Deutsches : Document

Forschungszentrum
fiir Kiinstliche D-94-11
Intelligenz GmbH

Working Notes of the KI'94 Workshop:

KRDB'94
Reasoning about Structured Objects:
Knowledge Representation Meets Databases

Saarbriicken, September 20-22, 1994

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

Deutsches Forschungszentrum fur Kunstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-67608 Kaiserslautern, FRG D-66123 Saarbriicken, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Klnstliche Intelligenz

The German Research Center for Arificial Intelligence (Deutsches Forschungszentrum fiir Kiinstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFK! conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

oooooo

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland
Director

Working Notes of the KI'94 Workshop: KRDB'94 - Reasoning
about Structured Objects: Knowledge Representation Meets Databases

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

DFKI-D-94-11

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9201).

© Deutsches Forschungszentrum fir Kiinstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to coov_in whole orin_part without pavment.ot foe is qragtad for nannipfit educational and research nurmnnses
. Ir

- o

Working Notes of the KI'94 Workshop:

KRDB-94
Reasoning about Structured Objects:
Knowledge Representation Meets Databases

Saarbriucken, Germany, September 20-22, 1994

Organized by

Franz Baader
Lehr- und Forschungsgebiet Theoretische Informatik
RWTH Aachen
Aachen, Germany
baader@informatik.rwth-aachen.de

Martin Buchheit
German Research Center for Artificial Intelligence
Saarbriicken, Germany

buchheit@dfki.uni-sb.de

Manfred A. Jeusfeld
Lehrstuhl Informatik V (Informationssysteme)
RWTH Aachen
Aachen, Germany
jeusfeld@informatik.rwth-aachen.de

Werner Nutt
German Research Center for Artificial Intelligence

Saarbriicken, Germany
nutt@dfki.uni-sb.de

This collection of papers forms the permanent record
of the KRDB’94 Workshop “Reasoning about Struc-
tured Objects: Knowledge Representation Meets
Databases”, that is held at the University of
Saarbriicken, Germany on September 20-22, 1994,
as part of the 18th German Annual Conference on
Artificial Intelligence. The workshop is set up to
be as informal as possible, so this collection cannot
hope to capture the discussions associated with the
workshop. However, we hope that it will serve to

rempind participants of their discugsion at the worgk-

for the database schema. Finally, Wolfgang Benn
takes a data dictionary as input and puts a taxo-
nomic layer on top of it in order to produce integrate
database schemata and to reason on completeness.
Another area of interest is the relationship of
knowledge representation and query languages. Ul-
rich Hustadt argues against the standard closed-
world-assumption in database query languages and
votes for an epistemic operator that can stepwisely
convert a knowledge base into a database. Klaus
child Augroents this arcument bv hig investicatinn

Jyo—

Contents

Invited Talks

Description logics for schema level reasoning in databases
Maurizio Lenzerini, Universita di Roma “La Sapienza”

Database views on KR classification
Marc Scholl, Universitat Ulm

Session 1: Schema design for data and knowledge bases

Formalization of OODB models o o
Gottfried Vossen, Universitat Miinster

Terminological systems revisited: terminology = schema + views
Martin Buchheit, DFKI Saarbriicken; Francesco M. Donini, Universita di Roma “La Sapienza”;
Werner Nutt, DFKI Saarbriicken; Andrea Schaerf, Universita di Roma “La Sapienza”

Using natural language for databasedesign 000000,
Edith Buchholz, Antje Diisterhoft, Universitat Rostock

What’s in a federation? Extending data dictionaries with knowledge representation tech-
DIQUES . . . o v v v e e e e e e e e e e e e e e e e e e
Wolfgang Benn, Technische Universitat Chemnitz-Zwickau

Session 2: Knowledge representation languages as query languages

Ullrich Hustadt, Max Planck-Institut fiir Informatik Saarbricken

Tractable reasoning in a universal descriptionlogic.
Klaus Schild, DFKI Saarbriicken

Generating queries from complex type definitions
Manfred A. Jeusfeld, RWTH Aachen.

Terminological logics for schema design and query processing in OODBs
D. Beneventano, S. Bergamaschi, S. Lodi, C. Sartori, CIOC-CNR Bologna

Semantic indexing based on descriptionlogics o000
Albrecht Schmiedel, Technische Universitat Berlin

Session 3: Techniques for modeling business data

The problems of data modeling in software practice
Harald Huber, USU Softwarehaus Moglingen

OLSEN: an object-oriented formalism for information and decision system design
Ramzi Guetari, Frédéric Piard, Bettina Schweyer, LLP-CESALP Annecy

Session 4: Database implementations of KR systems

Frames, objects and relations: three semantic levels for knowledge base systems
M.C. Norrie, ETH Ziirich; U. Reimer, P. Lippuner, Swiss Life Zirich; M. Rys, H.-J. Schek, ETH
Zirich

Uniformly querying knowledge bases and databases
Paolo Bresciani, IRST Povo

ii

Description Logics for Schema Level Reasoning
in Databases

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Universitd di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

Abstract

Several recent papers point out that the research on Description Logics and their
associated reasoning techniques can be profitably exploited in several ways in the
area of Databases. We argue that one of the most important aspects of Databases
where we can take advantage of Description Logics is the one related to schema
level reasoning, i.e., reasoning at the intensional level of a database. This is the
case in schema design, schema maintenance, schema integration, schema trans-
lation, integrity checking, query evaluation in cooperative information systems,
etc. Indeed, on the one hand Description Logics can be seen as very powerful
data models, and on the other hand, they can serve as unified formalisms that
capture object-oriented, semantic and conceptual data models proposed in the
literature. Most importantly, they can provide useful reasoning services in all
the above mentioned tasks.

This article was processed using the IATgX macro package with LLNCS style

Database Views on KR Classification
— Abstract —

Marc H. Scholl

University of Ulm, Faculty of Computer Science
D-89069 Ulm, Germany
scholl@informatik.uni-ulm.de

Abstract. The database models for Object Database Systems (ODBMSs)

include many modeling concepts that originate in semantic data mod-

els, that were formerly used for database design purposes, or in (object-

oriented) programming languages. To some extent, research on data mod-

els and query languages for such ODB models has already reached a con-

sensus, not on one particular model or language, but on the core of what

should be considered furtheron. Other aspects, such as view support for

example, are less common. We argue that the KL-ONE style termino-

lagical lggigs can nravide_a verv cnnvenient_hasis for the integration of

by a qeury expression). Updates to such views can be propagated to
base classes if the view classes are inserted into the global class(ification)
hierarchy. Therefore, object databases need the inference services that
KL-ONE systems provide (classification, subsumption, ...). We report
on the experiences that we gained in the COCOON project, where this
approach was pursued over the last few years.

Formalization of OODB Models

Gottfried Vossen
Institut fur Wirtschaftsinformatik, Universitat Munster
Grevenerstrafie 91, 48159 Minster

1 Introduction

Object-oriented data models represent a current end-
point in the evolution of data models [23]). Their for-
malization has been attempted in a variety of papers,
including [5; 6; 19]. This short paper indicates what
we consider the common intersection of these (and
other) approaches; we list the relevant features and
components, and give an idea of how to formalize
the notion of an object-oriented database schema.

An object-oriented data model has to capture a
variety of requirements [8; 27], which differ consid-
erably from those that traditional data models have
to meet. However, many system developers seem
not to care about formal models as a solid foun-
dation of their system, but simply design a “data
definition language” in which the relevant features
can be coded. In our opinion, a formal model for
object-oriented databases basically has to capture
the same intuitions as models for other types of da-
tabases, which are the following;:

1. It has to provide an adequate linguistic abstrac-
tion for certain database applications.

2. It should provide a precise semantics for a data
definition language.

3. It has to be composed of both a speciﬁcation
and an operational part.

Class
Type Methods «—————|Messages
impl
dom
inst
Values

val Object

e

State oid Behavior,

Figure 1: Core Aspects of an Object Model.

Sbehav); in what follows, we first consider each com-
ponent in isolation and then indicate how the two in-
teract. We mention, however, that while it is gener-
ally agreed that an object-oriented data model has to
capture both structure and behavior, the former can
be obtained by using the experience from the rela-

¢ Mroyzeronigaagrpradations’ nviadigeog b0 tiave! pestedpelatianal and comnlevenbiert. mordels

PR

»
Y

5 — ~ ~ 1
z,ﬁéﬁé

T\ = -
-
i—

Pl
P

S

1

In this short note, we do not present a comprehensive
survey of formal models for object-oriented databa-
ses which have been proposed in the literature, but
instead try to point out the fundamentals of how

L et o 3T meem At d THAe voctnilt o ~carn Re AANn

to database researchers. Consequently, a consensus
seems achieved for structure, but not for behavior.
The core aspects of formal models for object-
oriented databases are summarized in Figure 1, in
which labels of arrows represent function names. In

class (its external interface), which are internally im-
plemented using methods that are executable on ob-
Jjects. Hence, objects have a state and a behavior; in
addition, they are uniquely identified. Messages are
specified by providing a signature, and by associating
several signatures with the same message name, the
latter gets overloaded. Not shown in Figure 1 is the
possibility to organize classes in an inheritance hier-
archy; also not shown is the fact that class attributes
are allowed to reference other classes, thereby form-
ing an aggregation lattice.

We next look at structural as well as behavioral
aspects in more detail. Regarding the modeling of
structure, more precisely highly-structured informa-
tion, complex data types are all that is basically
needed, since they serve as descriptions for domains
of complex values. One way to introduce such types,
i.e., to define a type system T, is the following;:

(i) integer, string, float, boolean C T;

(ii) if A; are distinct attributesandt; € T,1<¢ <
n, then
[Al ity ..., Ap 2tn]€T

(i) if t € T, then {t} € T (“set type”);
(iv) ift € T, then <t > T (“list type”).

In other words, a type system is made up of base
types, from which complex types may be derived us-
ing (eventually attributes and) constructors. Note
that this requires nothing additional but the avail-
ability of attribute names. Clearly, other base
types as well as additional or alternative construc-
tors could straightforwardly be included. Notice also
that here types are not named; for practical reasons,
the use of type names may be desirable (e.g., in order
to be able to reuse type definitions in various places
throughout a schema), and if it is, it can easily be
added to the above in the way indicated earlier.
The notion of a domain as a “reservoir” of possible
values can be defined as follows; it just has to obey
constructor applications: a

(“tuple type”);

(a) dom(integer) is the set of all integers; dom
is analogously defined for string, float,
boolean;

(b) dom([Al . tl, “ee
{[A1 : vl,...,An
dom(t;)};

(c) dom({t}) =
{{v1, ..+, va} | (Vi,1 < i< n) v €dom(t)};

(d) dom(< t>):=
{< Vi, .., Un >
dom(t)}.

In a structurally object-oriented context, the first
thing that needs to be introduced beyond complex
types and domains as defined above is the possibil-
ity to share pieces of information between distinct
types, or to aggregate objects from simpler ones. At
the level of type declarations, an easy way to model
this is the introduction of another reservoir of names,
this time called class names, which are additionally
allowed as types. In other words, object types are
complex types as above with the following new con-
dition:

, Ap i ty]) =
cv] | (Vi1 <i<n)y €

| (Vil<i<n)wue

(v) C C T, where C is a finite set of class names.

This states nothing but the fact that class names
are allowed as types (below we will complement this
with the requirement that classes themselves have
types).

The intuition behind this new condition is that ob-
jects from the underlying application all are distin-
guished by their identity, get collected into classes,
and can reference other objects (share subobjects).
To provide for this at the level of domains, let us
first assume the availability of a finite set OID of
object identifiers which includes the special identi-
fier nil (to capture “empty” references); next, ob-
ject domains, i.e., sets of possible values for objects
are complex values as above with the following ad-
ditional condition:

(e) dom(c) = OID for each c € C.

Thus, classes are assumed to be instantiated by ob-
Jjects (class-name types take object identifiers as val-
ues, in the same way as, say, the integer type takes
integer numbers as values). Clearly, this alone is not
enough, since class instances commonly have distinct
sets of object identifiers associated with them. We
will show below how that (and, for example, the fact
that sometimes inclusion dependencies need to hold
between sets of class instances) is captured at the
instance level.

The object-oriented paradigm has another dimen-
sion for organizing information besides aggregation,
which is inheritance, or the possibility to define a
class as a specialization of one or more other classes.
To this end, a subtyping relation is needed through
which it can be expressed that a subclass inherits
the structure of a superclass. Such a relation can be
defined in various ways; for example, it can be de-
fined semantically by requiring that the sets of values
or instances of types; where one is a subtype of the
other, are in a subset relationship. We prefer a sim-
pler, syntactical approach, which has, for example,
the advantage that checking subtype relationships
can be automated:

Let T be a set of object types. A subtyping rela-
tion < C T x T is defined as follows:

(i) t<tforeachteT,
(11) [Al Itl, oy An Itn] S [A’l Zt’l, ey
if
(a) (VA;,1<j<m)(FA,1<i<n) A=
A; At <t
(b) n>m,
(i) {t} <{t'}ift <t
(iv) <t><<t'>ift<t.
With these preparations, we arrive at the follow-
ing definition for objectbase schemas that can de-
scribe structure of arbitrary complexity: A struc-

tural schema is a named quadruple of the form
Sstruc = (C, T, type, isa) where

Al o th]

(i) C is a (finite) set of class names,

(i) T is a (finite) set of types which uses as class
names only elements from C,

(iii) type : C — T is a total function associating a
type with each class name,

(iv) isa C C x C is a partial order on C which is
consistent w.r.t. subtyping, i.e.,
¢ isa ¢ = type(c) < type(c’) for alle,c' € C.

This definition resembles what can be found in
a variety of models proposed in the literature, in-
cluding [17; 19; 20; 25] and others. Notice that it
still leaves several aspects open, like single vs. mul-
tiple inheritance; if the latter is desired, a condition
needs to be added stating how to conflicts should
be resolved. Also, implementations typically add
a number of additional features, like attributes as
functions [22; 29], a distinction of class attributes
from instance attributes (the latter are shared by
all objects associated with a class, while the for-
mer represent, for eéxample, aggregate information
like an average salary only relevant to the class as a
whole) [7], a unique root of the class hierarchy from
which every class inherits [20], a distinction between
private and public attributes [12], a different set of
constructors (like one with an additional array con-
structor to describe matrices), an explicit inclusion
of distinct types of relationships between classes and
their objects (m particular various forms of composi-
tion, see [18]), integrity constraints which represent
semantic information on the set of valid databases
instances (a proposal in that direction appears in [3;
4], where object constraints, class constraints, and
database constraints are dxstmgmshed) For another
example, the ODMG-93 proposal for a standardized
model {10] contains explicit keys, (binary) relation-
ships, and inverse attributes. None of these features
appear in our model, the reason being that these are
not specific to object-orientation.

The second important aspect of an object-oriented

In combining structural and behavioral schemas,
we finally obtain an objectbase schema of the form

= (C,(T, type, isa,), (M, P, isa, messg, impl)).
S is called consistent if the following conditions are

satisfied:

(i) c isa ¢ implies messg(c’) C messg(c) for all
c,c eC,

(i1) if c isa ¢’ and s,s’ € sign(m) for m € M such
that s : exty X...xt, = ¢, 8 : /xt)x...xth =
t/,then t; <t} foreachi,1<i<n,and t < ¥,

(iii) for each m € messg(c) there exists a ¢’ € C)
s.t. cisa ¢/ and impl(m, ¢’) is defined.

Condition (i) just says that subclasses inherit the be-
havior of their superclasses. Condition (ii) says that
message-name overloading is done with compa.tible
signatures, and is called the covariance condition in
[20; 9]. The covariance condition is a significant dif-
ference from what is used at a corresponding point in
programming languages, and which is known as the
contravariance condition; for a detailed explanation,
see [9]. Finally, Condition (iii) states that for each
message associated with a class, its implementation
must at least be available in some superclass.

It is interesting to note that various natural con-
ditions can be imposed on the programs that are
used as implementations of messages. We now sketch
one of them, which is based on the view that pro-
grams are functions on domains [20]. More formally,
ifme Mands:cxt; x...xt, =t € sign(m),
then impl(m,c), if defined, is a program p € P of

the form
p :dom(c) x dom(t;) x ... x dom(t,) = dom(t)

The condition in question informally states that if
message overloading appears in isa-related classes

(w a,t the rnrrncnqndlm ggw.u LS Wl‘ify_tb&ﬂ_

e e St | — Ff} et

again necessary to take recent developments in these
areas into account, and to adopt them for solving the
problems database applications have.

References

[1] S. Abiteboul, P.C. Kanellakis: The Two Facets
of Object-Oriented Data Models; IEEE Data
Engineering Bulletin 14 (2) 1991, 3-7

[2] S. Abiteboul, P.C. Kanellakis, E. Waller:
Method Schemas; Proc. 9th ACM Symposium
on Principles of Database Systems 1990, 16-27

[3] P.M.G. Apers et al.: Inheritance in an Object-
Oriented Data Model; Memoranda Informatica
90-77, University of Twente 1990

[17] A.Kemper et al.: GOM: A Strongly Typed Per-

sistent Object Model with Polymorphism; Proc.
German GI Conference on “Datenbanken fir
Biiro, Technik und Wissenschaft” (BTW) 1991,
Springer Informatik-Fachbericht 270, 198-217

[18] W. Kim: Introduction to Object-Oriented Data-

bases; MIT Press 1990

[19] C. Lecluse et al.: O,, an Object-Oriented

Data Model; Proc. ACM SIGMOD Interna-
tional Conference on Management of Data 1988,
424-433

[20] C. Lecluse, P. Richard: Foundations of the O,

Database System; IEEE Data Engineering Bul-
letin 14 (2) 1991, 28-32

' f4]__E,_§iJ tels ¢ al; ets and Constraints in an___[a11 ¥ BichnrdonguP Sohmntm Aooote Totood

=

[5] F. Bancilhon, C. Delobel, P. Kanellakis (eds.):
Building an Object-Oriented Database System
— The Story of O2. Morgan-Kaufmann 1992

[6] Q Beelzizi A_ Formell Apprg?,ch to Ob_ject_—

ferencé on Maﬁageﬁent of Data 1991, 298-307

[22] M.H. Scholl, H.J. Schek: A Relational Object

Model; Proc. 3rd International Conference on
l_)Aa_ta,base Theory 1990, Springer LNCS 470, 89—

also an Employee. Such declarations have no defini-
tional import, they just restrict the set of possible
interpretations.

The second function of a TBox is to define new
concepts in terms of primitive ones by specifying
necessary and sufficient conditions for concept mem-
bership. This can be seen as defining abstractions or
views on the objects in the knowledge base. Defined
concepts are important for querying the knowledge
base and as left-hand sides of trigger rules. For this
purpose we need more expressive languages. If cy-
cles occur in this part they must have definitional
import.

As a consequence of our analysis we propose to
split the TBox into two components: one for declar-
ing frame structures and one for defining views. By
analogy to the structure of databases we call the
first component the schema and the second the view
part. We envision the two parts to differ with re-
spect to the language, the form of statements, and
the semantics of cycles.

The schema consists of a set of primitive concept
introductions, formulated in the schema language,
and the view part by a set of concept definitions, for-
mulated in the view language. In general, the schema
language will be less expressive than the view lan-
guage. Since the role of statements in the schema
is to restrict the interpretations we want to admit,
first order semantics, which is also called descriptive
semantics in this context (see Nebel 1991), is ade-
quate for cycles occurring in the schema. For cycles
in the view part, we propose to choose a semantics
that defines concepts uniquely, e.g., least or greatest
fixpoint semantics.

The purpose of this work is not to present the
full-fledged design of a new system but to explore
the options that arise from the separation of TBoxes
into schema and views. Among the benefits to be
gained from this refinement are the following three.
First, the new architecture has more parameters for
improving systems, since language, form of state-

ing.

2 The Refined Architecture

We start this section by a short reminder on concept
languages. Then we discuss the form of statements
and their semantics in the different components of
a TKRS. Finally, we specify the reasoning services
provided by each component and introduce different
complexity measures for analyzing them.

2.1 Concept Languages

In concept languages, complex concepts (ranged over
by C, D) and complex roles (ranged over by Q, R)
can be built up from simpler ones using concept and
role forming constructs (see Tables 1 and 2 a set
of common constructs). The basic syntactic sym-
bols are (i) concept names, which are divided into
schema names (ranged over by A) and view names
(ranged over by V), (ii) role names (ranged over by
P), and (ii?) individual names (ranged over by a, b).
An interpretation T = (AT, T) consists of the do-
main AT and the interpretation function -, which
maps every concept to a subset of AZ, every role
to a subset of AT x AT, and every individual to an
element of AT such that a% # b7 for different indi-
viduals a, b (Unique Name Assumption). Complex
concepts and roles are interpreted according to the
semantics given in Tables 1 and 2, respectively.

