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Franz Baader
German Research Center for Artificial Intelligence
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D-6750 Kaiserslautern, West Germany

Abstract

Cyclic definitions are often prohibited in terminological knowledge representation languages,
because, from a theoretical point of view, their semantics is not clear and, from a practical point
of view, existing inference algorithms may go astray in the presence of cycles. In this paper we
consider terminological cycles in a very small KL-ONE-based language. For this language, the
effect of the three types of semantics introduced by Nebel (1987, 1989, 1989a) can be
completely described with the help of finite automata. These descriptions provide a rather
intuitive understanding of terminologies with cyclic definitions and give insight into the
essential features of the respective semantics. In addition, one obtains algorithms and complexity
results for subsumption determination. The results of this paper may help to decide what kind of
semantics is most appropriate for cyclic definitions, not only for this small language, but also
for extended languages. As it stands, the greatest fixed-point semantics comes off best. The
characterization of this semantics is easy and has an obvious intuitive interpretation.
Furthermore, important constructs — such as value-restriction with respect to the transitive or
reflexive-transitive closure of a role — can easily be expressed.
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1. Introduction

Cyclic definitions are prohibited in most terminological knowledge representation
languages ( e.g., in KRYPTON ( Brachman et al. (1985) ), NIKL ( Kaczmarek et al.
(1986) ) or LOOM ( MacGregor-Bates (1987) ) ) for the following reasons. From a theo-
retical point of view, it is not obvious how to define the semantics of terminological
cycles. But even if we have fixed a semantics it is not easy to obtain the corresponding
inference algorithms.

On the other hand, cyclic definitions may be very useful and intuitive, e.g., if we
want to express the transitive closure of roles ( i.e., binary relations ). For a role child,
value-restrictions with respect to its transitive closure off-spring can be expressed by cyclic
concept definitions if we take the appropriate semantics. For the same reason, recursive
axioms are considered in data base research ( see e.g., Aho-Ullman (1979), Immerman
(1982), Vardi (1982), Minker-Nicolas (1983), Wu-Henschen (1988) and Vielle (1989) ).
Aho-Ullman (1979) showed that the transitive closure of relations cannot be expressed in
the relational calculus, which is a standard relational query language. They proposed to
add cyclic definitions which are interpreted by least fixed-point semantics. This was also
the starting point for an extensive study of fixed-point extensions of first-order logic ( see
e.g., Gurevich-Shelah (1985,1986) ).

A thorough investigation of cycles in terminological knowledge representation
languages can be found in Nebel (1987,1989,1989a). Nebel considered three different
kinds of semantics for cyclic definitions in his language AZF; namely, least fixed-point
semantics, greatest fixed-point semantics, and what he called descriptive semantics. But,
due to the fact that this language is relatively strongl, it does not provide a deep insight
into the meaning of cycles with respect to these three types of semantics. For the two
fixed-point semantics, Nebel explicates his point just with a few examples. The meaning
of descriptive semantics — which, in Nebel’s opinion, comes “closest to the intuitive
understanding of terminological cycles” ( Nebel (1989a), p. 124 ) — is treated more
thoroughly. But even in this case the results are not quite satisfactory. For example, the
decidability of subsumption determination is proved by an argument? which cannot be
used to derive a practical algorithm, and which does not give insight into the reason why
one concept defined by some cyclic definition subsumes another one.

Before we can determine what kind of semantics is most appropriate for termi-
nological cycles we should get a better understanding of their intended meaning. The
same argument applies to the decision whether to allow or disallow cycles. Even if cycles
are prohibited, this should not just be done because one does not know what they mean
and how they can be handled.

In this paper, we shall consider terminological cycles in a very small KL-ONE-
based language which allows only concept conjunction and value-restrictions. For this
language, the effect of the three above mentioned types of semantics can be completely
described with the help of finite automata. These descriptions provide a rather intuitive
understanding of terminologies with cyclic definitions and give insight into the essential
features of the respective semantics. In addition, subsumption determination for each type

IThe language allows concept and role conjunction, value-restrictions, number-restrictions and
negation of primitive concepts.

2Roughly speaking, the argument says that it is sufficient to consider only finite interpretations to
determine subsumption relations.



of semantics can be reduced to a ( more or less ) well-known decision problem for finite
automata. Hence, existing algorithms can be used to decide subsumption, and known
complexity results yield the complexity of subsumption determination.

In the next section we shall recall some definitions and results concerning ordinals,
fixed-points and finite automata which will be used in subsequent sections. Syntax and
( descriptive ) semantics of our small terminological language FLg is introduced in
Section 3. In Section 4, alternative types of semantics — namely least and greatest fixed-
point semantics — are considered, which may be more appropriate in the presence of
terminological cycles. We shall see that, from a constructive point of view, the greatest
fixed-point semantics should be preferred since greatest fixed-point models can be
obtained by a single limit process. In Section 5, the three types of semantics are
characterized with the help of finite automata. The characterization of the greatest fixed-
point semantics is easy and intuitively clear. Subsumption with respect to greatest fixed-
point semantics, and — after some modifications of the automaton — also with respect to
least fixed-point semantics can be reduced to inclusion of regular languages. For
descriptive semantics, we have to consider inclusion of certain languages of infinite
words which are defined by the automaton. Fortunately, these languages have already
been investigated in the context of monadic second-order logic ( see Biichi (1960) ). In
Section 6, we shall see how the inclusion problem for these languages can be solved.
This yields a subsumption algorithm for descriptive semantics. Extensions of the results
for gfp-semantics are considered in Section 7. In the first subsection we shall consider
cycles in the larger language FL of Levesque-Brachman (1987). The second subsection
contains results about hybrid inferences.

2. Formal Preliminaries

In the introduction we have mentioned the “transitive closure” of a binary relation as a
motivation for cyclic definitions. This notion can be formally defined as follows: Let R be
a binary relation on the set D, i.e., R € D x D. We define RO := { (d,d); d € D } and, for
n > 0, R*1 := RoRM where “o” denotes composition of binary relations. The rransitive
closure of R is the relation Up>1R™ and the reflexive-transitive closure is Up>R™.

In the following subsections we shall recall some definitions and results concerning
ordinals, fixed-points and finite automata.

2.1 Ordinals3

A partial ordering < on a set D is a well-ordering iff it is linear (i.e., for all a, bin D we
have a <b or b < a ) and well-founded ( i.e., there are no infinite strictly decreasing
chains ag > a; > ap > ... ). Ordinals can be defined as the order types of well-ordered
sets. There are finite ordinals such as 2, 6, 17. For example, 6 is the order type of the set
{0,1,2,3,4,5 } with the usual ordering on non-negative integers. The first infinite
ordinal is ®, which is the order type of the non-negative integers { 0, 1, 2, ... }. Ordinals
can be ordered as follows: a < B iff & is isomorphic to an initial segment of B. For
example, 2 < 6 and the finite ordinals are exactly the ordinals which are smaller than .
This ordering on ordinals is well-founded and linear. Hence any set of ordinals has a

3See Rosenstein (1982) for the order-theoretic approach we use below. A set-theoretic definition of
ordinals can be found e.g. in Halmos (1974). Some elementary properties of ordinals are also stated in
Lloyd (1987), p.28-29.



least element and a least upper bound.

If o is an ordinal then the successor a+1 of a.is the least ordinal greater than o.. An
ordinal which is a successor of another ordinal is called successor ordinal. The other
ordinals are called limit ordinals. For example, ® is a limit ordinal, and 6 is a successor
ordinal because 6 = 5+1 is the successor of 5. The successor ® + 1 of w is the order typ
of {0,1,2,...} U { e} where { 0, 1, 2, ... } is ordered as usual and all elements of
{0,1,2,... } are smaller than e. A limit ordinal o can be obtained as the least upper
bound of all smaller ordinals, i.e., o = lub({ B; B < }).

Properties for ordinals can be proved by transfinite induction. Let P be a property
of ordinals. Assume that (1) P(0) holds; (2) if P(a) holds then P(a+1) holds; and (3) if
A is a limit ordinal and P(cr) holds for all o < A then P(L) holds. Then P(B) holds for all
ordinals B.

2.2 Fixed-Points?

Let D be a partially ordered set ( poset ). The poset D is a complete lattice if all subsets C
of D have a least upper bound lub(C) in D. In this case, any subset C has also a greatest
lower bound glb(C) = lub({ d € D; d is a lower bound of C }), and D has a least element
bottom = lub(@) and a greatest element top = lub(D).

Example 2.1. Consider D = 25, the set of all subsets of the set S. If the elements of D
are ordered by set inclusion, then D is a complete lattice w.r.t. this ordering. Least upper

bounds are obtained by set union, and greatest lower bounds by set intersection. The
least element of D is @ and the greatest element is S. As a second example of a complete
lattice, we may consider the n-fold cartesian product D" of D = 25, which is ordered
componentwise by inclusion: (Ajy,...,Ap) € (By,...,Bp) iff Aj € Bj, ..., and A, € By,
Union and intersection are likewise defined componentwise, top = (S,...,S), and bottom

= (9,....9).

Let D be a poset and let T: D — D be a mapping. Then T is monotonic iff for all a,
bin D, a <b implies T(a) < T(b). A fixed-point of T is an element f € D such that T(f) =
f holds. If D is a complete lattice, then any monotonic mapping T: D — D has a fixed-
point. More precisely, T has a least fixed-point Ifp(T) and a greatest fixed-point gfp(T),
and possibly other fixed-points, which lie between the least and the greatest fixed point.
The least and the greatest fixed-point can be characterized in terms of ordinal powers of
T. The ordinal powers TT® and T4 are inductively defined as follows:

(1) TTO := bottom and TL0 := top; (2) TTo+1 := T(TT®) and Tdo+1 := T(TL®); (3) If o
is a limit ordinal then TT® := lub({ TTB; B < o }) and T := glb({ TIB; B<ax }).

Theorem 2.2. ( least and greatest fixed-points )’

Let D be a complete lattice, and let T: D — D be a monotonic mapping. Then, for any
ordinal o, TT® < Ifp(T) and TL® > gfp(T). Furthermore, there exist ordinals B, ¥ such
that TTB = Ifp(T) and TLY = gfp(T). Q

The ordinals B, Y may be greater than , but there are sufficient conditions under
which they are less or equal w. Let D be a complete lattice, and let T: D — D be a
mapping. Then T is upward w-continuous ( resp. downward w-continuous ) iff for any

4See Lloyd (1987), Chapter 1, §5 and Schmidt (1986), Chapter 6. An account of the history of
related fixed-point theorems can be found in Lassez-Nguyen-Sonenberg (1982).



increasing chain dg <£dj <dz < ... ( resp. decreasing chain dg = dj =d = ... ) we have
T(lub({ dj; 120 })) = lub({ T(dj); i 2 0 }) (resp. T(glb({ di; i 20 })) = glb({ T(dj); i 2
0 })). It is easy to see that any upward or downward ®-continuous mapping is also
monotonic.

Theorem 2.3. ( fixed-points of continuous mappings )

Let D be a complete lattice, and let T: D — D be an upward w-continuous ( resp.
downward w-continuous ) mapping. Then Ifp(T) = TT® = lub({ T*(bottom); n >0 })
(resp. gfp(T) = T4® = glb({ T'(top); n =0 })).5 O

In Section 5.3 we shall need a slightly generalized version of Theorem 2.3 for
downward w-continuous mappings.

Corollary 2.4. Let D be a complete lattice, and let T: D — D be a downward w-
continuous mapping. Let d be an element of D such that d =2 T(d). Then d-gfp(T) :=
glb({ T*(d); n 20 }) is a fixed-point of T. More precisely, d-gfp(T) is the greatest fixed-
point of T which is less or equal d.

Proof. Since T is downward w-continuous and thus monotonic, d = T(d) yields d 2
T(d) = T2(d) > T3(d) > ... . Hence T(glb({ T*(d); n =0 })) = glb({ T+1(d); n>0 })) =
glb({ Tn(d); n = 0 }).6 This shows that d-gfp(T) is a fixed-point, and obviously, d >
d-gfp(T). If f is a fixed-point with d > f then T(d) = T(f) =f, since T is monotonic, and f
is a fixed-point. Iterating this argument we obtain T?(d) = f for all n 2 0, and hence
glb({ T"(d); n20 })>f O

2.3 Automata and Words’

Let X be a finite alphabet. The set of all ( finite ) words over X will be denoted by £* and
the empty word by €. A word W = 0y...0y-1 over X of length n can be seen as a mapping
W of the finite ordinal n = { 0, ..., n—1 } into Z, namely, W(i) := oj fori=0, ..., n—1.
This motivates the following definition of infinite words. An infinite word W is a
mapping of the ordinal w into Z. The set of all infinite words over Z will be denoted by
2®_ A given infinite word W: ® — Z will sometimes be written as an infinite sequence
WOWW(Q?)... .

A generalized finite automaton A = (X£,Q,E) consists of a finite alphabet X, a finite
set of states Q, and a finite set of transitions (or edges ) E € Qx Z*x Q. A transition
connects two states of Q and is labeled by a finite word over X.

