ful�ll its task�

��

� Many characterizing properties of software features �and not only of them refuse to
�t into the strict truth notion of logics� They are inherently vague� i�e�� their truth
must be measured by degrees �of unclear nature� rather than by a strict value of
either true or false� The description of an �important procedure� as being �often
called� would require a strict distinction of �often� of the kind that being called n
times is not often� but n! � times is
 obviously not an adequate representation of
�often��

This problem is not new to AI and has been combatted with heuristic de�nitions
�i�e�� approximations where an occasional error is accepted or with an extension of
logical truth values from two distinct values to a continuum� as fuzzy logics tries to
do� However� representing vague knowledge is still an area of current research� in
particular �vague logics��

Defaults are another kind of non	standard logics� which can also be useful for our
task� as witnessed by the example �A ���	result means a Boolean value�� which is
usually true in C� but might also mean a numerical result�

Concerning TRSs� there is a plan at DFKI to incorporate such and other non	
standard logics into KRIS in a forthcoming project�

� Software development as it is today is simply not standardized enough� does not
employ enough standard concepts
 a state which is well expressed by the saying that
software development is still crafting� even craftsmanship� instead of fabrication �as
suggested by the term of software engineering� By the way� practitioners in the �eld
complain that today�s actual practice is even worse� as RE is still more inhibited by
bad crafting of the masses of shallow	educated or autodidactical programmers than
by the general shortcomings of �even good crafting in comparison to fabrication�

While the e�orts for CASE nourish the hope that standardization in software pro	
duction will increase� and the trend towards object orientation hopefully brings
about standardization �by reuse at the level of coding� only little of these two will
percolate to the between layer of software architecture� again and again challenging
the creative human� Still� we must put our hope in the development of more powerful
software architecture concepts and the education of better software architects�

As a result of this� fewer concept de�nitions than initially hoped could be stated satis	
factorily� Inherent vagueness of concepts cannot be tackled with a TRS �at least today�
However� most of the wrecked hopes concerning feasible de�nitions are due to the om	
nipresence of semantic concepts� The desired notions are simply too strong to be inferred
from the syntax� But this hints a way for the future� too� As a semantic concept is char	
acterized by its dynamic e�ect on the system� this is what must be observed to recognize
the concept� a run time simulation with data �ow analysis as its central part might bring
about better results�

Still� about twenty core concepts were laid down� mostly procedure and module classi	
�cations �see section ��� for details with the emphasis on locality and data encapsulation�
The last of the above three obstacles� lack of standard in programming� might set a limit
to the value of even these achieved concepts� as their practical usability obviously depends
on how much they are employed in real software� Unfortunately� it has not yet been pos	
sible to test this� as a new and not yet implemented TBox	operator for KRIS turned out
to be essential� as described in the immediately subsequent section�

��

��� Translation to KRIS

Of course concept formulation was conducted all the time with the target borne in mind
of translating it to a logical language� and so the de�nitions were right from the begin	
ning kept mathematically precise and purely syntactic� which precluded right away many
attempts as described above� Still� the TL underlying KRIS is not full predicate calcu	
lus� and so some ways of expression� while ful�lling the requirements of being precise and
syntactic� could still not be expressed in KRIS� These were recognized as being not mere
challenges for the skill of formulation in KRIS� but as demanding fundamentally more
from the language than it was intended for respectively than is possible in a TRS� One
of these problems could be mended� one be contained to a negligible size
 one� however�
demanded the invention of a completely new construction �not an operator anyway for a
TRS� which was utterly indispensable for the de�nition of the central concept of locality
in a program� The three problems and their solutions are described in the following three
subsections�

�
�
� Closed World Semantics

As mentioned in the section on the semantics of KRIS �sec� ���� an ABox is interpreted
according to the open world semantics� the ABox information is assumed to be sound�
but not complete
 the possibility is taken into account that part of the information is
yet unknown and not present in the ABox� so that the instances of the concepts and
roles explicitly listed there are not presumed to embrace all assertions that hold in the
domain� This is a conscious decision in the design of KRIS� the reason being that non�
monotonicity was to be avoided� Later additions to the ABox should not be allowed to
invalidate previous conclusions footed on the now incorrect assumption of an exhaustive
ABox� Accordingly� it is logically unsound to derive any such conclusion presuming com	
pleteness� Such conclusions are entailed� however� in every concept or role term using a
universal value restriction �relying on all information being known or a negation �relying
on everything not listed being false� Thus� the following knowledge base would not allow
KRIS to draw certain conclusions�

Given the ABox and the TBox

Variable v LocalVariable �� Variable u � defBy� Procedure
Variable u NonlocalVariable � �LocalVariable
Procedure p
p de�nes v
v defBy p LeafProcedure �� Procedure u � de�nes� Variable

�a leaf in the procedure de�nition tree

�and no other instances of these terms being in the ABox� then KRIS would conclude
neither that u is a NonlocalVariable �as this involves a negation� nor that p is a Leaf�
Procedure �this involves a universal restriction
 all that would be inferred is that v is
a LocalVariable� Universal and negative information would have to be explicitly given in
the ABox� like u� ��defBy� Procedure� if such conclusions like the former two are desired�

Now it is certain that universal restrictions are indispensable for our purpose� as is
easily demonstrated by the LeafProcedure	example above� The same is true for negation�
as the two are well	known to be equivalent� once you have an existential quanti�er� by

��

the interchangability of ��x � �P and �x � P � So how can we achieve the validity of
universal conclusions in an open world semantics� Once again� such a semantics allows
only inferences founded on positive information� and not on the absence of information�
and so we must provide some positive axioms in the ABox expressing that the listed
instances are all there will ever be� This is similar to the approach of circumscription
�McC��� to capture such a closedness property� In general� such axioms are not possible
in �rst order logics� as they make statements about an in�nite number of conceivable
assertions which do not hold� However� there are two features of our task and KRIS
allowing the construction of such �ABox	closing� axioms nonetheless� The �rst is the
observation that the complication of later modi�cations of the ABox does not happen in
our case� If Procedure p uses Variables v� � � � vn and no others� this will hold for the time
of the whole analysis� and so will all other relationships� Our knowledge of the examined
program is complete� Additionally� since quanti�ers in KRIS are allowed only to quantify
roles� not concepts� we have to add �closing axioms� only for the interpretations of role
terms� This gets us as far as achieving our goal if we were only allowed to state that �the
number of possible instances of each role term in the ABox is exactly the number of its
listed instances�� This� however� can be expressed cleanly in KRIS by a corresponding
number restriction�

The problem can thus be mended by counting all instances in the ABox for each
individual and each of its roles and then adding a number restriction axiom for them�
limiting the allowed number of role partners to exactly the counted number and thus
excluding any possible others�� This e�ectively makes the ABox a closed world� and the
open world semantics is then equivalent to the closed world one �with respect to the sole
instances�

�
�
� Terminological Cycles

An ABox is said to contain a terminological cycle if there is a concept C whose de�ning
concept term �the second argument of the defconcept	axiom contains �possibly through
several nested de�nitions a reference to C itself� Obviously this is not a de�nition in the
sense of explaining C in terms of other things already known� and yet it is a natural way
of expression� A Procedure may call other Procedures � a cycle of length �� a Procedure
de�nes a Variable which can again be passed to a Procedure �a cycle of lenght �� etc�
The recursive structure of programs accounts for many such cycles in a TBox capturing
them� This observation suggests that terminological cycles in a TBox can actually be
conceived as an instance of the familiar concept of mutually recursive de�nitions in a
programming language� Analogously to these� terminological cycles introduce di�cult
computational problems �see �Neb���� �Baa��b� into a TBox��� This is why KRIS does
not allow terminological cycles and rejects a TBox containing one�

Since there is no work	around to mimic terminological cycles� the initial TBox had
to be cleaned of them� as it had been allowed cycles like the above examples to �nd
out how far one could get at all� In order to contain the practical impact of this loss
of precision occurring in some concept de�tions� the de�nitions were rearranged so as
to limit the knowledge expressed by occurrences of terminological cycles to checks of

�See the close ABox world	tool in appendix B for the details�
�The knowledge calling for terminological cycles can often be equivalently expressed by transitive

closure of roles �see �Baa�a���

��

comparatively trivial conditions� which are anyway obliged to by all correct programs� e�g�
that procedures call only procedures �and not modules� say or that variables are de�ned
in some place� each variable has exactly one type etc� These remaining occurrences of
cycles were then simply omitted in the TBox� They are not checked anymore� and thus
an incorrect program would no longer result in an inconsistent knowledge base� However�
this is a negligible restriction� since it would not make much sense to analyze a program
that still contained compiler errors�

�
�
� Reference to Individuals

This is a fundamental problem� rooted in the very principle of terminological reasoning
and therefore questioning in general the applicability of TRSs for our purpose�

Problem�

A TRS owes its name to dealing with terms� i�e�� collective abstractions of things in
contrast to the things themselves� It provides means of de�ning concepts� meaning sets
of things� by certain relationships to other such sets of things� However� it does not allow
relationships containing references to a certain thing� to an individual in the sense used
so far� There are good reasons for this restriction� which is after all basically nothing
other than the distinction between TBox and ABox� which accounts for most of both the
simplicity and elegance of the language and the e�cient implementation� Reference to
concepts only is often su�cient� as in

Variable �� � � � u �hasType� Type�
where the concrete type of a variable does not matter
 just any instance of Type will
do to classify an instance of Variable� There are concept de�nitions� however� which do
require a relationship not just to some unspeci�ed instance of another concept �appearing
as a reference to this concept in general� like Type� but to a special instance distinguished
by a certain link originating from the individual instance to be classi�ed �referred to as
the �examined instance� in the following� as the classi�cation might fail after all� This
link restricts the partners in the relationship �which is expressed as a role� of course to
a single special one� As a �rst example� think of the concept of a �directly recursive
procedure as �a procedure which calls itself�� A �rst attempt might get as far as