In our architecture, there are two different con-
cept languages in a TKRS, a schema language for
expressing schema statements and a view language
for formulating views and queries to the system.

2.2 The Three Components

We first focus our attention to the schema. The
schema introduces concept and role names and states
elementary type constraints. This can be achieved
by tnclusion azioms having one of the forms:

AED, PEA;[XA;,

where A, A;, A, are schema names, P is a role name,
and [} is a—concepnt . nf_the schema languase _Intn.

jnents. and semantics can be specified differentlv for

K Yl) il i ol —

schema and view language with polynomialinference
procedures whereas merging the two languages into
one would have led to intractability. Second, we be-
lieve that one of the obstacles to a consensus about
the semantics of terminological cycles has been pre-
cisely the fact that no distinction has been made
between primitive and defined concepts. Moreover,
intractability results for cycles mostly refer to infer-
ences with defined concepts. We proved that rea-
soning with cycles is easier when only primitive con-

are also instances of D. The second axiom states
that the role P has domain A; and range A;. A
schema § consists of a finite set of schema axioms.

Inclusion axioms impose only necessary conditions
for being an instance of the schema name on the
left-hand side. For example, the axiom “Employee C
Person” declares that every employee is a person,
but does not give a sufficient condition for being an
employee.

A schema may contain cycles through inclusion

[Construct Name [Syntax | Semantics I

top T At

singleton set {a} {a*}

intersection cnbD citnpD?

union cubD cTuD?

negation -C AT\ Ct

universal quantification VR.C {d, |Vd; : (d1,d>) € R* — d; € C*}

existential quantification JR.C {d1 | 3d; : (d1,ds) € R* Ad; € C*}

existential agreement 3AQ = R | {d: | 3d2.(d1,d2) € Q* A (d1,d3) € R%}

number restrictions (2 n R) {di | Hdz | (d1,2) € R*} > n}
(£nR) {d1 [#{d2 [(d1,d2) € R*} < n}

Table 1: Syntax and semantics of concept forming constructs.

[[Construct Name | Syntax | Semantics]l
inverse role p-! {(dy,d>) | (d,d;) € Pt}
role restriction (R:C) {(dy,d2) | (d1,d2) € R* Ad, € C*}
role chain Qo R | {(d1,ds) | 3d2.(d1,d2) € QF A (d2,d3) € R*}
self € {(dl,dl) l dy € AI}

Table 2: Syntax and semantics of role forming constructs.

schema have the role of narrowing down the mod-
els we consider possible. Therefore, they should be
interpreted under descriptive semantics, i.e., like in
first order logic: an interpretation Z satisfies an ax-
iom A C D if AT C D7, and it satisfies P C A; x Ay
if PT C AT x AZ. The interpretation Z is a model
of the schema § if it satisfies all axioms in §. The
problem of inferences will be dealt with in the next
section.

The view part contains view definitions of the form

V=C,

where V is a view name and C is a concept in the
view language. Views provide abstractions by defin-
ing new classes of objects in terms of the concept
and role names introduced in the schema. We refer
to “V = (C” as the definition of V. The distinc-
tion between schema and view names is crucial for
our architecture. It ensures the separation between
schema and views.

A view taxonomy V is a finite set of view defini-
tions such that (i) for each view name there is at
most one definition, and (#¢) each view name oc-
curring on the right hand side of a definition has a
definition in V.

Differently from schema axioms, view definitions
give necessary and sufficient conditions. As an ex-
ample of a view, one can describe the bosses of
the employee Bill as the instances of “BillsBosses =
Jboss-of .{BILL}.”

Whether or not to allow cycles in view defini-
tions is a delicate design decision. Differently from
the schema, the role of cycles in the view part
is to state recursive definitions. For example, if
we want to describe the group of individuals that
are above Bill in the hierarchy of bosses we can
use the definition “BillsSuperBosses = BillsBosses U

10

Iboss-of.BillsSuperBosses.” But note that this does
not yield a definition if we assume descriptive se-
mantics because for a fixed interpretation of BILL
and of the role boss-of there may be several ways
to interpret BillsSuperBosses in such a way that the
above equality holds. In this example, we only ob-
tain the intended meaning if we assume least fixpoint
semantics. This observation holds more generally: if
cycles are intended to uniquely define concepts then
descriptive semantics is not suitable. However, least
or greatest fixpoint semantics or, more generally, a
semantics based on the p-calculus yield unique defi-
nitions (see Schild 1994). Unfortunately, algorithms
for subsumption of views under such semantics are
known only for fragments of the concept language
defined in Tables 1 and 2.

In this paper, we only deal with acyclic view tax-
onomies. In this case, the semantics of view defini-
tions is straightforward. An interpretation 7 satisfies
the definition V = C if VI = C%, and it is a model
for a view taxonomy V if 7 satisfies all definitions in
V.

A state of affairs in the world is described by as-
sertions of the form

C(a), R(a,b),
where C' and R are concept and role descriptions in
the view language. Assertions of the form A(a) or
P(a,b), where A and P are names in the schema,
resemble basic facts in a database. Assertions in-
volving complex concepts are comparable to view
updates.

A world description W is a finite set of asser-
tions. The semantics is as usual: an interpretation
7 satisfies C(a) if a € AT and it satisfies R(a,b) if
(a%,b%) € R%; it is a model of W if it satisfies every
assertion in W.

Summarizing, a knowledge base is a triple ¥ =
(§,V, W), where § is a schema, V a view taxonomy,
and W a world description. An interpretation Z is
a model of a knowledge base if it is a model of all
three components.

2.3 Reasoning Services

For each component, there is a prototypical reason-
ing service to which the other services can be re-
duced.

Schema Validation: Given a schema §, check
whether there exists a model of § that interprets
every schema name as a nonempty set.

View Subsumption: Given a schema §, a view tax-
onomy V, and view names V; and Vi, check
whether VI C VZ for every model Z of § and
v

because usually the schema is much bigger than the
two views which are compared. Similarly, one might
be interested in the world description complexity of
instance checking whenever one can expect W to be
much larger than the schema and the view part.

It is worth noticing that for every problem com-
bined complexity, taking into account the whole in-
put, is at least as high as the other three. For exam-
ple, if the complexity of a problem is O(|§|-|V|-|W|),
its combined complexity is cubic, whereas the other
ones are linear. Similarly, if the complexity of a given
problem is O(|§|"!), both its combined complexity
and its view complexity are exponential, its schema
complexity is polynomial, and its world description
complexity is constant.

In this paper, we use combined complexity to com-
pare the complexity of reasoning in our architec-
ture with the traditional one. Moreover, we use

L

.m"ﬂm_d“,:a_. 4o olinese I.....-._. 41 . ==ocoo oo ol

respect to SL-schemas. We aimed at showing two
results: (¢) reasoning w.r.t. schema complexity is al-
ways tractable, (#i) combined complexity is not in-
creased by the presence of terminological cycles in
the schema.

In all three cases, we assume that view names
are allowed in membership assertions and that the
view taxonomy is acyclic. In this setting, every view
name can be substituted with its definition. For this
reason, from this point on, we suppose that view
concepts are completely expanded. Therefore, when
evaluating the complexity, we replace the size of the
view part by the size of the concept representing the
view.

We have found the following results for the three
systems in which S£ is the schema language and the
concept language the abstraction of the query lan-
guage of CONCEPTBASE introduced in [Buchheit et
al.,1994], or the language offered by KRIS or CLASSIC,
respectively.

CoONCEPTBASE: instance checking is in PTIME
w.r.t. combined complexity (view subsumption
has been proved in PTIME in [Buchheit et
al.,1994)).

KRIS: view subsumption and instance checking are
PSPACE-complete problems w.r.t. combined
complexity and PTIME problems w.r.t. schema
complexity.

CLASSIC: view subsumption and instance checking
are problems in PTIME w.r.t. combined com-
plexity.

We conclude that adding (possibly cyclic) schema
information does not change the complexity of rea-
. soning within the systems taken into account.

4 Conclusion

We have proposed to replace the traditional TBox
in a terminological system by two components: a
schema, where primitive concepts describing frame-
like structures are introduced, and a view part that
contains defined concepts. We feel that this architec-
ture reflects adequately the way terminological sys-
tems are used in most applications.

We also think that this distinction can clarify the
discussion about the semantics of cycles. Given the
different functionalities of the schema and view part,
we propose that cycles in the schema are interpreted
with descriptive semantics while for cycles in the
view part a definitional semantics should be adopted.

In three case studies we have shown that the re-
vised architecture yields a better tradeoff between
expressivity and the complexity of reasoning.

The schema language we have introduced might
be sufficient in many cases. Sometimes, however,
one might want to impose more integrity constraints
on primitive concepts than those which can be ex-
pressed in it. We see two solutions to this problem:
either enrich the language and have to pay by a more
costly reasoning process, or treat such constraints in
a passive way by only verifying them for the objects
in the knowledge base. The second alternative can
be given a logical semantics in terms of epistemic
operators (see Donini et al. 1992).

References

[Baader and Hollunder, 1991] Franz Baader and
Bernhard Hollunder. A terminological knowledge
representation system with complete inference al-
gorithm. In Proc. PDK-91, LNAI, pages 67-86,
1991.

[Baader, 1990] Franz Baader. Terminological cycles
in KL-ONE-based knowledge representation lan-
guages. In Proc. AAAI-90, pages 621626, 1990.

[Borgida et al., 1989] Alexander Borgida, Ronald J.
Brachman, Deborah L. McGuinness, and Lori
Alperin Resnick. CLASSIC: A structural data
model for objects. In Proc. ACM SIGMOD, pages
59-67, 1989.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to
object-oriented databases. Information Systems,

" 19(1):33-54, 1994.

[Donini et al., 1992] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, Werner Nutt, and An-
drea Schaerf. Adding epistemic operators to con-
cept languages. In Proc. KR-92, pages 342-353,
1992.

[Donini et al., 1994] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, and Andrea Schaerf. De-
duction in concept languages: From subsumption
to instance checking. Journal of Logic and Com-
putation, 4(92-93):1-30, 1994.

[Jarke, 1992] M. Jarke. ConceptBase V3.1 User
Manual. Aachener Informatik-Berichte 92-17,
RWTH Aachen, 1992.

[Lenzerini and Schaerf, 1991]
Maurizio Lenzerini and Andrea Schaerf. Concept

languages as query languages. In Proc. AAAI-91,
pages 471-476, 1991.

[Nebel, 1990] Bernhard Nebel. Terminological rea-
soning is inherently intractable. Artificial Intelli-
gence, 43:235-249, 1990.

[Nebel, 1991] Bernhard Nebel. Terminological cy-
cles: Semantics and computational properties. In
John F. Sowa, editor, Principles of Semantic Net-
works, pages 331-361. Morgan Kaufmann, Los Al-
tos, 1991.

[Schaerf, 1993] Andrea Schaerf. On the complexity
of the instance checking problem in concept lan-
guages with existential quantification. Journal of
Intelligent Information Systems, 2:265-278, 1993.

[Schild, 1994] Klaus Schild. Terminological cycles
and the propositional p-calculus. In Proc. KR-94,
1994.

[Vardi, 1982] M. Vardi. The complexity of relational
query languages. In Proc. STOC-82, pages 137-
146, 1982.

12

Using Natural Language for Database Design

Edith Buchholz * and Antje Diisterhoft

Department of Computer Science
University of Rostock, A.-Einstein-Str.21
18059 Rostock, Germany
Email: {buch,duest} @informatik.uni-rostock.de

Abstract.

This paper deals with a natural language dialogue tool
Jor supporting the database design process. We want to
illustrate how natural language (German) can be used
for obtaining a skeleton design and for supporting the
acquisition of semantics of the prospective database. The
approach is based on the assumption that verbs form a
central part in defining the meaning of sentences and imply
semantic roles in the sentences which have to be filled by
objects. We are using a moderated dialogue for drawing
the designer's attention to these objects in order to extract
comprehensive information about the domain.

1 Introduction

The quality of database design is a decisive factor for the
efficiency of a database application. A database designer
has to use a high level of abstraction for mapping his real-
world application onto an entity relationship model. The
designer has to learn the model and the constraints to use
it.

Natural language can be exploited in order to overcome
this bottleneck. From our point of view a user-friendly
design system has to have two supporting tools: firstly, a
tool which makes available an interface for obtaining a
natural language description of an application and
secondly, a tool for paraphrasing database schemes in a
natural language way (see also [FloPR85]).

[ColGS83], [TseCY92], [TjoB93] are presenting various
methods dealing with natural language as input for
database design systems. These systems are based on
natural language texts for the requirement specification in
the data base design process. This paper illustrates how
natural language in a dialogue tool can be used for
gathering the knowledge of the designer and how it can

tn jﬁng-j intnon ﬂr‘mg‘,ﬂd—rmﬁ‘w]ﬁﬁqnnbin madal

In the database design project RAD ([ThaA94]) we have
implemented a rule-based dialogue design tool for getting
a skeleton design on the basis of the extended entity-
relationship model HERM [Tha91]. The designer
describes the structure of an application in German. The
specification and formalisation of semantic constraints is
one of the most complex problems for the designer. Within
natural language sentences the designer uses semantic
constraints intuitively. For that reason, within the natural
language design process we focus on extracting
comprehensive semantic information about the domain
from natural language utterances. The results of the
dialogue are available in the internal DataDictionary for
the other tools (grahical interface, integrity checker,
strategy adviser,...) of the system. Within the RAD system
the designer can use these results for various forms of
representation, e.g. a graphical representation. The
skeleton design with the semantic constraints is also the
basis for further semantic checks, e.g. of key candidates,
and will restrict the search areas in the checking process.

For the theoretical and pragmatic analyses of the language
used within the design dialogue it was necessary to do
this with a practical example. So we decided to choose
the field of library - its tasks and processes. As a method
of obtaining the linguistic corpus we carried out a number
of interviews with librariens and library users. The
extracted corpus was analysed statistically to obtain the
frequency of word forms and the occurence of synonyms
and homonyms. Starting from this domain we developed
relations to other domains (see [BucD94]).

The dialogue tool will be implemented in PROLOG.

2 The structure of the dialogue tool

anﬁ acauisition of slﬁc.izniﬁ_lmowledae‘ we decided to

da_ o .

natural . .
langnage analyses of inter- domain-
syntactic . mediate pragmatic dependent
_'9 analysis semantic inter- H
input roles formalism etation HERM
p pr/\ description
domain HERM
model model

Fig. 1. Two-stage Dialogue interpretation tool

sentences. Each sentence will be analysed syntacticallyas 2.2 Semantic analysis
well as semantically and then transformed into HERM

‘ ~ swctures. Interpreting the semantics of the designer input we are
—_— S — T <

Example. 'The user borrows a book with a
borrowing-slip'

results of the semantic analysis:

verb type: change of ownership
subject: the user

object: a book

locative: e

temporal: ?*

mode: with a borrowing-slip

(* an additional question will be initiated)

2.3 Pragmatic interpretation
2.3.1 Obtaining a skeleton design

The transformation of the structure of natural language
sentences into EER model structures is a process which is
based on heuristic assumptions, €.g., we assume that all
nouns are entities. [TjoB93] illustrate a large number of
such heuristics in an informal way. If we accept these
heuristics then we can formalize them using contextfree
and contextsensitive rules.

Example.
/* all nouns are transferred into entities */
N(X) = entity (NAME,X).

/* sentences with the main verb ‘have’ are transferred into
an entity (the subject) and the according attribute (the
object of the sentence) */

N(X),subject (X),V(haben),N(Y),object(Y)
—entity(X),attre(X,Y).

Considering the results of the syntactic analysis of anatural
language sentence we can describe these results using a
tuple structure.

Example. The tuple structure of the sentence ‘the user
borrows a book with a borrowing-slip’ is:

S(NP(DET (the),N(user)),
VP (VP (V(borrows) ,NP(DET(a),N(book)),
PP (PRAEP (with),
NP (DET (a),
N (borrowing-
slip)))))

The tple can be seen as a language which can be described
by a grammar, ¢.g. terminals are N, DET or VP. The
HERM model can also be seen as a language if predicates
are used to describe the elements of the model. Now we
can handle the transformation as a compiler process using
an attribute grammar. The heuristics are integrated into

grammar rules as well as into semantic rules. A compiler
for this purpose has been developed. The following
example illustrates how the transformation is realized.

Example. Transforming the utterance ‘at the library’ into
an entity named ‘library’ using a contextfree grammar
formalism. (The small letters identify nonterminals, and
the capital letters are terminals. ‘$x’ is a variable.
‘assert(X)’ asserts ‘X’ to the model description.)

tuple structure:
S(PP(PRAEP (at),NP(DET(a),N(library))))

grammar rules:
start — S(phrase)

phrase — PP(pp_phrase)

pp_phrase —> PRAEP($x),NP(np_phrase)
np_phrase —> NP(det_phrase,n_phrase)
det_phrase —> DET($x)

n_phrase — N($x) {assert(entity($x))}

The advantage of this approach is that we can define
actions at the word category level as well as at the sentence
phrase level. So, it is possible to define database design
actions, e.g. when considering the occurence of a genitive
nominal phrase connected with another nominal phrase
in the sentence. The heuristics underlying is that a genitive
nominal phrase has an attribute function concerning the
corresponding nominal phrase.

We are using a dialogue in which the designer can
formulate a description of an application in several
sentences. For that reason we have to deal with the problem
of inserting a new part of a design into an existing design.
We have implemented a two-step approach. Firstly, a
seperate design will be generated from the sentence of the
user. Secondly, the design description will be updated
inserting the new design part. Common heuristics are the
basis of the updating process (cf. [Diis94]).

2.3.2 Extracting information on behaviour

In most cases a database will be used for complex
processes. In order to be able to maintain the database we
have to define transactions. (For the reasons of using
transactions see [Tha94:114].) The behaviour of the
database can help to make the system more efficient and
faster and thus to save time and money.

Behaviour can best be gained from a knowledge base.
One form of presenting the domain is by classification of
the processes involved as a conceptual graph. The
knowledge base will be used for gathering relevant
processes of the application and is based on the results of
the semantic analysis. Each application can be classified.
Lending processes are identified by verbs of the class

15

work flow

P

material flow immaterial flow

N

reversible irreversible
hiring lending renting ... selling passing on

Fig. 3. Part of the process classification

‘change of ownership'. The library processes or the ‘rent
a car” processes (cf. Fig. 3) belong to this group.

The lending process as a complex process can be further
classified into a number of pre and post processes (cf.
Fig. 4). These processes are included in the knowledge
base. If a user input contains one of these processes a
possible classification will be defined and an action within
the dialogue will be initiated. The pre and post processes
in Fig. 4 can be further subdivided into processes which
are summarized in the above classification. Lending thus
requires the processes of obtaining a user card, updating
the user card if need be checking whether the book is held
and available, filling in a borrowing-slip and signing it.

Example. The sentence ‘the user borrows a book with
borrowing-slip’ implies the following general questions
(borrowing has the synonym lending):
preprocesses:
1) Is the process ‘obtaining’ situated before
‘lending’ ?
Is the process ‘registration’
before ‘lending’ ?
main processes:
3) Is the process ‘document exists’ situated
before ‘lending’ ?
4) Is the process ’‘document valid’ situated
before ‘lending’ ?

2) situated

postprocesses:

5) Is the process ‘returning’ situated after
‘lending’ ?

The designer has to give correct answers.

3 Conclusions/ Future Topics

We have presented a dialogue tool consisting of a syntax
analyser, a semantic role definer and a pragmatics
interpreter. The dialogue tool gathers information on
structure, semantics and behaviour of the prospective
database. By means of transformation rules this
information is mapped onto the HERM model.

The advantage of the dialogue tool is that the designer
can describe the requirements of the database system in a
natural language (German) and thus can specify the
knowledge of a domain in a natural way. This knowledge
is then employed for gathering database constructs such
as entities, attributes, cardinalities, constraints, etc.

The efficiency of the database greatly depends on the exact
interpretation and transformation of the natural language
input analysis. The accuracy, on the other hand, depends
on the size and complexity of the grammar used and the
scope of the lexicon.

Work in future has to concentrate on extending the
grammar to comprise all types of sentences and other
hitherto excluded parts of grammar and on ways of
steadily increasing the lexicon. For reasons of integrity
we cannot leave updating of the lexicon to the chance
designer who may have no linguistic training. Much work
will have to go into completing and maintaining the
linguistic background before it can finally be used for
any type of systems design.