Example 2.5. ( a generalized automaton )
L={0,1}

Q={A,B,C})
E={(A,0,A), (A ),
(AT ,0), (B,T ,B),

(C,o1,0)}

5The notation “n > 0” is used as an abbreviation for “0 < n < ®”. Here and in the following we
use the convention that n, i, k range only over finite ordinals.

6Since d = TO(d) > T(d) by assumption.

TSee e.g., Manna (1974), Hopcroft-Ullman (1979), and Eilenberg (1974).



The automaton is called “generalized” because transition labels may be arbitrary
words, and not only symbols of the alphabet. However, it is well-known that any
generalized finite automaton can be transformed into an equivalent finite automaton3 ( see
Manna (1974) or Hopcroft-Ullman (1979) ). Words of length greater than one can easily
be eliminated by introducing intermediate states. In the example, we could introduce a
new state C’ and replace the transition (C,07T,C) by the two transitions (C,0,C’) and (C’,
T,C). The elimination of €-transitions is more difficult ( see Hopcroft-Ullman (1979), p.
26 ). In the example, we could simply join the states A and B to a new state AB with the
transitions (AB,0,AB), (AB,T,AB), (AB,T,C). This transformation can be done in
polynomial time.

Let 4 be a generalized finite automaton and let p, q be states of A. A finite path
from p to q in A4 is a sequence p = pg, U1, p1, U2, P2, .-, Un, Pn = q, Where for each i,
1 <i<n, (pi-1,Uj,pi) is a transition of 4. This path has the finite word UjU»3...Uj as
label. As a special case, the empty path p from p to p has the empty word € as label. In
the example, A, O, A, €,B, €, A, T,C, 0T, C is a finite path from A to C with label
OTOT. Obviously, a non-empty path (i.e., a path where n 2 1 ) may also have the empty
word as label. An infinite path starting with p is an infinite sequence p = po, U1, p1, U,
p2, ..., where for each i > 1, (pj-1,Uj,pj) is a transition of 4. The label UjU,U3 | of this
infinite path may be a finite or an infinite word. In the example, the infinite path A, G, A,
€,B,E AEB,E A E B, E, A, ... has the finite word G as label, and the infinite path
A, T,C,0T,C, 0T, C, ... has the infinite word TOTOT... as label. We shall sometimes
omit some of the insignificant intermediate states in the description of a path. For
example, assume that we are interested in those infinite paths starting with p where the
state q is reached infinitely often. Such a path may be written as p, W, q, W1, q, Wo, ...
where W) is the label of a path from p to q and the Wj for i > 1 are labels of non-empty
paths from q to q.

For two states p, q of the generalized finite automaton 4, let L 4(p,q) denote the set
of all finite words which are labels of paths fom p to q. If it is clear from the context, we
shall omit the index 4. In Example 2.5, L(A,B) = (OuT)* =X* and L(A,C) =
(CUT)*"T(0T)* = ( WT(OT)™; W € ¥, m > 0 }. The languages L(p,q) are regular, and
on the other hand, any regular language can be obtained in this way. If the regular
language L = L(A) is accepted by a set of terminal state Qfjp, i.€., L = U Qg L(Ps1), we
can add a new state qfijp to A, and transitions (t,€,qfin) for all t € Qfjn. Then L =

L(P»Qﬁn)

For a state q of the generalized finite automaton A4, let U g(p) denote the set of all
words which are labels of infinite paths starting with p. As for L, we shall often omit the
index A. Please note that U(p) may also contain finite words which are labels of infinite
paths starting with p. In the example, U(A) = U(B) = £* U X9 and U(C) is the singleton
{ oTOTOT... }.

3. A Small KL-ONE-based KR-language

In KL-ONE-based knowledge representation languages ( KR-languages ) we start with
atomic concepts and roles and can use the language formalism to define new concepts and
roles. Concepts can be considered as unary predicates which are interpreted as sets of
individuals whereas roles are binary predicates which are interpreted as binary relations

8Accepting the same regular languages.



between individuals. The languages differ in what kind of constructs are allowed for the
definition of concepts and roles. The language considered in this paper will be called
FLg. It has only two constructs which can be used to define concepts: concept
conjunction and value-restriction.

Definition 3.1. ( concept terms and terminologies )
Let C be a set of concept names and R be a set of role names. The set of concept terms
of FLyis inductively defined. As a starting point of the induction,

(1) any element of C is a concept term. (‘atomic terms )
Now let C and D be concept terms already defined, and let R be a role name.

(2) Then Cn D is a concept term. ( concept conjunction )

(3) Then VR:C is a concept term. ( value-restriction )

Let A be a concept name and let D be a concept term. Then A = D is a terminological
axiom. A terminology ( T-box ) is a finite set of terminological axioms with the additional
restriction that no concept name may appear more than once as a left hand side of a
definition.

A T-box contains two different kinds of concept names. Defined concepts occur on
the left hand side of a terminological axiom. The other concepts are called primitive
concepts 9 The following is an example of a T-box in this formalism: Let Man, Human,
Male and Mos ( for “man who has only sons” ) be concept names and let child be a role
name. The T-box consists of the following axioms:

Human r Male
Man n Vchild: Man

Man
Mos

That means that a man is human and male. A man who has only sons is a man such
that all his children are male humans. Male and Human are primitive concepts while Man
and Mos are defined concepts. Assume that we want to express a concept “man who has
only male off-springs”, for short Momo. We can’t just introduce a new role name off-
spring because there would be no connection between the two primitive roles child and off-
spring. But the intended meaning of off-spring is that it is the transitive closure of child. It
seems quite natural to use a cyclic definition for Momo: A man who has only male off-
springs is himself a man, and all his children are men having only male off-springs, i.e.,

Momo = Manmn Vchild: Momo.

This is a very simple cyclic definition. In general, cycles in terminologies are
defined as follows.

Definition 3.2. ( terminological cycles )

Let A, B be concept names and let T be a T-box. We say that A directly uses B in T iff B
appears on the right hand side of the definition of A. Let uses denote the transitive closure
of the relation directly uses. Then T contains a terminological cycle iff there exists a
concept name A in T such that A uses A.

The next definition gives a model-theoretic semantics for the language introduced in
Definition 3.1.

Definition 3.3. ( interpretations and models )
An interpretation 1 consists of a set dom(I), the domain of the interpretation, and an

9For our language, roles are always primitive since we do not have role definitions.



interpretation function which associates with each concept name A a subset Al of dom(I)
and with each role name R a binary relation RI on dom(l), i.e., a subset of dom(I) x
dom(I). The sets AL RI are called extensions of A, R with respect to L.

The interpretation function — which gives an interpretation for atomic terms — can be
extended to arbitrary terms as follows: Let C, D be concept terms and R be a role name.
Assume that C! and D! are already defined. Then

(CnD)Y := CInD]
(VR:C)l := {x e dom(l); for all y such that (x,y) € Rl we havey € CI }.

An interpretation I is a model of the T-box T iff it satisfies
Al = D! for all terminological axioms A=Din T.

The semantics we have just defined!0 is not restricted to non-cyclic terminologies.
But for cyclic terminologies this kind of semantics may seem unsatisfactory. One might
think that the extension of a defined concept should be completely determined by the
extensions of the primitive concepts and roles. This is the case for non-cyclic
terminologies.

More precisely, let T be a T-box containing the defined concepts Cy, ..., C;, the
primitive concepts P, ..., Py and the roles Ry, ..., Rk. A primitive interpretation J
consists of a set dom(J), the domain of the primitive interpretation, and extensions PyJ,
» Pm3, R1J, ..., R of the primitive concepts and roles. An interpretation I of T
extends the primitive interpretation J iff dom(I) = dom(J), P11 =PyJ, ..., Pl = P,J and
Rl = RyJ, ..., Rkl = RJ. Such an extension I of J can be described by the n-tuple
(C1L,...,ChD) € (2dom()? where 2domQ) denotes the set of all subsets of dom(J). On the
other hand, any primitive interpretation J together with an n-tuple A e (2dom()" yields
an interpretation I of T.11 Of course, we are mostly interested in extensions of J which
are models of T. If T does not contain cycles, then any primitive interpretation can
uniquely be extended to a model of T ( see e.g. Nebel (1989a), Section 3.2.4 ). If T
contains cycles, a given primitive interpretation may have different extensions to models
of T.

Example 3.4. Let R be a role name and B, P be concept names.!2 The terminology T
consists of the single axiom B =P n VR:B. _

We consider the following primitive interpretation: dom(J) := { a, b, ¢, d } =: PJ, and RJ
= { (a,b), (c,d), (d,d) }. It is easy to see that this interpretation has two different
extensions to models of T. The defined concept B may be interpreted as { a, b } or as
{a, b,c,d }. Note that individuals without RJ-successors are in the extension (VR:C)
of a term VR:C, no matter how C may be interpreted.!3

The example also demonstrates that, with respect to the descriptive semantics
defined above, the construction B = P M VR:B of the example does not express the

10This semantics will be called “descriptive semantics” in the following.

11Any defined concept in T corresponds to a component of the tuple A. If the defined concept B
corresponds to the i-component of A, i.e., Bl = (A);, we shall say that index(B) = i.

12Wwe shall no longer use intuitive names for concepts and roles, since I agree with Brachman-
Schmolze (1985), p.176, that “suggestive names can do more harm than good in semantic networks and
other representation schemes.” Suggestive names may seemingly exclude models which are admissible
with respect to the formal semantics.

13This fact will be very important for the least fixed-point semantics.



value-restriction B = VR*:P for the reflexive-transitive closure R* of R. This implies that
our definition of the concept Momo from above is not correct w.r.t. descriptive semantics.

For these reasons we shall now consider alternative types of semantics for
terminological cycles.

4. Fixed-point Semantics for Terminological Cycles

A terminology may be considered as a parallel assignment where the defined concepts are
the variables, and the primitive concepts and roles are parameters.

Example 4.1. Let R, S be a role names and A, B, P be concept names, and let T be the
terminology A = Qn VS:B, B = PN VR:B. We consider the following primitive
interpretation J, which fixes the values of the parameters P, Q, R, S: dom(J) := { ao, aj,
as, ... }, PV :={ aj, a2, a3, ... }, @ :={ ag}, RJ := { (ai+1,3i);i= 1}, and §J :=
{ (ag,aj); 121 }.

For given values of the variables A, B, the parallel assignment A :=Qn VS:B, B:=Pn
VR:B yields new values for A, B. If A and B are interpreted as the empty set, an
application of the assignment T yields the values @ for A and { a; } for B. If we reapply
the assignment to these values we obtain @ for A and { aj, ap } for B.

In the general case, a terminology T together with a primitive interpretation J
defines a mapping Ty: (2dom@)" — (2dom())" where n is the number of defined concepts
in T.

Definition 4.2. Let T be the terminology which consists of the concept definitions Cy
=Dy, ...,Cn = Dy, and let J be a primitive interpretation. The mapping Tj: (2dom()" —
(2dom(I)M is defined as follows:

Let A be an element of (24om0))™ and let I be the interpretation defined by J and A. Then

Tj(A) := (D1L,....DnD).

For the above example we have seen that Tj(3,0) = (@,{ a1 }) and Tj(3,{ a1 }) =
D.{ a1, a2 }).

Obviously, the interpretation defined by J and A is a model of T if and only if Ais a
fixed-point of the mapping Ty, i.e., if and only if Tj(A) = A. In our example, the element
({ ag }.{ a1, ag, a3, ... }) of (24om()2 is a fixed-point of Tj. If we extend J to I by
defining Al := { ag }, Bl := { aj, ap, a3, ... }, we obtain a model of T.

One may now ask whether any primitive interpretation J can be extended to a model
of T, or equivalently, whether any mapping Tj has a fixed-point. The answer is yes,
because (2domU)" ordered componentwise by inclusion, is a complete lattice ( see
Example 2.1 ) and the mappings Ty are monotonic.!4 Thus the following definition
makes sense:

Definition 4.3. ( three types of semantics for cyclic terminologies )
Let T be a terminology, possibly containing terminological cycles.
(1) The descriptive semantics allows all models of T as admissible models.

14This can be easily proved; but it is also a consequence of Proposition 4.5 which states that
these mappings are even downward w-continuous.
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(2) The least fixed-point semantics ( lfp-semantics ) allows only those models of T which
come from the least fixed-point of a mapping Ty ( Ifp-models ).

(3) The greatest fixed-point semantics ( gfp-semantics ) allows only those models of T
which come from the greatest fixed-point of a mapping T ( gfp-models ).

Any primitive interpretation J can uniquely be extended to a Ifp-model ( gfp-model )
of T. In Example 3.4, the extension of J which interprets B as { a, b } is a Ifp-model of
T, and the extension which interprets B as { a, b, ¢, d } is a gfp-model of T. It is easy to
see that, for cycle-free terminologies, 1fp-, gfp- and descriptive semantics coincide ( see
Nebel (1989a), p.137,138 ).

The next question is how 1fp-models ( gfp-models ) can be constructed from a
given primitive interpretation. Nebel (1987,1989,1989a) claimed that the mappings Ty are
even upward continuous, and that thus Ifp(TJ) = Uj>oTyi(bottom), where bottom denotes
the least element of (2dom())" namely the n-tuple (@....,3). Unfortunately, this is not
true.

