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USING A METHOD OF
DEDUCTIVE PROGRAM SYNTHESIS

Susanne Biundo
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11

ABSTRACT

In this paper we introduce a planning approach based on a method of deductive program syn-
thesis.

The program synthesis system we rely upon takes first order specifications and from these
derives recursive programs automatically. It uses a set of transformation rules whose applica-
tions are guided by an overall strategy. Additionally several heuristics are involved which con-
siderably reduce the search space.

We show by means of an example taken from the blocks world how even recursive plans can
be obtained with this method. Some modifications of the synthesis strategy and heuristics are
discussed, which are necessary to obtain a powerful and automatic planning system. Finally it
is shown how subplans can be introduced and generated separately.
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1. INTRODUCTION

In the field of deductive program synthesis several methods have been developed to derive
algorithmic definitions of functions from formal specifications (cf. e.g. [Manna/ Waldinger
80], [Bibel 80], [Goad 80], [Hsiang 83], and [Franova 88]).

Specifications are formal descriptions of functions given in a specific high level programming
or specification language. They specify the input and output variables and a relation the out-
put is intended to satisfy. Additionally an input condition expresses the class of legal inputs
to which the program is expected to apply. A specification may be completely non-construc-
tive as, for example:

input X,y
find z suchthat  R(x,y,z)
where P(x,y) .

It expresses the purpose of the desired program, without giving any hint towards an "imple-
mentation".

Transformations rules (cf. [Manna/Waldinger 79] and [Manna/Waldinger 80]) are used
to derive a program from such a specification. The program computes the specified function
and is written in a simple target programming language. The transformation rules represent
knowledge about the program's subject domain and their application is guided by several

strategies and heuristics [Manna/Waldinger 79].

A specification however, like the one given above, can be read as a formal plan specification
as well: P(x,y) and R(x,y,z) describe the initial state and goal state respectively. z is the
plan that is searched for and which transforms the initial state into the desired goal state.

A program or plan specification like the one above can be expressed in terms of a first order
formula: Vx,y [P(x,y) = 3z R(x,y,z)].

Thus the program synthesis system DEPSY (cf. [Biundo 90]) which we will introduce as
a plan generation tool in this paper uses first-order predicate logic as a specification language.
Specifications are existence formulas of the form y = Vx* Jy ¢[x* y] (where x* is a list of
variables and ¢ is a first-order formula without any quantifier). Yet not only the specification
language but the target programming language as well is first-order predicate logic: The pro-
gram (plan) which is derived from such a specification consists of a set of conditional equa-
tions, called definition formulas.

Starting from a specification formula several transformation rules are applied in turn.
These rule applications are driven by an overall strategy which has been developed in order to
keep the search space small and to obtain goal directed transformations. Additionally several
heuristics are involved selecting the appropriate rules.

The close connection between deductive program synthesis and deductive planning has



been posed by other authors as well. Wolfgang Bibel, for example, states in [Bibel 86]:

"...the plan generation problem appears to be very much of the same

nature except that the actions to be carried out by the plan (resp. pro-

gram) are actions in the environment rather than in the computer.”
He therefore proposes a deductive solution to planning which works in a way similar to de-
ductive program synthesis (cf. [Bibel 86] and [Bibel et al. 89]). States are characterized by
logical formulas. They describe the properties holding in a specific state and include a special
state literal. As in the case of program synthesis a specification theorem is proved. As soon
as the proof is complete the desired plan occurs as an argument of the state literal in the goal
state's description and can be extracted from it.

Starting from their work on deductive program synthesis, where program derivation is
regarded as a theorem proving task (cf. [Manna/Waldinger 80]), Manna and Waldinger have
adapted their approach to the solution of planning problems as well (cf. [Manna/Waldinger
86]). They introduce a new version of situational logic based on the works of McCarthy and
Green (cf. [McCarthy 68] and [Green 69]). The deductive mechanism used to generate plans
by proving specification theorems is the deductive tableau system initially being developed
to solve the program synthesis problem based on resolution. The deduction rules working on
that tableau produce both conditional and recursive plans. The latter are obtained applying
an appropriate induction rule.

The paper is organized in the following way: In Section 2 we give a short overview of the
synthesis method underlying DEPSY. Section 3 outlines the overall synthesis strategy and
some of the heuristics involved. By means of an example taken from the blocks world it is
demonstrated in Section 4 how the synthesis system can be used to generate plans and which
modifications have to be made to obtain an automatic planning system. One of these modifi-
cations refers to the introduction of subplans and is pointed out in Section 5. Finally we
conclude with some remarks in Section 6.

2. A METHOD OF DEDUCTIVE PROGRAM SYNTHESIS

The logical basis of our system is built by a many-sorted first-order language together with a
set of transformation rules. The system maintains a data base Ax consisting of first-order
axioms which describe the domain currently under consideration. Starting from a specifica-
tion formula transformation rules are applied in turn which take a formula (goal) and, using
the axioms of the data base, produce a set of formulas (subgoals). This process continues
until a definition of the specified function has been obtained.

In the case of program synthesis the data base consists of:

- Axioms characterizing the various datastructures under consideration (as far as it is pos-

sible within first-order logic), e.g. natural numbers, lists of natural numbers, trees, etc.



- Axioms representing the programs which operate on these datastructures, e.g. addition
of natural numbers, concatenation of lists, flatten of trees, etc. These axioms are condi-
tional equations, i.e. definition formulas, which satisfy certain conditions. The programs
they represent are defined by means of complete case analyses, recursion, and functional
composition.

- Axioms describing properties of these programs, e.g. commutativity, associativity,
idempotence, etc.

To generate plans with our synthesis method axioms analogously are required to describe
the planning domain. In this paper we choose the well known blocks world as our planning
domain. The first-order representation we use is similar to the one proposed by Kowalski in
[Kowalski 79].
There the two-place predicate "HOLDS" is introduced which takes a property as its first ar-
gument. The second argument denotes a state where this property is demanded to hold. In
contrast to the approach of Kowalski, where only Horn formulas are admitted, we will use
full predicate logic instead.
At first we need
- axioms to describe states.

They may look like, for example:

Vx,y:block Vs:state [H(on(xy)s)— —H(clear(y) s)]
Vx:block VSs:state [—H(on(x x) s)] .

- Axioms characterizing basic operators
describe the preconditions as well as the consequences of an operator.
One of the axioms characterizing the put-operator, for example, reads:

Vx,y:block Vs:state [H(clear(x) s) A H(clear(y) s) A —x=y — H(on(x y) s!put(x y))].

Finally

- axioms describing properties of basic operators are required.

The frame axioms play a main role in this context. Fortunately the formal framework we rely
upon provides an elegant solution to the formulation of frame axioms (cf. [Kowalski 79]):
Introducing the HOLDS-predicate entails the possibility of quantifying over "properties".
Thus for each operator only one single frame axiom is required. For the above pur-operator
we have the following frame axiom:

Vx,y:block Vs:state Vm:property [H(m s)A —m=clear(y) — H(m s!put(xy))].

Starting from a specification of the form = Vx* Jy @[x* y] various transformation rules
are applied in order to derive the set of definition formulas representing the specified program
or plan.

Applying a transformation rule R to a formula ¢ produces a set of formulas ® and is
denoted ¢ =r .



For a set of formulas ¥ we define

Yu{e}=>pgYUOD iff g =g D.

All of the transformation rules we use are sound. That means, for each ¢, @ and R we
have that: ¢ =g @ implies Ax |= N® — ¢

(where /\® denotes the conjunction /\g 40 and Ax ¢y denotes M =y for each
standard modell M of Ax).

Among others the following sound transformation rules are provided.

Evaluation Rule
(Replacement of a term by symbolic evaluation)

Let t denote a position and
D=[D'—>q=r], De Ax, oq=t and oD'c C.
[C—L[rt] =Egv,p {[C—=L[mor]]}.

Substitution Rule
(Replacement of a term at a certain position in a clause by an equal term)

[Cag=r = L[rql] =suB {[CAaq=r — L[rn,1]]}

Implication Rule

(Replacement of a literal oL by literals oK which are sufficient for L)
Let D=[K;A..AK, — L],DeAx.

[C—>ol] =mpLp {[C—>0Ky],..,[C—>0Ky]}

Extraction Rule for Equalities
(Merging two equalities)
[Cagsr — t=r] =gxE {[C — g=t]}

Function Extraction Rule

(Isolating subterms)

Let ti=qi for ie{1,...,n}\{k}.

[C — f(t1,...tn) = f(g1,....an)] =pxpF {[Co&=0qK] }.

Case Analysis Rule
(Introducing additional assumptions)

[D—>C] =ca{[DAL - C],[Da-L —»C] }.

Elimination Rule
(Eliminating a literal from a clause)

[DAL = C] =5 {[D—>C]}).



The system proceeds in the following way:

Starting from an existence formula = Vx* Jy @[x* y] first of all a skolemization step is
carried out. The existentially quantified variable y in ¢ is replaced by a term f(x*) , where
f is a "new" function symbol. The resulting formula Yo = Vx* @[x* f(x*)] is viewed as a
specification of the unknown skolem function f. Various transformation rules are applied in
turn until the process halts with a set ¥ of formulas:

{Wol =gy~ =, T

¥ = DEF; U REM; is syntactically divided into a set DEF; of definition formulas for the
skolem function f (they constitute the synthesized program resp. plan) and a set of so-called
remainder formulas REM;.

The remainder formulas can be viewed as verification conditions that, if holding, guaran-
tee that the program DEF; meets its specification . In the case of plan synthesis these for-
mulas are understood as additional assertions which have to be proved in order to assure that
the generated plan (which is represented by the definition formulas) indeed will lead to the

desired goal state.

3. STRATEGIES AND HEURISTICS

When synthesizing programs by our method the data base provides a set of axioms Ax =
Axpg Y AXProg’ characterizing datastructures as well as programs which operate on these
datastructures. If the axiom set, for example, contains formulas representing the domain of
natural numbers nat, and formulas describing a program diff computing the difference
function on natural numbers a specification (of the addition function) may be the following:
Vx,y:nat Jz:nat diff(z y)=x .

After skolemizing this specification we obtain: = Vx,y:nat diff(f(x y) y)=x .

From this formula a set of conditional equations has to be derived which constitutes a con-
structive definition of f. This new definition, like the user-defined ones already stored in the
data base, has to be formulated by means of a complete case analysis, recursion, and func-
tional composition.

Thus given the specification formula ,, the system has to search for a complete case analy-
sis as well as for an appropriate recursion scheme. Finally a set of conditional equations has
to be derived which look like C — f(x y)=t. To achieve all these goals automatically the
system makes use of a strong overall strategy which causes the transformation process to be
carried out in a goal directed way. This strategy has turned out to be very successful and has
been evaluated on a lot of examples (cf. [Biundo 90]). It is supported by several heuristics



which in addition considerably reduce the search space. The strategy consists of four distinct
phases. They read:

- Induction and Normalization

- Evaluation

- Extraction and

- Elimination.

In each of these phases a special task has to be performed and therefore only an appropriate
subset of the transformation rules has to be applied. The transformation rules actually used in
each phase are selected by heuristics corresponding to the task which has to be solved.

Since the program resp. plan to be generated has to be defined by a complete case analysis
and by recursion the first phase of the transformation process aims at finding these. The close
relation between induction and recursion (cf. [Boyer/Moore 79] and [Manna/Waldinger 80])
suggests to generate a recursion scheme using an appropriate induction argument. Conse-
quently the first step in a synthesis process is to find an induction axiom which is adequate
for the specification formula. This is done by the induction rule. Applied to the specification
formula it produces a set of induction formulas (consisting of the so-called base case as
well as the induction case formulas) and thus provides a complete case analysis for the defi-
nition to be synthesized. Simultaneously a recursion scheme is found for the skolem
function, since one of the skolem terms occurring in the induction hypothesis will be used in
the sequel as the recursive call for the new program resp. plan.

The heuristics playing a main role in this context are those concerning the selection of in-
duction variables. Like in the induction theorem proving system of Boyer and Moore (cf.
[Boyer/Moore 79]) or in the INKA system (cf. [Biundo et al. 86] and [SFB 90]) this is done
by inspecting the definitions of functions which occur in the specification formula.

The second phase is dedicated to symbolic evaluation. In each induction formula some of the
terms occurring in the induction conclusion have to be evaluated. In the case of program syn-
thesis this is done using the evaluation rule together with appropriate axioms of the data base.

The heuristics involved, for example, suggest additional case analyses to enable new pro-
mising evaluation steps. As far as base case formulas are concerned definition formulas often
are obtained as soon as the evaluation process has finished. For the induction case, symbolic
evaluation is an essential tool to achieve a match between the induction hypothesis and the
induction conclusion. Such a match has to be completed during the following extraction
phase.

The extraction process serves to produce the defining equations. Thus the goal is to reach a
situation where both the induction hypothesis and the induction conclusion differ only in po-
sitions where skolem terms occur. Applying the extraction rule then yields a defining equa-
tion where the skolem term is expressed in terms of one of the skolem terms initially contain-
ed in the induction hypothesis.

The heuristics developed for this phase drive the selection of rule applications suitable to



enable applications of the extraction rules. If an extraction rule fails a so-called conflict is ge-
nerated representing the reason of failure. Subsequently all applications of transformation
rules are computed which can solve the conflict. The transformations are ranked and the best
solution is tried first.

Based on the results of the extraction loop the elimination process finally provides a defini-
tion formula for each of the recursion cases. Special conditions which would have been in-
troduced during previous phases and the induction hypotheses are removed from the formu-
las in order to obtain a final set of definition formulas.

4. GENERATING PLANS

As has been pointed out in Section 1 there is a close connection between the deductive syn-
thesis of programs and the deductive generation of plans.

Subsequently we therefore will demonstrate by means of an example borrowed from
[Manna/Waldinger 86] that the program synthesis system DEPSY we introduced above in
principle can be used as a deductive plan formation system. It seems to be an important point
to stress that even recursive plans can be derived with it quite naturally.

Additionally it has turned out that our solution to the example problem avoids the prob-
lems occurring in the solution Manna and Waldinger give in [Manna/Waldinger 86]. It there-
fore seems to be quite promising to obtain an automatic planning system by suitably modify-
ing the DEPSY synthesis strategy. We will return to this point at the end of this section.

The example is chosen from the blocks world domain and shows the generation of a plan for
clearing a block.

The data base consists of a set of axioms Ax = Axq U AxOp U Axg which contains de-
scriptions of states together with operator and frame axioms. Among, these axioms we as-
sume having a description of the puttable-operator (it puts a block onto the table) as well as
a frame axiom characterizing the empty operation:

Ax1: Vu,v:block Vtstate [H(on(uv)t) A H(clear(u)t) — H(clear(v) t!puttable(u))]
Ax2: Vtstate Vm:property [H(mt) — H(m tlemptyop)]
Ax3: Vu,v:block Vtsstate Vm:property [H(mt) A =m=on(uv) — H(m t!puttable(u))] .

We start from the following specification of the goal state:

vy = Vx:block Vs:state Jz:plan H(clear(x) s!z)
It demands that there exists a plan z, which, when applied in state s results in a state s/z
where the block x is clear.

Skolemization of the existence formula v yields:



Yo = Vx:block Vs:state H(clear(x) s!p(x s)) .

From this modified specification formula ) a plan p has to be derived which is sound in
the sense that it meets its original specification. To achieve such a plan we will for the present
follow the DEPSY program synthesis strategy. Within the four transformation phases rules
are applied starting from the initial goal ;. The subgoals produced again are transformed
until they can be proved valid or they contribute to the definition of the specified plan in terms
of defining equations.

At first the induction rule is applied to . It provides a complete case analysis for the de-

finition of p and produces two subgoals: Y, =IND {V; .V}, where
vy, = [H(clear(x) s) — H(clear(x) s!p(x s))] and
V5 = [-H(clear(x) s) A H(clear(hat(x)) s!p(hat(x)s)) — H(clear(x) s!p(x s))] .

(Quantifiers are omitted, since all variables are assumed to be universally quantified before
the implication.)

y, represents the base case where x is already assumed to be clear in 5. , , embodying
the induction case, introduces an induction hypothesis which finally will provide a recursive
call to the plan p.

With that the first transformation phase is complete.

The evaluation process how it proceeds in the case of program synthesis serves to modify the
resulting induction formulas using appropriate operator axioms. The operator axioms
however are by no means equations. Therefore in our planning environment symbolic eval-
uation plays no role at all. Instead it is aimed at modifying the induction formulas in a way
such that they can be subsumed by suitable operator axioms. A transformation means, not
provided among the DEPSY transformation rules, but indispensable in this context, is the so-
called equality matching (EQM), applied to identify terms which cannot be matched by a
substitution.

The base case formula \; suggests to use the frame axiom of the empty operation (Ax2)
for "evaluation", because the property clear(x) holding in the initial state s should be pre-
served to hold in the goal state s/p(x s). The substitution {me¢—clear(x), t<—s} instantiates
the axiom Ax2 appropriately. Now the terms p(x s) and emptyop can be identified and
with that a solution is obtained for the base case.

V; =EQM {3}, where

y3 = [H(clear(x) s) — p(x s)=emptyop] .

3 already represents the first definition formula for the new plan.
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The induction case formula

W, = [-H(clear(x) s) A H(clear(hat(x)) s!p(hat(x)s)) — H(clear(x) s!p(x s))] will now be
transformed in a similar way. Here the system must aim at a subsumption with the operator
axiom

Ax1: Yu,v:block Vt:state [H(on(uv)t) A H(clear(u)t) — H(clear(v) t!puttable(u))].

To reach this goal employing the substitution {u«hat(x), v<—x, t«—s!p(hat(x)s)} and apply-
ing the EQM-rule appropriately ( p(x s) := p(hat(x)s)!puttable(u) ) presupposes an additional
case analysis step: a suitable instance of the subformula H(on(u v) t) of Ax1 has to be intro-

duced into \, before the subsumption of \, comes into question.

We obtain Wy, =caA {5} , where

v, = [-H(clear(x) s) A H(on(hat(x) x) s!p(hat(x)s)) A H(clear(hat(x)) s!p(hat(x)s))
— H(clear(x) s!p(x s))]
and
Vs = [—H(clear(x) s) A —H(on(hat(x) x) s!p(hat(x)s)) A H(clear(hat(x)) s!p(hat(x)s))
— H(clear(x) s!p(x s))] .

V4 =EQM,Ax1 {Wg) , where

Ve = [-H(clear(x) s) A H(on(hat(x) x) s!p(hat(x)s)) A H(clear(hat(x)) s!p(hat(x)s))
— p(x s) = p(hat(x)s)!puttable(hat(x))] .

The extraction process is omitted now because a defining equation has already been obtained.
In a last transformation phase the elimination rule has to be applied twice to eliminate
those conditions from \ ¢ which are irrelevant to the definition of p. The heuristics selecting
appropriate rule applications in the elimination process are used to eliminate those induction
hypotheses which already have contributed to the definition of the new plan. In our case this
applies to the formula H(clear(hat(x)) s!p(hat(x)s)) . These heuristics are also applied to
those formulas which have been introduced by additional case analysis steps (formula
H(on(hat(x) x) s!p(hat(x)s)) ).
Thus we obtain Wy, =gp, {y,} and y; =g {yg) , where

yg = [—H(clear(x) s) — p(x s) = p(hat(x)s)!puttable(hat(x))].
This formula represents a second (recursive) definition formula for p.

With that starting from the specification formula
Yo = Vx:block Vs:state H(clear(x) s!p(x s)) the following plan has been obtained:

11



DEF,, = { Vx:block Vs:state [H(clear(x)s) — p(x s) =emptyop]
Vx:block Vs:state [—H(clear(x)s) — p(x s) = p(hat(x)s)!puttable(hat(x))] } .

Finally the formula

Y5 = [-H(clear(x) s) A —H(on(hat(x) x) s!p(hat(x)s)) A H(clear(hat(x)) s!p(hat(x)s))

— H(clear(x) s!p(x s))]
resulting from the case analysis step above as a second one has to be considered. This for-
mula cannot be transformed into a definition formula for p and therefore has to be proved as
an assertion. Heuristics have been developed within DEPSY which simplify those assertions
by providing adequate generalizations (cf. [Biundo 88]). Applying these heuristics to y5 we
finally obtain:

[-H(clear(x) s) — H(on(hat(x) x) s!p(hat(x)s))] .
This assertion describes a property of the plan p and can be proved by induction using the
definition formulas which have been synthesized together with the frame axiom Ax3 given
for the puttable-operator. Such an induction proof can be performed by an automated
induction theorem prover like the one of Boyer and Moore (cf. [Boyer/ Moore 79]) or the
INKA-System (cf. [Biundo et al. 86]).

An automated induction proof of the above formula succeeds and thus the plan generation
process for p is completed.

A deductive solution to the example planning problem of clearing a block has also been given
in [Manna/Waldinger 86]. There, although the example seems to be quite simple, a problem
occurs. Corresponding to formula 4 above an assertion has to be proved claiming that
hat(x) rests upon x even when hat(x) has been cleared. Since an induction proof of this
formula cannot be obtained the formula has to be generalized. But "the strengthening required
seems to be beyond the capabilities of the Boyer-Moore system or other current theorem pro-
vers" (cf. [Manna/Waldinger 86]). Thus an automatic proof of this formula lies not within
reach.

In our approach the axiomatization of the planning domain is done using the HOLDS-
predicate. This axiomatization seems to be more adequate than the formulation of situational
logic choosen by Manna and Waldinger. Especially the formulation of frame axioms, which
play an important role in this context, contributes greatly to the success of the planning pro-
cess: They can be used by an automated induction theorem proving system to prove the re-
sulting assertions which have been modified by the DEPSY generalization heuristics before-
hand.

The example given above shows how a plan can be generated using the synthesis strategy
DEPSY provides. Starting from a specification y, a recursive operator p (actually: "make-

clear") has been synthesized which removes all blocks resting upon a given block x. Except
for the evaluation phase where equality matching is used instead of symbolic evaluation the

12



program synthesis strategy has been suitable for this case of plan formation.

This fact however may be accidental. As can even be seen from our example it might not
be useful to maintain a strict distinction between extraction and evaluation phase. The reason
is that in many cases the induction hypothesis should contribute to provide a match between
the goal and the selected operator axiom during the "evaluation" phase, rather than being
adapted to the induction conclusion afterwards. Thus a strategy should be developed where
heuristics and strategies from both the extraction and the evaluation phases are combined in
order to get the goal formula subsumed by an appropriate operator axiom.

Another modification of the synthesis strategy is required if subplans have to be intro-
duced.

5. INTRODUCING SUBPLANS

Plans in general are sequences of (recursive) operations. Taking this fact into consideration
sufficiently means to allow plans being divided into subplans which are generated independ-
ently. From the program synthesis point of view this compares to composing a specified
function from particular auxiliary functions synthesized separately. Although the DEPSY
strategy doesn't provide any means to introduce such functions we will demonstrate by the
following example how the synthesis of subplans can still be performed using DEPSY trans-
formation rules.

Suppose we have to deal with the following plan specification:

Y X
X : - p
S slz

The formal specification reads:
vy = Vx,)y:block Vs:state Jz:plan [H(clear(x)s) A —x=y — H(on(xy)s!z)].

After skolemization we obtain:
Vo = Vx,y:block Vs:state [H(clear(x) s) A —x=y — H(on(xy)s!lp(xys)].
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This formula could be transformed using the implication rule together with the puz-operator
axiom

Yu,v:block Vt:state [H(clear(u)t) A H(clear(v)t) A —u=v — H(on(u v) t'put(u v)]
in the following way:

The implication rule

( [C—>ol] =2mpLp {[C—>0Ky],..,[C>0Ky]} iff
D=[K;r..AK, — L] and DeAx )
allows to replace a conclusion oL in a formula by formulas oK; which are sufficient for it.
Thus using the substitution © = {u«x, v&—y} the subformula H(on(x y) s!p(x y s))
in y, might be replaced by formulas H(clear(x) ...) and H(clear(y) ...) respectively. With
that the original goal \, would have been transformed into two subgoals the solution of

which seems to be quite simple.

However, to succeed in this way presupposes to divide the plan p(xy s) into two differ-
ent subplans: p(xys):=p'(xys)put(xy).
Introducing a subplan p’ and applying the implication rule then, together with the axiom of

the put-operator (and G = {u«Xx, véy, te—s!p'(x y s)} ), yields three new formulas:
Yy = [H(clear(x) s) A —x=y — p(xys)=p'(xy s)lputx y)I,

W, = [H(clear(x) s) A —x=y — H(clear(x) s!p'(x y s))] and

y3 = [H(clear(x) s) A —x=y — H(clear(y)s!p'(x y s))] .

W, represents a definition formula for p and isn't considered any longer.

Formula W, expresses that the property clear(x) holding in state s has to be preserved
holding after the plan p” has been executed. This formula does not contain any information
about the functionality of p’. Therefore it is ignored during the subsequent part of the gene-
ration process and after that has to be proved as an assertion.

5 finally is viewed as a specification of the subplan p’. From this specification a recur-
sive plan definition will be derived for p’ in a way analogous to the one demonstrated in
Section 4.

Then even the original goal has been achieved: a plan which satisfies the specification .

14



6. CONCLUSION

By means of an example taken from the blocks world we have shown how plans can be gen-
erated using the deductive program synthesis method described in [Biundo 90].

The method in principle seems to be suitable for deductive planning (at least as far as the
blocks world is concerned): Most of the transformation rules can be adopted to plan forma-
tion where they have to perform the same tasks as in the case of program synthesis. Even the
overall synthesis strategy seems adequate to provide goal directed transformations in certain
cases.

Finally, in addition to the means DEPSY provides for the synthesis of programs resp.
plans, we have demonstrated how subplans can be introduced and generated separately.

However, to obtain a powerful and fully automatic planning system some strategic modifica-
tions have still to be made. The reason is that the deductive mechanism underlying DEPSY
relies very much upon equality reasoning whereas our axiomatization of the planning domain
requires dealing with the HOLDS predicate. Thus some of the DEPSY transformation rules
have to be modified performing equality matching instead of normal matching alone.

Another modification refers to the overall synthesis strategy. This strategy aims at the
derivation of recursive programs, whereas plans often are closely analogous to imperative
programs. Thus a flexibilization of the strategy should be performed.

Nevertheless, in contrast to the approach proposed by Manna and Waldinger in [Manna/
Waldinger 86] it seems to be very promising to obtain a fully automatic planning system
based on what we have shown in this paper. The reason for this is twofold:

Firstly with DEPSY a fully automatic synthesis system is available and most of its strate-
gies and heuristics will be extremely helpful even if plans have to be synthesized. For the
approach of Manna and Waldinger similar conditions do not hold, since an automatization of
the underlying program synthesis system has not been obtained (cf. [Traugott 86], [Manna/
Waldinger 87]).

Secondly our axiomatization of the planning domain, where even frame axioms can be
expressed conveniently, seems to be more adequate than the formulation of situational cal-
culus Manna and Waldinger present. Consequently a proof of the assertions which in most
cases has to follow the plan generation process can be performed by an automatic theorem
proving system.
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