A second future topic is the application of the linguistic
knowledge for acquiring further semantic information of
the prospective database, e.g. acquiring key attributes or
functional dependencies.

Acknowledgements

We are grateful to Bernhard Thalheim for his guidance
and support of our work and for his helpful criticism and
suggestions.

obtaining | registration lending returning
document |..] document |_] object 1 object || contract | | object
exists valid exists available completed transferred

Fig. 4. Part of the knowledge base: pre, main and post processes of the act/borrowing/ lending

16

References

[Bie88] Bierwisch, M., Motsch, W., Zimmermann, I. :
Syntax, Semantik und Lexikon. Berlin,Akademie
Verlag, 1988

[BucD94] Buchholz, E., Diisterhoft, A.:
The linguistic backbone of a natural language
interface for database design. In: LLC /94,
Oxford University Press

[ColGS83] Colombetti, M.; Guida, G.; Somalvico, M.:
NLDA: A Natural Language Reasoning System
for the Analysis of Data Base Requirements. In:
Ceri, S. (ed.): Methodology and Tools for Data
Base Design. North-Holland, 1983

[Diis94] Diisterh6ft, A.:
Zur Vorgehensweise bei der pragmatischen Inter
pretation natiirlichsprachiger AuBerungen
Im Datenbankentwurf. Preprint 4/94,
Fachbereich Informatik, Universitiit Rostock

[Ear70] Earley, J.:
An efficient context-free parsing algorithm.
Comm. ACM13:2, $.94-102

[Eic84] Eick, Ch.E.:
From Natural Language Requirements to Good
Data Base Definitions - A Data Base Design
Methodology. In: Proc. of the International
Conference on Data Engineering, pp.324-331,
Los Angeles, USA, 24.-27.4.1984

[FloPR85] Flores, B.; Proix, C.; Rolland, C.:
An Intelligent Tool for Information Design.
Proc. of the Fourth Scandinavian Research
Seminar of Information Modeling and Data Base
Management. Ellivuori, Finnland, 1985

[Gaz85] Gazdar, G.; Klein, E.; Pullum, G.; Sag, L.:
Generalized Phrase Structure Grammar.
Havard University Press Cambridge, Mass. 1985

[GolS91] Goldstein, R.C.; Storey, V.C.:
Commonsense Reasoning in Database Design.
Proc. of the 10th International Conference on
Entity-Relationship Approach, San Mateo,
California, USA, 23.-25.0ctober 1991, pp.77-92

{Jac83] Jackendoff, R.:
Semantics and cognition. MIT Press,
Cambridge Mass., 1983

[Tha91] Thalheim, B.:
Intelligent Database Design Using an Extended
Entity-Relationship Model.
Berichte des Fachbereiches Informatik 02-1991,
Universitit Rostock.

[Tha94] Thalheim B.:
Fundamentals of Entity-Relationship Modeling.
Springer Verlag 1994, Forthcoming

[ThaA94] Thalheim, B., Albrecht, M., Altus, M.,
Buchholz, E., Diisterhoft, A., Schewe, K.-D.:
Die Intelligente Tool Box zum Datenbank

entwurf RAD. Workshop
"Benutzerschnitstellen“,17.-19. Mirz1994,
Kassel

[TjoB93] Tjoa, A. M., Berger, L.:
Transformation of Requirements Specifications
Expressed in Natural Language into an EER
Model. Proceeding of the 12thInternational
Conference on ER-Approach, Airlington, Texas
USA,Dec. 15-17th, 1993

17

What’s in a Federation?
Extending Data Dictionaries with Knowledge Representation Techniques

Wolfgang Benn
Chemnitz University of Technology » Management of Data
P.O. Box 964 » D-09009 Chemnitz
benn @informatik.tu-chemnitz.de

1. Introduction

Databases and knowledge representation languages
have a rather different view upon data: knowledge rep-
resentation languages describe a universe of discourse
in a taxonomy and allow a user to ask epistemic ques-
tions against the relationships between concepts and
roles. However, no data structures, data locations, nor
any information about the existence or availability of
data can be found in a taxonomy -- even not if it in-
cludes an assertion that describes a particular data
item.

Relational databases provide users with schemata.
Schemata describe in detail the data structures of sets
of persistent data items. Data dictionaries, included in
these systems, tell about data existence and its avail-
ability. Anyway, these tools do not provide the entity
view, relationships between entities are merely
implicit, and no question about the universe of dis-
course that is behind a schema will get an answer.

Object-oriented databases provide users with class hi-
erarchies as schemata. They support the entity view --
is-a as well as part-of relationships are explicit. Never-
theless, an information about the universe of discourse
is not given as well.

In a federation of systems -- databases and
applications, for instance -- the situation gets worse.
Databases may be heterogeneous in their modeling
technique: some will follow the object-oriented the
majority certainly follows the relational paradigm.
How does a user get to know what data is available in
a federation, if he wants to build a new application?
How does that user get to know how he may access a
particular data item? How does he know that the
selected data item is semantically correct concerning
the context of his application?

If he can access a federated data dictionary, it will pro-
vide him with the technical information about the data
in a common data model -- similar to the global con-
ceptual schema of a distributed database. If such a tool
does not exist, the user must read all available
schemata from all available federation components
(i.e., he must know about all languages, data models,
and dialects that the local components of the feder-
ation individually use).

In the remainder of this paper we will briefly introduce
a module that coordinates a federation of systems and
that hosts a central data dictionary. It is the module,
which we will extend to provide users with an entity
view upon the information available in a federation.
We introduce the logical architecture of a prototypical
implementation of this module in section 2 and de-
scribe some extensions that we made in section 3. In
section 4 we specify some ideas of the mentioned ex-
tension, conclude in section 5 and give some literature
in section 6.

2. The Federal System Manager

The Federal System Manager (FSM) is a module that
coordinates a federation of autonomous systems.
These systems can be applications or services like
databases, which may link to the FSM to form a
federation for some particular tasks. Afterwards they
can leave the federation and run again as autonomous
systems. This idea is rather similar to the concept of
multi-agent systems.

The FSM performs a minimum of three tasks: The first
one is to run a protocol that enables the linkage
process and guarantees a negotiation of autonomy as-
pects to the components, if these want to join or leave
the federation. Second, the FSM must provide a uni-
form view upon all information that is available to ap-
plications of the federation through a so-called Com-
mon Data Model (CDM). Third, it must support an ex-
change of information, i.e., data types and data itself,
between members of the federation. We will detail
these tasks and concentrate on the second one.

Comparing an FSM with the Common Object Request
Broker “Architecture (CORBA) [1] the FSM is an
object broker that looks at databases as service pro-
viding objects and applications as clients that request
these services. Commonly known services from data-
base components are storage, retrieval, update, etc.

Moreover, the FSM is an object itself! It provides ser-

vices like data and type exchange. It contains a Fed-
eral Data Dictionary (FDD) that allows a user to re-

18

N3i4sal Th

trieve the information contents of the actual federation
under several aspects. It is our aim to extend this
Federal Data Dictionary with knowledge
representation techniques to better support users in
their retrieval than before.

2.1. The FSM Prototype
The currently implemented FSM prototype has its

roots in an ESPRIT project, finished in 1991
~agntonne mainly. } 2

-

available for all programs written in this programming
language. Application objects described in our CDM
are (under certain conditions) transformable into all
data models that are represented in the FSM.

The Meta Layer

An extension of the IRD standard was made for the
meta layer. If the FSM supports an exchange of data
between components, it must be able to transform data
weep. the diffepent _individpal dgfa descaigtiong

architecture for interoperable systems given in [7] and
includes a repository according to the Information
Resource Dictionary Standard IRDS [8].

This standard defines a four-layer architecture with

(top down)

* a meta-meta layer that describes the model of the
meta layer descriptions -- which is in our case the
Common Data Model of the FSM, a frame work that
basis on the Abstract Data Type (ADT) idea --,

» a meta layer where we find the description of sche-
mata -- which is in our case a description of the fed-
eration components data models --,

These descriptions follow type or schema declarations,
which use data model elements. Thus, our meta layer
has to include a suitable sub-set of the component data
model for each involved component. Moreover, it
must include some rules that guide the transformation
of entities between these data model sub-sets.

However, the description of a data model sub-set is
somewhat more complex than the description of a
schema. While a schema merely consists of data struc-
tures, a data model usually includes data types and
data type semantics. The meta layer of our FSM in-
cludes both (the assignment of a set of operations to a

______+ a schema laver where the_data_descrintions are lo- data tvpe that makes up_the tvne’s

sknantics in the

g ———————————————————————————————— ———————

4

1

cated -- which is in our case the data types that are
defined in schemata of databases or in type declara-
tions of applications --, and

« an application data layer where we finally find the
application data itself.

The Meta-Meta Layer

To enable the description of schema descriptions we
implemented a common data model.

In the literature we found many different approaches
to implement a CDM -- the approach most often used,
however, was the object-oriented. Thus, we asked our-
selves, what is the kernel idea of the object-oriented
paradigm that makes it suitable for a CDM. We found
out that it probably is the idea of Abstract Data Types.

Thus, we implemented a frame work, which is actually
not a real data model but a tool box [2]. It allows a
user to describe the structure and semantics of those
elements, which he uses to describe a schema, similar
to the ADT concept (see next paragraph).

The CDM that we implemented is very similar to the
Interface Description Language (IDL) of the CORBA
specification [1] -- because its purposes are rather
similar. IDL is a language, which describes object ser-
vices in an intermediate way and the CDM describes
entities (application objects) in an intermediate way.

An IDL description is mapped into a real
programming language and the object services are

data model of a component is currently under
implementation).

To enable the exchange of data and schema
information between components the system
administrator of each federation component defines
the relevant structural part of his component data
model types with the CDM types and assigns some
procedures that make up the semantics of these data
types. He inserts the necessary data model knowledge
into the meta layer using the meta-meta layer ele-
ments.

For instance, from an object oriented data model the
administrator defines the structural parts of the
concept CLASS and assigns at least one particular
routine that performs inheritance similar to his
individual data model.

This information is provided through an interface,
which is the so-called Data-Model-Profile. It is an
ASCII file with a particular syntax that is parsed. Then
the information is kept in a knowledge base -- the
FSM Meta Knowledge Base.

The Schema Layer

Databases, as components of a federation, use
database schemata. Applications use data type
definitions to declare their application types.

The FSM reads these schemata and declarations and
interprets the used data types through the information

19

of the meta layer. Application entities are transformed
into entities of the CDM and then -- for storage
purposes -- transformed into entities of a database data
model.

The entity information in CDM-format is stored in the
Federal Data Dictionary (FDD) for retrieval purposes.

The Application Layer

Finally the data that comes from applications is stored
in databases that have joined the federation, that are
represented through meta-information in the Meta
Knowledge Base, and that are willing to perform the
storage process after a negotiation of their autonomy
rights.

Of course, the data is not stored as CDM-typed data
but is typed according to the data model of the
involved database system. The interpretation of binary
data runs the same way as the transformation of type
information: It goes from the data model of the
application towards the CDM and from the CDM to
the database data model, and vv.

3. Extensions of the FSM Prototype

Since 1991 the FSM prototype has been completed by
some student’s work.

The Federal Data Dictionary of the prototype
contained information about data type declarations,
the types of application entities, and the structure of
these entities -- as well, access rights were included. It
did not include any technical information about the
availability of entities or schemata. B

We extended the FDD and it now contains technical
information about the federation components. The
meta layer includes information about the technical
system that hosts the application or the database
system. The schema layer includes information about
the technical availability of entities [9].

The lack of a docking mechanism and a protocol to
negotiate autonomy was another problem of the
original FSM prototype. It was a static system with
two applications, a database system and the FSM with
hard wired mechanisms to read data type declarations
-- database schemata could not be read, nor was it
possible to link another database system with the FSM.

Now we have implemented a link mechanism that
generalizes the old one [10]. We now use a FSM-Bind
module that binds a component -- either a database
system or an application -- if it includes our FSM-
Bind-Agent.

The FSM-Bind-Agent acts as a client to the FSM-Bind
module, which is the server, and performs the link pro-
cess between FSM and component. It runs an imple-
mented protocol for start-up and shut-down situations
and uses the Remote Procedure Call (RPC) technique.

After linkage the FSM-Bind-Agent passes control to a
so-called FSM-Agent, which performs the information
exchange and the retrieval of schema information via
the Remote Data Access (RDA) protocol.

What is still missing, is a user friendly retrieval
facility that completes the Federal Data Dictionary.
‘We will describe our ideas in the next section.

3.1. Extensions of the FDD

Data dictionaries offer technical information to users -
- and exactly this can be expected from our Federal
Data Dictionary as it is currently implemented. If a
user wants to build a new application he looks into the
FDD and looks up some data structures that he wants
to re-use. Then he includes the chosen data structures
into his new schema (the FSM provides some
commands to do so) and runs his application.

This user is unable to check whether his new schema
violates the semantic integrity of the universe of dis-
course of the actual federation because he can not ask
the FDD to present him semantic relations between
entities.

We wish to provide such a user with an extended Fed-
eral Data Dictionary, which shows the contents of a
federation from various levels of abstraction. If this
extended data dictionary has a graphic interface the
user will use a mouse to easily request the change of

levels. Which are these levels?

Taxonomy Level

The highest level presented, should be a taxonomy
upon the universe of discourse. It could be the union
of all schemata (and may be data type declarations of
applications) of local database components, which we
previously transformed into the abstraction level of a
concept language. This level would represent the data
of a particular federation without any technical details.
Here the user could look-up the real-world context of
an entity and might ask questions about the relation-
ships between entities. It is the level that KL-ONE like
languages usually offer to users with their T-Box.

Concept Languages separate between the terminologi-
cal (T-Box) and assertion knowledge (A-Box). The
task, which we have to perform is to abstract the tech-
nical information from schemata and data type

20

’

declarations to concepts of concept languages. In [11]
we find a theoretical basis that allows us to express
database schemata with concept languages.

Moreover, the authors show that classification is then
available for entities of schemata -- and we found out
that the implementation of a classificator is
surprisingly supported through an algorithm, which we
use within the FSM to detect data type intersections
for types from different data models. This algorithm
follows perfectly the above mentioned steps for a

- classification of concepts.

Anyway, if we make the is-a and part-of relations of
entitiecs from schemata explicit and suppress the
technical information, then we can ask questions
against a schema similar to the questions against a
taxonomy.

The implementation of this level may use intermediate
language representations that follow the idea of at-
tributed trees. This model allows us to determine the
degree of entity detail information, which we want to
present, by cutting the tree at a certain level. The in-

formation ahove the cnt is preg _as,_caongcent The._ 2 4 -
£ 30 -_—-vﬁ% Y — m——

We realize this view by an FDD retrieval, because our
directory includes the structure information of entities
in a neutral representation and the information about
the availability of these entities.

Syntax Level

Finally, the user may get what he always got from
databases: the pure schema information. If he asks for
this, he will get an excerpt of a schema of one or more
particular local components of the federation -- and he
should decide himself whether he would like to
receive this information in the format of a common
data model or in the individual format of the involved
local federation components.

4. First Steps toward the Taxonomy Level

Concerning the integration of abstract schema rep-
resentations into one taxonomy we did some work in
advance and evaluated an idea, published in [12]. It
proposed the assignment of fuzzy values to

_
r—
-
—

however. gave a pew balance to bhoth values. which
[G T— .

L pr—
==

was called CALC. It calculated the initialized values
according to the new schema. The first case, C,;, was
used if a relationship was found in a schema -- it
corresponds with the INIT function for the taxonomy -
- and set Cs (E;, E)) := 1. We assume that the designer
of the schema did a good and correct work.

The second case, C,, was used, if we find a
relationship within the schema but not within the
taxonomy. We insert the relationship into the
taxonomy and give it the value Cr (E,E)) := Cs (EE))
+ card (St (E) = Ss (Ep).

This approach seems to be correct because we can not
guarantee that the taxonomy was correctly initialized
with relationships. Moreover, an insertion of a new re-
lationship affects the probability value of another one
because there must be a reason why a particular appli-
cation domain needs this new relationship. It may be,
that the already existing relationships do not have the
importance, which we have expected.

Finally there is the case C;. In this case we see a rela-
tionship within the taxonomy but miss it in a schema.
We interpret that relationship as “possible but
unnecessary” within this application domain and
“insert” it into the schema with Cs (Ei,E)) := Cr (E,E)
+ card (St (E)).

Then we made three assumptions:

a) The increase of probability of one particular rela-
tionship is given by its existence in schemata and
causes a decrease of probability for those
relationships, which are often missed.

b) The results of calculations about the overall proba-
bility for a particular relationship is included into the
taxonomy.

¢) Results are calculated through the geometrical
mean of the two probability values from the taxonomy
and from a schema.

With these assumptions and formulas we tested the in-

S Y . D T . S S S SN M

relationship.

A second test gave surprising results; We inserted the
two C-type schemata and then four times the A-type
schemata. This gave a high value to the "B is-a C”
relationship first -- the balance was 0.5 for ”B is-a A”
and 0.84 for "B is-a C” -- and a final value of 0.96 for
"B is-a A” and 0.37 for "B is-a C".

While the first test showed that the late insert of an ap-
parently insignificant relationship makes the value sys-
tem unstable, the second test showed that an early
insert of the two C-type schemata prevents the al-
ternative relationship to fall down to an "insignificant”
valuation.

Anyway, both value calculations were highly sequence
dependent, and we suspected the second assumption as
the reason for it. Thus we tried again without this as-
sumption. We inserted into C; a variable: V (E)
counts the number of schemata without a particular
relationship and the calculation C; changed to

Cs (Ei’Ej) =1+ (VE)+ 1.

This does not change much and we were stuck to the
question: Is the insert of knowledge really an evolu-
tionary process or is it correct to calculate probability
values from the arithmetic mean of all values from
schemata?

5. Conclusion

The proposed extended data dictionary gives a twofold
benefit. At first, a user who wants to build a new
schema for an application in a system federation can
check which entities already exist, which of them he
can re-use within his application, and which one he
has to add or modify.

Second, an administrator can test the correctness of an
existing schema against the universe of discourse. He
can check the completeness of relations between enti-

P T T I Y T T B Y . 1

Ject Manager Document, University of Hagen, Com-
puter Science Report N° 99, 1990

[3] W. Benn, Ch. Kortenbreer, X. Wu: Towards Inter-
operability: Vertical Integration of Languages with a
KBMS, GI-Fachtagung “Datenbanksysteme in Biiro,
Technik und Wissenschaft” (BTW 91), Springer-Ver-
lag, 1991

[4] W. Benn: KBMS Support for Multiple Paradigm
Applications, in [16]

(5] W. Benn: KBMS Support for Conceptual
Modeling in Al 3rd International Conference on Tools
for Artificial Intelligence, 1991

[6] W. Benn, Ch. Kortenbreer, G. Schlageter, X. Wu:
On Interoperability for KBMS Applications - The Ho-
rizontal Integration Task -, 8 th Intl. Conference on
Data Engineering, Phoenix, AZ, 1992

[7]1 A.P. Sheth, J.A. Larson: Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and
Autonomous Databases, ACM Computing Surveys
(1990) 3

[8] DIN 66 313, Rahmenangaben fiir Systeme zur Ver-
waltung von Informationsrecourcenverzeichnissen,
DIN Deutsches Institut fir Normung e.V., Berlin,
1992 (same as ISO/IEC 10 027)

[9] J. Hunstock: Erweiterung einer Wissensbasis zur
Realisierung von universellem Polymorphismus in fo-
derativen Systemen um technische Informationen auto-
nomer Systemkomponenten (Extending the Meta-
Knowledge Base of the FSM by technical information),
thesis for diploma, Chemnitz University of
Technology, 1993

[10] M. Schéne, S. Herold: Konzeption und Imple-
mentierung eines Protokolls und zugehoriger System-
komponenten zur Integration von Datenbanksystemen
in einer Foderation (Design and implementation of a
protocol for the integration of database components
into a federation), thesis for diploma, Chemnitz Uni-
versity of Technology, 1994

[11] S. Bergamaschi, C. Sartori: On taxonomic re-
asoning in conceptual design, ACM TODS (1992) 3

[12] P. Fankhauser, M. Kracker, E. Neuhold: Semantic
vs. Structural Resemblance of Classes, ACM SIG-

In the next section I will give some examples that
show the usefulness of closed-world inferences in nat-
ural language processing. Thus knowledge represen-
tation languages sticking to the open-world assump-
tion seem to be insufficient for natural language pro-
cessing.

2 Query answering in Natural
Language Processing

In cooperation with the PRACMA Project! (De-
partment of Computer Science, University of Saar-
briicken) we have been developing a suitably ex-
tended knowledge representation system, called Mo-
TEL [Hustadt and Nonnengart,1993), which is in-
tended to be a module of the PRACMA system. The
PRACMA Project [Jameson et al.,1994] is concerned
with the modeling of noncooperative information-
providing dialogues. An example from PRACMA’s
domain is the dialogue between a person S trying to
sell her used car to a potential buyer B. Naturally,
the goals of S conflict in part with those of B.

In the final implementation, the natural language
analysis module of the PRACMA system will use
the semantic representation language NLL [Laub-
sch and Nerbonne,1991] to represent the German-
language input strings. The resulting NCL expres-
sions will be stored in the pragmatic dialogue mem-
ory. Various modules will process the content of the
dialogue memory, the most important one for us is
the comment and question handler. The result of
this module is transfered to the natural language
generator which is responsible for verbalizing NLL
expressions.

NLL contains a first-order logic core with anadic
predicates, generalized quantifiers, plural reference
expressions, and A-abstraction. To fit the pur-
poses of PRACMA the language has been extended
by modal operators.

Suppose the knowledge base of the car seller S
contains declarations defining that vehicles are either
cars or trucks, veh1 is a truck, and veh2 is a vehicle.
This can be represented in ANLL in the following
way.

(forall ?x vehicle(inst: ?x) iff
(car(inst: ?x) or

truck(inst: 7x)) (1)
truck(inst: vehl) (2)
vehicle(inst: veh2) 3)

Here vehi and veh2 are constants, vehicle, car,
and truck are predicate symbols. In NCL argu-
ments of predicates are identified via keywords, e.g.
inst, rather than positions in argument vectors.
Any identifier preceded by a question mark, e.g.
7x, is a variable. In addition we have used the
boolean operators iff (equivalence) and or (disjunc-
tion), and the universal quantifier forall in decla-
ration (1).

Now a question of the buyer concerning which ob-
jects are either cars or trucks is represented in the

'PRACMA is short for ‘PRocessing Arguments be-
tween Controversially Minded Agents.’

following way.
(7lambda ?x car(inst: ?x) or
truck(inst: ?x)) (4)

An expression of the (?lambda ?x P) denotes the
set of all 7x satisfying P. The answer we have to
infer from the knowledge base is that veh1 and veh2
both belong to this set.

Obviously, this answer cannot be computed by the
comment and question handler without taking dec-
laration (1) into account. For instance, it is not pos-
sible to find the correct answer to (4) by computing
the answer sets for (?lambda ?x car(inst: ?x))
and (?lambda ?x truck(inst: ?x)) and to return
the union of the resulting sets as an answer.

A question of the buyer concerning which objects
do not belong to the set of trucks is translated into
the following NLL expression.

_(?lambda ?x not car(imnst: ?x)) (5)

Whereas the closed-world assumption would allow
us to infer that veh1 belongs to this set, the open-
world assumption underlying ANLL doesn’t support
this conclusion.

The question whether all cars are vehicles can also
be formulated in NLL. To answer this question we
can try to infer

(forall ?x vehicle(inst: ?x) if
car(inst: 7x)) (6)

from the knowledge base. The answer to this ques-
tion has to be independent of the constants currently
occurring in our knowledge base. On the basis of
declaration (1), the answer has to be positive.

Now let us assume that the left front seat of veh2
is red. Choosing 1fseat to designate the left front
seat, this can be represented in the following way.

hasPart(inst: veh2, theme: lfseat))
seat(inst: lfseat) 8)
hasColour(inst: 1fseat, theme: red) (9)

To answer the question whether all seats of veh2
are red we have to try to infer the following NLL
expression.

(forall 7x

hasColour(inst: ?x, theme: red)

if hasPart(inst: veh2, theme: ?x)
(10)
Because of the open-domain and open-world as-
sumption, the answer to the question cannot be pos-
itive. Although the only seat the car seller knows to

be part of veh2 is actually red, there may be other
seats of veh2 and these seats may not be red.

and seat(inst: ?x))

Intuitively, a positive answer is much more plau-
sible. We would assume that the car seller knows all
the seats of veh2 and knows the colour of every seat
of veh2. It is possible to extend the knowledge base
using number restrictions in such a way that we can
infer a positive answer, e.g.

((= 1) ?x hasPart(inst: veh2, theme: ?x)
and seat(inst: 7x)) (11)

25

declares that veh2 has exactly one seat. decla-
rations (7),(8),(9), and (11) taken together allow
us to answer query (10) positively. However, it
seems to be more natural to extend the language
by an epistemic modal operator in the style of Lif-
schitz [Lifschitz,1991] to solve the problem. For a
description of an extension of the knowledge repre-
sentation language ALC by an epistemic operator
refer to Donini et al. [Donini et al.,1992].

Suppose our language contains such an epistemic
operator K. Then we have two possibilities to get a
positive answer to the question. The first possibility
is to reformulate the question slightly in the follow-
ing way.

(forall 7x
hasColour(inst: ?x, theme: red) if
K(hasPart(inst: veh2, theme: ?x)
and seat(inst: 7x))) (12)

Now the question is whether all known seats of veh2
are red and the answer has to be positive. This
approach causes the problem how the natural lan-
guage analysis module should determine the epis-

temic character of question (12) opposed to the non-

[Brachman et al., 1991] Ron J. Brachman, Debo-
rah L. McGuinness, Peter F. Patel-Schneider, and
A. Borgida. Living with cLASSIC: When and how
to use a KL-ONE-like language. In J. F. Sowa,
editor, Principles in Semantic Networks: Explo-
rations in the Representation of Knowledge, pages
401-456. Morgan Kaufmann, San Mateo, Califor-
nia, 1991.

[Buchheit et al., 1993] M. Buchheit, F. M. Donini,
and A. Schaerf. Decidable reasoning in terminolo-
gical knowledge representation systems. Research
Report RR-93-10, Deutsches Forschungszentrum
fiir Kiinstliche Intelligenz, Saarbriicken, Germany,
1993.

[Donini et al., 1991] F. M. Donini, M. Lenzerini,
D. Nardi, and W. Nutt. The complexity of concept
languages. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International
Conference on Principles of Knowledge Represen-

" tation and Reasoning, pages 151-162, Cambridge,
USA, April 22-25 1991. Morgan Kaufmann.

[Donini et al., 1992] F. M. Donini, M. Lenzerini,
D. Nardi, A. Schaerf, and W. Nutt. Adding
Fpistemic Qneratar “nncent. Lanenages__Jo

e D e

Tractable Reasoning in a Universal Description Logic:
- Extended Abstract*

Klaus Schild
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, FRG
.e-mail: schild@dfki.uni-sb.de

1 Introduction

Description logics (also called terminological logics
or concept languages) have been designed for the
logical reconstruction and specification of knowledge
representation systems descending from KL-ONE
such as BAck, CLassic, KRZS, and LooM.! These
systems are used to make the terminology of an ap-
plication domain explicit and then to classify these
definitions automatically into a taxonomy according
to semantic relations like subsumption and equiva-
lence. More precisely, automatic classification refers
to the ability to insert a new concept into the tax-
onomy in such a way that it is directly linked to the
most specific concept it is subsumed by and to the
most general concept it in turn subsumes. Termi-
nological knowledge representation systems thereby
support the task to formalize an application in at
least two respects. On the one hand, they urge the
user to isolate the intrinsic concepts of the appli-
cation; on the other hand they may detect hidden
subsumption and equivalence relations between def-
initions or may even detect that a definition is inco-
herent.

A model of the application is then given by associ-
ating special objects of the domain with the concepts
of the terminology. The systems mentioned above
in turn automatically classify these objects with re-
spect to the given terminology and to those member-
ship relations which have been asserted explicitly. In
this case, however, automatic classification refers to
the ability to find the most specific concept the ob-
Jject is a member of. ‘ :

Terminologies comprise two different kinds of
terms, viz. so-called concepts and roles. The for-
mer are intended to represent classes of objects of a
given domain, while the latter represent binary rela-
tions over this domain. Concepts can either be sim-
ple concept names, representing not further specified
classes of objects, or structured by means of a fixed
set of concept structuring primitives. Common con-
cept structuring primitives are concept conjunction
M and universal quantification VR:C over a role R.
Concept conjunction is to be interpreted as set in-
tersection, while the concept VR:C denotes all those

*This work was supported by a grant from the
Deutsche Forschungsgemeinschaft (DFG).

!For a good overview of the so-called KL-ONE family
the reader is referred to [Woods and Schmolze, 1992]; for
KL-ONE itself ¢f. [Brachman and Schmolze, 1985].

27

objects d of the domain for which each object re-
lated to d by the role R is a member of the con-
cept C. Although there exist many other concept
structuring primitives, it is commonly accepted that
these two should be part of each concept language.
In contrast to concepts, roles are often taken to be
atomic, i.e., there are no roles other than role names.
The standard concept language ALC, for instance,
does not comprise any role structuring primitives.
However, in addition to those mentioned above, this
language comprises concept disjunction U, concept
negation — as well as existential quantification IR:C
over a role R as concept structuring primitives. For
details the reader is referred to [Schmidt-Schauff and
Smolka, 1991].

Definitions are given by associating a concept or
role T with a concept name (resp., role name) TN.
Such a definition is represented by the expression
TN = T and is called concept and role introduction
respectively. Terminologies are just finite sets of con-
cept and role introductions such that each concept
and role name is defined at most once, i.e., for ev-
ery concept and role name TN there exists at most
one concept or role introduction the left-hand side
of which is TN.

As already mentioned, a model of application do-
main is described in terms of the given terminology.
More precisely, specific objects of the domain and
pairs of objects can be associated with concepts and
roles of the terminology, where these objects are syn-
tactically represented by so-called individual names.
It can either be asserted that an individual name a
is an instance of a concept C or that it is related to
another individual name, say, b, by a role R. Such
assertions are called assertional arioms and are rep-
resented by the expressions a:C' and (a, b):R respec-
tively. A finite set of assertional axioms forms a
knowledge base.

From a theoretical point of view, the computa-
tional service provided by terminological knowledge
representation systems can be reduced to answer
queries of the following form with respect to a knowl-
edge base KB and to a terminology 7": a query can
be an assertional axiom or an inclusion aziom of the
form Ty C T», where T; and T, are either two con-
cepts or two roles. The meaning of such a query Q
posed with respect to B and 7 is usually given in
terms of so-called interpretations and models. An
interpretation I consists of a domain AT and a val-

-

uation V over AT along with an interpretation func-
tion .I. The valuation V over AT maps each concept
name to a subset of AZ and each role name to a bi-
nary relation over AZ. Individual names, however,
are mapped to singleton sets containing exactly one
element of AZ. The interpretation function .7, on
the other hand, just extends V to deal with arbitrary
concepts and roles in such a way that all concept and
role structuring primitives are interpreted properly.
The concept structuring primitives N, U, —, for in-
stance, are to be interpreted as the corresponding
set operations on AT, while the interpretation of the
concept YR:C is defined inductively as follows: if CZ
and R? have already been defined, then (VR:C)? is
{d € AT :Ve((d,) € RY),e € C*?}.

An interpretation Z is then said to be a model
of the inclusion axiom T3 C T, just in case that
TZ C T¥ and, if a and b are individual names such
that a? is {a} and b7 is {b}, then Z is a model of
the assertional axiom a:C (resp., of (a,b):R) just in
case that a € CT (resp., (a,b) € RT). Not very
surprising, an interpretation is a model of KB and T
if it is a model of each of the elements of KB and 7.
Now, @ is said to be entailed by KB and 7, written
KB E7 Q, if and only if every interpretation which
is a model of KB and 7 is a model of Q as well.
Moreover, we say that Ty subsumes T with respect
to 7 if and only if it holds that @ 7 T) C T3.

2 Terminological Reasoning is
Inherently Intractable

Unfortunately, answering such queries is in most
cases provably intractable, at least in terms of com-
putational worst case complexity. This applies, for
instance, to the basic inference of KL-ONE, although
originally claimed to be computationally tractable.
In fact, Schmidt-SchauBl [1989] proved that there ex-
ists no algorithm at all which decides whether one
concept of KL-ONE subsumes another one or not,
even with respect to empty terminologies.

Moreover, in [Schild, 1993, 94a), , it is proved that
in case of the standard concept language ALC, ever

a
b Is b a top block?
[table |

Figure 1: A sample blocks world.

Vz.block(z) @z =aVz=b,
a # b,a # table,b # table,
VzVy.on(z,y) & (x=aAy=1d)

V (z=bAy= table)

k= block(b) A —3z.block(z) A on(z, b)

Figure 2: Representing the sample blocks world by
first-order formulae.

3 Model Checking Versus Theorem
Proving

In the previous section, we have seen that, as
Woods and Schmolze [1992] put it, “the surfeit of in-
tractability results seems to have reached its logical
end with the conclusion that practically everything
of any use is intractable &in the worst case).” Re-
cently, Halpern and Vardi [1991] proposed a possible
solution to this very problem of knowledge represen-
tation. As a starting point, they re-examined the
traditional approach to knowledge representation,
going back to McCarthy [1968). According to this
approach the world to be modeled should be repre-
sented by a finite set of formulae of some given logic,
preferably first-order logic. If a question to be an-
swered is then formulated within the same logic, the
answer depends on whether this formula is a logical
consequence of the collection of formulae represent-
ing the world or not. In other words, it is checked
whether every semantic structure which is a model
of each of the formulae representing the world is also
a model of formula corresponding to the question.
We shall illustrate this traditional approach to
knowledge representation by means of an example,
drawn from the famous blocks world. Suppose, for
instance, we would like to represent a blocks world

apynlir I tarn hlagks agapemynad b _swhara o Jiac nn F

Dom {a, b, table}
[block] = {a,b}
[on] = {(a,b),(b, table)}

= block(b) A —3z.block(z) A on(z, b)

Figure 3: Representing the sample blocks world by
a semantic structure.

in many cases the natural representation of a world
to be modeled is a semantic structure rather than
a collection of formulae. If, as in the traditional
approach, queries are represented by formulae of a
given logic, a query can be answered in this case
depending on whether the formula representing the
query is true in the given semantic structure or not.
That is to say, it is checked whether the semantic
structure is a model of the formula corresponding
to the query. The fact that a (closed) formula « is
true in a semantic structure M is usually indicated
by M [a. Resorting to this convention, Figure 3
gives such an alternative representation of the blocks
world considered above.

In many cases this model checking approach has
tremendous benefits, at least in terms of computa-
tional complexity. For instance, checking the truth
of an arbitrary closed first-order formula? a in a
finite semantic structure fixing the interpretation
of all predicates and constants occurring in « is
known to be decidable using at most polynomial
space [Chandra and Merlin, 1977]. Recall that in
contrast to this, there exists no algorithm at all
which is able to decide whether an arbitrary formula
of this kind is a logical consequence of a finite set of
first-order formulae, even with only finite interpreta-
tion domains taken into account. However, it is also
known that first-order model checking is still at least
as hard as any other problem solvable using at most
polynomial space, hence this problem is still very
hard [Chandra and Merlin, 1977). Anyway, Halpern
and Vardi’s intention was to forge a new approach
to knowledge representation rather than to give con-
crete instances which allow for tractable inferences.

4 The Model Checking Approach to
Terminological Reasoning

It should be clear that terminological knowledge rep-
resentation, as described in the introduction, is com-
mitted to the traditional approach to knowledge rep-
resentation rather than to the model checking ap-
proach. In [Schild, 1994b] we investigated the con-
sequences of adapting Halpern and Vardi’s model
checking approach to terminological reasoning. It
turned out that even in case of the most powerful de-
scription logic considered in the literature, answering
queries become tractable just by replacing the usual
kind of knowledge bases with single finite seman-
tic structures fixing the interpretation of all primi-
tive concepts and roles (i.e., those concept and role

2This formula should involve no function symbols
other than constants.

a:Block, b:Block , table:— Block,

(a,b):on, (b, table):on,

a:(—~3on~1:Block), table:(—Jon:Block)
T = {TopBlock = Block M =3on~1:Block}

[='7— b: TopBlock

Figure 4: Representing the sample blocks world by
an ACC~1-KB.

Dom =
[Block] = {a,b}
[on] = {(a,b), (b, table)}

T = {TopBlock = Block M —=3on~1:Block}

|='—r b: TopBlock

{a, b,table}

Figure 5: Representing the sample blocks world by
a physical ALC!-KB.

names which are mentioned somewhere in the termi-
nology or in the query, but which are not defined).

But before engaging into details, have a look at
Figure 4, which shows how to represent the already
familiar blocks world in terms of ALC together with
the inverse of roles !, as it would be done tradi-
tionally. Observe, however, that this representation
is incomplete in that it solely states that block a lies
on block b, while the latter in turn lies on the table,
but it is left open whether there is any other block
lying on b or on the table. As a matter of fact, there
is no way at all to give an accurate representation of
our blocks world in terms of ALC, even when aug-
mented by the inverse of roles. This means, in this
case the so-called open world assumption,3 tradition-
ally made for terminological reasoning, is a nuisance
rather than an advantage.

Figure 5 modifies the just considered representa-
tion in the spirit of the model checking approach. A
finite semantic structure is shown there which fixes
the interpretation of each primitive concept and role
of T, that is, it fixes the interpretation of Block and
on. Such a semantic structure is obviously nothing
but a valuation along with a domain. When taken
together with a domain, the syntactic representation
of such a valuation is called physical knowledge base,
emphasizing the fact that they are intended to re-
place customary knowledge bases. Now, suppose V
is such a physical knowledge base with domain Dom,
T is an arbitrary terminology, and Q is a query.
Then V =7 @ is intended to mean that every in-
terpretation extending V which is a model of T is a
model of @ as well, where an interpretation Z is said
to extend a physical knowledge base V with domain
Dom just in case that AT = Dom and, moreover, .Z
interprets all those concept and role names handled

3In contrast to the closed world assumption, usually
made for databases, the open world assumption does not
assume that all those facts that are not explicitly men-
tioned (or that cannot be inferred) are taken to be false.

29

—

by V in exactly the same way as V does.

In [Schild, 1994b] we investigated the computa-
tional complexity of answering such queries with re-
spect to physical knowledge bases in the description
logic U, introduced by Patel-Schneider [1987] as a
universal description logic. This concept language is
universal in the sense that it encompasses all others
considered in the literature, except for those which
comprise nonstandard facilities like defaults, for in-
stance. In addition to those of ALC, this language
comprises number restrictions of the form 32"R:C
and 3™ R:C as well as role value maps of the form
R < S as concept structuring primitives. Number
restrictions restrict the number of role fillers (i.e.,
those objects which are related to an object by a
role), while role value maps impose restrictions on
the fillers of two roles. The concept R < S states
that all fillers of the role R are also fillers of the role
S. In addition, « admits of individual names to oc-
curring in concepts. The role structuring primitives
of U are the identity role ¢, Boolean operations M, U,
- on roles, the inverse R~! of a role, the composition
RoS of two roles, as well as the transitive closure Rt
and the reflezive-transitive closure R* of a role. For
details cf. [Schild, 1994b] or [Patel-Schneider, 1987)].
Notably, it is known that there cannot exist any al-
gorithm which is capable of deciding subsumption
between two concepts (or two roles) of U, even with
respect to empty terminologies [Schild, 1988].

The main result of [Schild, 1994b] is that even in
this language V =7 Q can be decided in polynomial
time provided that each of the following conditions
is satisfied:

(a) V has a finite domain and specifies all concept
and role names occurring in 7 and @ except for
those which are defined in T;

(b) Roles are not defined recursively;

(c) Concepts can be defined recursively, but then
they must occur in their definition* positively,

the concept and role structuring primitives of U,
storing already evaluated ones. To deal with re-
cursive concept definitions, however, we exploited
a technique for computing least and greatest fixed
points due to Emerson and Lei [1986].

It turned out that even when relaxing condition
(2) in such a way that V is solely required to have a
finite domain, V =7 @ is still decidable in the uni-
versal description logic U. In fact, we proved that in
this case the computational complexity is essentially
the same as the one of deciding ordinary subsump-
tion between two concepts with respect to acyclic
terminologies in the minimal concept language.®

We also investigated the consequences of incorpo-
rating some limited kind of incomplete knowledge
by means of Reiter’s null values [Reiter, 1984). It
turned out that, when presupposing P # NP, ad-
mitting of null values causes intractability, even in
case of ALC. Thus our results suggest that the main
source of computational complexity of terminologi-
cal reasoning seems to be the ability to express in-
complete knowledge.

5 Description Logics as Tractable
Query Languages for Databases

Another interpretation of our results is that, when
taken together with the least and greatest fixed point
semantics, the universal concept language U can
serve as a powerful but tractable query language for
relational databases comprising solely unary and bi-
nary relations.® From this point of view terminolo-
gies are to be thought of as defining so-called views,
possibly defined recursively.

At this very point, it is important to note that the
universal description logic U/ is so strong in expres-
sive power that it is even capable of accurately defin-
ing concepts such as directed acyclic graphs (DAG's),
trees, or binary trees. The powerful role forming
primitives of U actually admit of plausible and non-

-

DirectedGraph Vconnected: Vertex
connected = (edge Ul edge™1)*
Acyclic = Vconnected:(edget < —e)
DAG = DirectedGraph N Acyclic
Tree = DAG
M Vedge*:35'edge™!: Verter
BinaryTree = Tree
N Vedge*:35%edge: Vertex
AndOrGraph = DirectedGraph
M~ Vconnected: AndOrVertex
AndOrVertex = AndVertex N ~OrVertex
U OrVertex N —-AndVertexr
Solvable = —3Jedge: Vertex
U AndVertezr M Vedge:Solvable
U OrVertez M 3edge:Solvable

Figure 6: A terminology of .

ing approach to terminological knowledge represen-
tation does make it possible to answer queries in
polynomial time, there are actually nontrivial infer-
ences to perform.

Acknowledgements

I would like to thank Martin Buchheit for valuable
comments on earlier drafts of the abstract.

References

[Brachman and Schmolze, 1985] Ronald J. Brach-
man and James G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cog-
nitive Science, 9(2):171-216, 1985.

[Chandra and Merlin, 1977] Ashok K. Chandra and
P. M. Merlin. Optimal implementation of con-
Jjunctive queries in relational databases. In Pro-
ceedings of the 9th ACM Symposium on Theory of
Computing, pages 77-90, 1977.

[Church, 1936] Alonzo Church. An unsolvable prob-
lem of elementary number theory. American Jour-
nal of Mathematics, 58:345-363, 1936.

[Emerson and Lei, 1986] E. Allen Emerson and
Chin-Laung Lei. Efficient model checking in frag-
ments of the propositional mu-calculus (extended
abstract). In Proceedings of the 1st IEEE Sympo-

sium on Logic in Computer Science, pages 267—
278, Boston, Mass., 1986.

[Halpern and Vardi, 1991] Joseph Y. Halpern and
Moshe Y. Vardi. Model checking vs. theorem prov-
ing: A manifesto. In Proceedings of the 2nd In-
ternational Conference on Principles of Knowl-
edge Representation and Reasoning, pages 325
334, Cambridge, Mass., 1991.

[McCarthy, 1968] John McCarthy. Programs with
common sense. In M. Minsky, editor, Semantic In-
formation Processing, pages 403-418. MIT Press,
Cambridge, Mass., 1968.

31

[Nebel, 1990] Bernhard Nebel. Terminological Rea-
soning is Inherently Intractable. Artificial Intelli-
gence, 43:235-249, 1990.

[Nebel, 1991] Bernhard Nebel. Terminological cy-
cles: Semantics and computational properties. In
J. Sowa, editor, Formal Aspects of Semantic Net-
works, pages 331-361. Morgan Kaufmann, San
Mateo, Cal., 1991.

[Patel-Schneider, 1987 Peter F. Patel-Schneider.
Decidable, Logic-Based Knowledge Representa-
tion. PhD thesis, University of Toronto, Toronto,
Ont., 1987. Computer Science Department, Tech-
nical Report 201/87.

[Reiter, 1984] Raymond Reiter. Towards a logical
reconstruction of relational database theory. In
M. L. Brodie, J. Mylopoulos, and J. W. Schmidt,
editors, On Conceptual Modeling, pages 191-233.
Springer-Verlag, Berlin, FRG, 1984.

[Schild, 1988] Klaus Schild. Undecidability of sub-
sumption in . KIT Report 67, Department of
Computer Science, Technische Universitit Berlin,
Berlin, FRG, 1988.

[Schild, 1993] Klaus Schild. Terminological cycles
and the propositional u-calculus. DFKI Research
Report RR-93-18, German Research Center for
Artificial Intelligence (DFKI), Saarbriicken, FRG,
April 1993.

[Schild, 1994a] Klaus Schild. Terminological cycles
and the propositional y-calculus. In Proceedings of
the 4th International Conference on Principles of
Knowledge Representation and Reasoning, pages

509-520, Bonn, FRG, 1994.

[Schild, 1994b] Klaus Schild. Tractable reasoning in
a universal description logic. DFKI Research Re-
port, German Research Center for Artificial Intel-
ligence (DFKI), Saarbriicken, FRG, 1994. Forth-
coming.

[Schmidt-Schau$ and Smolka, 1991]

Manfred Schmidt-Schau and Gert Smolka. At-
tributive concept descriptions with complements.
Artificial Intelligence, 48(1):1-26, 1991.

[Schmidt-SchauB, 1989] Manfred Schmidt-Schau8.
Subsumption in KL-ONE is undecidable. In Pro-
ceedings of the Ist International Conference on
Principles of Knowledge Representation and Rea-
soning, pages 421-431, Toronto, Ont., 1989.

[Trahtenbrot, 1963] B. A. Trahtenbrot. Impossibil-
ity of an algorithm for the decision problem in
finite classes. American Mathematical Society
Translation Series, 23(2):1-5, 1963.

[Woods and Schmolze, 1992] William A. Woods
and James G. Schmolze. The KL-ONE family.
In F.W. Lehmann, editor, Semantic Networks in
Artificial Intelligence, pages 133-178. Pergamon
Press, 1992.

Generating queries from complex type definitions*

Manfred A. Jeusfeld
Informatik V, RWTH Aachen, D-52056 Aachen
jeusfeld@informatik.rwth-aachen.de

Abstract

Many information systems are imple-
mented as application programs connected
to a database system. A characteristic
problem of such systems is the famous
impedance mismatch, i.e., the conceptual
distance between the programming and the
database languages. The traditional solu-
tion is to implement an interface that trans-
forms one representation into the other.
Commercial database systems offer prepro-
cessors that allow to embed the database
language (e.g., SQL) into the programming
language (e.g., C). Such an approach frees
the application programmer from the task
to specify details of the communication.
However, the impedance mismatch is not
solved but aggravated. - The set-oriented
database language is intermixed with the
element-oriented programming language, a
notorious cause for programming errors.
Moreover, there is no support in map-
ping the restricted data representation of
databases into the more complex type sys-
tem of programming language. This pa-
per proposes an intermediate language, the
API modules, for specifying the relation-
ship between the representations in the
database and in the application program.
The query for retrieving the information
and the data types for storing it can be
generated from the API module. The mod-
ules are simple enough to allow reasoning
on queries generated from them.

1 Introduction

The purpose of a database system is to maintain a
large amount of information for a variety of appli-
cation programs. The application-specific clustering

is either described as a database view definition or
YI':‘:'F“""“‘" Lee @Vdaan 2o o2 X a) o LAl

case of relational databases, only flat relations
can be expressed. In the case of object-oriented
databases, the type system depends on the spe-
cific data model of the database system.

e Handcoded clustering by filter procedures
within the application program is error-prone
and gives away the chance of reasoning on
the relationship between the information in the
database and in the application program.

Section 2 introduces API modules as the interface
between the database and the application program.
Base types are imported from the database. Appli-
cation specific types are defined by using tuple, set,
and pointer constructors. The latter allows to rep-
resent recursive concepts of the database schema.

Section 3 presents the mapping of the API mod-
ules to a logic program delivering complex terms.
These terms are read by a parser that itself is gen-
erated from the API modules.

Section 4 relates the types in an API module to
statements of a concept language. Thereby, types of
two different API modules can be checked for sub-
sumption and consistency.

2 Interface Modules

Interfaces between imperative-style programming
languages should both reflect the major type con-
structors and the facilities of the database query
language. The most common type constructors are
tuple and set. Some languages also support lists.
Pseudo-recursive type definitions are possible when
allowing pointer types, e.g. in C and Modula-2.
Common base types are Integer and String. The
denotational semantics of a type expression is a po-
tentially infinite set of values, for example [Inte-
ger,String] denotes the cartesian product of the se-
mantics of the component types.

2.1 Example

Assume a database provides information about a

2

o - ‘ir ey Er

API-MODULE Emps;

FROM CompanyDb IMPORT Employee, Project,
Department, String;

TYPE

EmpType/Employee

[name: String;
project: {Project};

dept: DeptTypel;

DeptType/Department = [deptName: String;
head: *EmpTypel;
PORT

e: {EmpTypel| dept.deptName=$N};
END.

Figure 1: API module for the company example

data structures on top of the imported concepts.
EmpType is a record type which represents the name
of an employee, his projects, and the department.
The latter is given by the name and the reference
(pointer) to that employee who is the head of the de-
partment. The purpose of the pointer is to encode
recursive type definitions. The PORT declaration
defines which information of the database should be
teransfered to the application program. Here, all
employees who have a department named by $N are
of interest. The token $N denotes a placeholder for
a string whose value is inserted by the application
program at run time.

3 Query Generation

From the database point of view, an API module is
a collection of simple view definitions whose exten-
sions are represented by terms conforming the type
definitions. These views are encoded as a logic pro-
gram defining a predicate hasType (T, V). It formally
defines the set of values V having type T, i.e., the se-
mantics of the type T. The database system is mod-
elled by two predicates for accessing information:

e In(X,C) denotes that the database object X is
an instance of the con-
cept C, e.g., In(e2341,Employee), In("Peter
Wolfe",String).

e A(C,a,X,Y) states that the object X is related to
the object Y by an attribute a which is defined in
class C, e.g., A(Employee,name,e2341,"Peter
Wolfe").

The logic program can automatically be gener-
ated from the type definitions by a simple top down
traversing algorithm on the syntax tree of a type
definition®:

For each concept C imported in the API module
we include a clause which delivers all values of type
C.

hasType(C,C(_X)) :-
In(_X,C).

A tuple type has the general form T/C =
[a1:T1,...,ak:Tk]. The decoration C is called the
”class” of T. It is mapped to the clause pattern

!We adopt the syntax of Prolog to denote the clauses.
Variables start with an underscore. The meta predicate
SETOF(x,c,8) evaluates s as the set of all elements x
satisfying the condition c

33

hasType(T,T(_X,_Y1,...,_YK) :
In(_X,C),
<map(a1:Ti)>,

<map(ak:Tk)>.

The parts <map(ai:Ti)> have to be mapped as
follows:

o If Ti is a set type {S} where S is a type
name for a tuple-valued type with arity m then
<map(ai:Ti)> is replaced by

SET_OF(s(_z,_Z1,...,_Zm),
(A(c,ai, _X,_2),
hasType(S,S(_zZ,_2Z1,...
_Yi)

»-2m))),

e If Ti is a set type {#*S} where S is a type name
of a tuple type with class D then <map(ai:Ti)>
is replaced by

SET_OF(REF(S,_Z),
(A(C,ai, X, _2),
In(_Z,D)),
_Yi)
o If Ti is a tuple type with arity m then the macro
is replaced by

_Yi = Ti(_Y,_z1,...
A(C,ai,_X,_Y),
hasType(Ti,_Yi)

»-Zm),

o Finally, pointer types *Ti where Ti is a record
type with class D are mapped to the condition

(_Yi = REF(Ti,_Y),
A(C,ai,_X,_Y),
In(_Y,D);

Y = null_value)

3.

The operator ’;” stands for a logical disjunction.
There will be no backtracking on this disjunction.
Thus, _Y will either be bound to a term REF(.,.)
or to the special value null_value.

The PORT clauses specify those subsets of types
which are of interest to the application program. A
port definition

PORT v: {T| ail.a2...an=$P}
is compile to the clause

askPort(_S,v,_P) :-
SET_OF(_X,
(hasType(T,_X),
path(_X, [a1,a2,...
_S).

The predefined predicate path evaluates the path ex-
pression ai.a2...anstarting from _X. Note that the
parameter $P becomes an argument of the askPort
predicate. It is instantiated by the application pro-
gram when calling the goal askPort. The result is
returned in the first argument.

The restriction in the port definition can easily be
extended to contain several conditions. Moreover,
one can allow a constant or a second path expression
instead of the parameter on the right-hand side of
the equality.

’an],—P),

hasType(String,String(_S)) :-
In(_S,String).

hasType (Project ,Project (_P)) :-
In(_P,Project).

hasType (DeptType,DeptType(_D,_DN,_M)) :-
In(_D,Department),
_DN = String(_21),
A(Department,_D,deptName,_Z1),
hasType (String, _DN),
_M = REF(EmpType,_2Z2),
A(Department,_D,head,_Z2),
In(_Z2,Employee).

hasType (EmpType ,EmpType (_E,_N,_PS,_DT)) :-
In(_E,Employee),
_N=String(_Z1),
A(Employee,_E,name,_Z1),
hasType(String, N),
SET_OF(Project(_Z2),
(A(Employee,_E,project,_Z2),
hasType (Project,Project(_22))),

_Ps
_DT = DeptType(_D,_DN,_M),
A(Employee,_E,dept,_D),
hasType (DeptType, _DT) .

askPort (_S,e,_N) :-
SET_OF(_X,
(hasType (EmpType,_X),
path(_X, [dept ,deptName],_N),
_S).

Figure 2: Logic program for the example

3.1 Mapping of the Example

The definition of hasType for the running example
is presented in Figure 2.

The values of the imported concepts are rep-
resented as unary terms, e.g. String(“Peter
Wolfe"). Values of complex terms have more com-
ponents according to the type definition. For exam-
ple,

EmpType(e2341,String("Peter Wolfe"),
[Project(p1),Project(p2)],
DeptType(d41,String(""Marketing"),

REF (EmpType,e3331)))

is the term representing a value of EmpType. Val-
ues of set types like {Project} are sequences of val-
ues of the member type enclosed by brackets. The
component for the dept attribute is avalue of type
DeptType. This shows the representation of point-
ers as terms REF(T,X) where X is the identifier of
the value (of type T pointed to. The identifier is al-
ways the first component of a term T(X,...). All
identifiers are constants from the database.

4 Properties of Interfaces

Termination of the logic program is guaranteed, and
the types defined in API modules can be compared
with the database schema and with each other.

4.1 Termination

On first sight, the generated logic program is recur-
sive in the hasType clause and it contains complex

terms as arguments. Thus, one has to ensure termi-
nation when evaluation it by the SLD strategy for
logic programs.

Fortunately, if one makes sure that the types in the
API module are defined non-recursively, then there
is a partial order on the type names. If a type defini-
tion for T1 uses a type T2 on the right-hand side, then
T1 > T2 holds. The definition of the logic program
generator propagates this property to all clauses of
the hasType predicate: if hasType(T,.) occurs in
the condition of a clause hasType(R,.) then T must
be smaller than R. Consequently, the logic program
terminates on each goal hasType(T,X)2.

A corrolar of this proposition is the finiteness of
the sets interpreting the types in the API module.

4.2 Reasoning Services

The constructs in the API module were deliberately
choses to be conformant with the concept language
dialect of Buchheit et al. 1994. A couple of reasoning
services are possible, each determing a different set
of axioms to be reasoned about. We illustrate only
one service, type checking against the database.

The type definitions in an API module make
assumptions about the structure of the imported
database concepts. In the example of Figure 1,
the concepts Employee must at least have three at-
tribute categories name, project, and dept. For
the Department concept, two attributes categories
deptName and head are required. Moreover, at-
tribute cardinalities for the answer objects are
stated:

o a set-valued attribute like project does not in-
duce any cardinality constraint;

e a pointer-valued attribute like head restricts the
the number of attribute fillers to be less or equal
L

e the remaining attributes like dept must have
exactly one filler.

Please note that these properties apply to the de-
fined concepts like EmpType (ET) and not to the
imported concepts like Employee (E). The concept
language expression is:

ET = EN(=1name.S) N (=1 dept.DT)
DT =DnN(=1deptName.S) N (< 1 head.E)

As prescribed by the logic program, the pointer-
valued attribute head of DeptType is not refer-
ing to EmpType directly but to its associated class
Employee. Thereby, circular concept definitions are
prevented.

These equalities for the type definitions are true
provided the database schema has a schema consis-
tent to it. At least it has to fulfill the following
” well-typedness” axioms3:

20ne has to assume that the underlying database
is finite. This is however a standard assumption with
databases.

3The symbol T stands for the most general concept.

34

Acknowledgement. Many thanks to Claudia
Welter and Martin Staudt for attacking weak points
in earlier versions of this paper.

References

[Buchheit et al., 1994] M. Buchheit, M.A. Jeusfeld,
W. Nutt, and M. Staudt. Subsumption between
queries to object-oriented databases. Information
Systems, 19(1):33-54, 1994.

[Lee and Wiederhold, 1994] B.S.

Lee and G. Wiederhold. Outer joins and filters
for instantiating objects from relational databases
trough views. IEEE Trans. Knowledge and Data
Engineering, 6(1):108-119, 1994.

[Matthes, 1993] F. Matthes. Persistente Objektsys-
teme. Springer-Verlag, 1993.

[Papakonstantinou et al., 1994] Y. Papakonstanti-
nou, H. Garcia-Molina, and J. Widom. Object ex-
change across heterogeneous information sources.
Submitted paper, 1994.

[Plateau et al., 1992] D. Plateau, P. Borras, D. Lev-
eque, J. Mamou, and D. Tallot. Building user in-
terfaces with Looks. In F. Bancilhon, C. Delobel,
P. Kannelakis (eds.):Building an Object-Oriented
Database System - The Story of 02, Morgan-
Kaufmann, 256-277, 1992.

[Nestor et al., 1992] J. R. Nestor, J. M. Newcomer,
P. Giannini, and D. L. Stone. IDL - The language
and its implementation. Prentice Hall, 1990.

36

Terminological logics for schema design and
query processing in OODBs*

D. Beneventano®, S. Bergamaschi®, S. Lodi°®, C. Sartori

Dipartimento di Elettronica, Informatica e Sistemistica
Universita di Bologna - CIOC-CNR
°Facolta di Ingegneria, Universita di Modena

1 Introduction

The paper introduces ideas which make feasible and
effective the application of Terminological Logic (TL)
techniques for schema design and query optimization in
Object Oriented Databases (OODBs).

Applying taxonomic reasoning and TL in database
environment for traditional semantic data models led
to a number of promising results for database schema
design and other relevant topics, as query processing
and data recognition. In particular, in [Bergamaschi
and Sartori,1992] a general theoretical framework has
been presented, which supports conceptual schema ac-
quisition and organization by preserving coherence and
minimality w.r.t. inheritance, exploiting the framework
of terminological reasoning. Complex object data mod-
els, recently proposed in the area of OODBs, are more
expressive than actually implemented TL languages in
some aspects. For instance, most of the complex ob-
ject data models introduce a distinction between objects
with identity and values, which is not present in TL lan-
guages. Further, complex object models usually support
additional type constructors, such as set and sequence.
Most importantly, these models usually support the rep-
resentation and management of cyclic classes. These
nr e A ntinn_in [Regpoa

taxonomic reasoning for the different tasks of schema de-
sign and query optimzation. Let us examine separately
the two aspects of schema design and query optimiza-
tion.

2 Reasoning services in schema design

Provided that an adequate formalism to express integrity
constraints is available, the following question arises: Is
there any way to populate a database which satisfies the
constraints supplied by a designer? Means of answering
to this question should be embedded in automatic de-
sign tools, whose use is recommendable or often required
in the difficult task of designing non-trivial database
schemas.

Our proposal is to use the tableaux-calculus tech-
nique to guarantee schema consistency, therefore in-
cluding state constraint consistency. Such a solution
is actually a modification of existing algorithms for
Description Logics [Schmidt-Schauss and Smolka,1991;
Hollunder and Nutt,1990; Hollunder et al.,1990; Donini
et al.,1991].

In order to substantially enhance OODBs with rea-
soning features, the next step should be the design of a
front—end to the DB to validate insertions and updates,

aschiand with resnect to the extended schema deserintion,

Fxr==—— L —

i’é

.
%%J
i

= —
- ¥y

“li

|

A real database specification always includes a set of
rules, the so-called integrity constraints, which should
guarantee data consistency. Constraints are expressed
in various fashions, depending on the data model: e.g.
subsets of first order logic, or inclusion dependencies and
predicates on row values, or methods in OO environ-
ments. In particular OO methods are programs whose
semantics cannot be inspected by an automatic reasoner.
A first, necessary, improvement is to express at least a
class of integrity constraints at schema level. Qur pro-

Let us consider the organizational structure of a com-
pany in order to explain the purpose of our constraint
validation method. Assume the following: Employees
have name and salary. Managers are employees and
have a level composed of a qualification and a parameter.
Repositories have a denomination, wich can be either a
string or a structure composed by a repository name and
an address; a repository stocks a set of at least one and at
most five materials. Materials are described by a name
and a risk. Departments have a denomination (string),

porate any possible restriction which is not present in the
original type but is logically implied by the type and by
the schema. EXP(S) is based on the iteration of this sim-
ple transformation: if a type implies the antecedent of an
IC rule then the consequent of that rule can be added.
Logical implications between these types (the type to
be expanded and the antecedent of a rule) are evalu-
ated by means of the subsumption computation [Brach-
man and Schmolze,1985; Bergamaschi and Sartori,1992;
Bergamaschi and Nebel,1993].!

At run time, we add to the compiled schema the
query @ and activate the process again for @), obtaining
EXP(Q), with possible new isa relationships is obtained.
If new isa relationships are found, it is possible to move
the query down in the schema hierarchy. The main points
of our optimization strategy are:

1. The most specialized query among the equivalent
queries EXP(Q) is computed. During the trans-
formation, we compute also, and substitute in the
query at each step, the most specialized classes sat-
isfying the query.

2. A filtering activity (constraint removal) is per-
formed by detecting the eliminable factors of a
query, that is, the factors logically implied by the

query.

3.1 Examples

Let us extend the schema of the previous section with
the class dangerous-shipment, which has the same struc-
ture of shipment. The following integrity constraint can
be specified on it: for all shipments it must hold that if
the risk of the material is greater than 3 then its urgency
must be greater than 10 and it must belong to the class
dangerous-shipment. The constraint can be embedded
in the class description, obtaining the following type de-
scription for Shipment:

Alurgency: Int, item: Material]
N(—~(Aitem. Arisk > 3)) U
(DShipment N Aurgency > 10))

o(Shipment) =

Let us give two simple query optimization examples
related to our schema.
Q: "Select all shipments involving a material with risk
greater than 8”

Q = Shipment M (Aitem. A risk > 8)
From the rule on Shipment, we derive:

EXP(Q) = DShipment(l
(Aitem. Axisk > 8) N
(Aurgency > 10)
The query is optimized by obtaining the most specialized
generalization of the classes involved in the query itself.

1The subsumption is similar to the refinement or sub-
typing adopted in OODBs [Cardelli,1984; Lecluse and
Richard,1989].

Furthermore, the factor (Aurgency > 10) can be added
if some advantageous access structure is available for it.
Another rewriting rule proposed in [Shenoy and Oz-
soyoglu,1989; Siegel et al.,1992] is the constraint removal,
i.e., removal of implied factors. We formalize constraint
removal by subsumption. As an example, consider the
query:
Q: ”Select all the shipments involving a material with
risk greater than 8 and urgency grater than 5”:

Q = Shipment M (Aitem. Arisk > 8)N

s
(Aurgency > 5)
Nt e
Sl

In the schema with rules S is subsumed by S, as
ezplo(S) is subsumed by S’ in the schema without rules.
Thus, S’ can be eliminated from Q.

References

[Abiteboul and Kanellakis, 1989] S. Abiteboul and
P. Kanellakis. Object identity as a query language
primitive. In SIGMOD, pages 159-173. ACM Press,
1989.

[Beneventano et al., 1993] D. Beneventano, S. Bergam-
aschi, S. Lodi, and C. Sartori. Using subsumption in
semantic query optimization. In A. Napoli, editor, IJ-
CAI Workshop on Object-Based Representation Sys-
tems - Chambery, France, August 1993.

[Beneventano et al., 1994] D. Beneventano, S. Bergam-
aschi, S. Lodi, and C. Sartori. Reasoning with con-
straints in database models. In S. Bergamaschi,
C. Sartori, and P. Tiberio, editors, Convegno su Sis-
temt Evoluti per Basi di Dati, June 1994,

[Bergamaschi and Nebel, 1992]
S. Bergamaschi and B. Nebel. Theoretical founda-
tions of complex object data models. Technical Report
5/91, CNR, Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Roma, January 1992.

[Bergamaschi and Nebel, 1993]
S. Bergamaschi and B. Nebel. Acquisition and valida-
tion of complex object database schemata supporting
multiple inheritance. Applied Intelligence: The In-
ternational Journal of Artificial Intelligence, Neural
Networks and Complex Problem Solving Technologies,
1993. to appear.

[Bergamaschi and Sartori, 1992] S. Bergamaschi and
C. Sartori. On taxonomic reasoning in conceptual
design. ACM Transactions on Database Systems,
17(3):385-422, September 1992.

[Brachman and Schmolze, 1985] R.J. Brachman and
J.G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science,
9(2):171-216, 1985.

[Buchheit et al., 1994] M. Buchheit, M. A. Jeusfeld,
W. Nutt, and M. Staudt. Subsumption between

39

queries to object-oriented database. In EDBT, pages databases. In Symp. on Principles of Database Sys-

348-353, 1994. tems, pages 362-369, Philadelphia, PA, 1989.

[Cardelli, 1984] L. Cardelli. A semantics of multiple in- [Pang et al., 1991] H. H. Pang, H. Lu, and B.C. Ooi. An
heritance. In Semantics of Data Types - Lecture Notes efficient semantic query optimization algorithm. In
in Computer Science N. 178, pages 51-67. Springer- Int. Conf. on Data Engineering, pages 326-335, 1991.
Verlag, 1984. [Schmidt-Schauss and Smolka, 1991]

[Chakravarthy et al., 1990] U. S. Chakravarthy, M. Schmidt-Schauss and G. Smolka. Attributive con-
J. Grant, and J. Minker. Logic-based approach to cept descriptions with unions and complements. Arti-
semantic query optimization. ACM Transactions on ficial Intelligence, 48(1), 1991.

Database Systems, 15(2):162-207, June 1990. [Shenoy and Ozsoyoglu, 1989] S. Shenoy and M. Oz-

[Chan, 1992] Edward P.F. Chan. Containment and min- soyoglu. Design and implementation of a semantic
imization of positive conjunctive queries in oodb’s. In query optimizer. IEEE Trans. Knowl. and Data En-
Principles of Database Systems, pages 202-11. ACM, gineering, 1(3):344-361, September 1989.

1009

T . |

R "7-‘ -
- :
A ‘
;é_
!
, !
_— {
iﬁ" o S ——]
Y
{
|
i L

T

Figure 2: Approximating the cardinality of a query

ing indexing concepts. If we ask for a concept which is
equivalent to an indexing one, we get the exact cardinal-
ity. If we ask for a concept which is totally unrelated to
existing indexing concepts, i.e. there are no subsuming,
no subsumed, and no disjoint ones, we will get a lower
bound of 0 and an upper bound equal to the number
of indexed instances. This means no information at all
from the index. Typically, one should get something in
between, some partial information.

The second phase additionally utilizes the actual ex-
tensions of indexing concepts also stored in the index.
This generally results in much better cardinality esti-
mates at the cost of having to load the instances, com-
puting intersections and unions, etc. In case the query is
a combination of indexing concepts, its exact extension
(and cardinality) can be computed.

Otherwise there is a remaining set of candidates, the
individuals for which the query is not known to be ei-
ther true or false. In this case the index alone does not
contain enough information to determine the extension
of the query, and the third phase must be entered. For
each candidate instance the original description must be
accessed and explicitly tested against the query. After
this has been done, the user can choose to declare the
query as a new indexing concept, making the index more
dense at that particular point in the semantic space.

4 Concluding Remarks

This semantic indexing mechanism is crucially depen-
dent on reasoning with descriptions as provided by ter-
minological systems. The indexing elements are poten-
tially complex descriptions logically related by subsump-
tion and disjointness. Note that incomplete algorithms
for computing subsumption are not disastrous for index-
ing: they will simply result in a less informed, subopti-
mal index.

44

Compared with standard value-based indexes, this re-
sults in the following characteristics:
(1) A semantic index is inherently multidimensional
since any combination of properties cast into a DL con-
cept (i.e. an arbitrary query) can serve as an indexing
element.)
(2) As a structured concept the indexing elements are
not just attribute values, but can be based on complex
descriptions of related individuals.
(3) A semantic index as a whole is highly adaptable to
patterns of usage. Indexing concepts can be added or
removed at will, making it very dense and precise w.r.t
to interesting sets of individuals, or very sparse in other,
less interesting areas.
(4) Since the index is actually a set of partial descrip-
tions for the indexed instances, lots of information (such
as cardinality estimates) can be drawn from the index
alone without accessing (possibly remote) individual de-
scriptions at all.

These properties may turn out useful for building local
information servers which cache information at various
levels of completeness, depending on usage patterns.

References

[Hoppe et al., 1993] Hoppe, Th., Kindermann, C.,
Quantz, J.J., Schmiedel, A., and Fischer, M., BACK
V5 Tutorial and Manual. KIT Report 100, Depart-
ment of Computer Science, Technische Universitat
Berlin, Berlin, Germany, March 1993.

[Schmiedel, 1993] Schmiedel, A., Persistent Mainte-
nance of Object Descriptions using BACK. KIT Re-
port 112, Department of Computer Science, Technis-
che Universitat Berlin, Berlin, Germany, November

1993.

The Problems of Data Modeling in Software Practice

Harald Huber
USU Softwarehaus, Spitalhof, D-71696 Moglingen

Abstract

This paper presents, from the author’s per-
spective, the problems that occur in prac-
tice during data modelling. The author’s
experiences are a result of a considerable
number of projects which he carried out
in the framework of his consultancy role
at USU Softwarehaus in Moglingen (Ger-
many).

These projects concerned the following
themes:

e Corporate Datamodelling
e Comparing Datamodels

e Project (Application)- related Data
modelling.

In all cases, E/R-notation was the chosen
representation-form. From these experi-
ences, the author formed an impression of
the problems that occur in practice when
defining a data model. These problems
have, however, also led to the author’s in-
creased interest in knowledge representa-
tion, in turn leading to his usage of KR-
methods in practice. This has shown itself
to be quite effective.

Sections 2 and 3 briefly illustrate the rec-
ommendations and the experiences arising
from their usage in projects.

1 Datamodelling in Practice - the

Problems

Datamodelling was still up until recently the buz-
zword with which one believed to be able to solve
the software crisis. CASE products concentrated
on this area, meta-databases were created using a
data-modelling process (E/R), and large companies
invested millions in order to acquire a corporate
data model. Although this trend has subsided a lit-
tle, the theme in general is still of current interest.
What Chen already recognised as an important ben-
efit when presenting the E/R-Model, is today still
seen as a key effect of a data model: the representa-
tion provides a standard communications basis with
which understanding between DP and users is more
easily accomplished.

This however, unfortunately seems to hold just
for small data models. For larger areas of attention,

45

the methodology starts to become ineffective, and no
longer provides the overview required. Apparently,
there are just a few ’gurus’ who are able to create
a complete complex data model. Often this data
model quickly decreases in value, as soon as that
person leaves the company. Director’s offices exist
in which the corporate data model is hanging up
behind glass - however, this is regrettably the only
place in which the data model is noticed or paid heed
to.

The following problems, among others, have been
recognised:

1.1 Low Expressivness of a Data Model
in E/R-Form

During the analysis phase, many of the organisa-
tion’s interdependencies and processes are identified.
These are subsequently, to use the relativly inade-
quate language of the E/R-Model, abstracted and
generalised. This often requires a change in termi-
nology; in other words a unified, formal language is
compulsory. What many authors (e.g. Vetter) see as
an advantage of data modelling (exactly this coming-
into-being of a corporate, unified terminology) often
turns out to be a disadvantage: the terms used in
the data model are not understood by the user de-
partments. To make matters worse, these terms are
mostly held in commentary form (if at all). Also the
cross-reference of the new, unified terminology to the
terms used in the departments is, in most cases, not
documented at all. This makes understanding the
data Model afterwards very difficult (see 1.6).

1.2 The Development of the Data
Model is not Documented

A model undergoes many changes during the mod-
elling phase. Requirements, ideas and practical ex-
amples from the user department contribute to the
permanent extension and improvement of the model.
Consequently, variations in the Business Processes
are represented by generalisations, and classes (e.g.
Subtypes) are created in order to denote similar
’things’ in the model. The problem is that in nearly
every case the documentation of this development
is missing, i.e. reasons and reflections on which the
model’s structures and elements are founded will be
lost after a short time. This results in difficulties if
the model is changed due to further development or
new requirements.

This means that there is no unification of lan-
guage necessary. Rather, the individual terms
are cross-referenced to one another.

e Generation of an E/R-model. The user de-
partment requirements can be generated using
all of the semantic networks. The E/R-Model
can be worked on using this basis and can be
tested using the requirements represented in the
networks. This model is then the basis for the
creation of the relational model.

To make the consolidation of several semantic net-
works developed by several developers possible, a
standardized, unified representation of the networks
is suggested. This means that only two types of as-
sociations are allowed, represented by lines; all other
relevant concepts and associations appear as nodes.
This restriction forces the unified representation nec-
essary for the consolidation. The following two types
of associations are allowed to be represented by lines:

o Type 1, which describes just the extension of a
concept

e Type 2, which defines the intention.

Note that these associations are not defined by
their symbolic meaning, rather by a relatively for-
mal context. This has the advantage that the se-
mantics of these associations are not interpretation-
dependent.

3 Experiences from Projects

The suggested methodology solves the aformen-
tioned problems. The interviewers interview-
techniaue is positivelv affected. because his anno-

tation is not subject to the restrictions of the E/R-
model. The developement of the model is also doc-
umented, whereby the supplementary information
discovered during the analysis phase, is held in the
model.

o The tendency to strong generalisation and ’ar-
tificial terms’ is restricted - the terminology can
still be understood by the user department.

e The selection process (what’s an entity?) can
be re-created and checked in reviews. The user-
department staff can concentrate more on the
model’s content, thereby avoiding ’ideal struc-
tures’.

e The cabability to consolidate the various parts
means that the model in the user-department
stays relatively small.

o There are, however, also disadvantages.

If one uses a strictly formal representation, as sug-
gested above, the model becomes difficult to grasp
in its entirety. Furthermore, during the interviews,
the interviewer requires considerable concentration
in order to express the facts in the required manner.
In practice, however, during the interview a some-
what less formal representation is chosen, which is
subsequently translated into a formal model.

Note that the principle elements of the model are
concepts, and not other elements such as entities,
even if a less formal notation is used.

47

OLSEN: An Object-Oriented Formalism for
Information and Decision System Design

Ramzi Guetari, Frédéric Piard!, Bettina Schweyer?

LLP/CESALP 41 Avenue de la Plaine
BP. 806 - 74016 Annecy Cedex - FRANCE
Tel : (+33) 50.66.60.80 - Fax : (+33) 50.66.60.20
email : guetarilpiardischweyer@esia.univ-savoie.fr
LCIFRE contract with ANRT and Péle Productique Rhone-Alpes
2CIFRE contract with ANRT and ARM Conseil

1.0Introduction

The Object oriented model has spread widely within
programming languages during the last years. The
principles of this model have had a great influence on
analysis and design techniques. However no existing
method is able to manage the whole analysis-
specification-design-implementation cycle, preserving
the homogeneity of the model used in different stages
and the coherence by passing from one stage to the
following.

We think that the global management of the life cycle
cannot be solved, with the existing state of knowledge,
by one unique miraculous method, which could adapt
to every kind of application. We think on the contrary
that the problem should be treated by a panel of
methods dedicated to a particular domain.

For this reason we have developed the OLYMPIOS
model at the LLP-CESALP laboratory. This model
covers the life cycle of every application in the field of
Information and Decision Systems for Manufacturing
Firms. OLYMPIOS uses algebraic techniques,
transformation rules and a predefined entity
organisation to propose an original approach for object
oriented design of information and decision system.

2.J0OLYMPIOS Model Concepts.

The information processed in an enterprise, which we
call industrial information, is a complex datum. An
information and decision system (IDS) must take this
complexity into account. We propose to represent
industrial information through four main facets :

- data, describing the different entities handled by the
IDS and the actions that they can perform or can be
subjected to ;

- temporal properties of the different kinds of
processes (including traceability of information) ;

- organisation, considered through information flows;

- economic facet, which describes the means of
performance evaluation in relation to enterprise
environment and objectives.

The OLYMPIOS model [Beauchéne[d93] [BHPL193]

[BHSO93] covers the different stages of such a system

life cycle and proposes original solutions for its

analysis, specification, design and realisation.

OLYMPIOS describes activities, taking into account

the assigned objectives and the resources availability.

The basic modelling elements are(:

- an industrial information database, where products,
resources, machines,... are described.

- Consumer-Supplier Information Systems (CSIS). A
CSIS stands for an “atom” of organisation. It is a
generalisation of the customer-supplier exchange
relationship to every couple of actors in the

- enterprise (men, machines, software). Every CSIS
is associated to an objective, transforms resources
and emits a satisfaction level.

- an Objective Management System (OMS), whose
role is to create a graph from expressed objectives,
where every node is an objective associated to a
CSIS.

- aResource Management System (RMS), in charge
of the product and resource management and
sharing.

- an activation system (AS), producing actions plans
to organise processes, taking into account the
application, temporal constraints, and
communications/synchronisation between CSIS.

3L0The IDS Life Cycle

The OLYMPIOS model covers the different stages of
the IDS life-cycle (Fig.01). We use an algebraic
approach for the four facets of industrial information so
as to obtain a coherent (i.e. sufficiently complete and
consistent) specification. The design stage enables us to
design the information system from specification and
by analysing the "existing" system of the enterprise and
its objectives. The result of this stage is a representation
of the IDS using structured entities. The OLYMPIOS
model introduces the uniformity of the model used
from specification up to design. It uses tools proving
the coherence of the system in the specification step
and maintaining this coherence by automating the
translation from one stage to another.

3.10Analysis Stage

In the analysis stage, the relevant information for the
data, the temporal, the organisational and the economic
facets is collected.

The result of the data facet analysis consists in the
description of the data handled (resources etc.) in the
system to design and, for each datum, the set of
operations that can be realised (data dictionary). This
static description can be translated into a finite state
automaton in which every node represents a state of the
datum in question and every edge an operation which
produces a new state.

48

"

3.2.4JEconomic Specification

This facet cannot be specified independently of data
and organisation. Indeed it is shared between them, and
the most important part is included in the organisation
facet. Works are still going on to sharpen the economic
view of OLYMPIOS on the information system (with
the help of performance indicators, fuzzy logic and
project-based management approach).

3.3.00Design Stage

The OLYMPIOS model, in its design stage, is based on
the class model. This model was extended in order to
allow to take all industrial information features into
account, in particular real time ones. The result of the
design stage is an organisation of entities independent
of possible target programming languagesd: OLSEN
(OL ympios Structured ENtity).

An OLSEN [Guetari[194] is composed of a “class” part
and another part called “scenario” which indicates the
interactions with its environment. The difference
between an OLSEN and a classical object is the
scenario which describes the temporal behaviour
generally missing in the standard class model. The
OLSEN model is a “design object”.

In this paper, we present only the specification and
design of Activation System (AS part) and Resource
Management System (RMS). The Objective
Management System is the subject of a publication to
come.

4.0The Transition from the Analysis to the

Specification Stage

This stage consists in describing data types using finite
state automata. We must first insist on the fact that
every entity cannot be described by an automaton. Only
if it has successive states and if it is concerned by
actions passing from one state to another can it be
described by an automaton. We do not use the automata
as a specification tool but as a tool allowing us to shape
the evolution of some kind of data type over a set of
states. In this kind of automata, each transition
represents an operation changing the entity's state and
each node represents one state of the entity. The
automata may have many transitions corresponding to
the same operation, however, each state is unique. A
particular state called “starting state” must always exist.
It corresponds to the extremity of the transition which
stands for the operation creating the type of
interestCI(TT).

The entities described by automata are distinguishable
by the successive states that they can have. The order in
which different states are occupied is well defined. The
graph of state changing is oriented and has a starting
state from which we can observe the evolution of the
entity. This graph allows us to distinguish the
constructor operations using a single method. The
transitions corresponding to these operations have
extremity nodes which can be reached from the starting
state by only one path of the graph. The construction of
axioms is done in two steps0]: the construction of left
parts of axioms and the construction of right parts of

N 1 3 1__rm

The construction of left parts of axioms :

The construction of axioms left parts conmsists of
building the following sets :

- CT={dy*),c€ C}

- OT={o(x,y*),0€ O,x € CT}

- ST={s(x,y*),s€ S,x€ CT}

OT and ST contain the left parts of specification
axioms. Axioms which define the semantic of the
abstract data type have their left parts in the OT set and
axioms which shows the simplification of terms of
T(€2,Z) have their left parts in the ST set.

The construction of right parts of axioms :

The graph of states, whose every node is a state of
entities of TI type, and whose every transition is an
operation, providesO:

1- Q ={TI, STATES}, STATES = {E1 E2E3,...}
2- X ={state,01,02,03,..,0n}=0+C+S, T=S +C
. ={ol,02, 03, ..., on} is the set of operations which
create or transform the values of TI (represented in
the automata by transitions), O={state} contains a
single observer.

3- Left parts of axioms by the building of AC,AO,AT
fromO,CetT.

4- Right parts (y) of axioms in the form state(c(x*)) =
y, where c€ C, and y is the expression of the name
of the node extremity of the path represented by
c(x*) from the starting state. If there are many of
these paths then the y term will be expressed in the
form if...then.. else ...

5- Right parts (y) of axioms in the form s(c(x¥)) = y,
where s € S is a convertible operation and y
corresponds to the canonical form of the state
extremity of the path c(x*), i.e. the expression of
the shortest path between the starting state and the
state extremity of the path represented by the
expression c(x*). In other terms, these axioms are
represented in the automata by simple circular
paths. If there are many of these paths then the y
term will be expressed in the form if...then...else ...

6- Preconditions related to the state of arguments
(membership of TI) of each operation, which are
expressed by the restrictions on the domain of this
operation before its execution. These restrictions
are issued from the state origin of the arc
representing the operation.

S$.0The Transition from the Specification to

the Design Stage

The transition from the specification stage (ASAT and
SCCS) to the design stage is done automatically in two
steps. The first step consists in taking the ASAT one by
one and translating each one into a standard class. The
second step is a global one and permits the organization
of the communication between the obtained classes.
The benefit of this automation is the preservation of the
coherence obtained in the specification stage.

5.10The Standard Class Generation
The class attributes and methods are generated from the
ASAT operations. This is done using the following

ny inn [oo (1 b O (1 is_the

.

set of domains and 27 is the set of codomains. “TI” is
the data type that we specify. We distinguish three
kinds of operations :

- Casel:io:Q1 - Q2/TI & Q1 and Q3 = {TI}.
This kind of operation corresponds to a particular
constructor. For each constructor, we generate a
method “New” with parameters of type 7.

- Case2.0:Q1 - Q/Q1={TT}and Q2 = {w =
TI}. This kind of operation corresponds to
observers. The class structure is obtained from these
observers. For each observer we generate an
attribute of type 22 and a method to access it.

- Cased:o0:Q1 - Q/TI€ Qand TI € Q). This
case corresponds to a general one. For each
operation of this kind we generate a method with in
parameters of type w € Q1 / @ = TI and out of
parameters of type ® € 2/ o = TI.

The scenario of an OLSEN is issued from SCCS
formulae. An SCCS formula contains several
deterministic parts. Each part provides one script in the
OLSEN scenario. The scenario generation is done in
three steps : the first two provide the declarative part of
a scenario, the third one provides the dynamic part. For
each OLSEN, we determine the determinist parts of the
corresponding BEHAVIOUR (separated by a “sum”
operator). For each part, we execute the following three
stepsCl:

* Event Detection. This step permits the detection
and declaration of the different kinds of events. The
type of each event is deduced from the SCCS
syntax. A communicational event appears in at least
two BEHAVIOURSs, once preceded by the delay
operator 8, and once without this operator. An
environmental event is identified by the existence
of a clock emitting this event. An event is
conditional if its complementary event appears at
least once in a BEHAVIOUR. When all events are
declared, we proceed to the unification of the
communicational events. This unification is based
on the observational equivalence [Austry[d84] and
consists of giving the same name to two
synchronously successive events in a SCCS
formula.

* Identification of the Set of Suppliers. For each
communicational event, we define its receiving
OLSENs whose BEHAVIOURS contain this event,
preceded by the delay operator 6. Any OLSEN
responding to this event by applying one of its
methods must be added to the suppliers list of the
treated OLSEN.

* Script Generation. A script is generated for each
determinist part. Each event described in the
formula is replaced by one or several simultaneous
dispatches of messages. The receivers of these
messages are the suppliers defined in step 2.

6.00The Transition from the Design to the

Realization Stage
This transition is based on the realization programs
which we have obtained in the analysis stage.

The OLSEN formalism helps us to generate data bases
on the realization stage. The application programs are
obtained through the OLSEN, the realization programs
and the CSIS organization.

If we target object-oriented data bases in the realization
stage, we have to use the OLSEN and the realization
programs. In this case, each class part of an OLSEN is
directly translated into a data base object and the
scenario part is used for the data access in the
application programs. The realization programs allow
us to implement the methods of the data base objects.

If the data bases are not object-oriented, only the
structure of the OLSEN interferes for the realization of
these data bases. In a relational data base, for example,
the OLSEN structure is used for the table creation. The
inheritance relationship is eliminated in these data
bases and replaced by the result of merging the
structures of a super-class and the sub-classes.

In the realization stage we can obtain three different
types of CSIS translations: automatic CSIS where the
actors perform totally automated processes, semi-
automatic CSIS where one of the two actors performs
an automated task or the manual CSIS where both
actors perform manual tasks.

The first type of CSIS with the realization programs
and the scenarii allow us to obtain the application
programs. These programs will act upon the data bases
with the classical operations like add, modify and
delete. These interactions with the data base are
performed through message sending between the data
base objects in the case of an object-oriented data base
or through primitives which are the result of the
OLSEN behaviour in the case of non object-oriented
data bases.

The semi-automatic CSIS form the interactions
between a user and a process. These CSIS lead towards
the implementation of user interfaces and external
views which restrict the data base access according to
the user's rights.

The manual CSIS finally, allow us to realize the manual
procedure for which the automation would be too

expensive.

70Conclusion

The OLYMPIOS model provides the means to analyse

and specify coherently an industrial information and

decision system. It allows then to design the specified

IDS by preserving the coherence obtained in the

specification stage by using algebraic techniques. The

continuity and uniformity claimed by the Olympios
model is the result of two factorsO:

- the use of algebraic tools to specify all the compo-
nents of an IDS like the data facet, the organization
facet or the temporal facet,

- the use of ASAT to specify data and Objects to
design them.

This care of continuity and uniformity has lead us to
develop algorithms (and parts of a future CASE-Tool)
to automatically generate a coherent OLSEN

51

organisation from the analysis. Our objective is to
generate a maximum of code for applications.

References
[Austryld84] AUSTRY D., BOUDOL G., Algébres de
processus et synchronisation, TCS 30(1) 1984

[Beauchéne 93] D. Beauchénme. L'information
industrielle : définition et spécification. PhD thesis,
University of Savoie. December 1993.

(BHP 93] D.Beauchéne, A.Haurat, F.Piard. Une
méthode de spécification dé l'information industrielle
par types abstraits algébriques. Proceedings of ICO'93,
4-7 May 1993, Montreal Canada.

[BHS 93] D.Beauchéne, A.Haurat, B.Schweyer.
Designing an information system for a manufacturing
enterprise under the aspect of a CIM approach : the
model OLYMPIOS. Proceedings of APMS'93, 28-30
September. 1993, Athens Greece.

[Guetari 94] R. Guetari. and F. Piard. From the
Specification to the Design of an Industrial Information
System: the Olympios Model. Accepted in the 1994
IEEE Conference on Systems Man and Cybemetics.
San Antonio - Texas October 2 - 5 1994.

[Guttag 78] J.V. Guttag and J.J. Homing. The algebraic
specification of Abstract Data Type. Acta Informatica.
1978 Vol 10. P 27-52.

[Jacquenet 86] J.P. Jacquenet, P.Lescanne. La
réécriture. Techniques et Sciences Informatiques 1986.
Vol 5N° 6. p. 433-452.

[Liskov 87] B. Liskov. Data Abstraction and hierarchy.
OOPSLA'87 Addendum to the proceedings. 1987.

[Nkongo 90] T. Nkongo. Spécification algébrique de
types abstraits pour le modele Olympios. DEA report
Ingénierie Informatique of INSA Lyon. September
1990.

[Piard 93] F. Piard, C. Braesch - Application du calcul
SCCS de Milner a la spécification de processus
informationnels par types abstraits algébriques dans

une entreprise manufacturiére. Real Time Systems
Conference, Paris 1993.

52

Frames, Objects and Relations:
Three Semantic Levels for Knowledge Base Systems*

M. C. Norrie!, U. Reimer?, P. Lippuner?, M. Rys!, H.-J. Schek!

!Dept. of Computer Science, Swiss Federal Institute of Technology (ETH),
CH-8092 Ziirich, Switzerland -
{norrie, rys, schek}@inf.ethz.ch
2Swiss Life, Informatik-Forschungsgruppe, CH-8022 Ziirich, Switzerland
{reimer, lippuner}@swssai.uu.ch

Abstract elaborated here). Section 2 introduces the three level
architecture and discusses its merits. The mappings

from FRM to COCOON and from CQCQQN, toa

We propose an architecture for large-scale

}o¥

relational database management systems in terms of
efficient processing of set-oriented retrieval and up-
date operations and supported transaction mecha-
nisms. For this reason, we choose to map our object
data model to a relational storage system. This map-
ping is specifically tailored to support the retrieval
and update patterns initiated by the frame model.
As a result, we have a three level architecture as
indicated in Figure 1.

FRM Knowledge Base
System

frames ”

COCOON Object Data
Management
System

types classes

INGRES Relational

N Database
System

relations

Figure 1: Three Level Architecture

The knowledge model FRM is mapped to the ob-
ject data model COCOON which in turn is mapped
to a relational system. At present, we use the rela-
tional data base management system INGRES, but
the mapping can easily be altered for other relational
systems.

3 From Frames to Objects

A discussion of the differences between the knowl-
edge representation and semantic data modelling ap-
proaches is given in [Bor 91]. One of the main dif-
ferences often quoted is that database models tend
to be prescriptive rather than descriptive. Thus the
underlying assumption is that the database provides
a complete, current and consistent description of
the application domain; any attempt to input data
which is not consistent with the database model will
be rejected. Knowledge models tend to be descrip-
tive and it is quite acceptable that the model may
have to be revised according to new information re-
ceived into the system. This is most clearly visible
in a knowledge-based system with some learning ca-
pabilities (see e.g. [Mor 91]).

A further general distinction between data models
and knowledge representation languages is the fact
that data models have a much clearer separation be-
tween intensional and extensional information. In-
tensional information is given by a database schema
which is relatively stable and thus plays a predom-
inant role in determining efficient storage, retrieval

54

and update strategies for operations on extensional
data.

Ideally, for the support of knowledge base sys-
tems, we wish to have the latter property of data-
base models (i.e. efficiency) but not necessarily the
former (i.e. being prescriptive). In this respect the
COCOON object data model is a good candidate for
the support of the frame model FRM.

In this paper we consider only a subset of FRM
which corresponds to the common frame constructs:
slots, slot entries, and cardinality restrictions. For
example,

Skilled-Person =
(and Person
(all has-skills Skill)
(exist has-skills Rare-Skill)
(atleast has-skills 3))

defines a frame class Skilled- Person as a subclass
of Person with the slot has-skills that represents
the relationship has-skills to the class Skill. The
slot requires at least 3 values at an associated class
instance; one of those entries must be an instance of
the class Rare-Skill.

COCOON has a strong influence from both se-
mantic data models and knowledge representation
languages (especially KL-ONE [BS 85)) in terms of
semantic expressiveness. It supports not only com-
plex object structures but also rich classification
structures and high-level operations over collections
of objects. As a result, the semantic expressiveness
of COCOON is at a similar level to that of FRM with
the main difference between the two models stem-
ming from the fact that FRM supports more spe-
cialised inference mechanisms. In some sense CO-
COON may be considered as lying somewhere be-
tween the prescriptive and descriptive paradigms. A
COCOON class represents a semantic grouping of
objects and may have an associated predicate con-
dition. For example

define class Youngsters : person some Persons
where age < 30;

defines a class Youngsters which contains objects of
type person and is a subclass of Persons; further
there is an associated predicate condition that spec-
ifies that its members should be less than 30 years
old. The object type person declares what functions
are applicable to an object of that type and may look
like the following

define type person = age : integer,
name : string, has-skills : set-of skills;

A formal mapping from frame structures to ob-
ject structures and from query operations on frame
knowledge bases to object bases has been defined
and implemented. While concept class descriptions
in FRM are based on a single representation struc-
ture — the frame, COCOON has two basic represen-
tation structures — the type and the class. Types
describe what properties and relationships to other
objects an object can have whereas, as stated above,
classes deal with semantic groupings of objects.
Only a small number of the frame constructs for con-
cept class descriptions can be mapped to COCOON

FRM concept class description:
Comp_Delivery =

(and (all supplier Company)

(exist supplier Computer_Company)
(all recipient Company Person)
(atmost recipient 1)

(all ispart Workstation)

(all price [0,100])
(atmost price 1))

Corresponding COCOON type definition:
define type comp_delivery =

supplier : set-of object,

recipient : object,
ispart : set-of object,

price : integer;

Corresponding COCOON class definition:

define class Comp_Delivery
where

comp_delivery
supplier C Company and

0 # (supplier N Computer Company) and
recipient C (Company U Person) and
ispart C Workstation and

@ = select [(i < 0) or (i > 100)] (i : price);

Figure 2: Example of Mapping an FRM Concept Class Description to COCOON Types and Classes

type definitions but all of them to COCOON class
definitions. As a consequence, frames of FRM are
mapped to some combination of types and classes in
COCOON. To increase the possibilities for compile-
time optimisation, we designed the mapping such
that as much information as possible is provided on
the type level.

Figure 2 shows an example of mapping an FRM
concept class description to COCOON types and
classes. In a first step the object type comp_delivery
is derived from the FRM class Comp_Delivery such
that for every all construct (i.e. for every slot) we
have a function with the same name. In case of a
slot with a maximal cardinality of 1 the function
is single-valued, otherwise set-valued. In a second
step the COCOON class Comp_Delivery of type
comp_delivery is generated from the frame class
Comp_Delivery. With the type reference we en-
sure that the class will contain only objects with
the right functions being applicable. With the as-
sociated class predicate we cover the remaining fea-
tures of the FRM concept class description. As a re-
sult, the COCOON class defines the same necessary
and sufficient conditions on class membership as the
frame class does. Note that the three object-valued
functions in the type definition comp_delivery are
all of type object. This is because providing
more specialised function ranges (e.g. supplier :
set-of Company) would not lead to a simpler class
predicate. As this would not reduce the amount of
dynamic type checking necessary we decided to keep
the mapping to the type level simple and to map al-
ways to object-valued functions of type object. For
details see [LNR+94].

In knowledge base systems a query for objects
with certain properties is usually established as a
class description. The result of the query is all the
objects subsumed by that class so that in this case
query evaluation amounts to inferencing. To sup-
port such queries on our COCOON-based FRM we
have specified a second mapping that transforms a
frame class description to be interpreted as a query
into an equivalent expression of the COCOON ob-
Ject algebra (cf. example in Figure 3). This algebra
expression is then evaluated on the COCOON object
base derived from the original frame knowledge base.
At that point query optimisation techniques, which
are highly developed in the database area, can be
employed. We hope that this will lead us to a query
processing that is much more efficient than evalu-
ating a query frame by the inference mechanism of
FRM.

4 From Objects to Relations

In mapping an object data model onto a relational
system, there are many choices to make concerning
both the representation of objects and also of classes.
For example, all the properties of an object may be
stored together in a single relation or split over sev-
eral relations. In the former case, there are problems
of how to represent multi-valued properties. In the
latter case, several join operations may be required
to reconstruct an object.

With the representation of classes, the choices
arise because an object may belong to many classes
and the prime decision is whether to store an object
only with its most specific class — or to store it in

Y —

The satahlishmentp{thguannine from framesto

y—Tpw—_—

T =1

Query Frame:

(and (all supplier Company)
(all recipient Company)
(exist recipient Insurance_Company)
(all product
(and Workstation

(all has-cpu Sparc) (atleast has-cpu 2))))

Corresponding Algebra Expression:

select[supplier(o;) C Company](o; : Objects)N
select[recipient(o;) C Companyl(o; : Objects)N

select[recipient(o,) N Insurance_Company # B](o; : Objects)N

select[product(o,) C

select[has-cpu(oz) C Sparc) N select[#(has-cpu(0z2)) > 2](oz : Workstation)](o;1 : Objects)

Figure 3: Example of Mapping a Query Frame to an Object Algebra Expression (still to be Optimised)*

the class explicitly as it can be derived at access time.
The trade-off here is between fast access to explicitly
stored classes versus high update overheads if data
is replicated unnecessarily.

In our mapping of COCOON onto a relational
storage system, we employ extensive replication to
minimise retrieval costs. For example, all classes
are represented explicitly even those which could
be specified in terms of a query expression (view)
over other classes. Since an object may belong to
many classes, an object representation may be repli-
cated in several relations. The penalty associated
‘with such an approach of massive replication is the
cost of update operations; a single update operation
on a spec1ﬁc ob]ect may requlre updates on a large

iowna inimnbiind in tho senronantetinan af aawma rnﬂ“nr\ﬂfn.._nr_.fl\gm-\b{Lﬂ-G._-—. ok _sam ded

and relations. The introduction of the object level
is beneficial in reducing the semantic gap between
the frame level and the relational level and enabling
the utilisation of structural semantic information for
query and update processing. The mapping from the
object level to the relational level allows the use of
well-established, efficient mechanisms for data stor-
age, data access, data sharing and recovery under
failure.

At present, we have implemented mappings for
structural information from the frame model, FRM,
to the object model, COCOON and from COCOON
to the multiprocessor relational database system,
INGRES. We also have a mapping from frame query
classes to COCOON algebra. Moreover, there are

that object.

The problem then becomes one of how to speed
up the time for updates. This is achieved by imple-
menting the update operation as a number of simpler
update operations which can be executed in paral-
lel. The exploitation of intra-transaction parallelism
together with multi-level transactions is a key tech-
nique towards such improved performance [WS 92].

We are currently evaluating the above approach to
see under what conditions the overheads of paralleli-
sation are compensated by the corresponding speed-
up of the operations. In the future, we shall inves-
tigate dynamic methods of mapping the object data
model COCOON to relational systems such that
good performance is attained under various retrieval
and update patterns (which finally stem from spe-
cific retrieval and update operations on the knowl-
edge base system).

5 Conclusions

In the HYWIBAS project, we are using database

technologies to support large, shared knowledge
hacee We amnlav a three lovel architactitre rarro.

operations over a COCOON database represented
in INGRES [Rys 94]. Currently, we are working on
the mapping of the remaining operational compo-
nents and on the mapping of frame class instances
to objects.

References

[Bor 91] A. Borgida, “Knowledge Representa-
tion, Semantic Modeling: Similarities
and Differences”, In Entity-Relationship
Approach: The Core of Conceptual
Modelling, ed. H. Kangassalo, North-
Holland, 1991, pp. 1-24.

[BS 85) R. J. Brachman and J. G. Schmolze,
“An overview of the KL-ONE knowl-
edge representation system”, Cognitive
Science, Vol. 9, No. 2, 1985, pp. 171-216.

[LNR+94] P. Lippuner, M. Norrie, U, Reimer and

M. Rys, “Mapping a Frame Model,
FRM, to an Object Data Model, CO-
COON”, HYWIBAS Working Paper,
1994. (in preparation)

[RL 94]

[RRS+93]

[RS 89]

[Rys 94]

[SLR+92]

[WS 92]

Wissenreprasentationsansatzen”,
Springer, 1989.

U. Reimer, P. Lippuner, “Syntax und
Semantik von FRM”, Working Paper,
1994, Informatik-Forschungsgruppe,
Swiss Life, CH-8022 Zurich).

U. Reimer, M. Rys, H.-J. Schek and
R. Marti, “Datenbankbasierung eines
Frame-Modells: Abbildung auf ein Ob-
Jektmodell und effiziente Unterstiitzung
komplexer Operationen”, Beitrag zum
Workshop “Verwaltung und Verar-
beitung von strukturierten Objekten”
wahrend der KI 93, (also available
as Technical Report 5/93, Informatik-
Forschungsgruppe, Swiss Life, CH-8022
Zurich).

U. Reimer and H.-J. Schek, “A Frame-
Based Knowledge Representation Model
and its Mapping to Nested Relations”,
Data and Knowledge Engineering, Vol.
4, No. 4, 1989, pp. 321-352.

M. Rys, “Parallelising Generic Update
Operations in COCOON Using Multi-
level Transactions”. (in preparation)

M. H. Scholl, C. Laasch, C. Rich, H.-J.
Schek and M. Tresch, “The COCOON
Object Model”, Technical Report 211,
Dept of Computer Scince, ETH Zurich,
CH-8092 Zurich, Switzerland.

G. Weikum, H.-J. Schek, “Concepts
and Applications of Multilevel Transac-
tions and Open Nested Transactions”,
In Database Transaction Models for Ad-
vanced Applications, ed. A.K. Elma-
garmid, Morgan Kaufmann, 1992.

57

DBox, except the one of (quickly

description W3; we say also that the set of data ex-
pressed in a DBox constitutes a data base D. As-
suming that two complete query answering functions
separately exist, for both the ABox and the DBox,
a knowledge base KB = (T, W, D) can be defined in
such a way that a uniform query function, based on
the two answering functions, can be implemented.
We do not require any special capability from the
) retrieving lists

mixed (KBMS/DBMS) queries can be answered in a
coherent way, but, to this extent, we need to couple
the terminology 7 in KB with the data base D. This
coupling consists in the association of some particu-
lar terms of 7" with tables, in the DB representing D,
where the extension of these terms are to be found.

For sake of simplicity we adopt, next, some re-
strictions on the form of KB, even if, as it will be
noted later, thev can be. at least in part, released

e T

ety ————

- 1.e., belonging to a unary table/view — or being in
relation with other items — i.e., belonging to a bi-
nary table/view — and logical combinations of these,
as it can be, for example, expressed in SQL. Since
our implementation relies, in fact, on a DBMS with
SQL, we assume that D is somehow represented by
means of a relational database, and queries to the
DBox can be done in SQL. Therefore in the follow-
ing we will refer to tables/views — or simply tables —
as they usually are intended in relational databases,
and to the query answering function of the DBox as
to those of SQL.4

(From the point of view of users of KBMS, our
experience [Bresciani,1992] suggests that, in realis-
tic applications, knowledge bases not only can be

- non intermediate db extension: every D in-
dividual must be realized under a leaf term in 7",
i.e., a term in 7 specialized by no other terms
inT.

- homogeneous extension: for each leaf term
of T its associated instances are either all in W
or all in D.

- db isolation: all the leaf terms of 7 whose
instances are in D are primitive and are not used
in any other term definition in 7.

Consider that it is not difficult to design KB in
such a way that a primitive term is introduced in 7
for each class of individuals present in D: by this the
homogeneous extension hvpothesis can alwavs be

4.1 Translating Queries into SQL

When each predicate in a query ¢ = AZ.PiA...A P,
can be made correspond to a set of tables in the
DB, where the answers have to be found, it can be
translated into an equivalent SQL query. Of course,
the sets of tables can be easily found via the mark-
ing function M. At this point we have just to cope
with the union set of tables {T1,...,T,} and their
bindings via the variables in Z. For simplicity, let
us suppose that the tables returned by M are com-
posed by one column in the case of a concept (let
it be called 1eft), and two in the case of a rela-
tion (let them be called 1left and right). The SQL
translation is of the kind:

SELECT DISTINCT select-body

FROM from-body

WHERE where-body
where the select-body is a list of column names of the
kind M(P;,;).1eft or M(P;,).xright, one for each
variable z; in T, according to the fact that the vari-
able x; appears for the first time in the predicate
P, in the first place” or in the second place, respec-
tively. The from-body is the list of all the tables in-
volved - i.e., all the M(P;). The where-body is a list
of SQL where-conditions of the kind field2=field1
or field2=constant, where the first form has to be
used for each variable that is used more than once,
each time it is reused, and the second form occurs for
each use of constants. In both the forms field2is a
selector similar to those in select-body, correspond-
ing to positions in the query where the variable is
further used or where the constant appears, respec-
tively; field1 corresponds to the first occurence of
the variable.

4.2 The General Case

In general answering, a query is more complex and
requires the merging of results from the DBMS and
the KBMS. Answering a query in KB means finding
aset {Z!,...,7™} of tuples of instances s.t., for each
tuple T}, AZ.(P1 A...A P,)[T*] holds in KB. We call
such tuples answers of the query and the set of all
of them its answer set.

Due to the definition of answer of a query, it is ob-
vious that, in order to avoid the generation of huge
answer sets, free variables should not be used, i.e.,
each variable appearing in ¥ must appear also in
the query body (i.e., the part at the right of the
dot). Indeed, we adopt a stronger restriction, be-

k| L FiRA B .k | e h LA §

relevant result of answering an unconnected query is
equivalent to the union of the single results of sep-
arately answering the clusters, in the sense that all
the information is included in it. But, if we consider
the formal definition of answer, we must consider
the fact that the overall result must contain tuples
longer than those resulting by submitting the sin-
gle clusters; to obtain all the tuples satisfying the
definition of answer the single answers have to be
combined by a sort of Cartesian product. More ex-
actly, if, after having reordered the variables, un un-
conected query is written as AZ.p1(Z1)A.. . Apn(T,)
— where T is the concatenation of the other vec-
tors (Z = Ty----- Zn), and 1(Z1),...,¢n(Tn) cor-
responds to the single clusters — and given that
the asnwers sets of a generic cluster AZ;.p;(%;) is

S; = {7,1 Yo s ,T:-‘}, the answer set of the whole query
isS={'-- " |1} €Sy,....I" €8,}.

The case of a connected (i.e., non unconnected)
query AT.p(Y) with unbound variables can be re-
duced to the case of an unconnected query AZ.()A
T(Z), where Z = (z1,...,2;) contains all the vari-
ables appearing in Z but not in 3, and T(z) =
top(z1) A ... Atop(zx), where top correspond to the
most generic concept in 7.

It is now clear that unconnected queries and
queries with unbound variables may have unreason-
ably large answer sets, without giving any further ca-
pability to the system. Therefore, we consider only
connected queries with only bound variables.

To afford the answering of a query we need to split
it into sub-queries that can be answered by the two
specialized query answering functions of the KBMS
and the DBMS. To this extent we need, as a first
step, to mark all the possible atomic predicates, cor-
responding to the terms in 7', and say that a term
P is:

- DB-marked iff for each t € subs(P)NPT PM(t)

is defined .

- KB-marked iff for each t € subs(P) NPT,
PM (t) is undefined.

- Mixed-marked otherwise.
These three markings reflect the fact that the in-
stances (pairs) of P are all in W, all in D, or part
in W and part in D, respectively. The strategy for
answering to a query is based on this information.
Let us, first, observe that it is easy to answer to an
atomic query where the predicate is a KB-marked or

}

a.J]B;ma.LkeMmL[u_fhﬁigmt! gose 5;,3, wxi iﬁ i

where the PXB corresponds to the KB-marked
terms, the PPB to the DB-marked terms, and the
PM to the Mixed-marked terms. The query can be
spht in the sub-queries: ¢X2 = A\z.PKBA.. /\PK B

kB’

= Mz.PPBA.. /\PDB,anqu—/\x.P A...A
M
PM.

4.3 The Algorithms
DB M

As we said, the sub-queries ¢5B, ¢PB ¢M can be
easily processed. The only difficulty is that some of
the variables in T could be unbound in a sub-query.
In this case, as shown before, the answer sets have to
be completed, that is, the unbound variables should
be made correspond to each instance in KB, for all
the found answers, by all the possible combinations.
But, in this way, huge answer sets are generated, as
in the following sketch of the query-answering algo-
rithm:

1 split the query as sketched above into ¢

and ¢¥

submit qKB to KBMS, ¢P2 to SQL (after trans-
latlon) and tra,nsform each of the atomic sub-
queries gM of ¢M into a set of atomic queries
cortespondmg to the leaf terms in 7 that spe-
cialize ¢M; submit them to the specific retriev-
ers.

KB ,DB
' q

2

collect all the answers respectlvely in the answer
sets ASKB ASD B and ASM 720 and complete
them w1tf1 the wh fe domain in the place of un-
bound variables, as mentioned above, generat-
ing ASEZ, AS2EB and ASY.

4 the overall answer set is just ASX® N AS2B N

ASM.

Of course this first algorithm is widely space wast-
ing. Moreover, in step 3 it is not clearly stated how
to collect the answers of the sub-queries q,M . We try
here to shortly describe this operation and to show
how the completions of ASK BB ASP BB, and ASM
in step 3, and their followmg Tntersection in step
can be obtamed more efficiently. To solve these prob-
lems, from ste;}) 3 ahead a compact representation for
ASfB ASPB | and ASY is needed. Let a generic
partial answer set be written as ASg, where the vari-
ables of the original complete variable tuple T miss-
ing in § are, zp,,...,Zp,. Its completion can be rep-

resented in a compact way with ASz = Ur,, S?{T*},

where T* are equivalent to I except that are length-
ened by filling the k missing positions p;, . . ., px with
any marker, e.g., a star ‘4’. The star stands for all
the individuals in KB. Using this representation for
the completion in step 3, it is now easy to rephrase
step 4 of the algorithm as a merging operation. In
fact answer sets ASXB ASPB and ASM can be
merged into a single answer set as follow:

4.1 let result-list={ASKB ASDB ASM}

4.2 choose two answer sets, AS; and AS,, in
result-list, where answers have at least one
common position filled by individuals, i.e., not

8
*.

8Such two sets do always exist, otherwise the query
would be unconnected, while we assumed to deal only

61

4.3 merge AS; and AS; by collecting only those an-
swers in AS; where each non-x filled position is
filled by the same individual or by % in some
answers in AS>, and replace in the collected an-
swers each x with the individuals in the corre-
sponding position in all the matchlng answers

of AS,
replace AS; and AS, in result-1list with their
merging computed in step 4.3

4.5 REPEAT from step 4.2 UNTIL only one item
is left in result-list.

4.6 RETURN the only item left in result-list.

Now it is easy to explain how to collect the answers
of the sub-queries g™ of step 2. It is enough, for each
M e {¢M...qM}, to collect all the answers of all its
descendant queries, and complete these answer sets
generating ASY,,..., ASM,, as described above; it
is now clear that, in the above algorithm for step 4,
step 4.1 has to be so rephrased:
4.1-bis
let
result-list={AS;

4.4

B AsDB ASM

M. ASH).

The resulting algorithm, composed by steps 1, 2, 3
(modified as shown), 4.1-bis, and 4.2 to 4.6 has been
1mplemented In our system the KBMS currently in
use is LOOM [MacGregor,1991], and the database
query language is SQL, but, as mentioned, also other
systems could be easily used.

5 Conclusion and Future
Developments

We have shown how a third component, a DBox —
allowing for the extensional data to be distributed
among the ABox and the DBox — can be added to
the traditional TBox/ABox architecture of KBMS.
By means of the DBox is possible to couple the
KBMS with, for example, a DBMS, and use both
the systems to uniformly answering queries to knowl-
edge bases realized by this extended paradigm. The
presented query language has some restrictions, and
some constraints have been imposed to the form of
the knowledge bases. To overcome these limitations,
some extensions of the present work can be proposed.

5.1 Constraints on the Form of KB

In section 3 we assumed that some constraints
should be imposed on the form of KB. Indeed they
can be in part released, even if this more general ap-
proach would require a deeper discussion and a re-
formulation of the algorithms. Here we try to give a
very short account on possible developments in this
direction. First, consider the homogeneous ex-
tension condition. It is important because it allows
to make the search of the answers simpler, giving
the basis for a neat separation between KB-marked,
DB-marked, and Mixed-marked predicates®. But it

with connected queries.
%and giving also the way to decompose the Mixed-
marked predicates in sets of KB-marked and DB-marked

ones.

.l—h—___

is even more important when considered in conjunc-
tion with the db isolation condition. In fact we
can easily cope with leaf terms having instances from
both W and D by submitting the corresponding sub-
queries to both the specialized retrieving functions,
and then proceeding with the merging as usual. But,
allowing this ambiguity would make more complex
the formulation of the db isolation condition, that
could become:

- db isolation: all the leaf terms of 7 whose in-
stances are even only in part in D are primitive
and are not used in any other term definition in

T.

Indeed we can, at least in part, give up also with
this condition. In fact, while keeping the fact that
such term must be primitive — this is pragmatically
coherent with the fact that the raw information com-
ing from the DB cannot be inferred — we can allow
such term to be used inside new, eventually even non
primitive, definition. To this extent we need a much
more complex schema for translating queries on DB-
marked term into SQL. For example, if the query is
of the kind A(z).C(z) where C = some(R, D), its
SQL translation could be:

SELECT M (R).1left
FROM M(R)
WHERE M (R).right IN M (D)

Similarly, a translation for the all operator could
be given, as in [Borgida and Brachman,1993), but in
this case some extra considerations about the ade-
quacy of the standard extensional semantxcs of thls

- Qo 2oai

5.3 Aknowledgments

Our thanks must be addressed to Enrico Franconi,
for his careful reading of several preliminary copies
of the present paper and the useful suggestions he
made about it. We also thank Fabio Rinaldi, for his
implementation of the SQL interface.

References

[Borgida and Brachman, 1993] Alex Borgida and
Ronald J. Brachman. Loading data into descrip-
tion reasoners. In Proceeding of ACM SIGMOD
’93, 1993.

[Bresciani, 1991] Paolo Bresciani. Logical account
of a terminological tool. In Proc. of the IX Con-
ference on Applications of Artificial Intelligence,

Orlando, FL, 1991.

[Bresciani, 1992] Paolo Bresciani. Representation of
the domain for a natural language dialogue sys-
tem. Technical Report 9203-01, IRST, Povo TN,
1992.

[Buchheit et al., 1994] Martin
Buchheit, Manfred A. Jeusfeld, Werner Nutt, and
Martin Staudt. Subsumption between queries to

object-oriented databases. Information Systems,
19(1):33-54, 1994.

[Devanbu, 1993] Premkumar T. Devanbu. Trans-
lating description logics to information server
queries. In Proceedings of Second Conference on
Information and Knowledge Management (CIKM
’93), 1993.

Deutsches DFKI

Forschungszentrum -Bibliothek-
far Kanstliche PF 2080
Intelligenz GmbH 67608 Kaiserslautern
FRG
DFKI Publikationen DFKI Publications
Die folgenden DFKI Veréffentlichungen sowie die The following DFKI publications or the list of
= :",&H' ta, -zgnaun—ll::‘.a‘--., cmncllemnmae T 12" N ar e e . a - a —
:ﬁ

RR-93-28

Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29

Armin Laux: Representing Belief in Multi-Agent
Worlds viaTerminological Logics

35 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelman:

Corporate Agents
14 pages

RR-93-31

Elizabeth A. Hinkelman, Stephen P. Spackman:
Abductive Speech Act Recognition, Corporate
Agents and the COSMA System

34 pages

RR-93-32

David R. Traum, Elizabeth A. Hinkelman:
Conversation Acts in Task-Oriented Spoken
Dialogue

28 pages

RR-93-33

Bernhard Nebel, Jana Koehler:

Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis

33 pages

RR-93-34

Wolfgang Wahlister:

Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35

Harold Boley, Frangois Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI-
Programmierung — Proceedings

150 Seiten

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36

Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:

Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of

Printed Scores and Transformation into MIDI
24 pages

RR-93-40

Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, Werner Nutt, Andrea Schaerf:

Queries, Rules and Definitions as Epistemic
Statements in Concept Languages

23 pages

RR-93-41

Winfried H. Graf: LAYLAB: A Constraint-Based
Layout Manager for Multimedia Presentations

9 pages

RR-93-42

Hubert Comon, Ralf Treinen:

The First-Order Theory of Lexicographic Path
Orderings is Undecidable

9 pages

RR-93-43

M. Bauer, G. Paul: Logic-based Plan Recognition
for Intelligent Help Systems

15 pages

RR-93-44

Martin Buchheit, Manfred A. Jeusfeld, Werner Nuit,
Martin Staudt: Subsumption between Queries to
Object-Oriented Databases

36 pages

RR-93-45

Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition

21 pages

RR-93-46

Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven, and
Goal-directed Reasoning

81 pages

RR-93-48

Franz Baader, Martin Buchheit, Bernhard Hollunder :
Cardinality Restrictions on Concepts

20 pages

RR-94-01
Elisabeth André, Thomas Rist:
Multimedia Presentations:

The Support of Passive and Active Viewing
15 pages

RR-94-02
Elisabeth André, Thomas Rist:
Von Textgeneratoren zu Intellimedia-

Prisentationssystemen
22 Seiten

RR-94-03

Gert Smolka:

A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards

34 pages

RR-94-05

Franz Schmalhofer,

J.Stuart Aitken, Lyle E. Bourne jr.:

Beyond the Knowledge Level: Descriptions of
Rational Behavior for Sharing and Reuse

81 pages

RR-94-06

Dietmar Dengler:

An Adaptive Deductive Planning System
17 pages

RR-94-07

Harold Boley: Finite Domains and Exclusions as
First-Class Citizens

25 pages

RR-94-08

Otto Kiihn, Bjorn Hofling: Conserving Corporate
Knowledge for Crankshaft Design

17 pages

RR-94-10

Knut Hinkelmann, Helge Hintze:

Computing Cost Estimates for Proof Strategies
22 pages

RR-94-11

Knut Hinkelmann: A Consequence Finding
Approach for Feature Recognition in CAPP
18 pages

RR-94-12

Hubert Comon, Ralf Treinen:
Ordering Constraints on Trees
34 pages

RR-94-13

Jana Koehler: Planning from Second Principles
—A Logic-based Approach

49 pages

RR-94-14

Harold Boley, Ulrich Buhrmann, Christof Kremer:
Towards a Sharable Knowledge Base on Recyclable
Plastics

14 pages

RR-94-15

Winfried H. Graf, Stefan Neurohr: Using Graphical
Style and Visibility Constraints for a Meaningful
Layout in Visual Programming Interfaces

20 pages

RR-94-16
Gert Smolka: A Foundation for Higher-order

Concurrent Constraint Programming
26 pages

RR-94-17

Georg Struth: ' :
Philosophical Logics—A Survey and a Bibliography
58 pages

RR-94-18

Rolf Backofen, Ralf Treinen:

How to Win a Game with Features
18 pages

RR-94-20

Christian Schulte, Gert Smolka, Jérg Wiirtz:
Encapsulated Search and Constraint Programming
in Oz

21 pages

DFKI Technical Memos

TM-92-04

Jiirgen Miiller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages

TM-92-05

Franz Schmalhofer, Christoph Globig, Jérg Thoben:
The refitting of plans by a human expert

10 pages

TM-92-06

Otto Kiihn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures

14 pages

TM-92-08

Anne Kilger: Realization of Tree Adjoining
Grammars with Unification

27 pages

TM-93-01

Otto Kiihn, Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans

20 pages

TM-93-02

Pierre Sablayrolles, Achim Schupeta:

Conlfict Resolving Negotiation for COoperative
Schedule Management

21 pages

TM-93-03

Harold Boley, Ulrich Buhrmann, Christof Kremer:
Konzeption einer deklarativen Wissensbasis iiber
recyclingrelevante Materialien

11 pages

TM-93-04

Hans-Giinther Hein:

Propagation Techniques in WAM-based
Architectures — The FIDO-III Approach
105 pages

TM-93-05

Michael Sintek: Indexing PROLOG Procedures into
DAGs by Heuristic Classification

64 pages

TM-94-01

Rainer Bleisinger, Klaus-Peter Gores:

Text Skimming as a Part in Paper Document
Understanding

14 pages

TM-94-02

Rainer Bleisinger, Berthold Kroll:

Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations

11 pages

DFKI Documents D-93-26
Frank Peters: Unterstiitzung des Experten bei der

D-93-11 Formalisierung von Textwissen
Knut Hinkelmann, Armin Laux (Eds.): INFOCOM:
DFKI Workshop on Knowledge Representation Eine ipteraktive Formalisierungskomponente
Techniques — Proceedings 58 Seiten
88 pages D-93-27
D-93-12 Rolf Backofen, Hans-Ulrich Krieger,
Harold Boley, Klaus Elsbernd, Stephen P. Spackman, Hans Uszkoreit (Eds.):
Michael Herfert, Michael Sintek, Werner Stein: Report of theEAGLES Workshop on
RELFUN Guide: Programming with Relations and Implemented Formalisms at DFKI, Saarbriicken
Functions Made Easy 110 pages
86 pages ‘ D-94-01
D-93-14 Josua Boon (Ed.):
Manfred Meyer (Ed.): Constraint Processing — DFKI-Publications: The First Four Years

_ Proceedings of the International Workshop at. 1990 - 1993

e

T

l— .

i

Working Notes of the KI'94 Workshop: KRDB'94 - Reasoning about Structured Objects: D-94-11
Knowledge Representation Meets Databases Document

F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)