RecurProc �� Procedure u �calls� Procedure

 but this does not express what was desired� a RecurProc does not merely call some other
Procedure� but a very special one� namely itself� The partner in the calls	relationship must
be restricted to this special procedure� In this case� the distinguishing link from the exam	
ined individual to the partner instance is identity� So there ought to be some construction
P in the place of the called Procedure� denoting the �right� procedure� With the de�ni	
tion as it is� certainly a procedure p calling p would satisfy the de�nition� but so would
a procedure q calling p �and no others� too� Now there is no way to �narrow� this def	
inition down to this P � to the �right� procedure
 for a �rst attempt at such a P � one
might imagine somehow constraining the interpretation of the second Procedure in the
de�nition of RecurProc to subsuming exactly one instance�� or allowing a constant symbol
in its place� This� however� would not work either� because the �right� procedure is not

�The TRS classic o�ers a facility to explicitly �x the interpretation of a concept to a literally
enumerated set of individuals� which must� however� not appear in the ABox

��

�xed at the time of concept de�nition� but depends on the examined instance� When
examining p� the procedure required to be called is p� at other times it is q etc�

The mentioned link from the examined instance to the distinguished partner instance
generally need not be identity� as in the previous example� As a second example� consider
the concept of a �module	 local variable de�ned as a variable with all procedures using
it being de�ned in the same module� Assuming a TBox	language allowing the agreement
on features �like KRIS and a feature moduleOf to designate the de�ning module of a
variable or a procedure� an attempt gets as far as

LocalVariable �� Variable u ��usedBy�Procedure�� �moduleOf � M
with once again M standing for the �right� module� for the module of the examined in	
stance� the instance of Variable just being classi�ed �on the left hand side of the de�nition��

Solution� The SELFconstruction

These two examples are just a few from quite a number of problems with references
to individuals in de�nitions� which turned up in the translation of the TBox to KRIS�
How can we specify the �right� role	partners in these de�nitions� Since the only means in
a KRIS	TBox to get hold of an individual is by a feature �remember they are functions
and thus have only one possible value� i�e�� an individual� and since feature values can
be constrained by agreements� it was recognized that the only possible solution to this
problem of constraints linking certain individuals could run as follows�

The link constraint must be formulated as an equality between certain charac	
teristics �which are individuals of the two instances� It can then be expressed
through an agreement between features� with one feature denoting ��point	
ing to� the characteristic of the distinguished partner instance �often� this
is the just the partner itself and the other feature somehow denoting the
characteristic of the examined instance �possibly itself�

This solution allowed all problems with individual references to be reduced to a stan	
dard structure given below which is quite close to that of the examples from above�
Following the indicated solution� we use a new feature procedureOf to transcribe the �rst
example� mapping things in the scope of a procedure to that procedure� in particular
a procedure �quite consequently to itself� This is the feature pointing to the intended
partner instance �here� the procedure itself� The �rst example can then be transcribed
to

RecurProc �� Procedure u �calls� �procedureOf � P
with P standing for the �right� procedure� which is now of the standard structure of
references to individuals in its simplest form �when the link is identity� The procedureOf	
feature links the examined instance �the calling procedure to the distinguished partner
instance �the called procedure� In this case� these two are identical� and this is re�ected
by the procedureOf	feature reducing to the identity mapping when applied to procedures�

If the link between the examined instance and its partner is di�erent from simple iden	
tity� the solution suggests to try to express it as equality on certain characteristics reached
by one or more intermediate features� which are applied to examined instance and�or its
partner� The second example illustrates this� The link required from the potential in	
stance of LocalVariable to its partner instance of Procedure through the usedBy	role is
not identity �how could it be�� but �having the same moduleOf�� Accordingly� we use

��

the moduleOf	feature as an intermediate applied to both the partner procedure and the
examined instance and arrive at the �nal transcription of the second example

LocalVariable �� Variable u ��usedBy�Procedure�� �moduleOf � moduleOf�V
with V �standing for� the examined instance
 quite as the P in the transcription of
the �rst example� This now suggests the de�nition of a new concept operator de�ned as
follows� Let fi� gj be features� Then

C �� � f� � � � �� fn � g� � � � � � gk�SELF� �
D �� � f� � � � �� fn � g� � � � � � gk�SELF� �

are concepts� with n� k � and SELF �standing for� the instance which is currently
examined whether it is an instance of C respectively D� Both C and D are called a SELF�
expression� Such an expression is thus a generalized agreement concept� It may be used
in a value restriction to express a link constraint� such as

�r� � f� � � � �� fn � g� � � � � � gk�SELF� � �
� This is the mentioned standard form of our problem�

Nearly all individual reference problems occurring in the TBox of software concepts
which was compiled with the help of SELF could be expressed as such standard form
de�nitions �with both n and k never greater than ��

Now that we have standardized our individual reference problem to this form� we
must admit that KRIS �as all the other complete TRSs does presently not o�er a
way of expression equivalent to this SELF� the individual just being tried as a potential
candidate of an instance of C� Such a way of expression is� however� indispensable for our
task� as is clearly witnessed by the preceding examples� Therefore�

a new operator applicable within concept de�nitions named SELF was invented
which always denotes the individual just being classi�ed under the concept�

SELF is allowed only in the lexical context of �disagreements matching the standard form
from above� Considering the operators available in KRIS� this is anyway the only way
to utilize an individual in a concept de�nition�

SELF is a kind of individual variable in concept de�nitions� not a concept� but not a
constant symbol either� as its interpretation varies depending on the examined instance�
But it is a special kind of individual variable� occuring only in the context of denoting
�the individual just being classi�ed�� Concretely� it allows just as few individual variables
as possible to build our TBox�

Individual variables would� if allowed in full generality� imply serious semantic and
computational problems up to utter undecidability� This narrowing of the desire for
individual variables as far down as to the case of the SELF	construction thus conforms to
the principle in KRIS of maximizing expressive power while preserving decidability�

SELF is a construction which has not yet been considered in terminological reasoning�
An implementation is considered feasible and will be attempted at DFKI�

�This could also be expressed by an agreement involving full roles and also their inverses�
�r � �f� � � � �� fn�

��� g� � � � �� gk�
However� such general agreements entail undecidability�

��

Problems with the Solution�

SELF is decidable� but its nature is not obvious� If you were not contented with the
�de�nition� of SELF as �the instance just being classi�ed�� then you are exactly right�
What is this SELF at all� We have observed that it is not a constant� as its interpeta	
tion changes depending on what instance is being classi�ed at the moment� and it is not
a feature either� as it would then apply to the concept which is to be restricted in the
agreement� i�e�� the r	partner of the C in the standard form
 and this is not what was
intended� SELF might be described as a metalogical constant� as it must be substituted
by an individual during evaluation of the SELF	expression� After this substitution� SELF
has the e�ect of a constant symbol denoting the substituted individual� but as the sub	
stitution happens at the meta	level in the evaluation process� not at the level of logics�
this justi�es the description of SELF as a meta	logical constant�

SELF is� unfortunately� not a logical expression at all� as it violates the familiar princi	
ple that the interpretation of a closed expression does not depend on its occurence context�
once you have chosen a model� E�g� in KRIS� the interpretation of a concept is always
the set of individuals subsumed by the concept de�nition� however deeply nested in an
embedding expression the concept appears� The same is true in �rst order logics� The
interpretation of a term is always the same individual from the domain� and the truth
value of a formula does not depend on how many other formulae are attached to it by
logical operators� SELF� however� is di�erent� As SELF denotes the individual just being
classi�ed under the concept at the left hand side �l�h�s� of the de�nition containing the
SELF	expression� this would change if the right hand side �r�h�s� of the de�nition were
substituted into a larger embedding de�nition� since the SELF would now denote the in	
stance being classi�ed at the l�h�s� of the embedding concept de�nition� and no longer the
correct instance from before� An example will show this easily� Assuming the concept
de�nitions

ProcWithOwnVar �� Procedure u �usesVar� �procedureOf � SELF�
ModWithPWOV �� Module u �de�nes� ProcWithOwnVar

then the SELF	expression �procedureOf � SELF� has di�erent interpretations according to
its lexical context�
All by itself� it denotes

fxj procedureOf�x� � ag
if a is examined�
its denotation� however� within the de�nition of ProcWithOwnVar �as in the example
when examining p is

fxj procedureOf�x� � pg
�this is what was intended for� whereas its denotation if the r�h�s of ProcWithOwnVar
were lexically substituted within the de�nition of ModWithPWOV �this happens when ex	
panding a TBox would then �examining m be

fxj procedureOf�x� � mg
In the last case� SELF duly evaluates to m �after all� the individual being examined now�
disregarding that within the old de�nition context it evaluated to p� Thus an algorithm
which performs a preliminary bottom	up substitution of all concept occurrences by their
de�nitions �as KRIS presently does would never realize m as an instance of ModWithP�
WOV� even if m de�nes p and p is an instance of ProcWithOwnVar� Therefore the concepts
containing SELF	expressions cannot not be substituted as usual� but the algorithm must

��

keep track of their original concept de�nition context �perhaps by substituting the SELF
by a pointer to this concept to evaluate the SELF correctly�

A problem of di�erent nature is soon encountered when actually writing de�nitions
containing SELF	expressions� SELF�s context dependency tends to result in lengthy con	
cept de�nitions� because splitting the de�nition would cut o� a deeply nested SELF from
its context�

All this is admitted to appear still awkward �though precise in meaning� and �logi	
cally impure�� Future investigation will further clarify the semantics� possibly the syntax
and also the implementation of SELF	expressions�

Conclusions about SELF�

The expressive range �in the pragmatic aspect of TRSs in general and also of KRIS
in particular is still under investigation �not the least� in this paper� but it is certain that
reference to individuals in concept de�nitions is both needed for many applications and
impossible to express in present TLs�

This introduction of individual references into a TRS described in this section by
the �at least in KRIS� only possible �back door� of features constitutes� in a way� a
pollution of the idea of terminological reasoning� It is however� a carefully limited one�
The introduction of full general individual variables into concept de�nitions would have
turned them into a kind of Prolog	rules �with the ABox constituting the facts� with all
the semantic and computational di�culties well	known from there� This would certainly
not be a wise direction for the further development of TRSs� The proposed enhancement
SELF� however� constitutes a carefully limited variable introduction� powerful enough to
solve considerably more problems than before� but still retaining decidability� It is thus
a proposal worth investigating and incorporating into KRIS� This incorporation will be
conducted at DFKI�

� The Results

The last section reported the di�culties encountered in stating descriptions of software
elements as KRIS	de�nitions� While these experiences account for reductions in the
scope that was initially hoped to be covered� the plan laid out in Section ��� was carried
out and resulted in the KRIS	TBox and the ABox	generator which will be presented in
this section� Their source code can be found in the appendix�

As the SELF	construction still awaits implementation� the TBox could not be tested�
Accordingly� the ABox generator could only be tested by careful inspection of its output
ABox� and not by loading this into KRIS�

��� TBox

The mentioned reduction of scope means that the TBox contains fewer concepts than
hoped for� In particular� such concepts as desribed as �semantic� in Section ��� could not
be incorporated into the TBox� for the reasons explained there� A number of �syntactic�
concepts� however� could be translated to the TBox almost completely� assuming the
SELF�construction� They will be presented in the following�

��

�
�
� Basic Structure

What does the TBox look like then� Remember that it was to build concepts at the
architecture level from simpler ones at the source code level� Accordingly� it is founded
on �ve basic concepts �all primitive� of course at the source code level�

Module	 Procedure	 Variable	 Type	 Constant
which are related by two basic roles at this level�

de�nes and uses�
All other roles are derived from these two by specialization and inversion�

As the fundamental notion of software architecture is locality �deriving many others like
abstraction� information hiding etc�� the concepts of LocConstruct and �complementarily
GlobConstructwere de�ned as the �rst step towards the architecture level� In programming
languages with adequate scope control facilities in de�nitions� this might still be source
code extractable and not ask for a de�ned �in contrast to a primitive concept at all� but
as the target language of this investigation is C� which o�ers little scope control �and even
this is usually ignored� concerning module	local items� locality of a source code item �like
a variable is de�ned in the TBox not from its de�nition in the source� but from its use
throughout the program� Corresponding to the program being structured in modules and
these again in procedures� three levels of locality are distinguished�

� GlobConstruct� being accessible within the whole program

� ModLocConstruct� the same within exactly one whole module

� ProcLocConstruct� the same within one procedure only

All three concepts are mutually disjoint� The concept LocConstruct is then the disjunction
of ModLocConstruct and ProcLocConstruct� Their concrete de�nitions are as follows� with
usedBy and defBy meaning the inverses of uses and de�nes�

LocConstruct �� �usedBy� �modOfIs � modOfIs�SELF��
i�e�� anything which is used only from things de�ned
somewhere within the same module �the modOfIs	
feature gives the module containing �possibly within
a procedure de�nition� the de�nition of an item�

ModLocConstruct �� LocConstruct u � defBy� Module
ProcLocConstruct �� LocConstruct u � defBy� Procedure

These levels of locality resulted in corresponding localizations of the �ve basic con	
cepts� like ModLocVariable or ProcLocType� and of the basic roles like exports �� de�
�nes�GlobConstruct� Wherever reasonable� this was done in full generality� with the lo	
cality concept of a language like Modula	� in mind� thus in places including language
constructions not possible in C �LocMod	 ProcLocProc	 ProcLocConst�

The localized concepts were then used to de�ne the actual �goal� concepts of the TBox�
capturing a classi�cation of modules and� less complex� a classi�cation of procedures�

Procedures are classi�ed according to their side e�ect behaviour �SideE
ectGuarded	
SideE
ectCausing� their frequency of use �AdHocProc	 UtilityProc	 DeadProc as a weak
approximation of the semantic concept of importance� and their calling behaviour �In�

��

terfaceProc	 SystemIOProc	 DirectRecurProc� These procedure concepts	 do not require
complex de�nitions and may thus �with the exception of InterfaceProc be called archic	
ture level concepts with some generosity only� Still� they are very handy in practice and
save looking around in the source code�

Including the module concepts presented in the subsequent section� the TBox contains
about �� concept on the whole� among these about �� auxiliaries like localizations� and
�� goal concepts de�ning the procedure and module classi�cation� Seven roles and four
features were used to de�ne them� all of which derive from de�nes and uses by restriction
and inversion�

�
�
� Module Classi�cation

The classi�cation of modules constitutes the core content of the TBox� only here the
representation of architecture level concepts succeeded to a satisfactory extent� Some re	
sults of software engineering isolating certain kinds of modules ��Nag��� could be utilized
here� Besides concepts similar to the procedure concepts above� like UtilityMod	 AdHoc�
Mod	 MainMod� four fundamental purposes of modules within an architecture could be
translated to KRIS	de�nitions with practically su�cient accuracy�

� AbstrDataTypeMod� This kind of module realizes the familiar concept of an abstract
data type �ADT� i�e�� it exports a type with a hidden internal structure and a col	
lection of procedures operating on it such that the type is completely determined by
the behaviour of these procedures and these procedures are the only ones accessing
its internal structure�

Such a module exports the type itself� the accessor procedures� and a constructor
function returning an object of that type� It can thus be seen as a template generat	
ing objects of that type� Additionally� in order to prevent the module interface from
being littered with other procedures unrelated to the ADT� all exported procedures
are required to use the abstract type �this makes them true accessor procedures�
This led to the following de�nition�
AbstrDataTypeMod ��

Module u ��exports�Procedure�� �uses�
�GlobType u �modOfIs�SELF� u �isTypeOf�

�GlobProc u �modOfIs�SELF���
Here the two SELF	expressions ensure that the abstract type �the GlobType and its
constructor function �the GlobProc really are in this module�

An ADTAccessor is a GlobProc de�ned in such a module�

Note that this de�nition is only a su�ciently accurate translation of the ADT no	
tion� The de�nition does not enforce all exported procedures using this same one
type
 there might be several GlobType	instances exported from this module� Re	
stricting the number of exported GlobTypes to one is not possible because atmost
does not accept a restr as its role argument in the present version of KRIS� Addi	
tionally� this de�nition does not grant that the internal representation of a variable
instance of the GlobType de�ned in some other module is not accessed there �vio	
lating the abstraction� To prevent this� there would have to be a specialization of

�Additionally there are concepts for procedures attached to certain kinds of modules� they are ex	
plained with the respective module�

��

uses� call it enters� meaning an such an invasive access to the internal representation�
e�g� through dereferencing �if the ADT is a pointer or component selection �if it
is a structure� Then the GlobType could be further restricted by adding the conjunct

��isTypeOf�Variable�� �enteredBy� �modOfIs�SELF��
meaning that invasive accesses are restricted to come from within the own module�
Since xpass does not deliver information as detailed as such an enters� this conjunct
was not added to the de�nition of AbstrDataTypeMod�

� AbstrDataObjMod� Such a module realizes an abstract data object �ADO� which is
quite similar in purpose to an ADT� except that it is not a template for generating
objects� but an object itself� It has thus no constructor function� but only accessors�
Since the physical object� the AbstrDataObjVar �de�ned as a ModLocVar used by a
GlobProc of that module� is hidden in the module� it is protected and no problems
with illegal accesses from other modules arise� Again� only procedures really using
the AbstrDataObjVar are allowed in the export interface� resulting in the de�nition
AbstrDataObjMod ��

Module u � de�nes� AbstrDataObjVar
u ��exports�Procedure�� �� uses� AbstrDataObjVar�

Again� this de�nition does not prevent several AbstrDataObjVars from being de�ned
in this module�

ADOAcessor is de�ned analogously to the ADT�

An interesting specialization of AbstrDataObjMod is
VirtualDeviceMod �� AbstrDataObjMod u

�de�nes� �Procedure u �calls� SystemIOCall��
This de�nes a virtual device through some of its procedures performing physical
I�O �with SystemIOCall being a primitive concept� We then have
VirtualIOProc �� Procedure u �defBy� VirtualDeviceMod�

� FunctionalMod� This kind of module realizes a collection of procedures which are
functions in the mathematical sense� i�e�� they depend exclusively on their parame	
ters� This is neatly expressed by the concept of being both SideE
ectGuarded and
not SideE
ectCausing� A common example for this is a module realizing a �oating
point library� Often these modules also export constants� so the de�nition reads
FunctionalMod �� Module u �exports� �Constant t

�SideE
ectGuarded u �SideE
ectCausing��
with
SideE
ectGuarded �� Procedure u �reads� �procOfIs�SELF�
and
SideE
ectCausing �� Procedure u �writes� �procOfIs � SELF�

� DeclarationMod� This is a sort of module that contains only a list of �global type
and constant de�nitions and nothing local� Its de�nition is
DeclarationMod �� Module u