Proposition 4.4. In general, we may have Ifp(T}) # Uj>oT;i(bottom).

Proof. We consider Example 4.1. It is easy to see that Tji(@3,8) = (@,{ aj, a2, ...,
aj }). Thus UisoT1i(@,8) = (@,{ aj; i > 1 }) which is not a fixed-point, since Tj(@,{ aj;
121 PD=(ap}.{a;iz1}). 1

In this example, the least fixed-point is reached by applying Tj once more after
building the limit, i.e., Ifp(Ty) = TyT@+1, In general, one may need even greater ordinals
to obtain the least fixed-point. On the other hand, we shall now show that the greatest
fixed-point can always be reached by w-iteration of Tj.

Proposition 4.5. The mappings Tj are always downward w-continuous. Conse-
quently, the greatest fixed-point may be obtain as gfp(Ty) = Ni>Tsi(top), where top
denotes the greatest element of (2dom(M)" je. top = (dom(]),...,dom(I)).

Proof. Let J be a primitive interpretation, and let A() > AV > AR) 5 ... bea
decreasing chain in (240m0))" We have to show that

N0 TIAK) = Ty M=pAK) ),

For k 2 0, let Ix be the interpretation of T defined by J and A(K) and let I be the
interpretation defined by J and A := Nk>0A (k). By Definition 4.2, it is sufficient to
demonstrate that, for any concept term D, we have '

Mk>0 Dk = DL,
We proceed by induction on the size of D.
(1) D = P for a primitive concept P. Then D! = P} = DIk for all k > 0 and hence Mg>( Dk
=PI =DL
(2) D = C; for a defined concept C;. Then DI = A;, and for all k > 0, DIk = A;(%).15 But
Ai = Ni>pA;(K) by definition of A.
(3) D = E 1 F for concept terms E, F. We have D! = El N Fl and by induction we get E!
= Mi>0 Elk and F! = My Flk. Hence D! = (Mg>0 EIk) N (Mo FIK) = Mg (Elk N Flk)
= N> DIk.
(4) D = VR:C for a role name R and a concept term C. By Definition 3.3, DI = { x
dom(I); Vy: ((x,y) € Rl = y e CI) }, and hence, by induction and the definition of I, DI
= { x e dom(J); Vy: ((x,y) € RT = y € Mg> CIk) }. That means that we have

15Here A, is the i-th component of the tuple A and A;®) is i-th component of the tuple AK).
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x € DI iff Vy: ((x,y) € RI = Vk:ye Ck).

It is well-known ( see e.g., Gallier (1986), p. 305 ), that a formula of the form Vy: ( A
— Vk: B), where k has no free occurrence in A, is equivalent to the formula Vy:Vk: ( A
— B). If we permute the quantifiers!® we get Vk:Vy: (A — B ). This shows that

x € DI iff Vk:Vy: ((x,y) € RI > ye Ck).

Since { x € dom(J); Vy: ((x,y) € RI — y € Clk) } = DIk, we have shown that Mg>p DIk
= DL This completes the proof of the proposition. O

The two propositions show that, from a constructive point of view, the gfp-
semantics should be preferred. However, if dom(J) is finite, the greatest and the least
fixed-point can be reached after a finite number of applications of T.

An important service terminological representation systems provide is computing
the subsumption hierarchy.

Definition 4.6. ( subsumption of concepts )
Let T be a terminology and let A, B be concept names.

AcTB iff Alc B! for all models I of T,
Acip 1B iff Al B! forall ifp-models I of T,
Acgip1 B iff Al BI forall gfp-models I of T.

In this case we say that B subsumes A in T w.r.t. descriptive semantics ( resp. 1fp-
semantics, gfp-semantics ).

5. Characterization of the Semantics using Finite Automata

Before we can associate a finite automaton At to a terminology T we must transform T
into some kind of normal form. It is easy to see that the concept terms VR:(B 1 C) and
(VR:B) N (VR:C) are equivalent.!” Hence any concept term can be transformed into a
finite conjunction of terms of the form VR1:VR2:...VRp:A, where A is a concept name.
We shall abbreviate the prefix “VR1:VR2:...VR,” by “VW” where W = RjR2..Rp is a
word over R, the set of role names occurring in T. In the case n = 0 we also write
“V¢&:A” instead of simply “A”. For an interpretation I and a word W = R1R2...Ry, W1
denotes the composition RqleRle...cRp! of the binary relations Ryl, Rol, ..., Ryl The
term €l denotes the identity relation, i.e., €l = { (d,d); d € dom(]) }.

Definition 5.1. Let T be a terminology where all terms are normalized as described
above. The generalized ( nondeterministic ) automaton At is defined as follows: The
alphabet of A is the set Rt of all role names occurring in T; the states of At are the
concept names occurring in T; a terminological axiom of the form A =VWp:Ajn .0
V'Wy:Ag gives rise to k transitions, where the transition from A to Aj is labeled by the
word W;.

The next example illustrates Definition 5.1.

16This is the point where the proof for the least fixed-point goes wrong. In this case we would
have the quantifiers “Vy:3k:” which cannot be permuted.
17 e., they have the same extension in any interpretation.
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Example 5.2. ( A normalized terminology and the corresponding automaton )

R S
A=VR:ANVS:D S .
B=VRS:DNVS:C ——’®
RS

C=VR:C

D=V§:Dn P
R
5D

The primitive concepts are exactly those states in At which don’t have successor
states. The automaton At can be used to characterize gfp- and descriptive semantics and,
after a modification, also 1fp-semantics.

5.1 Characterization of the gfp-Semantics

Before we can show that subsumption w.r.t. gfp-semantics can be reduced to inclusion
of regular languages, we need the following proposition which describes under what
conditions an individual d of a gfp-model I is in the extension Al of a concept A.

Proposition 5.3. Let T be a terminology and let At be the corresponding automaton.
Let I be a gfp-model of T and let A be a concept name occurring in T. For any d €
dom(I) we have: d € Al iff for all primitive concepts P, all words W € L(A,P) and all
individuals e € dom(I), (d,e) € W!implies e € PL

Proof. If A is a primitive concept, then L(A,A) = { € } and L(A,P) = @ for A # P.
Since €l = { (d,d); d € dom(I) }, the proposition follows immediately.

Assume that A is a defined concept. The gfp-model I is given by a primitive interpretation
J and the tuple gfp(Ty) = Nk>0TiK(top). The defined concept A corresponds to a
component of this tuple, i.e., Al = (gfp(Ty));j for i = index(A).

(1) Assume that d ¢ AL Then there exists k = 0 such that d ¢ (TjK(top));. We proceed
by induction on k.

For k = 0, we have d ¢ (top); = dom(I), which is a contradiction.

For k > 0 we have d ¢ (Tj(Tj%-1(top)));. Let the defining axiom for A be of the form A
=...MN VYW: Bn ... and assume that VW: B is responsible for d ¢ (Tj(Tjk-1(top)));.
That means that there exists ¢ € dom(I) such that dWle ande ¢ B =BI (if Bisa
primitive concept ) or ¢ & (Tjk-1(top)); (if B is a defined concept and index(B) =j ). In
the first case, B is a primitive concept and obviously, W € L(A,B). In the second case,
we can apply the induction hypothesis to € ¢ (TJk'l(top))j. Thus there exist a primitive
concept P, a word V € L(B,P) and an individual f € dom(I) such that eVIf and f ¢ PL
But then WV € L(A,P) and d(WV)If. This completes the proof of the “if”” direction.

(2) Assume that there exist a primitive concept P, a word W € L(A,P) and an individual
e € dom(I) such that dWle and e ¢ PL. Let W be the label of the ( non-empty ) path A,
Uo, C1, ..., Cn-1, Up, P. Since W = Up...Up and dWle, there are individuals dj, ...,
dn-1 such that dUpld;...dp.1Uple. We proceed by induction on n.

For n = 0, W = Ug and the defining axiom for A is of the form A=...M VW: P ....
Thus d ¢ (Tj(top));.

For n > 0, we know by induction that d; ¢ (Th(top))j for some h > 0 ( where index(Cy)
=j). But thend ¢ (Th+I(top));. This completes the proof of the proposition since Al =

(gfp(T1))i = Nk>0(TyK(top));. A

For the terminology B = P VR:B of Example 3.4, L(B,P) =R* = { R; n>0 }.
Hence it is an immediate consequence of the proposition that this terminology — if
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interpreted with gfp-semantics — expresses value-restriction with respect to the reflexive-
transitive closure of R. In this case, the condition of the proposition says that d € Bl if
and only if for all n > 0 and all e such that d(R)%, e € P! holds. That means that for all
such that d(Unp>0(RDMe, e € Pl holds. But Up>o(RDM is the reflexive-transitive closure
of RL

Proposition 5.3 implies that concepts are never inconsistent w.r.t. gfp-semantics,
i.e., for any terminology T and any concept A in T there exists a gfp-model I of T such
that Al # @. Obviously, it is enough to take the gfp-model which is defined by a primitive
interpretation J satisfying P! = dom(J) for all primitive concepts P.

The proposition can intuitively be understood as follows: The languages L(A,P)
stand for the possibly infinite number of constraints of the form VW: P which the
terminology imposes on A. An individual d is in the extension of A if and only if it
satisfies all of these constraints. If a concept has to satisfy more constraints, its extension
will become smaller. This motivates the following theorem which characterizes
subsumption w.r.t. gfp-semantics.

Theorem 5.4. Let T be a terminology and let At be the corresponding automaton. Let
I be a gfp-model of T and let A, B be concept names occurring in T. Subsumption in T
can be reduced to inclusion of regular languages defined by At. More precisely,

A EgipT B iff L(B,P) 2 L(A,P) for all primitive concepts P.

Proof. (1) Assume that L(B,P) ¢ L(A,P) for some primitive concept P, i.e., there is a
word W such that W € L(B,P) \ L(A,P). Let W = R{R»...R;, for n ( not necessarily
different ) role names R, Ry, ..., Ry. We define the primitive interpretation J as follows:
dom(J) := { dy, ..., dp }; Q' := dom(J) for all primitive concepts Q # P; P := dom(J) \
{dn }; RY := { (dj,dij+1); 0 <i<n-1and R =R;41 } for all roles R. The definition of the
role extensions implies that dgV’dy iff V = W.

Let I be the gfp-model defined by J. Since W € L(B,P), dgW!d, and dy ¢ PL, we know
by Proposition 5.3 that dg ¢ Bl On the other hand, assume that dy ¢ Al. By Proposition
5.3, there exists a primitive concept Q, a word V € L(A,Q) and an individual f € dom(I)
such that doVIf and f ¢ QL The definition of J implies that Q = P and f = dp,. But then
doVId, yields V = W. This contradicts our assumption that W ¢ L(A,P). Hence we have
shown that dg € AT\ B! which implies that A ¢g¢pT B.

(2) Now assume that A & gfp,T B, i.e., there exists a gfp-model I and an individual d €
dom(I) such that d € AT\ BL. Assume that L(B,P) < L(A,P) for all primitive concepts P.
Since d ¢ B!, Proposition 5.3 says that there exists a primitive concept P, a word W €
L(B,P) and an individual e € dom(I) such that dWle and e ¢ PL. But then L(B,P) ¢

L(A,P) yields W € L(A,P) and thusd ¢ Al, which is a contradiction. O

In Example 5.2, B subsumes A w.r.t. gfp-semantics since L(B,P) = RSS* is a
subset of L(A,P) = R*SS*. The theorem shows that the problem of determining
subsumption w.r.t. gfp-semantics can be reduced to the inclusion problem for regular
languages in polynomial time.!® On the other hand, the inclusion problem for regular
languages ( given by arbitrary nondeterministic automata ) can be reduced to the
subsumption problem. Assume that 4; = (£,Q1,E1) and 4, = (£,Q3,E3) are two non-

181f we want to solve the subsumption problem A Egfp 1 B for a terminology T with k primitive
concepts, we have to solve k inclusion problems for regular languages which are defined by a non-
deterministic automaton having the same size as the terminology.
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deterministic automata defining the regular languages L1 = Lg,(p1.q1) and L2 =
L ,qz(pz,qz). Without loss of generality we may assume that Q; and Q3 are disjoint and
that 4; and A, are trim, i.e., any state can reach the terminal state q; and can be reached
from the initial state p; ( see Eilenberg (1974), p. 23 ). We consider the automaton 4 =
(Z,Q1vQau {t},E), where t is a new state not occurring in Q) u Q2 and E = E; UE3
U { (@1.€:1), (92.€,1) }. Obviously, Lg,(p1.91) = La(p1.t) and Lg,(p2.92) = La(p2.). It
is easy to see that 4 = At for a terminology T which has the states in Q; U Q2 as its
defined concepts and the state t as the only!9 primitive concept. But then L1 < L3 if and

only if p2 Egfp T P1-

Corollary 5.5. The problem of determining subsumption w.r.t. gfp-semantics is
PSPACE-complete.