�exports� �Type t Constant� u �de�nes� GlobConstruct

��

��� ABox�generator

The ABox	generator transforms the output of the source	code analyzer xpass �see Section
��� into assertional axioms ready to be loaded into KRIS� Its precision of source code
information thus depends on how precise xpass�s output is� Unfortunately� xpass has
several precision de�ciencies due to its original purpose in the Arch system� which does
not care for a procedure�s internal structure and therefore discards such information�
Judged relatively to xpass�s output� however� the ABox	generator is correct� meaning
that it makes explicit all relationships between source code items implied in the xpass
output� It also utilizes all pieces of information extractable at all from there� and it
provides hooks for future addition of the missing information to the xpass	output which
it will process correctly without any modi�cations necessary�

Annoyingly� xpass also contains some bugs �listed below� which cannot be corrected
in the ABox	generator�

�
�
� Way of Processing

The generator consists of six programs for the UNIX string	processing language awk
chained by a pipe� �ve of which
 are auxiliaries of no more than a few dozen lines� and one�
make ABox� is a program of about one thousand lines of awk source doing the bulk of the
job� Awk was chosen because of its built	in regular expression scanner� string processing
routines� and hash tables� which were needed to read the various kinds of input lines and
to store all the reference information between them and between program items� These
ready	to	use facilities were expected to outweigh the shortcomings of a line	oriented lan	
guage like awk� which provides no procedures� only two �even implicit types� and no data
structures except arrays and hash tables� The experience of writing make ABox� however�
shows that it is not a good idea to implement a task of a size even as managable as
this one in awk� Especially awk�s property of reading its input lines strictly sequentially
causes numerous nuisances and temporal storage overhead when the input contains as
many mutual references as in this case� e�g� when reading a v use	line� it is not yet clear
until a corresponding v use within appears whether this use is within a function� and� if
so� what function uses it�

The input lines to make ABox originally come from xpass� This tool parses all source
�les of the examined program �its command interface is identical to that of the C	compiler
cc and delivers its output in the form of a sequence of lines like

v decl����i�process�c����EXTDEF

v decl�����i�check�c����EXTERN

v use�����i�check�c����

f decl���	�getData�check�c�	
�STATIC

v decl�����v�check�c����AUTO

indicating that a globally visible variable�� i was de�ned in �le process�c at line ���
that such a variable is imported in �le check�c� used in �le check�c at line ���� that a

	extract has decls� advance has decls� unique names� eliminate false usesISS�

close ABox world
�
In C practice� this does not necessarily imply that i is intended as a global variable� many C pro	

grammers use
static� only for procedure local permanent variables and not to distinguish module	local
ones from global ones� This is why the TBox was explained to use not declaration� but use to determine
the level of locality�

��

function getData was statically �i�e�� module	locally de�ned at line �� in �le check�c�
and that an automatic variable v �C jargon for a produre local was de�ned at line ��
in check�c� The number at the second place is an index sequentially counting all lines
�except those like v refers� � � which only serve as connectives between other lines� This
permits references like

v refers�������

v use within�������	

v has type�����

to express that i was used by the function getData and that it has the type whose type
de�nition line has the index �� This also uniquely identi�es the i imported at index
��� as the one de�ned at index �� in process�c� Similar lines are given for de�nitions�
declarations and uses of macros and types�

As awk reads its input lines sequentially� it saves muchwork to avoid forward references
where this is easily possible� Such a job is done by advance has decls� which �rst uses
extract has decls to collect lines referencing certain declaration lines from the xpass
output �le and then attaches them to the front of the �le�

The next pipe stage is performed by unique names� which reads the whole �le to
gather all information about the declaration context of all program items� and then at	
taches new lines like

unique name���	�check�c getData

unique name�����check�c getData v

connecting declaration indices with unique names constructed by pre�xing with the mod	
ule name and� if it is a procedure local� with the procedure name� too�

At this point� the data is still in the form of such lines� though enriched as described�
The next step� however� is make ABox itself printing the KRIS	axioms� which is followed
by the �nal eliminate false usesISS removing certain axioms which had to be printed
at their time of occurence� but were invalidated by later axioms�

Now make ABox reads its input line by line� and it has a matching awk	clause for each
kind of possible line��� Program items are stored in various arrays and tables to resolve
references� and �nally assertional axioms are printed��� e�g�

�assert�ind i Var � that i is global must be inferred by KRIS
�assert�ind process�c Module
�assert�ind process�c i de�nes
�assert�ind i process�c defBy
�assert�ind check�c Module
�assert�ind process�c getData ModLocProc
�assert�ind process�c process�c getData de�nes
�assert�ind process�c getData process�c defBy
�assert�ind check�c getData i uses
�assert�ind i check�c getData usedBy
�assert�ind check�c i usesISS � see next subsection for usesISS

Obviously a program produces a large number of such axioms �see Appendix C to get an

��awk	programs consist of a set of clauses� each of them a pair �regexp� factionsg� where regexp is a
regular expression matched with the input line and actions is a sequence of variable manipulations �with
loops and alternatives� is executed on a successful match�

��Actually� the axioms are printed in the more readable format
process�c de�nes i�� The
format ABox	utility can be used to change that into KRIS	format�

��

idea of how large� more than one third of which� however� are due to the explicit listing
of inverse roles� which can regrettably not be expressed by a general terminological axiom
like usedBy �� uses���

The axioms can be further reduced by removing duplicates �note� however� that this
should not be done by the popular UNIX	pipe sortjuniq� as this destroys the rough se	
quential correspondence of the axioms to the C	source�

The very last operation performed is usually piping the assertional axioms through
close ABox world� which attaches the necessary number restriction axioms �see Section
����

�
�
� Policies of Source Interpretation

There are several questions concerning the intended meaning of the roles occurring in the
assertional axioms and what axioms are printed at all� Here is a list of how the generator
decides on such questions�

� Every source �le de�ning a variable or a function is considered to be a module�
Other �les are appointed modules only when there is no corresponding �c	�le with
the same base name �see next item�

� Special care was taken to follow the customs in C programming concerning exported
types and macros� Since the scopes of typedef and �define are restricted to the �le
which contains them� types and macros exported from a �le t�c are implemented in
C by putting their de�nitions into a header �le like t�h� which is then �included
by all client modules importing the types and macros� According to this� the actual
module of such types is t�c� and not t�h� which is not considered a module at all�

� Whenever a variable or a function is used� an additional axiom indicating the use
of its type is printed along with the use axiom�

� If a function f in module m uses an item i imported from a module di�erent from
m� this use is �propagated� to m in the form of an axiom m usesISS i� meaning that
m uses i �in one of m�s substructures� �e�g� f� This is to keep m�s import interface
clean�

� Uses of struct components are printed as uses of the whole struct	variable
 after
all� they are a part of it� A distinction of component uses would require a new role
connecting a structure member to its embedding variable� say isPartOf� but� since
structs may be nested� the transitive closure of isPartOf would be needed to �nd
the embedding variable� Transitive closures of roles� however� are not possible in
KRIS�

� Procedure	local variables de�ned as �static� are printed as module	locals� This is
motivated by the de�nition of an AbstrDataObjMod �see Section ���� because such
a variable realizes an internal memory of a function which might turn it into a sort
of AbstrDataObjMod� which requires a module	local variable to be recognized� This
decision causes no harmful e�ects elsewhere� but must be kept in mind when reading
the ABox�

��

�
�
� De�ciencies

As was warned before� xpass neglects certain information� which propagates through
make ABox to the ABox� These are�

� For an external function or variable e imported locally by a function l� there is
no �f�v decl e� and �f�v decl within e l� printed� if e was already imported
by the module of l� This is a neglible de�ciency� as the local import was then
unnecessary anyway�

� For parameters of a prede�ned type �int etc�� no v decl�v decl within is printed�

� Variables declared in a procedure which have a prede�ned type are ignored com	
pletely� This is a clear consequence of xpass�s purpose for Arch� Such variables are
irrelevant for the external assumptions of a procedure�

� For a function returning a prede�ned type� no f has type is printed�

� There is no thing as type def within printed� although procedure	local types can
be de�ned in C� Xpass prints them as usual� i�e�� as module	locals�

� There is no thing as type uses type printed� although it would be helpful to know
about type	type	dependencies� as between a pointer� array� or struct type and its
base respectively component type�

There is� however� a line v in type which is to indicate the component	struct rela	
tionship� but unfortunately it is buggy�

� There is no type uses macro or macro uses macro�

All these missing lines are serviced nonetheless in make ABox� i�e�� the corresponding
clauses are fully implemented there� awaiting future use� It is conceivable to write auxiliary
tools extracting this missing information from the C	source� This would� however� have
exceeded the scope of this work�

�
�
� Bugs

Additionally to this missing information� there are some plain bugs in xpass� too�

� A use of a procedure	local variable of a prede�ned type is falsely printed as a use of
a global variable of the same name� if such a global variable exists�

� The same happens with a procedure	local type�

� �undefs are foolishly understood as macro uses and should be avoided altogether�

� Structure components of the same name from two di�erent struct	types are not
distinguished� no v decl etc� appears for the second set of components� and uses of
them are falsely printed as uses of the �rst set of components�

� Procedure	local �static� variables are printed as module	locals �i�e�� no v decl within

appears for them� But this happens to be just what the TBox expects about statics
�see the last of the policies above
 so this bug is lucky for our purpose here�

� Pointers and array variables are treated as if being variables of the base type only�

��

� The Insights

This closing section sums up the experiences gained in this investigation� gives a tentative
evaluation of the original idea of applying TRSs to application	independent software anal	
ysis� and speculates about its possible future development� Again� all this is handicapped
by the missing experiments with the TBox applied to real software�

The probably most prominent insight can be stated as follows� The architecture of
real present software systems is generally not automatically extractable by source code
analysis� While this goal was never really thought to be completely achievable �see Section
������ there was hope that this might be possible at least to a large extent� However�
this investigation should be seen as evidence contributing to the conjecture that such an
extraction is presently possible to a very limited extent only�

Still� even this limited extent� as outlined by the TBox� can be of practical help to
reverse engineers�

What experiences support this sobering general judgement�

Both theory and �even more practice of software architecture are presently not mature�
let alone uni�ed� Practice may even be called irregular� Real software applies too few
standard concepts even of the small set evolved so far� due to de�ciencies in software de	
velopment practice and programmer education� other �con�icting parameters of software
being preferred� lack of adequate development tools and probably many more reasons�
Therefore the practical value even of the modest module classi�cation developed in this
paper must be estimated with caution� Most programmers would probably not commit
themselves to writing only modules whose architectural function is as clear as in this classi	
�cation� but would rather mix them for ease of expression� e�ciency� di�erent preferences
or simply carelessness�

Furtheron� all widely	used programming languages are insu�ciently elaborated from
the software architecture point of view �scope control� modularity� di�erent kinds of mod	
ules and thus do not o�er enough architecture information in the source code� Fortu	
nately� there is strong evidence that this will improve in the course of the general progress
of programming� but also notably so by the spreading of object	oriented languages�

The observation that the meaning of many programming concepts can only be cap	
tured in run	time terms like �purpose� rather than in terms of compile	time like �ref	
erence� severely limits the static approach of source code analysis� Most concepts of
software architecture belong to the former terms and thus will not be captured by source
code analysis� They might� however� be tackled by the dynamical analysis of a run	time
simulation� Work in this area is� however� only just beginning�

When trying to express such concepts of purpose in terms of syntax nonetheless� the
ability to express vague knowledge or default knowledge becomes essential� This funda	
mentally handicaps a logical language like a TL� Leaving aside hypothetical extensions of
logics� heuristic algorithms seem to be a good method to achieve better results here� as is
witnessed by the example of Arch� These cannot be incorporated into any existing TRS�
but there is work beginning in that direction� Another path out of this problem is that
of allowing those concepts which are not source code de�nable �like vague concepts and
�purpose� concepts as high	level primitives in a TBox� While they could of course not be
automatically recognized� this would at least provide the reverse engineer with a language
to record his hand	extracted knowledge about such elements of the program in the same

��

format as the automatically generated information� Possibly even more complex concepts
can then be built on top of these high	level primitives� subject to automatic classi�cation
again� once the user has supplied the ABox assertions naming instances of the high	level
primitives�

Putting aside all theoretical di�culties in knowledge� its representation� and imple	
mentation� a practical RE	tool will also need the full facilities of a relational data base� in
particular concerning the query interface and de�ning ad	hoc	expressions� Since inference
is of course still the bulk of the job� it may be worthwile to examine how well deductive
data bases instead of TRSs would perform on this job�

It must be noted that all this pertains directly to application	independent software anal	
ysis only� as was the approach of our investigation here� Application�speci�c approaches
�like �DBSB��� will achieve a larger codex of knowledge and consequently more infer	
ences� However� the di�culties reported in Section ��� apply in principle to them as well�
But the limits can be stretched� the achievable scope of representation of course depends
on how much of the application domain is formally de�ned� For any application domain
amenable to a computer approach at all� such a formalization is partly possible and de	
livers new concept de�nitions� Application	speci�c software analysis therefore seems to
have a more promising future� The formally de�ned fraction of the domain might be con	
siderably increased by an addition to the chores of software development� The developer
would de�ne logical descriptions �preferably concept terms for a TRS of the implemented
concepts in parallel to developing these concepts themselves� This would provide a TRS
for RE with optimal� ��rst hand� knowledge� The fate of similar suggestions concerning
program proofs� however� probably reduces this suggestion to a naive hope�

So where are we arrived now� What is left of the initial idea� and what have we achieved�

In general� the observation that a part of software analysis is inference� speci�cally
that architecture acquisition can be supported by automatic concept recognition� this
observation is believed here to have shown correct and worth further work� In particular�
however� the value of this investigation is judged to consist less of formulating a few of
such concept de�nitions� than of giving a necessary clari�cation of the vague idea as it
was at the beginning� We now know better how to tackle the task and what can be done
and� perhaps even more useful� what cannot be done with the described means�

The experiences made here with software as a complex structure which is� though
formal in syntax and semantics� most prominently human�created� are just another piece
of evidence for the insight that generally the achievable usefulness of a formal inference
system �not restricted to TRSs for understanding such human	created complex structures
is less determined by that system�s inference and representation capabilities than by our
exact knowledge of how and what for we create these structures at all�

As so often in computer science� our fundamental task here is not to devise better
algorithms �indispensable� but coming second� but �rst to �nd better languages of our
own thinking�

��

References

�Baa��a� F� Baader� Augmenting concept languages by transitive closure of roles� An
alternative to terminological cycles� Technical report� German Research Cen	
ter for Arti�cial Intelligence �DFKI� DFKI� Postfach ����� D	���� Kaiser	
slautern� Germany� �����

�Baa��b� F� Baader� Terminological cycles in kl�one	based knowledge representation
languages� In Proceedings of the �th National Conference of the AAAI� pages
���
���� Boston� Mas�� �����

�BBMR��� A� Borgida� R�J� Brachman� D�L� McGuiness� and A� Resnick� CLASSIC� A
structural data model for objects� In Proceedings of the International Confer�
ence on Management of Data� Portland� Oregon� �����

�BH��� F� Baader and B� Hollunder� KRIS� Knowledge representation and inference
system
 system description� Technical report� German Research Center for
Arti�cial Intelligence �DFKI� DFKI� Postfach ����� D	���� Kaiserslautern�
Germany� November �����

�BL��� R�J� Brachman and H�J� Levesque� The tractability of subsumption in frame	
based description languages� In Proceedings of the th National Conference of
the AAAI� pages ��
��� Austin� Tex�� �����

�BPGL��� R�J� Brachman� V� Pigman	Gilbert� and H� Levesque� An essential hybrid
reasoning system� Knowledge and symbol level account of krypton� In Pro�
ceedings of the �th IJCAI� pages ���
���� Los Angeles� Cal�� �����

�BS��� R�J� Brachman and J� Schmolze� An overview of the kl�one	knowledge rep	
resentation system� Cognitive Science� �������
����� April �����

�DBSB��� P� Devanbu� R�J� Brachman� P�G� Selfridge� and B�W� Ballard� Lassie� a
knowledge	based software information system� In Proceedings of the ��th In�
ternational Conference on Software Engineering� Nice� France� April �����

�GLKT��� W� Gruber� K� Lebsanft� Th� Keller� and H�G� Tempel� Reverse engineering�
Technical Report BeA������� Siemens AG� Dept� ZFE IS SOF��� Munich�
Germany� December �����

�GMN���� W� Gertke� S� Mittrach� G� Normann� G� Schulz� and S� Zorn� Studie zur Situ	
ation bei der Wartung und P�ege gro#er Software	Systeme imHaus� Technical
report� Siemens AG� Dept� ZFE� Munich� Germany� July �����

�Hru��� P� Hruschka� Wiederverwendbarkeit in komplexen COBOL	Systemen� In
R� Thurner� editor� Re�Engineering � ein integrales Wartungskonzept zum
Schutz von Software�Investitionen	 Strategien � Methoden � Werkzeuge� Hall	
bergmoos� Germany� ����� AIT Angewandte Informationstechnik GmbH�

�KBR��� T�S� Kaczmarek� R� Bates� and G� Robins� Recent developments in nikl�
In Proceedings of the �th National Conference of the AAAI� pages ���
����
Philadelphia� Pa�� �����

��

�Kob��� A� Kobsa� The sb�one knowledge representation workbench� In Preprints of
the Workshop on Formal Aspects of Semantic Networks� Two Harbors� Cal��
February �����

�MB��� R� McGregor and M� Bates� The loom knowledge representation language�
Technical Report ISI�RS	��	���� Univ� of Southern California� Information
Science Institute� Marina del Rey� Cal�� �����

�McC��� J� McCarthy� Circumscription
 a form of nonmonotonic reasoning� Arti�cial
Intelligence� �����
��� �����

�Nag��� M� Nagl� Methodisches Programmieren im Gro�en� Springer Verlag� �����

�Neb��� B� Nebel� Computational complexity of terminological reasoning in back�
Arti�cial Intelligence� ��������
���� �����

�Neb��� B� Nebel� Terminological cycles� Semantics and computational properties� In
Proceedings of the Workshop on Formal Aspects of Semantic Networks� Two
Harbors� Cal�� February �����

�Neb��� B� Nebel� Reasoning and Revision in Hybrid Representation Systems� Number
��� in Lecture Notes in AI� Springer� �����

�NvL��� B� Nebel and K� von Luck� Hybrid reasoning in back� In Methodologies for
Intelligent Systems� pages ���
���� North Holland� �����

�Par��� D� L� Parnas� Information distribution aspects of design methodology� In
Information Processing ��� North Holland� �����

�PS��� P� Patel	Schneider� Small can be beautiful in knowledge representation� In
Proceedings of the IEEE�workshop on Principles of Knowledge�Based Systems�
pages ��
��� Denver� Col�� �����

�Sch��� R� W� Schwanke� An intelligent tool for re	engineering software modularity�
Technical Report SCR	��	TR	���� Siemens AG� Corporate Research Dept��
Princeton� USA� �����

�Vil��� M�B� Vilain� The restricted language architecture of a hybrid representation
system� In Proceedings of the �th IJCAI� pages ���
���� Los Angeles� Cal��
�����

��

A Source Code of the TBox

� This is the T�Box of the recognized software concepts in KRIS�format�

� SOME ROLES�

�defprimrole defines�

�defprimrole uses�

�defprimrole usedBy�

� the inverse of uses

�defprimrole isTypeOf usedBy�

� returns the functions and Variables of a Type

� ALL THE FEATURES�

�defprimattribute defBy�

� returns the defining Procedure or Module

�defprimattribute modOfIs�

� returns the Module of a Construct

� note� modOfIs�m� equals m for all Modules m

�defprimattribute procOfIs�

� analogously with Procedures

�defprimattribute typeOfIs�

� returns the Type of a Function or Variable

� as a matter of fact� this ought to be a subfeature of uses � however� since

� uses is a role and typeOf is feature� KRIS does not allow this relationship

� to be expressed within the TBox� The ABox�generator has to ensure that uses

� is duly annoted with every typeOf�

� SOME CONCEPTS�

� THESE 	 CONCEPTS FORM THE BUILDING MATERIAL OF THE T�BOX�

�defconcept Module �equals modOfIs SELF��

� the definition part is just a security check � a correct ABox grants this�

�defconcept Procedure �equals prodOfIs SELF��

� the definition part is just a security check � a correct ABox grants this�

�defconcept Function �and Procedure �some typeOfIs Type��

�defprimconcept Constant�

�defprimconcept Type�

�defprimconcept Variable�

��

� SOME ROLES�

�defprimrole reads �restr uses Variable��

�defprimrole writes �restr uses Variable��

� MORE CONCEPTS�

�defconcept ActiveConstruct �or Module Procedure��

�defconcept PassiveConstruct �or Variable Type Constant��

�defconcept SubmoduleConstruct �or PassiveConstruct Procedure��

�defconcept GlobMod �and Module �not �some defBy
top
����

�defconcept LocMod �and Module �some defBy Module���

�defprimconcept GlobConstruct

�or �and SubmoduleConstruct �some usedBy �not�equals modOfIs modOfIs�SELF����

GlobMod��

� this is primitive because even a variable that is never used from outside

� can be a GlobVar if the programmer defined it as global�

�defconcept LocConstruct �or LocMod �forall usedBy

�equals modOfIs modOfIs�SELF�����

�defconcept ProcLocConstruct �and LocConstruct �some defBy Procedure���

�defconcept ModLocConstruct �and LocConstruct �some defBy Module���

�defconcept Construct �or GlobConstruct LocConstruct��

� this is intended to be the root of the concept taxonomy

�defprimconcept Predefined GlobalConstr�

�defconcept PreDefType �and Type Predefined��

�defprimconcept BooleanType PreDefType�

�defconcept GlobProc �and Procedure GlobConstruct��

�defconcept LocProc �and Procedure LocConstruct��

�defconcept ProcLocProc �and Procedure ProcLocConstruct��

�defconcept ModLocProc �and Procedure ModLocConstruct��

�defconcept GlobType �and Type GlobConstruct��

�defconcept LocType �and Type LocConstruct��

��

�defconcept ModLocType �and Type ModLocConstruct��

�defconcept ProcLocType �and Type ProcLocConstruct��

�defconcept GlobVar �and Variable GlobConstruct��

�defconcept LocVar �and Variable LocConstruct��

�defconcept ProcLocVar �and Variable ProcLocConstruct��

�defconcept ModLocVar �and Variable ModLocConstruct��

�defconcept GlobConst �and Constant GlobConstruct��

�defconcept LocConst �and Constant LocConstruct��

�defconcept ProcLocConst �and Constant ProcLocConstruct��

�defconcept ModLocConst �and Constant ModLocConstruct��

�defconcept AbstrDataObjVar �and ModLocVar �some usedBy InterfaceProc���

� the Var that is encapsulated in an AbstrDataObjMod

�defprimconcept InputParameter ProcLocVar�

� we cannot ensure here that this parameter is actually used for input only �

� it may also be a pointer which is derefenced and then written into�

�defprimconcept OutputParameter ProcLocVar�

�defconcept Parameter �or InputParameter OutputParameter��

�defconcept StackVar �and ProcLocVar �not Parameter���

� SOME ROLES

�defrole definesLocally �restr defines LocConstruct��

�defrole exports �restr defines GlobConstr��

�defprimrole calls �restr uses Procedure��

�defprimrole usesISS �restr uses GlobConstruct��

� a Module usesISS ��in substructure�� an extern construct iff the use occurs

� within a Procedure of the Module and not within the Modules declaration

� or statement part �note� there is no Module statement part in C anyway��

�defprimrole usedISSBy�

� the inverse of usesISS

� THE GOAL CONCEPTS

� PROCEDURE CLASSIFICATION�

��

�defconcept InterfaceProc �and GlobProc �forall usedBy

�not�equals modOfIs modOfIs�SELF�����

�defconcept AdHocProc �and Procedure �atmost � usedBy ���

�defconcept UtilityProc �and Procedure �atleast � usedBy���

�defconcept DeadProc �and Proc �atmost � usedBy���

�defconcept SideEffectGuarded �and Procedure �forall reads

�equals procOfIs SELF����

�defconcept SideEffectCause �and Procedure �some writes

�not�equals procOfIs SELF����

�defprimconcept SystemIOCall �and Procedure Predefined��

�defconcept SystemIOProc �and Procedure �some calls SystemIOCall���

�defconcept TestProc �and Procedure �some typeOfIs BooleanType�

�not SideEffectCausing���

�defconcept DirectRecurProc

�and Procedure �some calls �equals procOfIs SELF����

� MODULE CLASSIFICATION�

�defconcept UtilityMod �or �atleast � usedBy�

�some defines �atleast � usedISSBy����

�defconcept MainMod �and Module �not �some

�restr defines �or �some usedBy �not�equals modOfIs SELF��

�some usedISSBy

�not�equals modOfIs SELF��������

� the constructs of in this module are not used from other modules� so it must

� be the module containing the top�level procedure�

�defconcept AdHocMod �and Module �atmost � usedBy�

�forall defines �atmost � usedISSBy����

�defconcept DeclarationMod �and Module �forall exports �or Type Constant��

�forall defines GlobConstr���

�defconcept FunctionalMod �and Module

�forall exports �or �and SideEffectGuarded

�not SideEffectCausing��

Constant����

� no GlobTypes allowed to distinguish it from AbstrDataTypeMod

� ModLocVars and uses of GlobVars need not be forbidden� as they would not

� have any effect anyway� the procedures are all SideEffectGuarded� and

��

� there is no other channel for information to flow out of the module

� except the procedure parameters�

�defconcept AbstrDataObjMod �and Module

�some defines AbstrDataObjVar�

�forall �restr exports Procedure�

�some uses AbstrDataObjVar����

�defconcept AbstrDataTypeMod

�and Module

�forall �restr exports Procedure�

�some uses �and GlobType

�equals modOfIs SELF�

�some isTypeOf

�and GlobProc

�equals modOfIs SELF�������

�defconcept VirtualDeviceMod �and AbstrDataObjMod �some defines SystemIOProc���

� PROCEDURES ATTACHED TO THESE MODULES�

�defconcept VirtualIOProc �and GlobProc �some defBy VirtualDeviceMod���

�defconcept ADTAccessor �and GlobProc �some defBy AbstrDataTypeMod���

�defconcept ADOAccessor �and GlobProc �some defBy AbstrDataObjMod���

B Example Program with its ABox

Here is the main module client�c� which uses the ADT	module wordcount�c and the
ADO	module wordcountTable�c� The ABox ouput by the generator follows them�

�
 F I L E wordcount�h
�

�define WORDLEN ��

�define INVALID ��

typedef int Bool�

�define TRUE �

�define FALSE �

typedef struct �

char word�WORDLEN��

int count�

�

WordCount�

extern WordCount makeWC���

��

extern void deleteWC���

extern void printWC���

extern int getWCount��� setWCount���

�
 F I L E wordcount�c
�

�
 realizes an abstract data type �WordCount� asscociating a counter with

a string
�

�include �wordcount�h�

WordCount makeWC�name� initCount�

char
name� �
 initialization parameters
�

int initCount�

�

WordCount
newWCp�

newWCp � �WordCount
� malloc�sizeof�WordCount���

strncpy�newWCp��word� name� WORDLEN��

newWCp��count � initCount�

return
newWCp�

�

void deleteWC�wc�

WordCount wc�

�

free��wc��

�

void printWC�wc�

WordCount wc�

�

printf��� of �ss � �d�n�� wc�word� wc�count��

�

int getCount�wc�

WordCount wc�

�

return wc�count�

�

int setCount�wcp� newCount� �
 returns the old counter
�

WordCount
wcp�

int newCount�

�

int oldCount�

oldCount � wcp��count�

wcp��count � newCount�

return oldCount�

�

��

Bool valid�wc�

WordCount wc�

�

return wc�count �� INVALID�

�

Bool fits�wc� name� �
 compares the word to a search name
�

WordCount wc�

char
name�

�

return �strncmp�wc�word� name� WORDLEN��

�

�
 F I L E wordcountTable�h
�

�define MAX�WCTABLE�LEN ���

extern void initWCTable���

extern void printWCTable���

extern int lengthWCTable���

extern Bool putWC���

extern WordCount getWC���

�
 F I L E wordcountTable�c
�

�
 realizes an abstract data object �the table� as an arry of instances of

the abstract data type �WordCount�
�

�include �wordcount�h�

�include �wordcountTable�h�

static int currTableLen�

static WordCount table�MAX�WCTABLE�LEN�� �
 the table
�

�
 As a matter of fact� one would usually cluster these two variables in

one struct variable� This would correspond to their semantics in a better

way� and it would also make �wordcountTable�c� an �AbstrDataObjMod�

in the sense i n t e n d e d by the appropriate TBox�definition

�i�e� there is exactly one �AbstrDataObjVar� referred to by all exported

procedures� However� since xpasss struct�handling is bugged� and since

the TBox�definition �see there�� does not enforce there being exactly one

�AbstrDartaObjVar�� we can leave the table in two distinct variables

as it is here� and �wordcountTable�c� will be classified as an

�AbstrDataObjMod� nevertheless�
�

static WordCount invalidWC� �
 dummy signalling unknown entry
�

void initWCTable��

�

invalidWC � makeWC���� INVALID�� �
 initialize the dummy
�

currTableLen � ��

�

void printWCTable��

�

��

int i�

for�i��� i � currTableLen� i���

printWC�table�i���

�

int lengthWCTable��

�

return currTableLen�

�

WordCount getWC�name� �
 returns an invalid WordCount� if name unknown
�

char
name�

�

int i�

for�i��� i � currTableLen� i���

if�fits�table�i�� name��

return table�i��

return invalidWC� �
 not found�
�

�

Bool putWC�name� value� �
 returns success or failure �due to full table�
�

char
name� �
 and makes a new entry if there was none for name
�

int value�

�

int i�

for�i��� i � currTableLen� i���

if�fits�table�i�� name��

break�

if�i � currTableLen� �
 found
�

setCount��table�i�� value��

else �
 not found� make a new entry� unless table full
�

if�currTableLen �� MAX�WCTABLE�LEN� �
 table full
�

return FALSE�

else �
 make a new entry
�

table�currTableLen��� � makeWC�name� value��

return TRUE�

�

�
 F I L E client�c
�

�
 uses the abstract data object defined in �wordcountTable� and the

abstract data type �WordCount�
�

�
 �include �stdio�h�
�

�include �wordcount�h�

�include �wordcountTable�h�

main�� �
 fills an external WordCount�Table with counted occurences
�

�
 of words from the stdin�stream� and finally prints it� as
�

�
 soon as the word �stop� appears
�

�

char name�WORDLEN��

��

WordCount wc�

initWCTable���

scanf���s�� name��

while�strncmp�name� �stop�� WORDLEN�� �
 while name �� stop
�

�

if�valid�wc � getWC�name��� �
 we had this word �name� before
�

putWC�name� getCount�wc� � ��� �
 increment its counter
�

else

putWC�name� ��� �
 this is the first occurence of this name
�

scanf���s�� name�� �
 get next word
�

�

printWCTable���

�

HERE COMES THE A�BOX OF THE PROGRAM�

BooleanType int

BooleanType BOOL

BooleanType BOOLEAN

BooleanType Bool

BooleanType Boolean

PreDefType int

PreDefType char

PreDefType short

PreDefType long

makeWC uses ��wordcount�h�WordCount

makeWC typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf makeWC

putWC uses ��wordcount�h�Bool

putWC typeOfIs ��wordcount�h�Bool

��wordcount�h�Bool isTypeOf putWC

getWC uses ��wordcount�h�WordCount

getWC typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf getWC

Module client�c

client�c modOfIs client�c

Procedure main

client�c defines main

main modOfIs client�c

main procOfIs main

main defBy client�c

main uses ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN usedBy main

client�c usesISS ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN usedISSBy client�c

client�c�main�wc typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf client�c�main�wc

client�c�main�wc uses ��wordcount�h�WordCount

main uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy main

client�c usesISS ��wordcount�h�WordCount

��wordcount�h�WordCount usedISSBy client�c

StackVar client�c�main�wc

main defines client�c�main�wc

client�c�main�wc procOfIs main

client�c�main�wc defBy main

��

client�c�main�wc modOfIs client�c

main uses initWCTable

initWCTable usedBy main

main uses scanf

scanf usedBy main

main uses strncmp

strncmp usedBy main

main uses ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN usedBy main

client�c usesISS ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN usedISSBy client�c

main uses valid

valid usedBy main

main uses client�c�main�wc

client�c�main�wc usedBy main

main uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy main

main uses getWC

getWC usedBy main

main uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy main

main uses putWC

putWC usedBy main

main uses ��wordcount�h�Bool

��wordcount�h�Bool usedBy main

main uses getCount

getCount usedBy main

main uses client�c�main�wc

client�c�main�wc usedBy main

main uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy main

main uses putWC

putWC usedBy main

main uses ��wordcount�h�Bool

��wordcount�h�Bool usedBy main

main uses scanf

scanf usedBy main

main uses printWCTable

printWCTable usedBy main

Module wordcountTable�c

wordcountTable�c modOfIs wordcountTable�c

ModLocVar wordcountTable�c�currTableLen

wordcountTable�c defines wordcountTable�c�currTableLen

wordcountTable�c�currTableLen modOfIs wordcountTable�c

wordcountTable�c�currTableLen defBy wordcountTable�c

ModLocVar wordcountTable�c�table

wordcountTable�c defines wordcountTable�c�table

wordcountTable�c�table modOfIs wordcountTable�c

wordcountTable�c�table defBy wordcountTable�c

wordcountTable�c�table typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcountTable�c�table

wordcountTable�c�table uses ��wordcount�h�WordCount

ModLocVar wordcountTable�c�invalidWC

wordcountTable�c defines wordcountTable�c�invalidWC

wordcountTable�c�invalidWC modOfIs wordcountTable�c

wordcountTable�c�invalidWC defBy wordcountTable�c

wordcountTable�c�invalidWC typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcountTable�c�invalidWC

��

wordcountTable�c�invalidWC uses ��wordcount�h�WordCount

Procedure initWCTable

wordcountTable�c defines initWCTable

initWCTable modOfIs wordcountTable�c

initWCTable procOfIs initWCTable

initWCTable defBy wordcountTable�c

initWCTable uses wordcountTable�c�invalidWC

wordcountTable�c�invalidWC usedBy initWCTable

initWCTable uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy initWCTable

initWCTable uses makeWC

makeWC usedBy initWCTable

initWCTable uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy initWCTable

initWCTable uses ��wordcount�h�INVALID

��wordcount�h�INVALID usedBy initWCTable

wordcountTable�c usesISS ��wordcount�h�INVALID

��wordcount�h�INVALID usedISSBy wordcountTable�c

initWCTable uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy initWCTable

Procedure printWCTable

wordcountTable�c defines printWCTable

printWCTable modOfIs wordcountTable�c

printWCTable procOfIs printWCTable

printWCTable defBy wordcountTable�c

printWCTable uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy printWCTable

printWCTable uses printWC

printWC usedBy printWCTable

printWCTable uses wordcountTable�c�table

wordcountTable�c�table usedBy printWCTable

printWCTable uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy printWCTable

Procedure lengthWCTable

wordcountTable�c defines lengthWCTable

lengthWCTable modOfIs wordcountTable�c

lengthWCTable procOfIs lengthWCTable

lengthWCTable defBy wordcountTable�c

lengthWCTable uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy lengthWCTable

Procedure getWC

wordcountTable�c defines getWC

getWC modOfIs wordcountTable�c

getWC procOfIs getWC

getWC defBy wordcountTable�c

getWC uses ��wordcount�h�WordCount

getWC typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf getWC

getWC uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy getWC

getWC uses fits

fits usedBy getWC

getWC uses wordcountTable�c�table

wordcountTable�c�table usedBy getWC

getWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy getWC

getWC uses wordcountTable�c�table

wordcountTable�c�table usedBy getWC

��

getWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy getWC

getWC uses wordcountTable�c�invalidWC

wordcountTable�c�invalidWC usedBy getWC

getWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy getWC

Procedure putWC

wordcountTable�c defines putWC

putWC modOfIs wordcountTable�c

putWC procOfIs putWC

putWC defBy wordcountTable�c

putWC uses ��wordcount�h�Bool

putWC typeOfIs ��wordcount�h�Bool

��wordcount�h�Bool isTypeOf putWC

putWC uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy putWC

putWC uses fits

fits usedBy putWC

putWC uses wordcountTable�c�table

wordcountTable�c�table usedBy putWC

putWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy putWC

putWC uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy putWC

putWC uses setCount

setCount usedBy putWC

putWC uses wordcountTable�c�table

wordcountTable�c�table usedBy putWC

putWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy putWC

putWC uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy putWC

putWC uses ��wordcountTable�h�MAX�WCTABLE�LEN

��wordcountTable�h�MAX�WCTABLE�LEN usedBy putWC

putWC uses ��wordcount�h�FALSE

��wordcount�h�FALSE usedBy putWC

wordcountTable�c usesISS ��wordcount�h�FALSE

��wordcount�h�FALSE usedISSBy wordcountTable�c

putWC uses wordcountTable�c�table

wordcountTable�c�table usedBy putWC

putWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy putWC

putWC uses wordcountTable�c�currTableLen

wordcountTable�c�currTableLen usedBy putWC

putWC uses makeWC

makeWC usedBy putWC

putWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy putWC

putWC uses ��wordcount�h�TRUE

��wordcount�h�TRUE usedBy putWC

wordcountTable�c usesISS ��wordcount�h�TRUE

��wordcount�h�TRUE usedISSBy wordcountTable�c

Module wordcount�c

wordcount�c modOfIs wordcount�c

Procedure makeWC

wordcount�c defines makeWC

makeWC modOfIs wordcount�c

makeWC procOfIs makeWC

��

makeWC defBy wordcount�c

makeWC uses ��wordcount�h�WordCount

makeWC typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf makeWC

wordcount�c�makeWC�newWCp typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�makeWC�newWCp