Proof. We have seen that subsumption w.r.t. gfp-semantics can be reduced to inclusion
of regular languages ( defined by a nondeterministic automaton ) in polynomial time and
vice versa. It is well-known that the inclusion problem for regular languages defined by a
nondeterministic automaton is PSPACE-complete ( see Garey-Johnson (1979) ). 4

This shows that, even for our very small language, subsumption determination
w.r.t. gfp-semantics is rather hard from a computational point of view. On the other
hand, Nebel (1989b) has shown that, even without cycles, this languages has a co-NP-
complete subsumption problem.

5.2 Characterization of the Ifp-Semantics

In order to get a characterization of Ifp-semantics which is similar to the characterization
of gfp-semantics in Proposition 5.3, we need two lemmata.

Let J be a primitive interpretation of the terminology T, let A, B be defined concepts
in T, and let At be the generalized automaton corresponding to T. The least fixed-point
of Ty can be obtained as Ifp(Tj) = T;T® for some ordinal o.. Without loss of generality
we may assume that o is a limit ordinal. That means that 1fp(Tj) = U;KQTJTX. Let I be
the Ifp-model of T defined by J. Assume that index(A) =i and index(B) =j, i.e., Al =
(1fp(Ty))i and Bl = (fp(Ty));. For an individual d € dom(I) we have d € Al'if and only if
there exists A < a such thatd e (T;T?);.

Lemma 5.6. Assume thatd € (T;TA);, dWle and that (A,W,B) is a transition of 4.
Then there exists y < A such that e & (T3 TY);.

Proof. The lemma is proved by transfinite induction on A.

(1) For A = 0, (T;TA); = (bottom); = @. Hence there is no such individual d.

(2) For A = § + I, TyTA = Ty(T;T9). The definition of A in T is of the form A = ... N
VW:Bn ... and we have d € (Tj(T;T9)); and dWle. Thus e must be an element of
(Tst)j and we can take y= 0. )

(3) Let A be a limit ordinal. Then TjTA = Ugca T T8, and thus d e (TyTA); iff there
exists 8 <A such thatd € (TyT9);. If we apply the induction hypothesis to 8, we get y <
d <A suchthate € (TJTY)J-. Qa

Lemma 5.7. Assume thatd € (T;T?);, dWle and that W € L(A,P). Then we have € €
PL

Proof. The lemma is proved by transfinite induction on A.

(1) For A = 0, there is no such individual d.

191n order to have this property the automata had to be trim.
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(2) For = & + 1, TyTA = Ty(T;T9). Let W be the label of the ( non-empty ) path A, Uy,
Ci, ..., Cn-1, Up, P. Since W = Up...Up and dWle, there are individuals dj, ..., dp-1
such that dUpld;...dp.1Uple.

For n = 0, W = Up and the defining axiom for A is of the form A= ... A VW: P ...
Thus d € (Ty(T;T9)); and dWle imply e € PL

For n > 0, the defining axiom for A is of the fom A =...n VUp: C1 1 .., and thus d €
(T)(Ty18)); and dUgd; imply dj € (TyT8)x ( where the defined concept C; has index(C1)
=k ). The induction hypothesis for 8 yields e € PL

(3) Let A be a limit ordinal. Then TyTA = Ugx T T8 and thus d € (TyTA); iff there exists
& < A such that d e (T;T9);. If we apply the induction hypothesis to 8 we gete € PL. O

We can now characterize 1fp-semantics with the help of finite and infinite paths in
the automaton Ar.

Proposition 5.8. Let T be a terminology and let At be the corresponding automaton.
Let I be the 1fp-model of T defined by the primitive interpretation J and let A be a concept
name occurring in T. For any dgp € dom(I) we have dgp € Al iff the following two
properties hold:

(P1) For all primitive concepts P, all words W € L(A,P) and all individuals e € dom(I),
(do,e) € W!implies e € PL

(P2) For all infinite paths A, W1, C1, W2, C2, W3, C3, ..., and all individuals dj, d2, d3,
... there exists n > 1 such that (dp_1,dn) € Whpl.

Proof. The case where A is a primitive concept is trivial. In the following, let A be a
defined concept.

(1) Assume that dg € Al = (Ifp(Ty));. Then there exists an ordinal A such that dg €
(T3 T™);, and thus property (P1) is an immediate consequence of Lemma 5.7. If (P2) does
not hold then there exists an infinite path A, W, C;, W2, C2, W3, Cs, ..., and
individuals di, d, d3, ... such that (dy_1,dy) € Wy! for all n > 1. By Lemma 5.6, there
exist ordinals A > A1 > A2 > A3 > ... such that dy € (T]Tln)jn (foralln>1 and
appropriate indices jp ). But there can be no such infinitely decreasing chain of ordinals
since the ordering of ordinals is well-founded.

(2) Assume that (P1) and (P2) hold. We define an ordering “>” on 3-tuples of the form
(W,d,B) where B is a defined concept, W is the label of a path from A to B,20 and d is an
individual with dgWd. Let Pbe the set of all such tuples and let (V,d,B) and (W,e,C) be
two elements of P. Then (V,d,B) > (W,e,C) iff W = VU where U is the label of a non-
empty path from B to C and dUle. Obviously, “>” is a strict partial ordering, and
property (P2) ensures that this ordering is well-founded. The following claim will be
proved by noetherian induction?! on “>”.

Claim: For any (W,d,B) € Pthere exists an ordinal A < c such that

d e (TjTA); ( where index(B) = j ).22
Proof of the claim. (2.1) Let (W,d,B) be a minimal element of 2. Let the defining
axiom of B be of the form B =...nVYU:Cn ...N VV: P ..., where P is primitive and C
defined. The minimality of (W,d,B) implies that there does not exist an individual e with
dUle. Assume that dVle. Since WV € L(A,P) and dg(WV)!e, property (P1) implies e €
PL This shows thatd € (Ty(bottom));. Hence we can take A = 1.

20For A = B this may also be the empty path.
21gee e.g., Gallier (1986), p. 9, 10, for the definition and justification of noetherian induction.
22Recall that o was a limit ordinal such that 1fp(Ty) = TyT%.
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(2.2) Assume that (W,d,B) is not a minimal element of P. Let the defining axiom of B
be of the form B =VU: C;n ...NA VYU CyM...N VV:P..., where P is primitive and
the C;j are all the defined concepts in the definition of B. As in (2.1) we can show for all
individuals e that dVle implies e € PL. Assume that dUjle and index(C;) = k. We have
(WUi,e,C)) € Pand (W,d,B) > (WUj,e,Cj). Hence, by the induction hypothesis, there
is an ordinal A(i,e) < & such thate e (TyTAM)),. We define 7y := sup{ A(i,e); where 1 <i
<n and dUjle }. Then we have y < o and it is easy to see thatd € (TyT¥1);. But then d
e (TyTo+1l); and since Ty T® is the fixed-point of Ty, d € (T;T®);. Since o is a limit
ordinal, this means that there exists A < o such that we have d € (T_]T}‘)j. This completes
the proof of the claim. U

If we apply the claim to (€,dg,A), we get dp € (T3 TA); for some A < @, and thus dg €
Al QO

As a consequence of P2 of the proposition, €-cycles in At — i.e., non-empty paths
of the form B, €, ..., €, B — are important for the lfp-semantics. In particular,
inconsistency of concepts can be described with the help of €-cycles. We say that the
concept A of T is inconsistent w.r.t. lfp-semantics iff it has the empty extension in all 1fp-
models of T.

Corollary 5.9. The concept A is inconsistent w.r.t. Ifp-semantics if and only if there
exists a path with label € from A to a state B which is the initial state of an €-cycle.
Proof. (1) Assume that there is a path A, €, ..., €, B and a non-empty path B, €, ...,
€, B. Thus we have an infinite path starting with A where all transitions are labeled by €.
Since deld for all 1Ifp-models I and individuals d € dom(I), property (P2) of the
proposition is never satified for A and arbitrary d. Hence A is inconsistent.

(2) Assume that A is inconsistent w.r.t. 1fp-semantics. We define a primitive
interpretation J as follows: dom(J) := { dg }, P! := { dg } for all primitive concepts P,
and RJ := @ for all roles R.

Let I be the Ifp-model of T defined by J. Since A is inconsistent, we have dg ¢ Al The
definition of J implies that property (P1) of Proposition 5.8 holds for A, dg. Hence
property (P2) cannot hold. That means that there exists an infinite path A, W1, Cy, Wa,
Ca, W3, C3, ..., and individuals d, d,, d3, ... such that (dp_1,dn) € Wp! for all n > 1.
The definition of J implies d, = dg and Wy, = € for all n > 1. Hence there is an infinite
path starting with A where all transitions are labeled by €, and since At has only finitely
many states, there is a state B which occurs infinitely often in this path. O

An easy consequence of this corollary is that inconsistency of concepts w.r.t. lfp-
semantics can be decided in linear time. Starting from A, one has to search along
€-transitions for an €-cycle.

Because of the role €-cycles play for inconsistency, the automaton At has to be
modified before we can express subsumption w.r.t. Ifp-semantics. We add a new state
Qioop to AT, a transition with label € from Qjoop to Qioop, and for each role R in T a
transition with label R from Qjoop t0 Qjoop. For any state B of At lying on an €-cycle,
we add a transition with label € from B to Qjoop, and for any primitive concept P we add
a transition with label € from Qjoop to P. This modified automaton will be called Br.

The effect of this modification is as follows: If A is inconsistent w.r.t. 1fp-
semantics — i.e., by Corollary 5.9, there exists a path with label € from A to a state B in
At which is the initial state of an €-cycle in A1 — then we have L@r(A,P) = X" for all
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primitive concept P, and Ug(A) = * U X9 in the automaton Br. That means that, for
the smallest concepts, the languages are made as large as possible.

Obviously, La(B,P) ¢ ng;r(B ,P) and U ﬂ’r(B) ot U'Br(B) for all concepts B. More
precisely, Lq;r(B,P) =L ,qT(B,P) v { UV; U is a finite word in U ,qT(B) and Ve )
and Ug,(B) = Ug(B) L { UV; U is afinite word in Ug.(B) and V € TFruIe )2

Theorem 5.10. Let T be a terminology and let Bt be the corresponding modified
automaton. Then A Eygp T B iff UgBr(B) c Uq;r(A) and L:BT(B,P) < LIBT(A,P) for all
primitive concepts P.

Proof. (1) Assume that Lq;r(B,P) [ed ngr(A,P), i.e., there is a word W = Rj...Rj such
that W e Lg;r(B,P) % Lq;r(A,P). The primitive interpretation J is defined as follows:
dom()) := { dy, ..., dn }; Q :=dom(J) for all primitive concepts Q # P; PJ := dom(J)\
{ dn }; RV := { (dj,di+1); 0 <i < n-1and R = Rj4] } for all roles R. The definition of the
roles implies that dgV’dy, iff V = W. Let I be the 1fp-model defined by J.

(1.1) If W € Lg.(B,P), then doWld,, and dy ¢ P! imply that dg ¢ BI because (P1) of
Proposition 5.8 is not satisfied. If W e LQ;T(B,P) Y y{T(B,P), then W = UV where U €
Uz, (B)N %* is the label of a path in At from B to a concept C which lies on an €-cycle
in 4. Since dgU!dy for some k < n and dg€ldk€ld..., property (P2) of Proposition 5.8
is not satisfied, which yields dy ¢ Bl

(1.2) On the other hand, assume that dg € Al By Proposition 5.8, (P1) or (P2) is not
satisfied. In the first case, there exist a primitive concept Q, a word V € L ,qr(A,Q) and
an individual f € dom(I) such that dgVIf and f ¢ QL. The definition of J implies that Q =
P and f = d,,. But then dgV1d, yields V = W. This contradicts our assumption that W ¢
Lgr(A,P) since L gT(A,P) e Lq_r;r(A,P). In the second case, there exists an infinite path
A, W1, C1, W2, C2, W3, C3, ... in 41 and individuals eg = do, €1, €2, €3, ... such that
(€m-1,m) € Wm! for all m > 0. The definition of J implies that there exists k = 0 such
that Wy...Wy is a prefix of W and Wi41 = Wg42 = ... = €. That means that Ck is
inconsistent, and thus by the definition of Br, W1...WxU is in L:BF(A,P) for all words
U. In particular, W € LQ;T(A,P) which is a contradiction.

Hence we have shown that dg € AI\BI, which implies that A $¢fp, T B.

(2) Assume that Ug;].(B) (v U‘BF(A) because there exists an infinite word W = R1R2R3...
such that W € Ug(B) \Ug(A). The primitive interpretation J is defined as follows:
dom(J) := { dg, d1, d2, ... }; PY := dom(J) for all primitive concepts P; RJ := { (dj,di+1);
i>0and R =Rj; } for all roles R. Let I be the Ifp-model defined by J.

21)IfWe U ,qT(B), then it is the label of an infinite path B, W1, C;, W2, C2, W3,
C3, ... in 4. Obviously, (P2) of Proposition 5.8 is not satisfied for dy and B, which
yieldsdpe BLIfW e U@T(B) \U ,qr(B), then W has a finite initial segment U which is
the label of a finite path in At from B to a concept C which lies on an €-cycle in 4t. As
in part (1.1) of the proof, we can deduce dp ¢ BL

(2.2) On the other hand, assume that dg ¢ Al By Proposition 5.8, (P1) or (P2) is not
satisfied. Since we have defined P! := dom(J) for all primitive concepts P, (P1) is always
satisfied. Thus (P2) does not hold, i.e., there exist an infinite path A, W1, C1, W2, Ca,
W3, C3, ... in At and individuals eg = do, €1, €2, €3, ... such that (ep_1,en) € Wy! for all
n > 0. If the label W{W2W3... of this infinite path is an infinite word, the definition of J
implies that it is equal to W. Hence W € U 2.(A) which contradicts our assumption that
W ¢ U'BT(A)- If the label W1 W2W3... of the infinite path is a finite word U, the

230bviously, U is a finite word in Ug,(B) iff U is the label of a finite path in At from B to a
concept C which lies on an €-cycle in 4.
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definition of J implies that U is a finite initial segment of W. By the definition of Br, UV
€ Ugr(A) for all infinite words V € 2@, Hence W € Uq;r(A), which is a contradiction.
Thus we have shown that dg € AT\ BI, which implies that A ¢ T B.

(3) Assume that Ug(B) Ug.(A) because there exists a finite word W such that W €
Ugr(B) \UgT(A). From W € Urg.r(B) we can deduce that there is a prefix U =Rj...Rp
of W and a path with label U in 4t from B to a concept C which lies on an €-cycle in
Zr. The primitive interpretation J is defined as follows: dom(J) := { dg, d2, ..., dn }; P!
:= dom(J) for all primitive concepts P; RJ := { (dj,di+1); 0 <i<n-1and R =Rj41 } for
all roles R. Let I be the 1fp-model defined by J.

(3.1) Obviously, the pair dy, B doesn’t satisfy (P2) of Proposition 5.8, and thus dg
BL

(3.2) On the other hand, assume that dy € AL As in part (2.2) of the proof we can
deduce that (P2) does not hold, i.e., there exist an infinite path A, W1, C1, W2, C2, W3,
C3, ... in At and individuals eg = dy, €1, €2, €3, ... such that (em_-1,6m) € Wp! for all m
> 0. The definition of J implies that there exists k > 0 such that Wy... Wy is a prefix of U
and Wk4+1 = Wks2 = ... = €. That means that Ci is inconsistent, and thus by the
definition of B, W1...WkV isin Ugr(A) for all words V € X*. In particular, W €
Uqgr(A) which is a contradiction.

Thus we have shown that dp € AI\BI, which implies that A §gfp 1 B.

(4) Let Ug(B) < Ug(A), and L3 (B,P) L@T(A,P) for all primitive concepts P.
Assume that A & %fp,T B, i.e., there exist a Ifp-model I of T and an individual dg € dom(I)
such that dg € AI\BL Now dg ¢ B! implies that (P1) or (P2) of Proposition 5.8 does
not hold for dg, B.

(4.1) If (P1) does not hold, then there exist a primitive concept P, a word W €
Lay(B,P), and an individual e € dom(I) such that dyWle and e ¢ PL Since L ﬂr(B,P) e
L3 (B,P) c LB (AP), we have W € L (A,P). For W € L 4r(A,P), Proposition 5.8
yields dy ¢ Al, which is a contradiction. Assume that W € LnBr(A,P) X L, y[T(A,P). That
means that W = UV, and there is a path with label U in At from A to a concept C which
lies on an €-cycle. Now dgWle implies that there exists an individual f such that doU!f.
Since felfelf. .., property (P2) of Proposition 5.8 is not satisfied. This yields dp ¢ Al,
which is a contradiction.

(4.2) If (P2) does not hold, then there exist an infinite path B, W1, C1, W2, C2, W3,
C3, ... in At and individuals dj, d3, d3, ... such that (dy_1,dp) € Wy! for all n > 0.
(4.2.1) First, we assume that the label W1 W7 W3... of this path is an infinite word W.
Then we have W € Ug(B) U@T(A). IfwWeU ,qT(A), we immediately get dg ¢ Al
which is a contradiction. If W € U@F(A) \U ,qT(A), then there exists a finite initial
segment U of W such that there is a path with label U in 4 from A to a concept C which
lies on an €-cycle. As in (4.1) this implies dp ¢ AL This contradicts our assumption.
(4.2.2) Assume that the label W1W2Wj... of the infinite path B, W1, C1, W2, C2, W3,
Cs, ... is a finite word W. We have W € Ug(B) Ug;r(A). But W e Uq;r(A) means
that there exists a prefix U of W such that there is a path with label U in 4t from A to a
concept C which lies on an €-cycle. As in (4.1) this implies dg ¢ Al, which is a
contradiction.

This completes the proof of the theorem. U

In Example 5.2, B does not subsumes A w.r.t. Ifp-semantics since U(B) contains
the infinite word SRRR... which is not in U(A).

If we want to decide subsumption with the help of this theorem, we have to show
how the inclusion “Ug(B) € Ug(A)” can be decided. This problem can be split into
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two subproblems. Let F. contain all finite words of U, and let I3 contain all infinite
words of U'Br' Obviously, UBT(B) & U@r(A) iff FgT(B) s Fq_;l.(A) and qur(B) &
I3(A).

Lemma 5.11. Let B be an arbitrary generalized automaton. Then Fg(B) < F3(A) can
be decided by a PSPACE-algorithm.

Proof. The generalized automaton B = (Z,Q,E) is modified to a generalized automaton
C=(Z,QuU { Fin },E’) where Fin is a new state and E’ := E U { (C,€,Fin); C € Q and
C lies on an €-cycle }. Obviously, this modification can be done in polynomial time.

Claim: For all states A € Q we have Fg(A) = L (A Fin).

Proof of the Claim. (1) Assume that W € Fg(A). Then there exists an infinite path
A, Wi, C1, W3, C2, W3, C3, ... in B which has W as label. Since W is a finite word
almost all labels Wj have to be empty. Let k 2 1 be such that W;j = € for alli > k. Then W
= W1...Wk-1 and there exist i, j such that k <i < j and Cj = C;. That means that C; lies on
an €-cycle and W is the label of path from A to C;. But then W € L (A,Fin).

(2) Assume that W € L (A JFin). That means that there exists a path in B with label W
from A to a state C which lies on an €-cycle. Now W € Fg(A), since there is an infinite
path A, W, C,€,C, €, ... with label W. O

The problem L(B,Fin) < L(A,Fin) is an inclusion problem for regular languages,
which can be decided by a PSPACE-algorithm. O

Lemma 5.12. Let Bbe an arbitrary generalized automaton. Then I(B) < I3(A) can be
decided by a PSPACE-algorithm.

Proof. The proof proceeds in three steps.

(1) The generalized automaton B = (£,Q,E) can be modified in polynomial time to an
ordinary finite automaton?4 4 = (£,Q1,E;) such that the following properties hold:

(1.1) Q £ Qy; (1.2) There does not exist an infinite path in 4 using only states of Qg \
Q; (1.3) For all A, B in Q and all finite words W # €, W € Lg(A,B) iff W €

L a(A,B).25

Claim 1: For all states A € Q we have I3(A) =14(A).

Proof of the Claim. Let W be an infinite word in Ig(A), i.e., there exists an infinite
path A, Wy, C1, W1, Ca, Wp, C3, ... in B which has W as label. Since W is an infinite
word, there exist infinitely many indices 0 <ij <ip <... such that the words Wy.. .Wil-l,
Wil---wiz—l’ ... are not empty. By property (1.3), WO---Wil—l - L,q(A,Cil),
Wil---Wiz—l e L ,q(Cil,Ciz), ... . This shows that there exists an infinite path from A
with label W in 4, i.e., W € 14(A).

On the other hand, let W be an infinite word in I4(A), i.e., there exists an infinite path A,
Wo, C1, W1, C2, Wa, C3, ... in 4 which has W as label. By property (1.2), there exist
infinitely many indices 0 < i] <ip < ... such that Ci;, Ciz, ... are in Q. By property
(1.3), Wo...Wj,_1 € Lg(A,Ci), Wi,...Wj,1 € ng(Cil,Ciz), ... . This shows that
there exists an infinite path from A with label W in B,i.e., W € Ig(A). A

(2) Without loss of generality we may now assume that all states of A4 lie on some
infinite path. The other states can be easily eliminated in polynomial time. For a state A of

24Where transitions are only labeled by symbols of the alphabet.

25The additional states in Q) are intermediate states which are needed for the elimination of
transitions which are labeled by words of length greater than 1. Obviously, these intermediate states
cannot give rise to new infinite paths. For the elimination of €-transitions see Hopcroft-Ullman (1979),
p. 26, Theorem 2.2.
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A we define Eg(A) := UceQ,L a(A,C).

Claim 2: For all states A, B € Q; we have 12(B) c 14(A) iff Eq(B) cE g(A)

Proof of the Claim. Assume that W € 14(B) \14(A). Then all finite initial segments
U of W are in E 2(B). We cannot have all finite initial segments U of W in E g(A) since,
by Konig’s Lemma, this would imply that W € 14(A).

On the other hand, assume that U € E 4(B) \ Eg(A). Since all states of A lie on some
infinite path, the path with label U can be extended to an infinite path, i.e., U is the initial
segment of some infinite word W € 14(B). Now W ¢ 17(A) since otherwise we would
have U € Eg(A). U

(3) Obviously, the languages E 4(A) are regular languages defined by 4. Hence there is
a PSPACE-algorithm which decides E4(B) c Ea(A). Q

The two lemmata together with the theorem show that subsumption w.r.t. 1fp-
semantics can be decided by a PSPACE-algorithm.

Corollary 5.13. The problem of determining subsumption w.r.t. lfp-semantics is
PSPACE-complete.

Proof. It remains to be shown that this problem is PSPACE-hard. This will be shown
by reducing the inclusion problem for regular languages to the subsumption problem.
Assume that 4; = (£,Q1,E1) and 4 = (£,Q2,E3) are two nondeterministic automata26
defining the regular languages L1 =Lg,(p1.q1) and Ly =L 2,(p2.q2). Without loss of
generality we may assume that Q1 and Q are disjoint and that 41 and A, are trim ( see
proof of Corollary 5.5 ). We consider the automaton 4 = (£,Q1u QU {t, f },E),
where t and f are a new states not occurring in Q; U Q2, and E=E; UE3 U { (q1.€,1),
(q2.€,0) } U { (p1.E.D), (p2.£) } U ( (f0.,f); 6 € £ }. Obviously, Lg,(p1.q1) =
La(p1.t) and L g,(p2.92) = La(p2.v). In addition, U 2(p1) = 9 = U a(p2).

It is easy to see that 4 = 4t = Br for a terminology T which has the states in Q1 u Qu
{ f} as its defined concepts and the state t as the only primitive concept.

But then L ¢ L if and only if p2 Eifp T p1. O

5.3 Characterization of the Descriptive Semantics

Firstly, we shall prove a proposition for A-gfp-models ( see Corollary 2.4 ) which is
similar to Proposition 5.3 for gfp-models.

Proposition 5.14. Let T be a terminology and let At be the corresponding automa-
ton. Let J be a primitive interpretation and let A be a tuple such that Tj(A) € A. Let I be
the model of T defined by J and the tuple A-gfp(Ty) ( see Corollary 2.4 ).

For any concept A and any individual d € dom(I) we have: d € Aliff the following two
properties hold:

(1) For all primitive concepts P, all words W € L(A,P), and all individuals e € dom(I),
(d,e) € Wlimplies e € PL

(2) For all defined concepts B, all words W € L(A,B), and all individuals e € dom(I),
(de) € Wlimplies e € (A); ( where j = index(B)).

Proof. The case where A is a primitive concept is trivial ( see the proof of Proposition
5.3). Let A be a defined concept and let i = index(A), i.e., Al = (A-gfp(Ty))i. We know

that A-gfp(Ty) = N0 TIK(A).
(1) Assume thatd ¢ AL Then there exists k > 0 such that d ¢ (TJ%(A));. We proceed by

26without loss of generality the transitions are only labeled by symbols of the alphabet.
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induction on k.

For k =0 we have d ¢ (A);, d€ld and € € L(A,A).

For k > 0 we have d ¢ (Tj(Tyk-1(A)));. Let the defining axiom for A be of the form A =
...MVYW: Cn ..., and assume that YW: C is responsible for d ¢ (Tj(Tjk-1(A)))i. That
means that there exists e € dom(I) such that dWle and e ¢ C? = C! (if C is a primitive
concept ) or e € (TjK-1(A))y (if C is a defined concept and index(C) = m ). In the first
case, C is a primitive concept, and obviously W € L(A,C). In the second case, we can
apply the induction hypothesis to €  (Tj%X-1(A))m. Thus there exist a primitive concept P
( resp. a defined concept B with index j ), a word V € L(C,P) (resp. V € L(C,B) ) and
an individual f € dom(I) such that eVIf and f ¢ PI(resp. f ¢ (A)j). But then WV €
L(A,P) ( resp. WV € L(A,B) ) and d(WV)!f. This completes the proof of the “if”
direction.

(2) Assume that (1) or (2) does not hold. Then d ¢ Al follows as in the proof of
Proposition 5.3. O

We can now characterize subsumption w.r.t. descriptive semantics. Infinite paths
are still important but it is not enough to consider just their labels. The states which are
reached thfinitely often by this path are also significant. An infinite path which has initial
state A and reaches the state C infinitely often will be represented in the form A, Uy, C,
Ui, C, Uy, C, ... where the Uj are labels of non-empty paths from A to C for i = 0 and
from C to C fori> 0.

Theorem 5.15. Let T be a terminology and let At be the corresponding automaton.
Let A, B be concepts in T. Then we have A ET B iff the following two properties hold:
(P1) For all primitive concepts P, L(B,P) < L(A,P) holds.

(P2) For all defined concepts C and all infinite paths of the form B, U, C, U, C, Uy,
C, ..., there exists k 2 0 such that Uy...Ux € L(A,C).

Proof. (1) Assume that (P1) and (P2) hold. Let I be a model of T defined by the
primitive interpretation J and a fixed-point A of Tj. Obviously, Tj(A) A and A =
A-gfp(Ty). Let d be an individual such that d ¢ Bl. We have to show that d ¢ Al By
Proposition 5.14, d ¢ BI means that (1) or (2) of the proposition does not hold.

(1.1) Let P be a primitive concept, W € L(B,P) be a word and let e € dom(I) be a
individual such that (d,e) € Wland e ¢ PL. By (P1), W € L(A,P) and thus Proposition
5.14 yieldsd ¢ AL

(1.2) Let C; be a defined concept, W1 € L(B,C;) be a word and let €] € dom(I) be a
individual such that (d,e;) € Wiland e; ¢ (_)1 ( where 11 = index(Cy) ). Since I is the
model defined by J and A , (A, = =Cl and we can proceed with Cj in place of A.

Assume that we have already obtamcd a sequence €; W1,¢€1, ..., Ck, Wk, €k such that
ei ¢ Cil, ei.1Wilej and W;j € L(C;.1,C;j) for 1 <i < n ( where eg :=d and Cg := B ). By
Proposition 5.14, ex ¢ Ci! means that (1) or (2) of the proposition does not hold.

If (1) does not hold we get a primitive concept, a word W € L(Cx,P) and an individual e
€ dom(I) such that (ex,e) € Wland e ¢ PL. But then W1...WxW € L(B,P) c L(A,P), e
¢ Pland d(Wj... W W)le imply d ¢ AL

If (2) does not hold we get ex+1, Ck+1 such that ex41 € Cks1l, ekWis1lek+1 and Wiy €
L(Cx,Ck+1).

If this second case holds for all k we get an infinite path B, W1, C1, W3, Cp, W3, C3, ...
and corresponding individuals ey, €2, 3, ... with the above described properties. But
then there is a concept C such that C = C; for infinitely many indices i. That means that
the above path is of the form B, Uy, C, Uy, C, Uy, C, ... . By property (P2), there
exists k 2 0 such that Up...Ug € L(A,C). In addition, we know that there is an individual
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em such that d(Up...Up)lem and ey ¢ C! = (A); ( where j = index(C) ). Thus Proposition

5.14 yieldsd ¢ Al

(2) Assume that A £ B. This implies A Egfp T B and thus, by Theorem 5.4, property

(P1) holds. Now assume that (P2) does not hold, i.e., there exists an infinite path of the

form B, Uy, C, Uy, C, Uy, C, ... such that Ug...Ux ¢ L(A,C) forall k > 0.

The primitive interpretation J is defined as follows: If U := UgU;U>... is an infinite word

R1R2R3..., then dom(J) := { dg, dy, d2, ... }; PY := dom(J) for all primitive concepts P;

RJ := { (di-1,dj); i =1 and R = R; } for all roles R. If U := UgUUy... is a finite word

RiRy. Rgthen dom(J) := { dg, dy, ..., ds }; PY := dom(J) for all primitive concepts P; RJ

= { (dj-1,dj); 1 £i<sand R =R; } for all roles R.

Let j1 <jp < ... be the indices such that doUo-'dlel-‘dszzJ o &

The tuple A is defined as follows: Let D be a defined concept in T and m = index(D).

Then (A)m :=dom(J)\ { e; There exist finite words W, V and an index k = O such that
WYV =Up...Ug, W € L(B,D), V € L(D,C), dgWJe and
eVidj, ).

Claim: Tj(A) C A.

Proof of the claim. Let D be a defined concept in T and m = index(D). Assume that e

¢ (A)m. We have to show thate ¢ (Tj(A))m.

By the definition of A, e ¢ (A)m means that there exist finite words W, V and an index k

> 0 such that WV = Up...Ux, W € L(B,)D), V € L(D,C), dgW’e and eV’d;, . Without

loss of generality we may assume that the path from D to C is not empty.2’ Thus V =

V1V2, there exists an individual e’ with eV{Je’ and e’szdij, and the defining axiom

forDisofthe formD =...MVV: D’ M ... . Let m’ be the index of D’. The definition of

Avyieldse’ € (A)m’ and thuse ¢ (T3(A))m. I

Let I be the model of T defined by J and A-gfp(Ty). Let j be the index of B, i.e., Bl =
(A-gfp(Ty));. We have do€ldo, d()U]de1 and € € L(B,B), U; € L(B,C). This shows that
do € (A)jand thus dg ¢ (A-gfp(Ty)); = BL

Assume that dg ¢ Al Because all primitive concepts have dom(I) as extension,
Proposition 5.14 implies that there exist a defined concepts D, a word U € L(A,D) and
an individual e € dom(I) such that dyUle and e ¢ (A),, ( where m = index(C) ). Thus,
by definition of A, there are finite words W, V and an index k = 0 such that WV =
Up...Ux, W € L(B,D), V € L(D,C), dgW’e and cVdek+1. But dgU’e and dgW’e imply
U = W ( by the definition of the role extensions in J ). This shows that UV = WV =
Up...Uk is an element of L(A,C). This contradicts our assumption that (P2) does not
hold. O

If we want to decide subsumption using this theorem, it remains to be shown how
(P2) can be decided for given states A, B, C of a generalized automaton.28 For this
problem we can’t get an ad hoc reduction to an inclusion problem for regular languages.
But the problem can be reduced to an inclusion problem for certain languages of infinite
words which have already been considered in the context of monadic second-order logic
( see Biichi (1960) and Eilenberg (1974), Chapter XIV ).

270therwise we could take Up...Uk+1 instead of Uy...Uy.

28However, it may not be the best way to decide (P2) for each state C separately. For a fixed state
C, it is easy to show that deciding (P2) is PSPACE-hard. It is not yet clear whether deciding the
conjunction for all C is also PSPACE-hard.
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6. Biichi Automata and Subsumption w.r.t. Descriptive
Semantics

Let 4 = (£,Q,E) be a ( nondeterministic ) finite automaton2® and let I, T be subsets of Q.
We call 4 together with I, T a Biichi automaton. The language B 4(1,T) < Z® accepted
by this automaton is defined as B g(I,T) := { W € Z®; W is the label of an infinite path
starting from some state in I and reaching some state of T infinitely often }.

Let L ¢ X* be an arbitrary language of finite words. Then L® is the set of all
infinite words W which can be obtained as W = W{WoW3... where W1, Wp, W3, ... are
non-empty words in L. The languages L® for regular L can be used for an alternative
characterization of the languages accepted by Biichi automata.

Theorem 6.1. ( Biichi-McNaughton )
(1) For any language L < Z® the following two conditions are equivalent:
(1.1) L = B4(1,T) for a Biichi automaton 4.
(1.2) L is the finite union of languages H(K®) where H and K are regular
languages in £*.30
(2) The class of all languages accepted by Biichi automata is closed under the boolean
operations union, intersection and complement.
Proof. See Eilenberg (1974), p.382, Theorem 1.4. The proof is constructive but it
takes eight pages which shows that we are dealing with a hard problem. O

As an easy consequence of this theorem we get

Corollary 6.2. The inclusion problem is decidable for the class of all languages
accepted by Biichi automata.

Proof. Obviously, L; < Ly iff L; N (Z®\Lp) # @. Thus the inclusion problem can be
reduced to the emptiness problem since the proof of Theorem 1.4 in Eilenberg (1974) is
effective, i.e., from given Biichi automata for L; and L, one can effectively construct a
Biichi automaton for L N (Z®\ Ljp).31

Let L = B g(I,T) for a Biichi automaton 4. It is easy to see that L # @ iff there exists i €
I, t € T such that there is a path from i to t and a path from t to t. This is an easy search
problem in a graph which can be done in time polynomial in the size of 4. O

The argument used in the proof of Corollary 6.2 does not yield the complexity of
the inclusion problem. However, Sistla-Vardi-Wolper (1987) have shown that equality of
languages accepted by Biichi automata can be decided with a PSPACE-algorithm. Since
L1 ¢ Ly iff L1 N Lp =L, and since the automaton for the intersection can be constructed
in polynomial time ( see Thomas (1989), proof of Lemma 1.2 ), we obtain a PSACE-
algorithm for the inclusion problem. On the other hand, inclusion of regular languages
can be reduced to inclusion of languages accepted by Biichi automata as follows. Let Lj,
L be regular languages over Z, and let # be a symbol not contained in . Then L1 c Ly
iff Li({#}9) < La({#}®). By Theorem 6.1, L1({#}®) and La({#)}®) are languages
accepted by Biichi automata. Thus we have

297 is not generalized,ie. EC Qx Zx Q.

30The language H(K®) consists of the infinite words WoW1W2W3... where Wo € H and Wy,
W2, W3, ... are non-empty words in K.

31However, this automaton may have a size which is exponential in the size of the initial
automata ( see Pécuchet (1986) and Sistla-Vardi-Wolper (1987) for size bounds for the complememt
automaton ).
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Proposition 6.3. The inclusion problem for the class of all languages accepted by
Biichi automata is PSPACE-complete. 1

It remains to be shown that our problem (P2) from Section 5.3 can be reduced to an
inclusion problem for languages accepted by Biichi automata. Let B = (£,Q,E) be a
generalized automaton and let A, B, C be states in Q. We want to decide whether the
following property holds:

(P2) For all infinite paths of the form B, Uy, C, Ui, C, Ua, C, ..., there exists k 2 0
such that Up...Ux € L(A,C).

Let # be a new symbol not contained in  and let p, q be states in 4. We define the
language Ly g over the alphabet Z as

Lpq:={W;We X* is the label of a non-empty path fromptoq }.
For a language L over Z, the language L# over Xy :=X U { # } is defined as
L#:={W#WelL)}.

Obviously, the languages Lp g and Lp o# are regular. Let y: 4" — Z* be the
homomorphism defined by y(c) = ¢ for 6 € X and y(#) = €. Then \u'l(Lp,q) ={We
T y(W) e Lpq ) and \|I-1(Lp,q)# are regular ( see Hopcroft-Ullman (1979), Theorem
3.5 )

Lemma 6.4. (P2) holds for A, B, Ciff (L c#)(Lc,c#)® < (y-1(La,0)#)(Lc,c#)®.
Proof. (1) Assume that (P2) holds. Let W be an element of (L c#)(Lc,c#)?, i.e., W
= Up#U 1#Us#. .., where Uy is the label of a non-empty path from B to C and the U;j for i
2 1 are labels of non-empty paths from C to C. By (P2) there exists k =2 0 such that
Up...Uk € L(A,C). Hence Uyp... Uk is an element of L c. But then Ug#...#Uy is an
element of y-1(LA ¢) and thus W = Up#U #.. . Ux#Ug41#... € (Y 1(La O#H(Le,cih.
(2) Assume that (L c#)(Lc,c#)®? < (y1(La,c)#)(Lc,c#)®. Let B, Uy, C, Uy, C, Uy,
C, ... be an infinite paths starting with B and reaching C infinitely often. Then
Uo#U1#U2#... is an element of (L c#)(Lc,c#)® < (y1(La,0)#)(Le,c#)?. Since the
last symbol of any word in in y-1(La c)# is #, there exists k > 0 such that Ug#.. Ui# is
an element of y-1(La c)#. But then Ugp#...Uy.1#Ux € y-1(La ), and Up...Ug € La c.
Q

We know by Theorem 6.1 that (Lg c#)(Lc,c#)® and (y-1(La c)#)(Lc,c#)® are
languages accepted by Biichi automata. Thus, by Proposition 6.3, the inclusion problem
(Le,c#)(Lc,cH)® < (y1(La,0)#)(Le,c#)® can be decided by a PSPACE-algorithm.
This yields

Corollary 6.5. Subsumption w.r.t. descriptive semantics can be decided with
polynomial space using Biichi automata.32 Q

7. Extensions of the Results for the gfp-Semantics

We shall now consider two extensions of the results for the gfp-semantics. In the first
subsection, we shall allow an additional concept forming construct, namely exists-

32Using Theorem 5.15 above, Nebel recently was able to characterize equivalence of concepts
w.r.t. descriptive semantics with the help of deterministic automata. This characterization also yields
PSPACE-algorithms for equivalence and for subsumption w.r.t. descriptive semantics ( see Nebel
(1990) ). However, it is still open whether these problems are PSPACE-hard.
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restriction. In the second subsection, we shall introduce an assertional component into
our KR-system, and consider hybrid inferences.

7.1 The Language 7L  and gfp-Semantics

In order to extend our language FLy to the language FL of Levesque-Brachman (1987),
we have to add a fourth rule to the definition of concept terms ( Definition 3.1 ):
Let R be a role name.

(4) Then 3R is a concept term. ( exists-restriction )

For example, the concept Father can be defined as
Father = Mann 3child

That means that a father is a man who has a child. The semantics of the exists-
restriction is defined in the obvious way, namely

@R)L:= { d € dom(]); there exists e € dom(I) such that (d,e) € RI }.

Let T be a terminology of the language #L" and let J be a primitive interpretation.
The mapping Tj is defined as in Definition 4.2. It is easy to see that these mappings are
still downward w-continuous. Hence Tj has a greatest fixed-point which can be obtained

as gfp(Ty) = NixoTyi(top).

Any concept term of FL can be transformed into a finite conjunction of terms of
the form VR 1:VR»:...VRy:D, where D is a concept name or a term of the form 3R. As in
Section 5, the prefix “VR1:VR2:...VRy” will be abbreviated by “VW” where W = RjR»
...Rp. Let T be a terminology of FL". The corresponding generalized ( nondeterministic )
automaton A is defined as in Definition 5.1. The only difference is that we also have the
terms 3R occurring in T as states of At1. These states are similar to the states P for
primitive P in that they don’t have successor states. We shall see that this similarity also
extends to the characterization of gfp-semantics and of subsumption w.r.t. gfp-
semantics.

Proposition 7.1. Let T be a terminology of FL", and let AT be the corresponding
automaton. Let I be a gfp-model of T, and let A be a concept name occurring in T. For
any d € dom(I) we have d € Al iff the following two properties hold:

(1) For all primitive concepts P, all words W € L(A,P), and all individuals e € dom(I),
(d,e) € W!limplies e € PL

(2) For all terms 3R in T, all words W € L(A,JR), and all individuals € € dom(]), (d,e)
e Wlimplies e € (AR)], i.e., there is f € dom(I) such that (e,f) € RL

Proof. The proof is very similar to the proof of Proposition 5.3. O

Theorem 7.2. Let T be a terminology of FL, and let AT be the corresponding
automaton. Let I be a gfp-model of T and let A, B be concept names occurring in T. Then
we have: A EgfpT B iff L(B,P) € L(A,P) for all primitive concepts P in T, and
L(B,3R) ¢ L(A,3R) for all terms 3R occurring in T.

Proof. (1) Assume that L(B,P) ¢ L(A,P) for some primitive concept P, i.e., there is a
word W such that W € L(B,P) \ L(A,P). Let W = R1R»...R; for n ( not necessarily
different ) role names Ry, Ry, ..., Ry. We define the primitive interpretation J as follows:
dom(J) := { do, ..., dp, € }; @ := dom(J) for all primitive concepts Q # P; P! := dom(J) \
{dn ;R :={ (di,dj+1); 0<i<n-land R=Rj41 JU { (dje); 0<i<n } U { (e.e) }
for all roles R. The definition of the role extensions implies that dgV’dy, iff V = W, and
that (3RY = dom(J) for all roles R.
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Let I be the gfp-model defined by J. As in part (1) of the proof of Theorem 5.4 one can
show that dg € AI\BL This implies that A §gfp 1 B.

(2) Assume that L(B,3R) ¢ L(A,3R) for some term JR in T, i.e., there is a word W
such that W € L(B,3R)\L(A,3R). Let W = R1R3...R, for n ( not necessarily different )
role names Ry, R, ..., Rp. We define the primitive interpretation J as follows: dom(J) :=
{ do, ..., dn, e }; P := dom(J) for all primitive concepts P; $J := { (dj,di+1); 0 <i<n-1
and S=Rj41 J U { dje);0<i<n} U { (ee) ) forall roles S # R; RJ := { (dj,di+1); 0
<i<n-land S=Rjs1 J U { (dje); 0<i<n-1} U { (e,e) }. The definition of the role
extensions implies that doVId, iff V = W, that (3S) = dom(J) for all roles S # R, and
that GR)! =dom(d)\ { d, }.

Let I be the gfp-model defined by J. Since W € L(B,3R), dyW!d, and dy ¢ (AR)I, we
know by Proposition 7.1 that dy ¢ Bl On the other hand, assume that dy ¢ Al Since P!
= dom(]) for all primitive concepts P, and (3S) = dom(J) for all roles S # R, Proposition
7.1 implies that there exists a word V € L(A,dR), and an individual f € dom(I) such that
doVIf and f ¢ (3R)L. By definition of J, we get f = dp, and thus V = W. This contradicts
our assumption that W ¢ L(A,3R). Hence we have shown that dy € AI\BI, which
implies that A §gfp T B.

(3) The proof of the “if” direction is similar to part (2) of the proof of Theorem 5.4.

The theorem shows that, with respect to subsumption, terms of the form 3R
behave just like primitive concepts. As a consequence, we obtain

Corollary 7.3. Subsumption determination in FL™ can be reduced in linear time to
subsumption determination in FLy.

Proof. Assume that T is a T-box of FL". For any role R in T let PR be a new primitive
concept. Now substitute any 3R term in T by Pr. This yields a T-box T of FLg which
has the same size as T. In addition, Theorem 7.2 implies that A &1 B iff A &7, B. a

Subsumption relations w.r.t. gfp-semantics in L™ can thus be computed by a
PSPACE-algorithm. Since Ly is a sublanguage of FL~, subsumption determination
w.r.t. gfp-semantics in L  is also PSPACE-hard.

Corollary 7.4. The problem of determining subsumption w.r.t. gfp-semantics in FL~
is PSPACE-complete.

The characterization of descriptive semantics for FLg ( Proposition 5.14 and
Theorem 5.15 ) can be generalized to L in an analogous way.33 For the Ifp-semantics,
one can also prove an analogous generalization of Proposition 5.8. But for subsumption
one runs into new problems. The reason is that there is an additional source of
inconsistency.

Example 7.5. Consider the terminology T: A =VS:A, B = VR:B n 3R. The concept
B has the empty extension in all Ifp-models of T. In fact, assume that J is a primitive
interpretation, and let A be the least ordinal such that (T;T*), # @ ( where index(B) = 2).
Evidently, A is a successor ordinal, i.e., A = & + 1 for some ordinal o. Let I be the
interpretation of T defined by J and TjT® Now d € (TjT*), means thatd € (VR:B)I N
(3R)L. From d e (3R)! we get some individual e such that dRle, and d € (VR:B)! yields
e € Bl This contradicts the fact that Bl = (TjTa), = @.

Since B is inconsistent w.r.t. Ifp-semantics, we know that B Sifp, T A. But Ug;r(A) =
(SSS... ) 2 Ug.(B) = { RRR... .

33ie., the terms 3R are treated like primitive concepts as in condition (2) of Proposition 7.1.
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7.2 Extending FLg by an Assertional Formalism

A terminology ( T-box ) T restricts the number of possible worlds ( from all
interpretations to the models of T ); a world description ( A-box ) A describes a part of
some world. KR-systems which allow both T-boxes and A-boxes are sometimes called
hybrid systems.

Definition 7.6. ( world descriptions )

Let C be a set of concept names, R be a set of role names, and I be a set of individual
names. A world description ( A-box ) is a finite set of axioms of the form C(a) or R(a,b)
where a, b are constants in I, C is a concept name, and R is a role name.

For example, let Man be a concept name, child be a role name, and WILLY and
BRIAN be individual names. Then Man(WILLY) and child(WILLY,BRIAN) can be part of a
world description. That means that Willy is a man who has the child Brian.

Definition 7.7. ( interpretations and models )

Let T be a T-box of FLg and A be an A-box defined over the same sets of concept and
role names. An interpretation of T ( see Definition 3.3 ) can be extended to an
interpretation of T U A as follows: the interpretation function does not only assign
subsets of dom(I) to concept names, and binary relations on dom(I) to role names, but
also individuals of dom(I) to individual names, i.e., for any individual name a, al is an
element of dom(I).

An interpretation I of T U A is amodel of T U A iff Iisa model of T and satisfies

al e CI for all axioms C(a) in A, (al,b!) € RI for all axioms R(a,b) in A, and
al # bl for all individual names a # b in I (unique name assumption ).34

A model I of T U A is a gfp-model ( lfp-model ) of T U A iff 1is a gfp-model ( lfp-
model ) of T.

Let T be a T-box of FLy. If we take a primitive interpretation J with P! = dom(J)
for all primitive concepts P, and RJ = dom(J) x dom(J), then gfp(Ty) = top by
Proposition 5.3. This shows that the gfp-model of T defined by J is a model of T U A for
any A-box A. Thus any combination T U A of a T-box of FLp with an A-box is
consistent w.r.t. gfp-semantics, and w.r.t. descriptive semantics. But such a combination
need not have an Ifp-model. In fact, if C is a concept in T which is inconsistent w.r.t Ifp-
semantics ( see Corollary 5.9 ), and A contains an axiom C(a), then T U A does not have
an Ifp-model.

An important service hybrid representation systems provide is computing instance
relationships.

Definition 7.8. ( instance relationship )
Let T be a T-box of FLy and A be an A-box defined over the same sets of concept and
role names. Let a be an individual name in A, and C be a concept name in T.

aeTuA C iff ale Clorall models I of Tu A,
a €1fp,TuA C iff al € Clorall Ifp-models Tof TU A,
a € gfp TUA C iff al e Clor all gfp-models Iof T U A.

34Note that we do not impose a closed world assumption; e.g., if D(b) is not in A, we may
nevertheless have b € D! in a model 1 of T U A.
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In this case we say that a is an instance of C in T U A w.r.t. descriptive semantics ( resp.
Ifp-semantics, gfp-semantics ).

In the following we shall only consider instance relationships with respect to gfp-
semantics. We have seen that a T-box T of FL gives rise to a generalized automaton At
which has the concept names of T as states and the set of role names in T as alphabet.
Without loss of generality we may assume that the transitions of At are labeled by
symbols of the alphabet.35 An A-box A defines an automaton A4 as follows: the states
of A are the individual names of A; the alphabet of A are the role names occurring in
A; an axiom of the form R(a,b) gives rise to a transition from a to b with label R.

We can now build the product automaton Brya = At x AA of At and A, ( see
e.g., Eilenberg (1974), p. 17 ). The states of Bt are pairs (C,a) where C is a state of
At and a is a state of 4a; Brua has a transition with label R from (C,a) to (D,b) iff At
has a transition from C to D with label R, and A has a transition from a to b with label
R. Obviously, W € L'Bru A((C,a),(D,b)) iff We L ;;T(C,D) andWe Lg A(a,b).

Theorem 7.9. Let T be a T-box of FLp and A be an A-box defined over the same sets
of concept an role names. Let b be an individual name in A and C be a concept name in T.
Then b € gfp TUA B iff for all primitive concepts P, and all words W € L ,q,r(B,P) there
exist concepts E, F, a word U, and an individual name f such that

(1) W e La(EP),

2)Ue LgruA((F,f),(E,b)) and F(f) is an axiom in A.
Proof. (1) Assume that there is a primitive concept P and a word W = R;...Rg €
L gr(B,P) such that there do not exist E, F, U, f satisfying (1) and (2) of the theorem. Let
M be a gfp-model of T U A, and bM =: eg € dom(M). We want to construct a gfp-model
Iof TU A such that bl ¢ BL
(1.1) Without loss of generality we may assume that RM = { (cM,dM); R(c,d) € A } for
all roles R. This is true because making role extensions smaller only makes concept
extensions larger w.r.t. gfp-semantics. Hence all axioms of the form C(e) remain
satisfied if we restrict the role extensions to { (cM,dM); R(c,d) € A }.
(1.2) The primitive interpretation J is defined as follows: dom(J) := dom(M) U { ey,
..., ek } where eq, ..., ek are new individuals; RY :=RM U { (ej.1,€i); 1 <i<kandR =
R; } for all roles R; QY :=QM U { ey, ..., ek } for all primitive concepts Q # P; PY := PM
U {ey,...,ek1 }. Let I be the gfp-model of T defined by J. The interpretation I of T is
extended to an interpretation I of T U A by defining c! := cM for all individual names c.
Obviously, b!Wlex, W € L3,(B,P), and ex ¢ Plimply eg = bl ¢ BL
(1.3) It remains to be shown that I is in fact a gfp-model of T U A. Obviously, (cLdl) e
R! for all axioms R(c,d) in A. Assume that F(f) is an axiom of A, but fl ¢ FL. By
Proposition 5.3, there exist a primitive concept Q, a word U € LgT(F,Q), and an
individual e such that flUle and e ¢ QL
If flUle does not use some ej (i > 1) as intermediate individual, then we also have
fMUMe and e ¢ QM. Hence fM ¢ FM which contradicts our assumption that M is a
model of T U A.
Otherwise, the definition of the role extensions implies that U = U Us, flUlegUsle and e
= e; for some i > 1. But now e ¢ Ql yields Q = P, e = ek, and Uz = W. Because U =

35Proposilion 5.3 and Theorem 5.4 show that, for gfp-semantics, we are only interested in regular
languages of the form L gT(A,P). These languages do not change if we transform the generalized
automaton into an ordinary automaton.
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U1W e Lg,(F,P), there exists a state E of At such that Uj e L gT(F,E) and W €
L 2,(E,P). In addition, flU;eq implies fMU;Meg = b, and thus, by (1.1), we have Uj €
L a,(f,b). This shows that U € Lg, , ((F.9),(E,b)). But then E, F, Uy, f satisfy (1) and
(2) of the theorem. This contradicts our assumption.

(2) Assume that b € gfp TUA B, but the right hand side of the theorem holds. Let I be a
gfp-model of T U A such that bl ¢ BL. By Proposition 5.3, there exist a primitive concept
P, a word W € Lg.(B,P), and an individual e such that b!Wle and e ¢ PL. For W e
L ;z[T(B,P) there exist concepts E, F, a word U, and an individual name f satisfying (1)
and (2) of the theorem. But then U € Lg, A((F.0),(E,b)) and W € L 2.(E,P) yield UW
€ Lg.(F,P) and flUIbL.36 Thus we have UW € L a7 (F.P), fi(UW)le, and e ¢ PL This
means that fl ¢ FI, which contradicts our assumption that I was model of T U A since
F(f) is an axiom in A. O

We shall now show how the property stated on the right hand side of the theorem
can be decided for given b, B.

We define Q(b) := { E; there exists a state (F,f) in Brua and a word U such that U
€ Lg,, A((F,f),(E,b)) and F(f) is an axiom in A }. Computing Q(b) for a give individual
name b is a simple search problem in a graph; this can be done in time polynomial in the
size of BruA.

Lemma 7.10. The right hand side of the theorem holds for given b, B if and only if for
all primitive concepts P, L. (B,P) € UEe Q) ,q.r(E,P) holds.

Proof. (1) Assume that L 2r(B,P) € UEe Q)L ,qT(E,P) holds, and let W be an element
of L ,qr(B,P). Then We L 4(E,P) for some E € Q(b). The definition of Q(b) yields F, f
and a word U such that (1) and (2) of the theorem hold.

(2) Assume that the right hand side of the theorem holds, and let W be an element of
L gT(B,P) where P is primitive. Then we get E, F, U, f satisfying (1) and (2) of the
theorem. This means that W € L4(E,P) and E € Q(b). 1

The lemma together with the theorem shows that there is a PSPACE-algorithm for
instance testing since the instance problem “b € gfp,TuA B?” can be reduced to an
inclusion problem for regular languages in polynomial time. On the other hand,
subsumption determination can be reduced to instance testing in linear time.

Lemma 7.11. Let T be a T-box of FLy, and let C, D be concept names occurring in T.
Let A be the A-box containing C(c) as the only axiom. Then we have ¢ € gfp TuA D if and
only if CEgfp 1 D.

Proof. (1) The “if” direction is trivial.

(2) Assume that C ¢ gfp,T D, 1.e., there exists a gfp-model I of T such that Cl is not
contained in DL That means that there exists an individual e € dom(I) such thate € CI\
DL The interpretation I of T is extended to the interpretation I of T U A by defining cl :=
e. Obviously, I is a model of T U A, but cl ¢ DL This shows that c ¢ gfp,TuAD. O

Since subsumption determination w.r.t gfp-semantics in FLg is PSPACE-complete
we have thus proved

Corollary 7.12. Instance testing w.r.t. gfp-semantics is PSPACE-complete. O

36Since Iisamodel of TU A, U€ L 2 A(f,b) implies fulpl,
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8. Conclusion

We have considered a small terminological language because for this language the
meaning of terminological cycles with respect to different kinds of semantics, and in
particular, the important subsumption relation could be characterized with the help of
finite automata. These results may help to decide what kind of semantics is most
appropriate for cyclic definitions, not only for this small language, but also for suitably
extended languages.

As it stands, the gfp-semantics comes off best. The characterizations given in
Proposition 5.3 and Theorem 5.4 are easy, and have an obvious intuitive interpretation.
Furthermore, important constructs — such as value-restriction with respect to the
reflexive-transitive closure of a role — can easily be expressed. The Ifp-semantics is less
constructive, and the modifications of the automaton which are necessary to characterize
subsumption are not obvious. For the descriptive semantics one has to consider certain
languages of infinite words which are more difficult and less intuitive than the regular
languages which occur in the context of gfp-semantics.

This research can be continued in two directions. First, one may try to extend the
results to cyclic definitions in larger languages. As a first step in this direction, the results
for gfp-semantics were extended in Section 7.1 to cycles in the language FL~ of
Levesque-Brachman (1987). Hybrid inferences such as “instance testing” can also be
handled for gfp-semantics, as shown in Section 7.2.

Secondly, one can use a larger language, but restrict cycles to the small language.
One idea in this direction is to extend a given language by value-restrictions of the form
VL:P where L is a regular language over the alphabet of role names. In accordance with
part (1) of Proposition 5.3, the semantics of this construct should be defined as (VL:P)!
:= { d € dom(I); for all words W € L and all individuals e € dom(I), (d,¢) € W implies
e € Pl }. For example, VRR*:P would express value-restriction with respect to the
transitive closure of the role R (RR* is the regular language { R n>1}).
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RR-90-01

Franz Baader

Terminological Cycles in KL-ONE-based Knowledge Representation Languages
33 pp.

Abstract: Cyclic definitions are often prohibited in terminological knowledge representation languages,
because, from a theoretical point of view, their semantics is not clear and, from a practical point of view,
existing inference algorithms may go astray in the presence of cycles. In this paper we consider terminological
cycles in a very small KL-ONE-based language. For this language, the effect of the three types of semantics
introduced by Nebel (1987, 1989, 1989a) can be completely described with the help of finite automata. These
descriptions provide a rather intuitive understanding of terminologies with cyclic definitions and give insight into
the essential features of the respective semantics. In addition, one obtains algorithms and complexity results for
subsumption determination. The results of this paper may help to decide what kind of semantics is most
appropriate for cyclic definitions, not only for this small language, but also for extended languages. As it stands,
the greatest fixed-point semantics comes off best. The characterization of this semantics is easy and has an
obvious intuitive interpretation. Furthermore, important constructs — such as value-restriction with respect to the
transitive or reflexive-transitive closure of a role — can easily be expressed.

RR-90-02
Som Bandyopadhyay
Towards an Understanding of Coherence in Multimodal Discourse

18 pp.

Abstract: An understanding of coherence is attempted in a multimodal framework where the presentation of
information is composed of both text and picture segments (or, audio-visuals in general). Coherence is
characterised at three levels: coherence at the syntactic level which concerns the linking mechanism of the
adjacent discourse segments at the surface level in order to make the presentation valid; coherence at the semantic
level which concerns the linking of discourse segments through some semantic ties in order to generate a
wellformed thematic organisation; and, coherence at the pragmatic level which concerns effective presentation
through the linking of the discourse with the addressees” preexisting conceptual framework by making it
compatible with the addressees” interpretive ability, and linking the discourse with the purpose and situation by
selecting a proper discourse typology. A set of generalised coherence relations are defined and explained in the
context of picture-sequence and multimodal presentation of information.
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Hans-Jiirgen Biirckert

A Resolution Principle for Clauses with Constraints
25 pages

Abstract: We introduce a general scheme for handling clauses whose variables are constrained by an underlying
constraint theory. In general, constraints can be seen as quantifier restrictions as they filter out the values that
can be assigned to the variables of a clause (or an arbitrary formulae with restricted universal or existential
quantifier) in any of the models of the constraint theory. We present a resolution principle for clauses with
constraints, where unification is replaced by testing constraints for satisfiability over the constraint theory. We
show that this constrained resolution is sound and complete in that a set of clauses with constraints is
unsatisfiable over the constraint theory iff we can deduce a constrained empty clause for each model of the
constraint theory, such that the empty clauses constraint is satisfiable in that model. We show also that we
cannot require a better result in general, but we discuss certain tractable cases, where we need at most finitely
many such empty clauses or even better only one of them as it is known in classical resolution, sorted
resolution or resolution with theory unification.

RR-90-04

Andreas Dengel & Nelson M. Mattos

Integration of Document Representation, Processing and Management
18 pages

Abstract: We introduce a general scheme for handling clauses whose variables are constrained by an underlying
constraint theory. In general, constraints can be seen as quantifier restrictions as they filter out the values that
can be assigned to the variables of a clause (or an arbitrary formulae with restricted universal or existential
quantifier) in any of the models of the constraint theory. We present a resolution principle for clauses with
constraints, where unification is replaced by testing constraints for satisfiability over the constraint theory. We
show that this constrained resolution is sound and complete in that a set of clauses with constraints is
unsatisfiable over the constraint theory iff we can deduce a constrained empty clause for each model of the
constraint theory, such that the empty clauses constraint is satisfiable in that model. We show also that we
cannot require a better result in general, but we discuss certain tractable cases, where we need at most finitely
many such empty clauses or even better only one of them as it is known in classical resolution, sorted
resolution or resolution with theory unification.
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Connectionist Models and Figurative Speech
27 pages

Abstract: In my three month stay at DFKI as a guest researcher, from July 1989 to August 1989, I presented a
one hour seminar on my thesis research, a five hour tutorial ("Kompaktkurs") introduction to connectionist
models, and a one hour lecture at the University of Stuttgart. I also arranged for DFKI to acquire the Rochester
Connectionist Simulator, and worked on a paper describing my thesis work for publication as a chapter in a
book on connectionist approaches to metaphor. This report describes first the content of the Kompaktkurs, then
the content of the paper on my thesis work.

TM-89-02 (Reprint)

Harold Boley

Expert System Shells: Very-High-Level Languages For Artificial Intelligence
17 pages :

Abstract: Expert-system shells are discussed as very-high-level programming languages for knowledge
engineering. Based on a category/domain distinction for expert systems the concept of expert-system shells is



explained using seven classifications. A proposal for a shell-development policy is sketched. The conclusions
express concern about over-emphasis on shell surfaces.

TM-90-01 (Preprint)

Elisabeth André, Thomas Rist

Ein planbasierter Ansatz zur Synthese illustrierter Dokumente
13 Seiten

Zusammenfassung: Obwohl die Erzeugung illustrierter Dokumente in der KI-Forschung zunehmendes
Interesse findet, werden in den meisten Systemen Text und Graphik weitgehend unabhingig voneinander
aufgebaut und stehen daher beziehungslos nebeneinander. In dieser Arbeit wird von der Uberlegung ausgegangen,
daB nicht nur die Erzeugung von Texten, sondern auch die Synthese illustrierter Dokumente als kommunikative
Handlung zur Erreichung von Zielen aufgefaBt werden kann. Fiir die Realisierung eines Systems, das
selbststiindig illustrierte Dokumente erstellt, bietet sich daher ein planbasierter Ansatz an. Es wird zunichst
gezeigt, daB die in der Textlinguistik gebrauchliche Unterscheidung zwischen Haupt- und Neben-handlungen auch
fiir Text-Bild-Kombinationen geeignet ist. Von dieser Unterscheidung ausgehend werden Strategien formuliert,
die sich sowohl auf die Erzeugung von Text als auch auf den Aufbau von Bildern beziehen. Die gemeinsame
Planung von Text und Bild wird als grundlegende Voraussetzung angesehen, die beiden Modi in einem Dokument
aufeinander abzustimmen.

TM-90-02 (Preprint)

Thomas Rist, Elisabeth André

Wissensbasierte Perspektivenwahl fiir die automatische Erzeugung von 3D-
Objektdarstellungen

9 Seiten

Zusammenfassung: Aus welcher Perspektive ein Objekt gezeigt werden soll, ist eine der elementaren Fragen,
die sich bei der automatischen Erzeugung von 3D-Darstellungen stellt, die aber in den wenigen Systemen, die
graphische Objektdarstellungen selbstindig planen, bisher vernachlissigt wurde. Ziel der vorliegenden Arbeit ist
es, aufzuzeigen, wie sich Wissen iiber Objekte und Darstellungstechniken verwenden 148t, um die Menge der
moglichen Perspektiven, aus denen ein Objekt gesehen und gezeigt werden kann, sinnvoll einzuschriinken. Als
Grundlage zur Perspektivenwahl schlagen wir ein Bezugssystem vor, das eine Einteilung der Perspektiven in 26
Klassen nahelegt und das dariiberhinaus Vorteile bietet, wenn gewihlte Perspektiven natiirlichsprachlich zu
beschreiben sind. AnschlieBend fiihren wir einige fiir die Perspektivenwahl relevanten Kriterien an. Diese
Kriterien werden dann zur Formulierung von Regeln herangezogen, die wir dazu verwenden, um in einer
konkreten Prisentationssituation eine geeignete Perspektive zu bestimmen.












‘Terminological Cycles 1n KL-UNE-based Knowledge Hesearch
Representation Languages mmvo:

Franz Baader RR-90-01