wordcount�c�makeWC�newWCp uses ��wordcount�h�WordCount

makeWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy makeWC

StackVar wordcount�c�makeWC�newWCp

makeWC defines wordcount�c�makeWC�newWCp

wordcount�c�makeWC�newWCp procOfIs makeWC

wordcount�c�makeWC�newWCp defBy makeWC

wordcount�c�makeWC�newWCp modOfIs wordcount�c

makeWC uses wordcount�c�makeWC�newWCp

wordcount�c�makeWC�newWCp usedBy makeWC

makeWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy makeWC

makeWC uses malloc

malloc usedBy makeWC

makeWC uses strncpy

strncpy usedBy makeWC

makeWC uses wordcount�c�makeWC�newWCp

wordcount�c�makeWC�newWCp usedBy makeWC

makeWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy makeWC

makeWC uses ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN usedBy makeWC

makeWC uses wordcount�c�makeWC�newWCp

wordcount�c�makeWC�newWCp usedBy makeWC

makeWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy makeWC

makeWC uses wordcount�c�makeWC�newWCp

wordcount�c�makeWC�newWCp usedBy makeWC

makeWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy makeWC

Procedure deleteWC

wordcount�c defines deleteWC

deleteWC modOfIs wordcount�c

deleteWC procOfIs deleteWC

deleteWC defBy wordcount�c

wordcount�c�deleteWC�wc typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�deleteWC�wc

wordcount�c�deleteWC�wc uses ��wordcount�h�WordCount

deleteWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy deleteWC

Parameter wordcount�c�deleteWC�wc

deleteWC defines wordcount�c�deleteWC�wc

wordcount�c�deleteWC�wc procOfIs deleteWC

wordcount�c�deleteWC�wc defBy deleteWC

wordcount�c�deleteWC�wc modOfIs wordcount�c

deleteWC uses free

free usedBy deleteWC

deleteWC uses wordcount�c�deleteWC�wc

wordcount�c�deleteWC�wc usedBy deleteWC

deleteWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy deleteWC

Procedure printWC

��

wordcount�c defines printWC

printWC modOfIs wordcount�c

printWC procOfIs printWC

printWC defBy wordcount�c

wordcount�c�printWC�wc typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�printWC�wc

wordcount�c�printWC�wc uses ��wordcount�h�WordCount

printWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy printWC

Parameter wordcount�c�printWC�wc

printWC defines wordcount�c�printWC�wc

wordcount�c�printWC�wc procOfIs printWC

wordcount�c�printWC�wc defBy printWC

wordcount�c�printWC�wc modOfIs wordcount�c

printWC uses printf

printf usedBy printWC

printWC uses wordcount�c�printWC�wc

wordcount�c�printWC�wc usedBy printWC

printWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy printWC

printWC uses wordcount�c�printWC�wc

wordcount�c�printWC�wc usedBy printWC

printWC uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy printWC

Procedure getCount

wordcount�c defines getCount

getCount modOfIs wordcount�c

getCount procOfIs getCount

getCount defBy wordcount�c

wordcount�c�getCount�wc typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�getCount�wc

wordcount�c�getCount�wc uses ��wordcount�h�WordCount

getCount uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy getCount

Parameter wordcount�c�getCount�wc

getCount defines wordcount�c�getCount�wc

wordcount�c�getCount�wc procOfIs getCount

wordcount�c�getCount�wc defBy getCount

wordcount�c�getCount�wc modOfIs wordcount�c

getCount uses wordcount�c�getCount�wc

wordcount�c�getCount�wc usedBy getCount

getCount uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy getCount

Procedure setCount

wordcount�c defines setCount

setCount modOfIs wordcount�c

setCount procOfIs setCount

setCount defBy wordcount�c

wordcount�c�setCount�wcp typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�setCount�wcp

wordcount�c�setCount�wcp uses ��wordcount�h�WordCount

setCount uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy setCount

Parameter wordcount�c�setCount�wcp

setCount defines wordcount�c�setCount�wcp

wordcount�c�setCount�wcp procOfIs setCount

wordcount�c�setCount�wcp defBy setCount

wordcount�c�setCount�wcp modOfIs wordcount�c

��

setCount uses wordcount�c�setCount�wcp

wordcount�c�setCount�wcp usedBy setCount

setCount uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy setCount

setCount uses wordcount�c�setCount�wcp

wordcount�c�setCount�wcp usedBy setCount

setCount uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy setCount

Procedure valid

wordcount�c defines valid

valid modOfIs wordcount�c

valid procOfIs valid

valid defBy wordcount�c

valid uses ��wordcount�h�Bool

valid typeOfIs ��wordcount�h�Bool

��wordcount�h�Bool isTypeOf valid

wordcount�c�valid�wc typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�valid�wc

wordcount�c�valid�wc uses ��wordcount�h�WordCount

valid uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy valid

Parameter wordcount�c�valid�wc

valid defines wordcount�c�valid�wc

wordcount�c�valid�wc procOfIs valid

wordcount�c�valid�wc defBy valid

wordcount�c�valid�wc modOfIs wordcount�c

valid uses wordcount�c�valid�wc

wordcount�c�valid�wc usedBy valid

valid uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy valid

valid uses ��wordcount�h�INVALID

��wordcount�h�INVALID usedBy valid

Procedure fits

wordcount�c defines fits

fits modOfIs wordcount�c

fits procOfIs fits

fits defBy wordcount�c

fits uses ��wordcount�h�Bool

fits typeOfIs ��wordcount�h�Bool

��wordcount�h�Bool isTypeOf fits

wordcount�c�fits�wc typeOfIs ��wordcount�h�WordCount

��wordcount�h�WordCount isTypeOf wordcount�c�fits�wc

wordcount�c�fits�wc uses ��wordcount�h�WordCount

fits uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy fits

Parameter wordcount�c�fits�wc

fits defines wordcount�c�fits�wc

wordcount�c�fits�wc procOfIs fits

wordcount�c�fits�wc defBy fits

wordcount�c�fits�wc modOfIs wordcount�c

fits uses strncmp

strncmp usedBy fits

fits uses wordcount�c�fits�wc

wordcount�c�fits�wc usedBy fits

fits uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy fits

fits uses ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN usedBy fits

��

wordcount�c uses strncmp

strncmp usedBy wordcount�c

wordcount�c uses printf

printf usedBy wordcount�c

wordcount�c uses free

free usedBy wordcount�c

wordcount�c uses strncpy

strncpy usedBy wordcount�c

wordcount�c uses malloc

malloc usedBy wordcount�c

wordcountTable�c uses setCount

setCount usedBy wordcountTable�c

wordcountTable�c uses fits

fits usedBy wordcountTable�c

wordcountTable�c uses ��wordcount�h�Bool

��wordcount�h�Bool usedBy wordcountTable�c

client�c uses getCount

getCount usedBy client�c

client�c uses valid

valid usedBy client�c

client�c uses ��wordcount�h�Bool

��wordcount�h�Bool usedBy client�c

client�c uses strncmp

strncmp usedBy client�c

client�c uses scanf

scanf usedBy client�c

��wordcountTable�h uses getWC

getWC usedBy ��wordcountTable�h

��wordcountTable�h uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy ��wordcountTable�h

��wordcountTable�h uses putWC

putWC usedBy ��wordcountTable�h

��wordcountTable�h uses ��wordcount�h�Bool

��wordcount�h�Bool usedBy ��wordcountTable�h

��wordcountTable�h uses lengthWCTable

lengthWCTable usedBy ��wordcountTable�h

��wordcountTable�h uses printWCTable

printWCTable usedBy ��wordcountTable�h

��wordcountTable�h uses initWCTable

initWCTable usedBy ��wordcountTable�h

��wordcount�h uses setWCount

setWCount usedBy ��wordcount�h

��wordcount�h uses getWCount

getWCount usedBy ��wordcount�h

��wordcount�h uses printWC

printWC usedBy ��wordcount�h

��wordcount�h uses deleteWC

deleteWC usedBy ��wordcount�h

��wordcount�h uses makeWC

makeWC usedBy ��wordcount�h

��wordcount�h uses ��wordcount�h�WordCount

��wordcount�h�WordCount usedBy ��wordcount�h

��wordcountTable�h uses

usedBy ��wordcountTable�h

��wordcount�h uses

usedBy ��wordcount�h

Type ��wordcount�h�WordCount

wordcount�c defines ��wordcount�h�WordCount

��

��wordcount�h�WordCount modOfIs wordcount�c

��wordcount�h�WordCount defBy wordcount�c

Type ��wordcount�h�Bool

wordcount�c defines ��wordcount�h�Bool

��wordcount�h�Bool modOfIs wordcount�c

��wordcount�h�Bool defBy wordcount�c

Macro ��wordcountTable�h�MAX�WCTABLE�LEN

wordcountTable�c defines ��wordcountTable�h�MAX�WCTABLE�LEN

��wordcountTable�h�MAX�WCTABLE�LEN modOfIs wordcountTable�c

��wordcountTable�h�MAX�WCTABLE�LEN defBy wordcountTable�c

Macro ��wordcount�h�FALSE

wordcount�c defines ��wordcount�h�FALSE

��wordcount�h�FALSE modOfIs wordcount�c

��wordcount�h�FALSE defBy wordcount�c

Macro ��wordcount�h�TRUE

wordcount�c defines ��wordcount�h�TRUE

��wordcount�h�TRUE modOfIs wordcount�c

��wordcount�h�TRUE defBy wordcount�c

Macro ��wordcount�h�INVALID

wordcount�c defines ��wordcount�h�INVALID

��wordcount�h�INVALID modOfIs wordcount�c

��wordcount�h�INVALID defBy wordcount�c

Macro ��wordcount�h�WORDLEN

wordcount�c defines ��wordcount�h�WORDLEN

��wordcount�h�WORDLEN modOfIs wordcount�c

��wordcount�h�WORDLEN defBy wordcount�c

THIS IS THE END OF THE EXAMPLE PROGRAMS A�BOX

��

