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Unification in Monoidal Theories
1S
Solving Linear Equations over Semirings

Werner Nutt
German Research Center for Artificial Intelligence (DFKI)
Postfach 2080, D-6750 Kaiserslautern, Germany
e-mail: nutt@dfki.uni-kl.de

Abstract

Although unification algorithms have been developed for numerous equational
theories there is still a lack of general methods. In this paper we apply al-
gebraic techniques to the study of a whole class of theories, which we call
monoidal. Our approach leads to general results on the structure of unifica-
tion algorithms and the unification type of such theories.

An equational theory is monoidal if it contains a binary operation which
is associative and commutative, an identity for the binary operation, and an
arbitrary number of unary symbols which are homomorphisms for the binary
operation and the identity. Monoidal theories axiomatize varieties of abelian
monoids. Examples are the theories of abelian monoids (AC), idempotent
abelian monoids (ACI), and abelian groups.

To every monoidal theory we associate a semiring. Intuitively, semirings
are rings without subtraction. We show that every unification problem in a
monoidal theory can be translated into a system of linear equations over the
corresponding semiring. More specifically, problems without free constants
are translated into homogeneous equations. For problems with free constants
inhomogeneous equations have to be solved in addition.

Exploiting the correspondence between unification and linear algebra we
give algebraic characterizations of the unification type of a theory. In par-
ticular, we show that with respect to unification without constants monoidal
theories are either unitary or nullary. Applying Hilbert’s Basis Theorem we
prove that theories of groups with commuting homomorphisms are unitary
with respect to unification with and without constants.
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1 Introduction

Unification theory is concerned with problems of the following kind: Given two
terms built from function symbols and variables, do there exist terms that can be
substituted for the variables such that the two terms thus obtained are equal? This
operation, called unification of terms, is the fundamental operation in automated
deduction. In his seminal paper that presented the resolution calculus for first
order predicate logic, Robinson [Rob65] gave an algorithm to compute a unifying

substitution of two terms and proved that this unifier is most general in the sense
that every other unifier can be obtained from it by further instantiation of variables.

Plotkin [Plo72] suggested to generalize Robinson’s syntactic unification to unifi-
cation modulo equationally defined first order theories as a more efficient means for
equational deduction. Since then, equational unification has been built into resolu-
tion theorem provers, logic programming languages, and completion procedures for
rewriting systems. In his survey, Siekmann [Sie89] gives an overview of the different
applications of unification.

Unification algorithms have been designed for a number of equational theories.
But in spite of the substantial body of results, the field still lacks abstraction and
a reservoir of general methods. In this paper we apply algebraic techniques to
investigate unification problems for a class of equational theories rather than for a
single theory. Our approach leads to general results on the structure of unification
algorithms and the unification type of the theories.

The class of monoidal theories contains several special theories that turned out
useful in applications and for which special unification algorithms have been devel-
oped. An equational theory is monoidal if it contains a binary operation which is
associative and commutative, an identity for the binary operation, and an arbitrary
number of unary symbols which are homomorphisms for the binary operation and
the identity. For instance, AC, i.e., the theory of abelian monoids, ACI, i.e., the
theory of idempotent abelian monoids, and AG, i.e., the theory of abelian groups are
monoidal. The varieties described by monoidal theories consist of abelian monoids.
This fact motivated the name for the class.

It is well-known that AC-unification amounts to solving linear equations over
the nonnegative integers [Biit86, For87, HS87, LS76, Sti75, Sti81], and unification
in AG is done by solving linear equations over the integers [LBB84]. But up to
now it was unclear whether the correlation between equational theories and linear
equations was merely accidental or if there is some deeper structural connection.
We will show that the latter is the case.

A monoidal theory £ determines a semiring Sg, that is, an algebraic structure
which can be thought of as a ring without substraction. For instance, the semirings
corresponding to the theories AC. ACI, and AG are the natural numbers N, the



boolean semiring B = {0, 1}, and the ring of integers Z, respectively. We will prove
that solving unification problems without constants in £ is equivalent to solving sys-
tems of homogeneous linear equations over Sg and that problems with free constants
give rise to inhomogeneous equation systems. Based on this result we can outline a
schema for a universal unification algorithms for monoidal theories. In order to turn
this schema into an effective unification algorithm for a given theory £ one has to
provide an algorithm that solves linear equations over Sg. There is a rich repertoire
of algebraic techniques for solving linear equations in the mathematical literature
and these can usefully be employed for unification algorithms.

Unlike the case of Robinson’s syntactic unification, a single most general unifier
representing all solutions need no longer exist when equalities are present. Equa-
tional theories have been classified according to the number of “most general so-
lutions” that are needed to represent all solutions of a unification problem [Sie89].
A theory is of type unitary or finitary if one or finitely many most general solutions,
respectively, are sufficient, otherwise the theory is infinitary or nullary. We will
use the close correspondence between unification and linear algebra to characterize
the unification type of monoidal theories algebraically: a theory £ is unitary with
respect to unification without constants if and only if the solution spaces of linear
equation systems over S¢ are finitely generated; if this is not the case, the theory
is nullary. Rings with similar properties have been studied extensively in algebra.
A commutative ring S is noetherian if all ideals of S are finitely generated [Jac80].
As a consequence, the solution spaces of linear equation systems over S are finitely
generated. A well-known result of this research is Hilbert’s Basis Theorem, which
we will apply to obtain a sufficient criterion for monoidal theories to be unitary—for
unification with and without constants.

Baader [Baa89a] studied unification in so-called commutative theories which he
defined by categorical properties. It has been shown that monoidal and commuta-
tive theories are identical modulo a signature transformation [BN91]. Therefore all
results on monoidal theories apply to commutative theories as well. In his frame-
work he proved some of the basic results on the unification type of commutative
theories that are also contained in this paper. In contrast to his work, our approach
clarifies the algebraic structure of unification problems, and thus allows us to use
algebraic techniques directly for designing unification algorithms in these theories.

The paper is organized as follows. In Section 2 we briefly review basic definitions
and fix our notation. In Section 3 we define monoidal theories and give examples. In
Section 4 we give an abstract reformulation of unification as unification of morphisms
rather than unification of terms. Section 5 presents semirings as basics of linear
equations. In Section 6 we show how monoidal theories are related to semirings and
develop a technique that allows us to represent morphisms by means of matrices
over semirings. Section 7 treats unification problems without constants and Section
8 problems with constants. In both sections we give algebraic characterizations of



unification problems and derive schemata for algorithms. Section 8 summarizes our
results.

2 Basic Notions and Notation

We briefly review the necessary notions and notation concerning preorders and uni-
fication theory, assuming that the reader is familiar with the basic concepts of uni-
versal algebra [Gra68]. A collection of papers representing the state of the art in
unification theory can be found in [Kir90].

In this paper we will write composition of mappings from left to right, that is,
@0 or simply ¢¢» means first ¢ and then 1». Consequently, we use suffix notation for
mappings (but not for function symbols in terms and not for the operations denoted
by them). Moreover, if S, T' are sets, ¢: S — T is a mapping, and S’ is a subset of
S, then S’¢ denotes the set {a’¢ | a’ € S’}. This will simplify the notation later on.

2.1 Preorders

Some of the basic concepts of unification theory like the notion of a most general
unifier and the notion of a complete or a minimal complete set of unifiers are defined
in terms of a preorder on substitutions. Instead of studying this preorder directly
we often will translate it into other preorders. For this purpose we provide a basic
vocabulary for dealing with preorders in general.

A preorder is a reflexive and transitive relation. Let “<” be a preorder on a set
S. We say that the elements a and «’ of S are independent if neither a < a’ nor
a' < a. The strict part of “<” is the relation “<” defined by a < a’ if a < a’ but
not @’ < a. An element a € S is minimal if there is no a’ € S such that ¢’ < a.
A subset S C S is a complete set if for every a € S there exists some a’ € S’ such
that a’ < a. A minimal complete set is a complete set such that no proper subset is
complete. A least element is an element a € S such that a < o' for all @’ € S.

Obviously, complete subsets of S always exist, since S is a complete subset of
itself. Minimal complete subsets, however, need not exist, but if they do exist, any
two of them have equal cardinality [FH86]. If S’ C S is a minimal complete set,
then every a € 5’ is minimal. A minimal complete subset of S exists if and only if
the minimal elements of .S form a complete subset. In other words, S has a minimal
complete subset il and only if for every a € S there is a minimal element a’ € S such
that a’ < a. If S" C Sis a complete set such that any two elements are independent,
then S’ is a minimal complete set. In particular, for any least element a € S the
singleton {a} is a minimal complete set.



2.2 Equational Theories

We assume that two disjoint infinite sets of symbols are given, namely, a set of
function symbols (like f,h) and a set of variables (like z,y,2). A signature ¥ is
a finite set of function symbols each of which has a fixed arity. Every signature
¥ determines a class of Y-algebras and Y.-homomorphisms. The realization of a
Y-function symbol f in a Y-algebra A is written as f4. We define X-terms and
Y-substitutions as usual. By [z1/t1,...,2,/ts] we denote the substitution which
replaces the variables z; by the terms ¢;. Let X be a set of variables. The set of all
Y-terms with variables in X forms the term algebra 7g(X). If X is the set of all
variables then substitutions are precisely the ¥-homomorphisms 75(X) — 7x(X)
that move only finitely many variables.

A Y-identity is a pair s = { of L-terms. A stable ¥-congruence is a set of X-
identities that is closed under the congruence operations and under the application of
Y-substitutions. An equational theory £ = (X, E) is a pair consisting of a signature
¥ and a stable congruence E on the set of all E-terms. We will write s =¢ t if
s =t € F. For every binary relation £’ between ¥-terms there exists a least stable
congruence F containing E’. We say that E is the stable congruence generated by
E'. A ¥-algebra that satisfies every identity in £ is called an £-algebra. The set of
all E-congruence classes t of X-terms t € Tg(X) forms an E-algebra Fg(X) where
every function symbol f is interpreted as the operation ty,...,t, — f(t1,..., ).
By abuse of notation we will often identify a term ¢ with its congruence class ¢ if it
is clear from the context which is which.

The E-algebra Fe(X) is free over X in the following sense: for every £-algebra A
and every mapping g: X — A there exists a unique ¥-homomorphism oy: F¢(X) —
A which extends g, that is g = zo, for all z € X. For every set X, free £-algebras
are unique up to Y-isomorphism. Therefore we call Fg(X) the free E-algebra over
the set of generators X. If X = {zy,...,z,} is a finite set we sometimes write
Fe(zy,...,2,) instead of Fe(X).

If X ={x1,...,2,}, then every ¥-homomorphism o: F¢(X) — Fe(Y') is uniquely
determined by the images x,;0 of the elements z;, since F¢(X) is free over X. There-
fore we can represent o by a substitution ¢’ := [2,/t;,...,2,/t,], where the terms
t; € Tg(Y') are chosen such that {; = x;0'. Conversely, every substitution gives
rise to a Y-homomorphism o: Fg(X) — Fe(Y) if we put zo := zo’. In the sequel
we will identify a ¥-homomorphism between free £-algebras with the substitution
representing it, if there is no danger of confusion.

2.3 Unification

The following gives the traditional definitions of unification theory. However, later
on, we will take an equivalent but more abstract approach, that will be presented
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in Section 4.

A Y-equation is a pair of Y-terms written as s = t. A Y-equation system is
a finite sequence of L-equations I' = (s; = ¢;,...,s, = tn). The set of variables
occurring in ¥ is denoted as V(I').

A unification problem for an equational theory £ = (X, E) is presented by a X-
equation system I'. An E-unifier of ' is a substitution § such that s;6 =¢ ;6 for
t=1,...,n. We denote the set of all £-unifiers of I as Ug(T).

Since we are only interested in equality of terms modulo the theory £ we need
not distinguish between substitutions that map variables to £-equal terms. Given
a unification problem I', we may also consider two unifiers as equal if they map
the variables occurring in T' to £-equal terms. Usually we do not need the set of
all £-unifiers, but rather a subset from which all other unifiers can be generated

by instantiation. To make this precise we introduce the following relations between
substitutions. Let o, 7: Tg(X) — T2(Y') and n: T(X) — 7g(Z). Then we write

o g =g xyr! il 1ag =per forglde X

e 0 <gxn iff there exists a substitution A such that n =¢ x o).

Obviously, 0 =¢ x 7 if and only if o and 7 describe the same Y-homomorphism
Fe(X) — Fe(Y) for any finite set of variables Y that contains the variables intro-
duced by o and 7. Moreover, it is easy to verify that “<¢ x” is a preorder.

In particular, “<g y(r)” is a preorder on Ug(I'). We say that a set U C Ug(T) is
a complete set of unifiers or a minimal complete set of unifiers if U is a complete
or minimal complete set with respect to the preorder “<evm)”- A unifier is most
general if it is a least element of Ug(I'). For applications one is not interested in
arbitrary complete sets of unifiers but in minimal complete sets, because one wants
to keep the set of unifiers under consideration as small as possible.

The unification type of a theory £ is defined with reference to the existence and
cardinality of minimal complete sets (see [Sie89]). A theory is £ infinitary (finitary,
or unitary) if for every unification problem minimal complete sets of £-unifiers exist
(and their cardinality is finite, or at most one, respectively). A theory & is nullary if
there exists an £-unification problem without a minimal complete set of £-unifiers.
These four classes form the unification hierarchy. Note that a theory is unitary if
and only if every solvable unification problem has a most general unifier.

One may distinguish between three kinds of unification problems (cf. [Baa91]):

1. problems without constants or elementary problems, where the terms contain
only symbols from the signature of the underlying theory;

2. problems with constants, where additional free constants may occur;
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3. problems with free function symbols, where arbitrary function symbols not
specified in the signature are allowed.

A proper formalization of the cases (2) and (3) would require to consider the prob-
lems in the theory that is obtained by adding the additional symbols to the signature.

All three variants may arise in applications. Free function symbols have to be
taken into account in theorem proving, where they are introduced by skolemiza-
tion, and in rewtiting modulo equational theories. As shown in [Biir89], matching
problems correspond to special unification problems with constants. In the present
paper, we will only deal with elementary problems and problems containing free
constants. Schmidt-SchauBl [SS89] showed that an algorithm for arbitrary combi-
nations of disjoint theories—and thus in particular for problems with free function
symbols—can be derived from algorithms that solve problems with free constants
in the individual theories.

If nothing else is specified, “unification”will always mean “unification without
constants.”

3 Monoidal Theories: Definitions and Examples

Monoidal theories generalize the equational theories AC, ACI, and AG. In this
section we first define monoidal theories and then give examples.

An equational theory & = (X, ') is monoidal if .

1. ¥ contains a constant 0, a binary function symbol “+.,” and an arbitrary
number of unary function symbols, but no other symbols

2. “4” is associative and commutative, that is, (z +y) + z =¢  + (y + z) and
THy=cyte

3. 0is the identity for “+,” that is0+ 2z =¢c+0=¢ 2z

4. every unary symbol A is a homomorphism for “+” and 0, that is, h(z +y) =¢

h(x) + h(y) and h(0) =¢ 0.

A monoidal theory may contain arbitrary additional identities over X, the only
requirement is, that at least the above laws hold. Monoidal theories describe varieties
of abelian monoids with homomorphisms. This fact was the motivation for calling
these theories “monoidal.”

General Assumption. In the rest of the paper we assume that € = (X, E) denotes
a monoidal theory.



Example 3.1 Suppose “+7” is a binary function symbol and 0 is nullary. We con-
sider the following signatures: ¥ := {+,0}; ¥’ := ¥ U {h}, where h is unary; A :=
{+,0,—}, where — is unary; A’ := A U {h}, where h is unary; and Q := {+,0,:},
where 1 is unary.

AC = (X, Exc), where Eac is generated by the associativity, commutativity, and
identity laws for “+” and 0, axiomatizes the theory of abelian monoids. It is
the least monoidal theory in that its signature contains no unary symbol and
only the identities of the definition hold.

ACI = (X, Faci) is the theory of idempotent abelian monoids. The congruence K¢y
is the least one that contains Exc and the idempotence law z + z = 2.

AG = (A, Exg) is the theory of abelian groups. Eag is generated by the identities
which state that “+” is the binary operation of an abelian group with neutral
element 0 and inverse —.

ACH = (¥, Eacn), the theory of abelian monoids with homomorphism, extends AC
by the homomorphism laws for the symbol A.

AGH = (A, Eac), the theory of abelian groups with homomorphism, extends AG by
the homomorphism laws for the symbol A.

GAUSS = (92, Egauss), where Egauss is generated by the identities which state that
“+7 is associative and commutative with identity 0, that 7 is a homomorphism
for “47, and by the identity = + i(:(z)) = 0.

A monoidal theory & is a theory with commuting homomorphisms if for all unary
function symbols h, k' € X we have h(h'(z)) =¢ h'(h(z)). A monoidal theory € is a
group theory if for some term t we have z 4+ ¢ =¢ 0. Intuitively, in a group theory,
there exist inverse elements for addition.

Example 3.2 With the exception of AGH, all theories in Example 3.1 have at most
one unary function symbol. Thus, they are trivially theories with commuting ho-
momorphisms. By some straightforward equational deduction one can show that
h(—x) =agy —h(z). Hence, also in AGH homomorphisms commute.

The theories AG, AGH, and GAUSS are group theories. m]

. 10



4 An Abstract View of Unification

Commonly, unification is understood as unification of terms by means of substi-
tutions, taking account of an equational theory & = (X, E) (cf. Subsection 2.3).
However, in this paper we will conceive it as unification of ¥-homomorphisms be-
tween free £-algebras by means of ¥-homomorphisms. Similar reformulations of
unification have been given by Rydeheard and Burstall [RB85], Goguen [Gog89],
and Baader [Baa39a).

Let £ = (X, E) be an equational theory, I' = (s; = ty,...,5, = t,) be a Z-
equation system, and let Y := V(I'). Suppose the substitution ¢ is an £-unifier of T'.
Then s;6 =¢ t;6 for : = 1,...,n. Obviously, the £-unification problem I is invariant
under €-equality in the following sense. If I' is obtained from I' by replacing the
terms s;, t; by terms s’, t!, respectively, such that s; =¢ s} and t; =¢ t;, then ¢ is

also a unifier of I. Similarly, if &’ is a substitution with §' =¢y 8, then ¢’ is also a
unifier of I' and I".

A possible way to account for this invariance would be to assume that a uni-
fication problem is given by a sequence I' = (3, = 1,...,3, = {,) of equations
between elements of F¢(Y') and to define a unifier of such a problem as a ¥-homo-
morphism 6: Fe(Y) — Fe(Z) satisfying 5,6 = t;6 for ¢ = 1,...,n. An equivalent
but more elegant way is the following: Let X = {z1,...,z,} be a set of cardinality
n. Define o, 7: Fg(X) — Fe(Y') as the ¥-homomorphisms satisfying z;0c = §; and
z;7 = t;. Since Fe(X) is free over X, o and 7 are uniquely determined by this
condition. Conversely, 3; and 7; can be reconstructed from ¢ and 7 as the values of
the elements ;.

Now, it is easy to see that a ¥-homomorphism é: F¢(Y') — Fg¢(Z) is a unifier of
T if and only if 06 = 76. Actually, if 06 = 78, then 5,6 = z,06 = 2,76 = t;6 for
i = 1,...,n. Conversely, if for all 7 we have 5;6 = t;6, it follows that for all 7 we
have z;06 = z;76. Thus, 06 and 76 agree on the generators of F¢(X) and therefore
are equal.

The above discussion motivates the following definition. An £-unification prob-
lem is a parallel pair o, 7: Fe(X) — Fe(Y) of £-homomorphisms between finitely
generated free £-algebras. An E-unifier of o and 7 is a ¥-homomorphism 8: F¢(Y) —
Fe(Z) such that b = 76.

We say that & is more general than a Y-homomorphism n: Fe(Y) — Fe(Z')
if there exists some Y-homomorphism A: Fg(Z) — Fe(Z') such that n = éA. In
this case we write § < 7. It is easy to verify that “<” is a preorder and that
for two X-substitutions &', n’: Tg(X) — T(Y) we have §' <¢ x n' if and only if the
corresponding ¥-homomorphisms 8, n satisfy 6 < n. Therefore, one can equivalently
define complete and minimal complete sets of unifiers as well as the unification type
of a theory in terms of the preorder “<”.
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5 Basic Structures for Linear Equations:
Semirings

Since unification in monoidal theories will be based on solving linear equations over
semirings, we give a short introduction to these structures. In the literature, the
theory of linear equations is usually developed as the theory of fields, vector spaces,
and linear mappings. Few text books base the theory, more generally, on rings
instead of fields (see e.g. [JacT4]). However, there exists no thorough presentation
of linear algebra over semirings. Kuich and Salomaa [KS85] use semirings to study
formal languages but are not concerned with linear equations of the kind we want
to consider.

5.1 Semirings
A semiring is a set S with distinct elements 0 and 1 that is equipped with two binary

operations “+7” and “-” such that (S,+,0) is a commutative monoid, (S,-,1) is a
monoid, and all a, 3, v € S satisfy the identities

l. (a+73) 7

Il

e+ Py (right distributivity)
2oa{f+y)=aBLny (left distributivity)

3iba=av0=0 (zero laws).

We call the binary operations “+” and “-” the addition and the multiplication of
the semiring, respectively. The elements 0 and 1 are called zero and unit. In the

sequel we will often omit the “-” sign and write af3 instead of a - 3.

A semiring is commutative if its multiplication is commutative. Semirings are
different from rings in that they need not be groups with respect to addition. In
contrast to rings, we cannot deduce the zero laws from the rest of the axioms.

Example 5.1 The natural numbers (i.e., the nonnegative integers) form a semiring
N if the operations are interpreted in the obvious way.

The boolean semiring B consists of the two elements 0 and 1. In addition to the
semiring laws it satisfies 1 + 1 = 1. The semirings N and B are proper in the sense
that they are not rings.

Every ring is a semiring. In particular, the ring of integers Z is a semiring. The
ring of gaussian numbers Z & 1Z, which consists of complex numbers m + in where
m, n € Z, is a semiring, too.

12



For every semiring S one can construct the semiring S[X] of polynomials in the
indeterminate X with coefficients from §. a

5.2 Modules

Modules over semirings are a generalization of vector spaces over fields. As in the
case of non-commutative fields, where one has to distinguish between left and right
vector spaces, we will define left and right modules.

A left (right) module over a semiring S is a commutative monoid (M, +,0) to-
gether with a scalar multiplication

SxM-—-M (a,a) — aa (MxS—->M (a,a) — aa)

such that for all o, # € S and a, b € M the identities (1) to (6) ((1") to (6")) hold:

1. (a-B)a=a(fa) I'. a(a-B)=(ac)B

2. (a+p)a=aa+ Pa 2. a(la+p)=aa+apf
3. ala+b)=aa+ab 3. (a+ba=aa+ba
4. a0=0 4. 0a=0

5 la=a & al=a

6. Qg =40 6. al=0.

Example 5.2 The singleton {0} is a left (right) module over S if the scalar mul-
tiplication is defined in the obvious way. We call it the zero module and denote it
as 0.

For a finite set X we denote by S¥ the set of tuples over S which are indexed by
the elements of X. The set S¥ is turned into a left (right) S-module if we define the
addition componentwise and the left scalar multiplication by a(8;)zex := (@ fz)zex
(and the right one by ((8:)sex)a := (B - @)zex). The y-th unit vector e, € S% is
the tuple (az)zex where a, =1 and a, = 0 for z # y. Note that S? is a singleton.
We identify S® with 0. O

Next we introduce structure preserving mappings between left (right) modules
M, N. Recall that function application is written in suffix notation. A mapping
o: M — N is left (right) linear if all « € S and all a, b € M satisfy the identities
(1), (2), and (3) ((1), (2'), and (3)):
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1. (a+b)o=aoc+bo
2. (aa)o = a(ao) 2. (aa)o = (ao)a

3. 0o=0.

In the above definitions, left and right modules are distinguished by the fact
that semiring elements are applied in the first case to the left and in the second
case to the right*of module elements. An equivalent way of defining right modules
is to introduce them in the same way as left modules with the only exception that
identity (1) is replaced by the identity

l'. (a-B)a=p(axa).

For commutative semirings, identities (1) and (1) are equivalent. In this case, there
is only a notational difference between left and right modules and left and right
linear mappings.

Many important properties of vector spaces over fields do not carry over to arbi-
trary modules over semirings. For instance, there is no one-to-one correspondence
between matrices and linear mappings. Fortunately, we retain many nice properties
if we restrict ourselves to free modules.

A left (right) module F' is free over a set of generators X C F' if for every left
(right) module M and every mapping ¢g: X — M there is a unique left (right) linear
mapping o,: F' — M such that vo, = xg for all v € X. If F', F' are left (right)
S-modules such that F is free over X and F” is free over X', then F and F’ are
isomorphic if there exists a bijection between X and X'.

Since a free module is determined by its generators up to isomorphism, we will
talk about the free left (right) S-module over X for any given set X.

Proposition 5.3 If X is finite then S* with left (right) scalar multiplication is the
free left (right) S-module over {e, | z € X}.

Proof. Let M be a left S-module and g:{e, | © € X} — M be a mapping.
Define 0,:S* — M by ((az)rex)oy := Yzex @z(€z9). Then it is easy to see that
o, is left linear. On the other hand, since for every a = (az)zex € S* we have
a = Y ,ex Qz€z, it follows that for any left linear mapping 7:8% — M satisfying
e;T = e.g the equation a7 = (T cx az€:)T = L oex 0z(€sT) = Loex z(ez9) = aoy

holds.

The case of right modules is treated analogously. a
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5.3 Matrices

We compute with linear mappings by means of matrices. As long as we deal with
linear mappings between finitely generated free modules the correspondence between
linear mappings and matrices is the same as in linear algebra over fields.

A left linear mapping 0:S* — SY can be described by an X x Y-matrix C,
with entries from S as follows: the z-th row of C, = (04y)zexyey contains the
components of e o, the image of the z-th unit vector e, under o. Following the
usual rules of matrix and vector multiplication we have ac = aC, where a € SX
is written as a row vector. Conversely, every X x Y-matrix C defines a left linear
mapping o¢: S* — SY by aoc :=aC.

If o is right linear we have to slightly modify the construction. We take C, as the
Y x X-matrix that has the components of e,.o in the z-th column. Then ao = C,a,
where a € 8% is written as a column vector. For commutative semirings both
constructions are equivalent, in linear algebra over commutative fields the second
one 1s more common.

If o, 7:8% — SY are left (right) linear, the pointwise sum of o and 7 is the
mapping o + 7:S¥ — S defined by a(c + 7) := ao + a7 for all a € SX. The
pointwise sum o + 7 is again left (right) linear and Cy4, = C, + C;. If in addition
7:S8Y — 87 is left (right) linear, then the composition o7 is again left (right)
linear and C,, = C,C,. Conversely, for all matrices B, C', D over § we have
OB+Cc = 0B + OC and ocp = ocop.

For any left (right) linear mapping 0:SY — SY the dual mapping of o is the
right (left) linear mapping 0*: S — S* defined by ao* := C,a (:= aC,). It follows
that (¢ + 7)* = 0" + 7%, (0n)* = n*c*, and ¢** = 0. Moreover, we have ¢ = 7 if
and only if 0 = 7. Note that o and o* are given by the same matrix and that C,.
is not the transpose of C,.

6 Monoidal Theories and Semirings

In this section we construct for every monoidal theory £ = (X, F) a canonical semir-
ing Sg such that ¥-homomorphisms between free £-algebras can be described by
matrices over Sg. This fact will be used in the following sections to investigate
unification problems using algebraic techniques.

6.1 Monoidal Theories Define Semirings

It has been shown that AC-unification amounts to solving linear equations over

the semiring N [Bit86, For87, HS87, LS76, Sti75, Sti81] and that unification in
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the theory of abelian groups amounts to solving linear equations over the ring Z
[LBB84]. We will generalize these results by associating to every monoidal theory
€ a semiring Sg, that will be used to solve unification problems in £ later on.

In order to define S¢ we need some preliminary definitions and results. Suppose
A, B are Y-algebras and o, 7: A — B are ¥-homomorphisms. The pointwise sum
of o and 7 is the mapping o 4+ 7: A — B defined by a(o + 7) := ao +2 ar for all
a € A. The mapping that maps every element of A to 0P is denoted as 04p. If
A = B we write*0, instead of 044. The following propositions are straightforward
gerneralization of well-known results for abelian monoids.

Proposition 6.1 Suppose A, B are E-algebras. Then:

1. 045: A — B is a ¥-homomorphism
2. For all ¥-homomorphisms o, 7: A — B the pointwise sum o + T is again a
Y -homomorphism.
Proof. 1. It follows easily from the definition of monoidal theories that 045 is a
Y -homomorphism.

2. We show that o + 7 is compatible with the operations in £. For the nullary
operation 0 we have

04(o + 1) = 040 +8 047 = 08 +2 0% = 0,

using the fact that o and 7 are ¥-homomorphisms.

For the binary operation “+” we deduce for a, b € A that

(a+4b)(oc+7) = (a4+2b)o+B (a+4b)r
ac +B bo +8 ar +B br (1)
ac +8 ar +8 bo +B br (2)

= a(loc+T) 35 blo + 1),
exploiting in (1) the fact that o and 7 are ¥-homomorphisms and in (2) the asso-

ciativity and commutativity of +4.

For any unary operation h and any a € A we deduce that
(h*(a))(o+71) = (h*(a))o +7 (h*(a))7
= hB(ao) +B hB(ar) (3)
hB(ao +8 ar) (4)
= hBla(o + 7)),

exploiting in (3) that o and 7 are ©-homomorphisms and in (4) that h® is a homo-
morphism for +5. =)
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Proposition 6.2 Suppose A, B, C are £-algebras and 0, 0’: A — B and 7, 7": B —
C are ¥-homomorphisms. Then:

1. o(r+7)=0r+01
2. (c+o)r=0r1+0'T

3. O'OBC = OABT = OAC
Proof. 1. Applying the definition of pointwise addition we obtain for a € A
a(o(t+ 7)) = (ac)(r+7') = aoT +% aor’ = a(oT + o7').

2. For a € A we deduce that

a((c +o')r) = (a(o + ")) = (ao+P a0d')T (1)
= aor +% ac'r (2)
= a(or +o'7), (3)

using in (1) and (3) the definition of pointwise addition and in (2) the fact that 7 is
a Y-homomorphism.

3. Trivially, 00pc = 0ac. The equality 047 = 04c holds, because 7 is a
Y-homomorphism. O

For every £-algebra A we denote the set of all ¥-homomorphisms from A to A
by end A. An element of end A is an endomorphism on A. Endomorphisms inherit
the monoid structure from A: with the pointwise addition of mappings “+7, the
endomorphisms on A form an abelian monoid, whose identity is the mapping 04.
Moreover, with respect to the composition of mappings “o”, end A is a monoid,
whose identity is id 4.

”

Proposition 6.3 Let A be an E-algebra. Then (end A, +,04,0,1id4) is a semiring.

Proof. As already shown, (end A, +,0,4) is an abelian monoid and (end A, o, idy)
is a monoid. In addition, Proposition 6.2 implies that the distributitivity and the
zero laws hold. O

We are now ready to introduce canonical semirings. Let u be a distinguished
variable. By Proposition 6.3, the endomorphisms of F¢(u) form a semiring. We call
the semiring end Fg(u) the canonical semiring of £ and denote it as Sg. To ease our
notation, we shall write 0 instead of 0,(,) and 1 instead of idf,(,) in the sequel.

Since Fe(u) is free over {u}, every endomorphism a on Fg(u) is uniquely de-
termined by ua. Conversely, every term t € 7g(u) determines an element o, of

17



Se—that is an endomorphism on F¢(u)—which satisfies ua; =¢ t. Obviously, for
any two terms ¢, t’ we have a; = ay if and only if t =¢ t’. Observe that for the
multiplication in S¢ we have a,a, = Qgfu/t]-

Example 6.4 Let us look more closely at the canonical semirings that correspond
to the monoidal theories as introduced in Example 3.1.

SAC )

SACh

SAGa

the canonical semiring of the theory of abelian monoids, is isomorphic to the
semiring of natural numbers N. To show this we use the following notation.
For m € N let

um = u+---4+u,
——————
m times

where u0 is understood as 0. Consider now an arbitrary element a € Sac, that
15, a ¥-homomorphism a: Fac(u) — Fac(u). Then « is uniquely determined
by the value ua. Since ua € Fc(u), there exists a number m € N such that
ua =pc um. If B € Sac is an endomorphism such that uf =,c un, then it is
easy to see that u(a+ ) =ac u(m+n) and that u(af) =ac u(mn). Moreover,
one easily checks that m = n if um =,c¢ un, and that for every m € N there is
an ainSac such that um =,c ua. It follows that Syc and N are 1somorphic
semirings.

which corresponds to the theory of idempotent abelian monoids, is isomorphic
to the boolean semiring B. To see this observe that for every a € Spcr we
either have ua =a¢1 0 or ua =1 u. Hence, Sacr has only the two elements 0
and 1. The idempotence law implies that 1 +1 = 1. Thus we have Sact ~ B.

the semiring corresponding to the theory of abelian groups, is isomorphic to
Z, the semiring of integers. This can be seen using similar arguments as in
the proof showing that Syc ~ N. One has to observe that for every a € Sag
there exists an integer m such that ua =ag um, where um is defined in the
obvious way.

Sach, the canonical semiring of the theory of abelian monoids with a homomor-

phism, is isomorphic to N[X], the semiring of polynomials in one indeterminate
X with nonnegative integer coefficients. To see this, consider an arbitrary
element a € Spcy. that is a Y-homomorphism a: Facy(u) — Facu(u). Then,
there exist my,...,my € N such that ua =xcy ume+ h(u)my+- -+ h*(u)my.
We associate with a the polynomial p, = mo+m; X'+ - ~4+mi X*, which is an
element of N[X]. It is straightforward to prove that mapping every a € Sacy

to the polynomial p, € N[X] yields a semiring isomorphism between Sxcy
and N[.X].
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SacH, the canonical semiring of the theory of abelian groups with a homomorphism,
is isomorphic to Z[ X], the semiring of polynomials in one indeterminate X with
. nonnegative integer coefficients. This can be seen as in the previous example.

Scauss, which corresponds to the theory GAUSS, is isomorphic to the ring of gaus-
sian numbers Z@:Z consisting of the complex numbers m+:n, where m, n € Z.
To see this, note that the canonical semiring of GAUSS is isomorphic to the
quotient semiring of N[X] that results from identifying the polynomials 1+ X?
and 0. This quotient is isomorphic to the ring Z @ :Z. An isomorphism is ob-
tained by mapping the class of X to the imaginary number . It follows that
the polynomial X? is mapped to the number —1.

As in the above examples, the canonical semiring S¢ mirrors properties of £.
Proposition 6.5 Sg is a ring if and only if £ is a group theory.

Proof. “=" If S¢ is a ring, then there exists some a € S¢ such that 1 + a = 0.
Let ¢t be a term such that t =¢ ua. Then u+1t = ul + ua = u(l + a) =¢ u0 = 0.
That is, there exists a term ¢ such that v + ¢ =¢ 0. Hence, £ is a group theory.

X9 ”

<" If £ is a group theory, there is a term s such that u + s =¢ 0. Let
ry,...,2, be the variables occurring in s and let ¢t := s[zy/u,...,z,/u]. Then we
have t € Tg(u) and u +t =¢ 0. Hence, u(1 + a;) = 0. From this it follows that
for any 8 € S¢ the endomorphism Sa; is an inverse with respect to addition, since

B+ Ba, = B(l+ o) =p0=0. o

Proposition 6.6 S¢ is commutative if and only if £ is a theory with commuting
homomorphisms.

”

Proof. “=" Let S¢ be commutative and let h, k" be unary symbols from X.
Then we have apu)@h(u) = Gru)@ry. This implies h(h'(u)) = uopw)an(w) =¢
UQh () Qh(u) = h'(h(u)). Hence, £ is a theory with commuting homomorphisms.

“<” The semiring S¢ is generated by the elements that are of the form ay(y)
for some unary function symbol h € ¥. Since homomorphisms commute, we have
Qp(u)Oh!(u) = Ah(h'(u)) = Ah'(h(u)) = Xh'/(u)Xh(u) for all unary symbols h, h € 2. Hence,
Se¢ has a set of commuting generators. This implies that S¢ 1s commutative. 0O

Finally we show that the concept of a monoidal theory and the concept of a
semiring are equally general.
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Proposition 6.7 For every semiring S there exists a monoidal theory £ such that
S and S¢ are isomorphic.

Proof. If S is a semiring, let ¥ be the signature containing the symbols 0 and
“+”and for every # € S a unary symbol hg. Let E be the set of identities that hold
over § if 0 and “+”are interpreted as zero and addition and every unary symbol hg
is interpreted such that hg(y) = B-v for all y € S. Then € = (%, E) is a monoidal
theory.

We are going to show that S and Sg are isomorphic. First, observe that by
definition of £ the following identities hold for all 3, v € S:

0 =& ho(u) (

u. =g hilu) (2
ho(u) + hy(u) =¢ hpiqy(u) (
hﬁ(hw(u)) =c  hpy(u). (

Next we define a mapping \: S — end Fe(u) by By := Qpy(uy- We will show that
X 1s a semiring isomorphism.

Using identities (1) to (4) one can prove by induction that for every term t €
Tx(u) there is an element 3 € S such that ¢t =¢ hg(u). Since every endomorphism
on Fg¢(u) has the form a; for some t € Tg(u) this proves that y is surjective.

To prove injectivity it suffices to show that g = v if hg(u) =¢ h,(u). If hg(u) =¢
h,(u), then the definition of £ implies that h$ and h$ are the same functions on S.
Hence, 8= 8:1= h‘g(l) = hf(l) = 7 -1 =, which yields the claim.

Finally, from the identities (1) to (4) it follows that y is a semiring homomor-
phism. As examples. we give the proofs that \ respects 0 and multiplication. From
ho(u) =¢ 0 we conclude that 0\ = apyu) = ag = 0. From hg,(u) =¢ hg(h(u)) we
conclude that (Bvy)x = an,, () = Qhg(hy(u)) = Xhg(u)Qhy(u) = (BX)(1X)- &

The above theorem can be interpreted in such a way that the concept of monoidal
theory is general enough to cover all equational theores where unification consists
in solving linear equations over semirings.

6.2 Y-Homomorphisms and Left Linear Mappings

The aim of this subsection is to relate ©-homomorphisms between free £-algebras
to left linear mappings between free left Sg-modules. Since unification problems,
as we reformulated them in Section 4, are about ¥-homomorphisms between free

&-algebras, this allows us to translate unification problems into algebraic problems.
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More precisely, we will associate to every ¥-homomorphism o: Fg(X) — Fe(Y)
a unique left linear mapping ¢'": S¥ — SY. Moreover, -!" will be such that

. lin .
° (ld}'E(X)) = Idsé)‘(
& (m-)““ — olinglin.
Conversely, we will associate to every left linear mapping o:S& — SY a unique
¥-homomorphism ¢"™: F¢(X) — Fe(Y). Moreover, -1°™ will be such that

)ho

o (idsx)™" = idr.(x)

o (o7)™ = ghomyhom,

linhom

Both operations will be shown to be mutually inverse, that is, o = o and

rhom'™ — 7+ for any Y-homomorphism ¢ and any left linear mapping 7.

Using the terminology of category theory, we are going to show that the category
of finitely generated £-algebras and the category of finitely generated left Sg-modules
are isomorphic and that - and "™ are mutually inverse functors between these
categories.

The basic idea in establishing this relationship is to present a ¥-homomorphism
between arbitrary finitely generated £-algebras by an X x Y-matrix of endomor-
phisms on Fg(u). In order to do so we need the following notation.

Let X be a finite set of variables. For z, 2’ € X let 8,,: Fe(u) — Fe(u) be 1 if
x=2"and 0 if © # 2'. To simplify our notation, we write idx instead of idx,(x). If
(0z)zex 1s a family of ¥-homomorphisms with the same domain and the same range
then Y ,cx 0, denotes the pointwise sum of the o,. If the set X is clear from the
context we simply write >, o,.

For z € X we define ¢;: Fe(u) — Fe(X) as the unique X-homomorphism satis-
fying ut, = x, and we define 7,: Fe(X) — Fe(u) as the unique X-homomorphism
satisfying zm, = u and 2’7, = 0 for 2’ # x. Intuitively, ¢, is a substitution that
replaces the variable u by the variable z, thus transforming a term from 7x(u) into
a term in 7g(X). Conversely, 7, is a substitution that takes a term from 7gy(X)
and replaces all variables with 0, except the variable z, which is replaced by u. For
instance, if t = x+2'+2’, then tw, =¢ u and t7 =¢ u+wu. The term ¢ can be recon-
structed from ¢, and t7, by means of ¢, and ¢,/, since z+2'+ 2" =¢ ut, + (u+u)ip.
The following lemma says that the 7, and ¢, always interact in this way.

Lemma 6.8 Let X be finite. Then

i Z.‘L‘EX Tply = Id)(
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2. LTt = 6:,;2'

Proof. 1. From the above definitions we deduce that 7,¢, is the endomorphism
on Fg(X) that maps z to z and 2’ to 0 for 2’ # z. Hence, }_, 7,t,, the pointwise
sum of all 7;¢,, is an endomorphism that maps each element of X to itself. Thus
Y zex Tzte and idy agree on the generators of Fg(X). Since X generates Fg(X)
this yields the claim.

a
2. By definition, ut,7, = zm, = u. Hence, ¢;7, = 1. Now, suppose =z # z'.
Then, by definition, we have ui, 7 = a7 = 0. Hence, 17 = 0. O

We are now ready to define -'". Let X, Y be finite and o: Fg(X) — Fe(Y) be
a X-homomorphism. For z € X and y € Y let

Opy 2= 10Ty,

Note that each 0., is an endomorphism on F¢(u) and thus an element of Sg. We
define o'i™: S¥ — SY as the left linear mapping that corresponds to the matrix

(0zy)rex yey-

Proposition 6.9 Let X, Y, Z be finite and o: Fe(X) — Fe(Y) and 7: Fe(Y) —
Fe(Z) be ¥-homomorphisms. Then

L (idx)™ = idg»
2, (a‘r)li]n S g,
Proof. 1. The matrix of (id_x)“" contains the entries (,idxmy = ;T = 6pypr.

The left linear mapping corresponding to the matrix (8,,/),ex is the identity on

s¥.

2. It suffices to show that the matrix derived from o7 is the product of the
matrices derived from o and 7. We compute the entry in the z-th row and the 2-th
column of the matrix derived from o7 as

(et he = 20 TKs
= by@idy TH,
=t w0 (3, Tk ITw: (1)
= Y lom)(,Tr.) (2)
= Ly OxyTys

using in (1) Lemma 6.8 and in (2) the distributivity of composition over pointwise
sum of X-homomorphisms (Proposition 6.2). By the rules of matrix multiplication
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we know that the entry in the z-th row and the z-th column of the product of
(0zy)zexyey and (Tyz)yev,2ez 18 3, OzyTy-. Thus the two matrices are equal. a

Next we define -P°™ Let 0:S¥ — SY be a left linear mapping which has the
matrix (0y)zexyey. Note that each o,y is an element of S¢ and thus an endo-

morphism on Fg(u). Then oh™: Fe(X) — Fe(Y) is the X-homomorphism defined
by

=" N Eauyliys
T€X,YeY

Proposition 6.10 Let X, Y, Z be finite and 0:S¥ — SY and 7: S — S¥ be left
linear. Then

1. (idgx)"™ = idx

2. (7)™ = ghomyhom

Proof. 1. Since (8;2)zex is the matrix describing the identity on Sg(, we
conclude by Lemma 6.8 that

. h )
(idsx )" ™ = La o Tabuarter = Ly Tl = idx.

2. Let (04y)zex yey be the matrix of o and (74y)sex,yey be the matrix of 7. Then
the matrix of o7 has in the z-th row and z-th column the entry 3", o,,7,.. Hence,
by definition of -hom

(GT)hom o Z WI(Z OayTyz )Lz

T,z

hom hom

Applying the definition of "™ and 7h°™ we obtain

T s (Z ”rary‘y)(z Ty Tyzts)
.y y',z

= Z P R W N (1)
z,9,y',2

= Z MoOydyy Tyts (2)
Yy,

= E TeOpyTyzlz
z,y,2

== Zﬂ'x(za.cyry:)’:s (3)

4

where we used in (1) and (3) the distributivity of composition over pointwise addition
(Proposition 6.2) and in (2) Lemma 6.8. Thus, (aT)h°m and ghomrhom are equal. O
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Proposition 6.11 Let X, Y be finite. Suppose o: Fg(X) — Fe(Y) is a -homo-
morphism and 7: S¥ — SY be left linear. Then

1 a““hom =0

o homlin 2

Proof. 1. The entry in the z-th row and y-th column of the matrix of o™ is
Ozy = L;0™,. Applying the definition of a““hom, Proposition 6.2, and Lemma 6.8, we

obtain

linhom

Loy Faluyly B Ly Mot iRyl

(e FT"I)U(ZL/ Tyly) = idxoidy = 0.

2. Let (74 )zex vey be the matrix of 7. By definition, 7M™ = o, e
zy )reX,yeY Yy ) !y T Ty by
Using once more Proposition 6.2 and Lemma 6.8 we deduce that the entry in the
. lin .
z-th row and y-th column of the matrix of 7ho™™ is
Ly T Ty = Ll-(zzl'y: erTziyll,yt)Wy — leyyl LaTg Tyly! by Ty

Zrl,y/ 6$1./Tz'y16yly = Try-

homlin

Thus, the matrices of 7 and 7 are equal, which yields the claim. O

The results of this subsection could have been obtained as corollaries from more
general results in category theory (cf. [HS73]). Actually, from Propositions 6.1 and
6.2 it follows that the finitely generated E-algebras as objects together with the -
homomorphisms as morphisms form a semiadditive category. Together with Lemma
6.8 this fact implies that a free £-algebra Fg(zy,...,z,) is a biproduct whose factors
are the elementary algebras F¢(z;),...,Fe(z,). For morphisms between biproducts
it is known that they can be represented by matrices whose entries are morphisms
between the factors. Since the factors F¢(z;) and the algebra Fg(u) are isomorphic,
morphisms between the factors can be identified with morphisms Fg(u) — Fe(u),
that is, elements of the semiring S¢. We have preferred to prove the above results
in a noncategorical framework in order to make the paper self-contained and also
more accessible for readers not familiar with category theory.

We conclude this section with examples that show how to compute the matrix of
o' for a £-homomorphism ¢ and how to change a left linear mapping 7 into 7ho™,

Example 6.12 Let X = {z,2,}, Y = {y1,92,y3}, and o: Fgauss(X) — Fgauss(Y)
be given by

0 = (y1)+ys3 20 = Y1 +ysz+ys.
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For the sake of simplicity we will write in this and the following example ¢;, 7;, and
o;; instead of ¢z, 7, , and 0y,y,, respectively. With this notation we have

(20T 130Ty 12073 [w/u]  [u/0] [uw/u+ u]

(Uij)ij:(tlm wom, Llam): ( [w/i(w)] [w/0]  [ufu] )

The isomorphism between Sgauss and Z @ :Z described in Example 6.4 identifies
the matrix (o;;);; with the matrix

(192)

over Z @ :17Z. O

— e
o O
(SR

Example 6.13 Let X, Y be as in the preceding example and let 7:(Z @ iZ)* —
(Z ®1Z)" be given by the matrix

0 142 0
(Tij)u:(l . 0>.

The isomorphism between Z @ :Z and Sgauss gives us T as the mapping SéAUSS —
S&auss with the matrix

v /0] [u/uti(w)] [u/0]
(7i3)ij = ( [w/u] .[u/i(u)] [u/0] )

Since 7™ = ¥, . w715, it follows for k = 1,2 that

h
TT O = Tk L WiTijly = L TkTTijL (1)

= ) TkTkTkjlj, (2)

where (1) holds by the definition of pointwise addition and (2) holds because z,m; = 0
for ¢ # k. Hence

7_hom

=gauss 04y +i(y2) +0 =qavss y2 +¢(y2)
=gauss Y1+ i(y2) +0  =gauss ¥+ i(y2).

T
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7 Unlification without Constants

In this section we investigate unification problems in a monoidal theory £ that do
not contain free constants. We show that such problems correspond to systems
of homogeneous linear equations over Sg. This leads to a schema for a universal
unification algorithm for monoidal theories that requires as parameter an algorithm
for solving such linear equations. Finally, using results from algebra we derive
sufficient conditfons for a monoidal theory to be of unification type unitary.

7.1 Unification of Linear Mappings

Unification problems for an equational theory € = (X, E) can be understood as the
task of describing for a pair of ¥-homomorphisms o, 7: F¢(X) — Fe(Y) all S-ho-
momorphism é: F¢(Y') — F¢(Z) such that 06 = 76 (see Section 4). The description
is to be given by a complete or even better a minimal complete set of unifiers.

If the theory € is monoidal. we can translate unification problems into problems
for left linear mappings between free left Sg-modules, using the results in Section 6.
When given o, 7 as above, o', 7lin: SX — SY are left linear. Now, instead of some
Y-homomorphism 6, we look for some left linear 7: SY — S# such that o'iny = 7ling,
This suffices to solve the original problem, because § := "™ is a unifier of o and 7.
This can be seen as follows:

inhom : hom . hom inhom
b = Ulm nhom = (a,lmn) - (Tlmn) = Tlm 7]hom o8

Conversely, if 6 is a unifier of o and 7, then 7 := 6" solves iy iy,

In the rest of this section we assume that E-unification problems are already
translated into the framework of linear algebra. If o, 7: S& — S8Y is a pair of linear
mappings then a unificr of o and 7 is a left linear mapping 6:8Y — SZ such that
o6 = 16. We define the relations of being more general and strictly more general for
left linear mappings exactly as in the case of -unification. Most general unifiers,
complete and minimal complete sets of unifiers are defined in the obvious way. Using
the translation technique as developed in Subsection 6.2, results can be transferred
back and forth from one framework into the other.

7.2 Characterization of Unifiers

The notions of the kernel and the image of a linear mapping are fundamental to
lincar algebra. but in order to generalize to semirings we have to slightly modify
them.

Let o, 7:S* — SY be left (right) linear. The kernel of o and 7 is the set
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ker(o,7) := {a € §* | a0 = at}.

The kernel of & and 7 is a left (right) submodule of SX. It is the set of solutions to
the linear equation system

aoc = ar.
Since there is no subtraction in arbitrary semirings, homogeneous linear equations

over S cannot be supposed to be in general of the form ac = 0.

The image of o is the set
imo:=8%c={beSY |Jae S¥. a0 =b}.

The image of o is a left (right) submodule of S

We use the above definitions to characterize the instance relation between left
linear mappings in terms of kernels and images of their dual mappings.

Theorem 7.1 Let 6:SF — SY and n: S¥m — SZ be left linear. Then the following
equivalences hold:

1. §<n <= imny*Cimé"

2. 6<n <<= imn" is a proper subset of imd”.

Proof. 1. “=" If § <7, then = 6\ for some \:S¥ — S#. Hence n* = A\*6~,
which implies imn* = (imA\*)é* C (S¥)8* = imé§*.

“e” Tt suffices to show that there is a right linear mapping u: S — S¥ such
that ué* = n*, since then §u* = n. Let e,, z € Z, be the unit vectors of SZ. Since
imn* C imé&~, it follows that e,n* € imé* for all z € Z. Hence, there exist vectors
a, € 8f such that a.6* = ¢,n". Define p by e, := a,. Since SZ is a free module,
is completelv defined by the values it takes on the unit vectors. Then e,ué* = e.n".
Since pé* and 7™ agree on the generators of SZ, they are equal.

2. The claim is a trivial consequence of statement (1). a

The next theorem characterizes unifiers.

Theorem 7.2 Leto, 7:SX — SY and §:S¥ — SZ be left linear. Then the following
equivalences hold:

1. 6 is a unificr of o0 and v = imdé* C ker(o™,77)
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2. § is a most general unifier of 0 and 1 <=  imé* = ker(o*,T*).

Proof. 1. 6 is a unifier of 0 and 7 < 0§ = 16§ & §0* = §r* —
Va € §Z.a6"0" = a6*t* <= Vb€ imé*. bo™ = br* < imé* C ker(o?7T).

2. “=7 Suppose ¢ is a unifier of o and 7 and there exists some a € ker(o*,7*)
such that a ¢ imé*. Define n: S} — Séz} by e.n* = a. Then imn* C ker(c*,7*),
and therefore 7 is a unifier of o and 7 by part (1). Since a € imn* and «a ¢ imé*, it
follows from Theorem 7.1 that § is not more general than .

‘<" Suppose imé* = ker(o*,7*). We know by part (1) that for every unifier 7
we have imn* C ker(o*,7*) = imé*. By Theorem 7.1, § is more general than . O

As an immediate consequence we note that every €-unification problem is solv-

able.

Corollary 7.3 For every pair o, 7: S — SY the constant mapping 0:SY — 0 is a
unifier.

Proof. The transpose of 0 is the constant mapping 0*: 0 — SY. Hence, im0* =
{0} C ker(o™,7*), since ker(c*,7*) is a right submodule of SY and therefore contains
the element 0. a

Intuitively, é is a most general unifier of o and 7 if §* parameterizes the right
submodule ker(o*, 7*) of S¥. Whether or not such a § can exist depends on the size
of a generating set of ker(o™, 7*). To formalize this idea we need some definitions.

We consider S as a right Sg-module. Let S C S&. The right submodule
generated by S is the least right submodule of S¥ that contains S. It is denoted
as [S]. It consists of all right linear combinations of elements of S, that is [S] =
{Cigiai | n € N, o; € Sg, a; € S}. A right submodule M of SX is finitely
generated if M = [S] for some finite set S C M.

Theorem 7.4 (Type Unitary) Let o, 7:SX¥ — SY be left linear. Then there
exists a most general unifier of o and 1 if and only if ker(o*, v*) is finitely generated.

Proof. “=" 1f6: S} — S is a most general unifier of o and 7, then erte®, v*] =
imé™ = (S£)6". Since SZ is generated by the finite set of unit vectors {e. |z € Z},
it follows that ker(o,7%) = (§Z)é~ is generated by the finite set {e.6" |z € Z}.

“«=" 1If ker(c",7") is generated by the finite set {a, | 2 € Z}, then define
6:8Y — SZ by ¢.6" := a.. Since SZ is generated by the unit vectors e:, it follows
that imé™ = (S#)é" is generated by the vectors e,6* = a,. Hence, we know that
imé* = ker(c*,7*). By Theorem 7.2, § is a most general unifier of ¢ and . )

23



Theorem 7.5 (Type Nullary) Let o, 7:S& — SY be left linear. Then there do
not exist minimal elements in the set of unifiers of o and 7 if and only if ker(o*,7*)
is not finitely generated.

Proof. “=" [If ker(o*,7*) is finitely generated, then by Theorem 7.4 a most
general unifier § of o and 7 exists. The unifier é is a minimal element in the set of
all unifiers of o and 7.

“<” Let 7:SY — S# be a unifier of ¢ and 7 and suppose that ker(c*,7~) is
not finitely generated. We show that there exists a unifier ¢ that is strictly more
general.

Since imn* is generated by the finite set {e,n* | z € Z}, it follows that imn*
is a proper subset of ker(c*, 7). Hence, there exists some a € ker(c”,7") \ imn~.
Suppose z' ¢ Z and let §:SY — ngu{zl} such that e,6* := e,n* for z € Z and
e6* := a. Then imé* C ker(c*,7*), which implies that ¢ is a unifier of o and 7.
Furthermore, imn* is a proper subset of imé*, which implies that ¢ is strictly more
general than 7. )

The preceding theorems allow us to describe the possible locations of monoidal
theories in the unification hierarchy and to give an algebraic characterization of the
unification type.

Theorem 7.6 (Unitary-Or-Nullary) Every monoidal theory £ is either unitary
or nullary. In particular,

[. € is unitary if and only if for every pair o, 7:S¥ — SY of right linear map-
pings, ker(o, 1) is finitely generated

2. € is nullary if and only if there is a pair; o, T:S¥ — SY of right linear
mappings such that ker(o.7) is not finitely generated.

Proof. 1. By Corollary 7.3 every unification problem has a solution. Thus, if £
is unitary, for every unification problem there exists a most general unifier. Hence,
for every pair of right linear mappings o, 7 the unification problem given by o* and
7* has a most general unifier. By Theorem 7.4, ker(o™*, 7*") = ker(o, 1) is finitely
generated.

Conversely, if for every pair o, 7 of right linear mappings, ker(o,7) is finitely
generated, then Theorem 7.4 implies that a most general unifier exists for every
E-unification problem. Hence, £ is unitary.

2. If € is nullary, then & is not unitary. Hence, part (1) implies that there is a
pair o, 7 of right linear mappings such that ker(o, 7) is not finitely generated.
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e input: left linear mappings o and
o let C,. (", be the matrices describing . 7: S¥ — &Y
e find a generating set {a. | z € Z} of solutions for Cya = Ca

e for every finite set V C Z let Dy be the matrix
whose v4th columnis a,, v € V

o let 6V:S}; — SX be given by Dy

o if Z is finite
then 67 is a most general unifier
else {6y | V C Z. V finite} is a complete set of unifiers

Figure 1: Schema of a unification algorithm for a monoidal theory &

Conversely, if for o, 7 the module ker(o, ) is not finitely generated, then The-
orem 7.5 implies that the set of unifiers of ¢* and 7* does not contain a minimal
element. Hence, there exists no minimal complete set of unifiers for ¢ and 7. O

Example 7.7 It has been proved that the theories AC' [Sti75, LS76], ACI [BBSS],
and AG [LBB84] are unitary for unification without constants, and that ACH is
nullary [Baa89a]. a

The proof of Theorem 7.4 contains the construction for a most general unifier of
o and 7 for the case that ker(o*,7*) is finitely generated. The proof of Theorem 7.5
shows how to construct arbitrarily general unifiers of o and 7 if ker(o*,7*) is not
finitely generated. We can summarize these constructions in the schema of a uni-
versal unification algorithm for monoidal theories. The schema is given in Figure 1.
In order to obtain a full-fledged unification algorithm for a theory £, one has to
provide a procedure that computes generating sets of the solution spaces of linear
equations systems over Sg. In order to understand the schema, note that the matrix
representation of the equation aoc™ = at™ is C,a = C,a.

If we fill into the schema procedures that solve homogeneous equations over
Sac = N, Sact = B, and Sag = Z, we obtain essentially the algorithms that have
been described in the literature for the theories AC [LS76, Sti81], ACI [BB8S], and
AG [LBB84]. We illustrate the algorithm with an example from the theory GAUSS.

Example 7.8 Consider the term unification problem
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() +ys = y2 +1i(y2)
it ystys = oy +i(ye)

for the theory GAUSS. Let X = {zy,22} and Y = {y1,y2,y3}. The problem is
equivalent to the task of unifying the ¥gauss-homomorphisms

o', 7" Foauss(X) — Fgauss(Y)

given by the equations

/ /

10’ = (1) +ys o1 = Yy +1(y2)

/

0’ = y1+ys+ys T =y + i(y2).

lin

Instead of looking for unifiers of ¢’ and 7’ directly we look for unifiers of o := o
and 7 := 7", By Examples 6.12 and 6.13 we know that ¢ and 7 have the matrices

. (io01 . (0 1440
C"“(102> and C’_(l ; 0)'

Since Z & ¢Z is a ring, we can subtract matrices. Thus ker(o*,7*) = {a € Z & iZ |
(Cy — Cr)a = 0}. The solutions of the corresponding equation system!

i —1—i 1\ [ ") (o
0o —i 2)|® )% o
as
are generated by the vector a = (2 4 ¢,2¢,—1). The mapping 6:(Z @ 1Z)* —
(Z & 1Z)%} given by the matrix
241
2

|

is a most general unifier of o and 7. Hence §’ := §"™ is a most general unifier of ¢’
and 7'. It is represented by the substitution

[v1/2 + z +i(2), y2/i(z + 2), y3/i(i(2))].

O

!Since Z®1Z is a euclidean ring, the algorithm for solving linear equation systems over euclidean
rings described in [Sim84] is applicable.
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7.3 Noetherian Theories

We will now look for sufficient conditions for a monoidal theory to be unitary.
Biirckert et al. [BHSS89] called an equational theory & = (¥, E) noetherian? if there
exists no infinite strictly decreasing sequence o; > o, > ... of ¥-homomorphisms
0n: Fe(X) = Fe(Yn),n > 1. By Zorn’s Lemma, this implies that, given a unification
problem, for every unifier § there is a minimal unifier g such that 4 < 6. Hence,
the set of minimal unifiers is a complete set. Therefore, a noetherian theory is not
nullary. Since monoidal theories are either unitary or nullary we have thus identified
a class of unitary monoidal theories.

Proposition 7.9 A noetherian monoidal theory is unitary.

Noetherian rings are algebraic structures that have been extensively studied (see
for example [Jac80]). A commutative ring is noetherian if all its ideals are finitely
generated. Interestingly. this concept is intimately related to the concept of a noethe-
rian monoidal theory. In the following we give a generalized definition that coincides
with the original one if the semiring in question is a commutative ring.

A semiring S is noetherian if for finite sets X every right submodule of the
right module S* is finitely generated. As an example, the ring Z of integers is
noetherian [Jac80]. The following theorem shows how noetherian monoidal theories
and noetherian semirings are connected.

Theorem 7.10 A monoidal theory £ is noetherian if and only if S¢ s a noetherian
semiring.

Proof. We identify ©-homomorphisms between free algebras and left linear map-
pings between free left modules.

“=” Suppose Sg is not a noetherian semiring. Then for some finite set X
there exists a right submodule M of S& that is not finitely generated. We will

inductively define a sequence (Y;)22, of finite sets and a sequence (o,);=, of right

linear mappings 7,: Si” — S such that
e imo, C M
e imo, is a proper subset of imao, 4.

Then o] > 03 > ... is an infinite strictly decreasing sequence of left linear mappings.

Since M # 0, there exists some a; € M. Let Yj := {y;} be a singleton. Define
UI:S}/’ — S& by e,,01 := a;. Obviously, imoy C M. Now, suppose Y, and o, are

2Note that this definition has nothing to do with noetherian term rewriting systems.
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already defined. Then imao, is generated by the finite set {e,0, | y € Y, }. Hence,
imoy, is a proper subset of M, and there exists some a,4; € M \ imo,. Suppose
Yni1 € Yy and let Y,py := Y, W {yn41}. Define o,,1: S — SX by e 0041 := €y0n
fory € Y and ey,,,0n41 := any1. Then imo,yy € M and imo, is a proper subset
of imoy, 4.

“«" Suppose & is not noetherian. Then there exists an infinite descending
sequence of left linear mappings oy > o, > .... By Theorem 7.1, this implies
that imo}, is a proper subset of imo, . Define a submodule M C S& by M :=
Unz, imo;. We will show that M is not finitely generated.

To do so, we first observe that imoy}, is a proper subset of M, since imo; is a
proper subset of imoy;,, € M. Now, suppose that M is generated by some finite set
S. Since S is finite, there must be an index m such that S C ima?. This implies
M = [S] € imo},, which contradicts the fact that imo?¥, is a proper subset of M. O

This characterization gives us a first hint how to identify noetherian theories.
Corollary 7.11 A monoidal theory £ is noetherian if Se is finite.

Proof. If Sg is finite, then for all finite sets X all right submodules of S¥ are
finite and therefore finitely generated. O

Example 7.12 Since Syc1 ~ B has only two elements, the above corollary proves
that ACI is unitary without referring to an algorithm. a

Noetherian semirings and rings have important inheritance properties. It is
folklore in algebra that quotients of noetherian rings are again noetherian [Jac80).
We show that the result holds as well for noetherian semirings.

Theorem 7.13 Every quotient semiring of a noetherian semiring is noetherian.

Proof. Let S be a noetherian semiring and let S be a quotient of §. To prove
the theorem, it suffices to show that for all finite sets X every right submodule of
the right S-module ¥ is finitely generated.

Let k:S — S be the quotient mapping and let X be a finite set. By aa := a(ax)
we define a right scalar multiplication ¥ x & — 8¥ that turns SX into a right
S-module. By ((QI)IE,\)KX = (0zK)zex we define a surjectlve S-linear mapping
kx:SX — SX. Now, let M be a submodule of the right S- -module SX. We have
defined the above scalar multiplication in such a way that M is also a submodule
of SX if considered as a right S-module. Since kx is S-linear, M : M/cx , the
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preimage of M under ky, is a S-submodule of S¥. Since S is noetherian, M is
generated by some finite set S C M.

It suffices to show that M is generated by Sky. To do so, let a € M. There
is some a € M such that @ = aky. Since M is generated by S, there are finitely

many elements a;,...,ax € S and ay,...,ax € S such that ¢ = Zle a;o;. Since
Ky is S-linear, it follows that @ = akyx = Y5 (aiai)kx = S (aikx)(ik). Since
a;k € S and a;kx € Sky, this yields the claim. O

The preceding theorem immediately implies a result for equational theories.

Theorem 7.14 Let £ = (E, E) be a noetherian monoidal theory. If E' is a stable
congruence on L-terms such that E' O E, then £ := (X, E') is again a noetherian
monotdal theory.

Proof. Since E' contains every identity that F contains, it follows that & =
(¥, £') is monoidal and that Fe/(u) is a quotient X-algebra of Fe(u). It remains to
be shown that the canonical semiring Sg/ of £’ is a quotient semiring of Sg, because
then Theorem 7.13 yields the claim.

Let k: S¢ — Sg be the mapping that associates to «, i.e., the endomorphism on
Fe(u) given by [u/t], the element o} € S¢1, i.e., the endomorphism on Fe/(u) given by
the same substitution. If a, = oy, then s =¢ ¢, which implies s =¢ t and o = a;.
Thus, & is well defined. Obviously. s is surjective. Now, it is straightforward to
prove that « is a semiring homomorphism. We have 0k = apk = aop = 0 and
1k = ayk = o, = 1. Thus & respects zero and unit. Moreover, for s, ¢t € Tg(u) we
have (a; + o)k = agph = oy, = o) + ) and (a,00)K = Qupujgk = Qg = X0
Thus & respects addition and multiplication.

Intuitively the above theorem says that given a noetherian monoidal theory, we
may add arbitrary identities and still have a noetherian theory provided we did
not change the signature. This result is in sharp contrast to the general situation.
Adding identities to an arbitrary noetherian theory can produce a theory that is no
longer noetherian. For instance, the theory of associativity is noetherian [BHSS89],
but adding idempotence vields a nullary theory [Baa86, SS86].

Under which circumstances can we add unary symbols to the signature of a
noetherian monoidal theory such that the resulting theory is still noetherian? For
an answer, Hilbert’s Basis Theorem about noetherian rings will be helpful. For a
proof see [Jac80]. :

Theorem 7.15 (Hilbert’s Basis Theorem) If S is a noetherian commutative
ring, then S[X,,...,X,], the ring of polynomials in n indeterminates with coeffi-
cients from S, is again a noetherian commutative ring.
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The following theorem is an easy consequence of Hilbert’s Basis Theorem. It
says that given a noetherian group theory with commuting homomorphisms, one can
safely add finitely many homomorphism symbols and arbitrary identities provided
the new symbols commute with each other and with the homomorphism symbols of
the original theory.

Theorem 7.16 Let £ = (X, E) be a noetherian group theory with commuting ho-
momorphisms. Suppose £ = (¥', E') is such that

1. ¥ =YW {hy,...,h,} for finitely many unary symbols hy,..., h,
2. FoF

3. & s a theory with commuting homomorphisms.
Then £ is again a noetherian group theory.

Proof. It follows from the assumptions that S¢ is a noetherian commutative ring.
We will show that S¢, the canonical semiring of £, is isomorphic to a quotient ring
of Sg[Xy,...,X,]. Since by Hilbert’s Basis Theorem the latter is a noetherian ring,
Theorem 7.14 will imply that Sg/ is a noetherian ring and thus £ is a noetherian
group theory.

There is a E-term ¢ such that x +t =¢ 0. Since E’ is an extension of F, every
identity that holds in & also holds in £. Hence, x +t =g 0. Thus, £ is a group
theory and Sgr is a ring. Moreover, Sg/ is commutative because homomorphisms
commute in &’.

As already mentioned, for all term s, t € Ty(u) we have s =g t if s =¢ t.
Thus we can define a ring homomorphism k¢: S¢ — Sg by mapping o; € S, i.e.,
the endomorphism on Fg(u) given by [u/t], to o} € S, i.e., the endomorphism
on Fgi(u) given by the same substitution. By the universal property of polynomial
rings (see [Jac74]) there exists a unique ring homomorphism x: Sg[ X, ..., X,] — Sg
such that ak = akg for a € S¢ and X,k = a;h(u) fard = ki vl i

Every element o' € S¢ can be represented as «), for some term t' € Tgi(u).
Therefore o' can be obtained by the ring operations from the elements of Sgxg and
Qhy(u)s -+ -y Chn(u)- Lhis implies that « is surjective. Hence, Sg/ is isomorphic to the
quotient of Sg[Xj, ..., X,] by the ring ideal {p | px = 0}. ]

In the preceding theorem the condition that £ is a group theory cannot be
dismissed. As a counterexample consider the theory ACI, which is noetherian.
Adding one homomorphism symbol to ACI leads to a theory, which is nullary and
thus not noetherian [Baa89b]. This is a special case of a general result saying that
adding a single homomorphism symbol to a monoidal theory that is not a group
theory leads to a nullary theory [BN91].
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Corollary 7.17 A group theory with finitely many commuting homomorphisms s
noetherian.

Proof. Let £ = (X, F) be a group theory with finitely many commuting homo-
morphisms. Since £ is a group theory, there exists a ¥-term ¢ such that z +¢ =¢ 0.
Without loss of generality we can assume that ¢ contains no other variable than z.
We assume as well that the unary symbol “—” does not occur in the signature X. Let
¥ := X U{-}, and let E’ be the stable ¥'-congruence generated by F U {—z = t}.
We denote the theory (X', E') as £'. Since the new symbol “—” can be expressed
in terms of the signature X, we have S¢ >~ Sg. Hence, £ is a group theory with
commuting homomorphisms. Moreover, £ is an extension of AG that satisfies the
conditions of Theorem 7.16. Since AG is noetherian, this yields the claim. O

Example 7.18 The above corollary implies that AGH and GAUSS are noetherian.
El

Unfortunately, Hilbert’s proof is not constructive. No general method is known
to find a generating set for submodules of S[X;, ..., X,]" if one has generating sets
for the submodules of S¥. Therefore, devising unification algorithms for arbitrary
group theories with commuting homomorphisms is still an open problem. Baader
[Baa90] describes a method for solving linear equations over the ring Z[X,,..., X,]
thus furnishing the cornerstone of a unification algorithm for the theory of abelian
groups with commuting homomorphisms.

8 Unification with Constants

In applications it is rarely sufficient to solve elementary unification problems (cf. Sub-
section 2.3). Problems containing free constants arise naturally through skolemiza-
tion and in problems for combinations of theories. In the previous section we investi-
gated unification problems without constants in a monoidal theory £, which turned
out to be equivalent to systems of homogeneous linear equations over the semir-
ing Sg. In this section we will show that unification problems with free constants
translate to systems of inhomogeneous linear equations over Sg.

8.1 The Problem
First, we adapt our framework to unification with constants.
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General Assumption. As before, we assume that £ = (X, E) is a monoidal the-
ory. Moreover, we assume that C is a finite set of free constants that is disjoint
from the set of variables.

We want to solve £-unification problems that contain free constants from the
set C. We may assume that C' contains the constants occurring in the unification
problem at hand. Free constants can be viewed as special variables which are not
allowed to be instantiated. In the previous section, where we considered unifica-
tion without constants, we modeled unification problems and unifiers as arbitrary
Y-homomorphisms between finitely generated free £-algebras. To deal with prob-
lems containing free constants we consider ¥-homomorphisms that do not move the
elements of C.?

We say that a ¥-homomorphism o: Fe(X UC) — Fe(Y UC) respects constants if
co = cfor all c € C. A unification problem with constants is presented by a parallel
pair o, T: Fe(X U C) — Fe(Y U ') where o and 7 respect constants. We say that
O: Fe(YUCC) - Fe(ZUC) is a unifier with constants of o and 7 if 06 = 76 and §
respects constants.

Next we modify the instantiation preorder so as to cope with constants. If §, n
respect constants, then we write § < nif n = § A for some A that respects constants.
Obviously, the relation “<¢” is a preorder. The strict part of “<c” is denoted as
“<c”. Complete sets and minimal complete sets of unifiers with constants are
defined in terms of the preorder “<¢.”

”

As in the preceding section we translate unification problems for ¥-homomor-
phisms into unification problems for left linear mappings. We say that a left linear
mapping 0:SFYC — SYYC respects constants if o"°™: Fe(X U C) — Fe(Y UC)
respects constants. Obviously, this is the case if and only if ¢ does not move the
unit vectors e., that is e.o = e, for all ¢ € C. Similarly as above, we define for left
linear mappings the notion of a unifier with constants and the instantiation preorder
“<¢.” It follows from this definition that for all left linear mappings o, 7, é, and 75
we have that é is a unifier with constants of o and 7 if and only if §"™ is a unifier

with constants of "™ and 7M™ and that § <¢ n if and only if Gl o= T]hom.

In the following, we will investigate the structure of left linear mappings that
respect constants and characterize the preorder “<c.” Suppose o: SXYC — S¥VC
respects constants. Then the fact that e.c = €. for all ¢ € C implies that the matrix

C, has the form

c; C.
C":< 0 I )

where C? is a X xY-matrix, C! is an X xC-matrix, and [ is the C' xC-unit matrix.

3This idea first appeared in [Baa89a).
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The superscripts -* and - are chosen so as to indicate that in unification problems
Ch and C! will give rise to homogeneous and inhomogeneous linear equations, re-
spectively. The matrices C” and C! describe left linear mappings o4: S¥ — SY and
0: S — SE. Obviously, o is uniquely determined by o} and o;.

Conversely, if 7: S¥ — SY and u: S¥ — 8¢ are arbitrary left linear mappings,
then there exists a unique left linear mapping (n, u): SEYC — SYYC that respects
constants such that (n,u), =7 and (9, ), = p. The mapping (n, ) is given by the
matrix s

; c, C
con=(% )

The next proposition shows how the components of the product of mappings
that respect constants are related to the components of the factors.

Proposition 8.1 Suppose 0:SFYC — SYYC and 1:S¥YC — SZYC respect con-
stants. Then ot respects constants and ot = (UhTh,O'hTi + a,-).

Proof. The proof is by a straightforward matrix calculation:

Y e IR e S
Gag Sk akie, = ( 0 I )( 0 1)

s C:C:} Fﬁp; + Ccir s Cl’h Th CUhT.+0.
N 0 4 ¥ 0 I :

O

The following definitions will be used to characterize the preorder “<s.” Let
M be a right submodule of S¥. If a € S&, then the coset of M for a is the set
a+M :={a+m |m € M}. We define a binary relation “<j” on S& by a <p o’ iff
a+ M D a + M. Note that a <p o’ if and only if ¢’ € « + M. Obviously, “<p” is
a preorder, since “27 is a preorder. We extend this preorder to left linear mappings
A, y:Sg" — Sgc by defining A <ps p iff e A" <ps e u* for all ¢ € C. Evidently, “<jps”
is again a preorder. The strict parts of “<p;” and “<),” are denoted as “<jp;” and
“'<M~”

”

The preorder “<c” can be characterized in terms of the usual instantiation
preorder “<” and the preorder “<y,”.

Theorem 8.2 Suppose &:S&°C — SYYC and 1: SAC — SZYC respect constants.
Then the following are cquivalent:

e 6<c
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® b6p <y and 6; X m; where M = im 6.

“ Proof. Suppose that é <¢ 7. Then there is some \: SYY¢ — SZ“C that respects
constants such that n = §A. By Proposition 8.1 we have 5, = §,A,. Thus §, < Nh-
Furthermore, by 8.1 we have n; = §;\; + §;. If ¢ € C, then e’ = e( A6 + 87) =
b7 + e AT, € €67 + iméj. Hence, e.67 <p e.n; where M = im 6}.

Suppose that 6, < n, and §; <p n; where M = imdjy. It suffices to show that
there exist linear mappings Ay: S} — SZ and \i:SY — S such that Nh = OpAp
and 7n; = 6,A; + 6;. Since 8, < ny, the existence of A\, is guaranteed. To prove the
existence of A;, observe that for all ¢ € C, we have en; € e.d7 + imé;. Hence there
exist a. € S§ such that e.n; = a.6; + e.67. There exists a unique ); such that for
all ¢ € C we have e.\} = a.. This implies that 57 and A\!é; + &7 agree on the unit
vectors of Sg, hence they are equal. By dualization, we obtain N = OpA; + 6;. O

8.2 Complete Sets of Unifiers with Constants

If a monoidal theory is nullary for unification without constants, then it is also
nullary for unification with constants. Therefore we restrict our attention to theories
that are not nullary for unification without constants and thus are unitary.

General Assumption. [n the rest of this section, if nothing else is said, we
assume that £ is a monoidal theory which is unitary with respect to unification
without constants.

We first investigate the structure of unifiers with constants. Suppose that o,
7:SFYC — SYVYC respect constants and § is a unifier with constants of o and 7.
Then 06 = 76. By Proposition 8.1 this is equivalent to

(Ohéh, onbi + ai) = (Thbp, Théi + 7).
Both sides of this equation are equal if and only if the first and second components
are equal, that is

Ohon = Théy
onbi + 0 = Tho + 7.
The first equation means that ¢, is a unifier of o), and 7. By the results of Sec-
tion 7 we know that the component 6, of 6 can be computed by solving a system of

homogeneous equations. The condition imposed on é; by the second equation will
be captured by the following definition.

Let o, 7 be as above. A left linear mapping 7: SY — S& is an inhomogeneous
solution for o and T if
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OrN + 0i = TaN) + Ti.

We denote the set of all inhomogeneous solution for o and 7 as Z(o, 7).

We can now give a first characterization of unifiers with constants.

Proposition 8.3 Suppose o, 7:S¥YC — S¥YC and §:SYYC — SZYC respect con-

stants. Then § is ¢ unifier with constants of o and 7 if and only if 6, is a unifier of
o and 1, and &; is an inhomogeneous solution for o and T.

In Theorem 8.2, we have characterized the preorder “<¢” by showing that § <¢ g
if and only if &, < n, and & <um n; where M = imé;. This characterization has the
disadvantage that the preorder “<y” depends on one of the mappings, namely 6.
If we restrict "< to unifiers with constants é such that é, is most general, then
“<p” no longer depends on the mappings involved.

Proposition 8.4 Let o, 7:SFYY — SYYC be mappings that respect constants, and

let K := ker(o}, 7). Suppose &, n are unifiers with constants of o and 7 such that
both &, and nu are most general unifiers of o, and 7,. Then 6 <c n if and only if
(‘71' =K UIE

Proof. Since &, and 7, are both most general unifiers of o, and 7, we have
6n < ni. Furthermore, we know by 7.2 that imé; = ker(o}, ;) = K. Hence, § <¢ 7
if and only if 6, < ny and &; <k 7i, which yields the claim. O

Consider the unification problem with constants that is given by two mappings
o and 7. Let K := ker(o},7;). Then “<x” is a preorder on I(o,7), the set of
inhomogeneous solutions for o and 7. A subset of Z(o,7) is a complete or minimal
complete set of inhomogeneous solutions if it is a complete or minimal complete
subset with respect to the preorder "<,

If U is a set of unifiers with constants of o and 7, then we define
Iy := {6 | 6 € U and 6, is a most general unifier of o, and Th}.

Obviously, Iy is a set of inhomogeneous solutions.

Theorem 8.5 Suppose . 7:SEYC — SYYC réspect constants and U is a set of
unifiers with constants of o and 7. Then

1. I is a complete set of inhomogeneous solutions if and only if U is a complete
set of unifiers with constants
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2. Iy is a minimal complete set of inhomogeneous solutions if U is a minimal
complete set of unifiers with constants.

Proof. Let K := ker(o}, 7).

1. “=” Suppose Iy is a complete set of inhomogeneous solutions. Let n be a
unifier with constants of o and 7. We will show that there is some § € U such that
6 <cn.

By 8.3 we know that 7; is an inhomogeneous solution for ¢ and 7. Since Iy is
complete, there exists some § € U such that §; <x 7,. Moreover é, < n;, since ny, is
a unifier of o, and 7, and §;, is most general. By 8.2 and the fact that imé; = K
this implies 6 <¢ 7.

“«<” Suppose U is a complete set of unifiers with constants. Let n” be an
inhomogeneous solution for ¢ and 7. We will show that there is a 6 € U such that
o 1s a most general unifier of o4 and 75, and §; <g n”.

Let n’ be a most general unifier of o, and 7, and let n := (n’,n"). Then 7 is a
unifier with constants of o and 7. Hence, there exists some § € U such that § <¢ 7.
By 8.2 this implies 6, < n, = ’. Since 1’ is most general, 8, is most general, which
means that §; € I;;. Thus é <¢ n implies §; <x n; = n” by Proposition 8.4. This
shows that ¢ is the required element of U.

2. Suppose that {/ is a minimal complete set of unifiers with constants. By part
(1) we know that [ is a complete set of inhomogeneous solutions. Thus it suffices
to show that any two elements of [;; are independent with respect to “<g”. The
minimality of U implies that d, is a most general unifier of o, and 7, for every
6 € U. Hence 6, < ny, for all 6, n € U. If there are 6, n € U such that é; <g n;,
then Proposition 8.4 implies that 6 < 7. Hence § = n and therefore é; = 7,. O

Note that the converse of part (2) of the preceding theorem does not hold. It is
only true if 0, is a most general unifier for all § € U.

We have seen that from a complete set of unifiers one can construct a complete
set of inhomogeneous solutions. We will show that, conversely, from a complete set
of inhomogeneous solutions one can construct a complete set of unifiers.

If I is a set of inhomogeneous solutions for ¢ and 7, and ¢ is a most general
unifier of o, and 7, then we define

Up == {(6,n) | n €I}

The set U} consists of all combinations of § and the elements of I. Obviously, U is
a set of unifiers with constants of o and 7.
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Theorem 8.6 Suppose o, 7:SEYC — SYYC respect constants. Let & be a most

general unifier of o, and T, and I a set of inhomogeneous solutions for o and 7.
Then U¢ is a (minimal) complete set of unifiers with constants if and only if I is a
I Y

(minimal) complete set of inhomogeneous solutions.

Proof. Observe that by construction of U} we have Iys = I. Thus, we know

by Theorem 8.5 that U/¢ is complete if and only if I is complete, and that I is a
minimal complete set if U¢ is a minimal complete set.

It remains to be shown that U! is a minimal complete set if I is a minimal
complete set. Let K := ker(of,7;). Assume by contradiction that Uj is not a
minimal complete set. Then there exist n, n’ € I such that (6,7) <c¢ (6,n) and
(6,n) # (8,n'), i.e., n # eta’. Since § is a most general unifier of o4 and 7, this
implies n <x 7', which contradicts the minimality of /. O

8.3 Complete Sets of Inhomogeneous Solutions

In the previous subsection we have reduced the problem of finding complete sets of
unifiers with constants to the one of finding complete sets of inhomogeneous solu-
tions. In this section we show that a unification problem with constants gives rise to
a family of systems of inhomogeneous linear equations, and that an inhomogeneous
solution has to solve this family simultaneously.

Suppose o, 7: S¥YC — SYYC respect constants and 7 is an inhomogeneous solu-
tion for o and 7. Then

Owl) + 00 = Thl + T
holds. By dualization, this is equivalent to

o, +o; =0T, + 1.
Since the mappings on both sides of the equations are determined by their values
on the unit vectors ¢, € S§, this is equivalent to the condition

enon +eo; =en'1, +e1; forallceC. (1)

Equations (1) state that for every ¢ € C the vector e.n® must satisfy a certain
inhomogeneous linear equation.

We extend our formalism so that we can handle also inhomogeneous equations.
We say that a mapping ¢:SY — S& is affine if there exist a right linear mapping
A:SY — SX and a vector b € S& such that

4 )
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ap=al+b forallacS).

We will write such a mapping as ¢ = A + b. The idea behind this definition is that
linear mappings correspond to homogeneous linear equations while affine mappings
are related to inhomogeneous equations.

As for linear mappings, the kernel of affine mapppings ¢, 1: S¥ — SX is defined
as

ker(¢,%) := {a € S | ag = ap)}.

In general, kernels of affine mappings are not submodules of SY. If $ = A + b and
Y = p +d, then ker(¢,) is the set of solutions a to the inhomogeneous equation

al+b=ap+d. (2)

If S¢ is a ring, then this equation is equivalent to a(A — u) = d — b. However, since
subtraction need not exist in arbitrary semirings, inhomogeneous linear equations
over S¢ are in general of the form (2).

Condition (1) can now be reformulated by saying that every vector e.n* has to
be an element of the kernel of two particular affine mappings that are obtained from
o and 7. For a mapping o: SFYC — SYVC that respects constants and ¢ € C we

define the affine mapping ¢°: S§ — S¥ as

o =0} + e.o0;].

With this definition we can characterize inhomogeneous solutions in terms of kernels
of affine mappings.

Proposition 8.7 Suppose o, 7: S¥YC — SYYC respect constants. Let n:S¥ — SE
be left linear. Then n is an inhomogeneous solution for o and T if and only if
e.n” € ker(o¢,7¢) for all c € C.

Our next goal is to characterize complete sets of inhomogeneous solutions.

Proposition 8.8 Suppose o, 7: S¥YC — SYYC respect constants, and I is a set of
inhomogeneous solutions for o and v. Let K := ker(o}, 7). Then I is complete if
and only if for every family of vectors (a.)cec with a. € ker(o®,7¢) there exists some
n € I such that e.n™ <k a. for all c € C.

Proof. “=” Suppose I is complete. Let (a.)ccc be a family with a, € ker(o®, 7°).
There exists a unique left linear mapping u:SY — S¢ such that eu* = a.. By
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Proposition 8.7, the mapping 4 is an inhomogeneous solution. Since I is complete,
there exists some 7 € I such that n <x p. Hence e.n* <g e.p* = a. for all c € C.

“&” Suppose that for every family (a.).cc with a. € ker(c®, 7¢) there exists
some n € I such that e.n* <k a. for all c € C. We show that I is complete. Let
p be an inhomogeneous solution for o and 7. Then (e.u*)cec is a family of vectors
with e.u* € ker(o°,7°). There exists some € I such that e.n” <¢ e.u” for all
c € C. This yields n <x p by definition of “<Xg”. O

The preceding proposition suggests to look for subsets of ker(c¢,7¢) that are
complete for the preorder “<x”. Since such sets will play an important role in our
theory, we provide a name for them. Let M be a right submodule of SX and T be a
subset of SEX. A set S C T that is is a complete subset of T' for “<;,” will be called
an M-cover of T'.

In the context of inhomogeneous equations, a cover can be understood as a set
of solutions that represents all solutions. More precisely, if A+ b and p + d are affine
mappings, and S is a ker(\, u)-cover of ker(A + b, + d), then every solution a of
the inhomogeneous equation a\ + b = ap + d can be expressed as the sum of an
element of S and a solution @’ to the homogeneous equation a’A = a’p.

Proposition 8.9 Let A + b, u + d:SY — S¥ be affine mappings and let S C
ker(A + b, + d). Then S is a ker(A, p)-cover of ker(A + b, u + d) if and only if

ker(A + b, u + d) = | J a + ker(X, p).

a€sS

Proof. To shorten our notation, we use the abbreviations K := ker(A, p) and
Ky g := ker(A + b, pu + d).

“=” Suppose S is a K-cover of K;4. We show that K4 = Usesa + K. Let
a' € Kyy4. There exists some a € S such that « <y d', that is ¢’ € a + K. This
proves the inclusion “C”. Let a € S C K, 4 and @’ € K. Then aA +b=ap+d and
a’\ = a’p. From this it follows that (a +a’)A+b = (a+a')u+d. Thusa+a' € K4,
which yields the inclusion “2”.

“&<" Suppose Nyg = Uzesa + K. We show that S is a K-cover of K, 4. Let
a' € Ky4. Then there is some a € S such that a’ € a + K. Hence a <k d'. O

The statement of the above proposition can intuitively be rephrased as follows:
a set S is a ker(\, u)-cover of ker(A + b, + d) if and only if the cosets of ker(\, u)
for the elements of S cover ker(A + b,u + d). This property motivated the name
“cover”.

It is known that one solution suffices to represent all solutions of an inhomoge-
neous equation over a ring.
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Proposition 8.10 Suppose Sg is a ring. Let X\ + b, p + d:S¥ — SX be affine
mappings. Then for every a € ker(A+b, u+d) the singleton {a} is a ker(\, p)-cover
of ker(\ + b, p + d), that us,

ker(A + b, p + d) = a + ker(X, p).

Proof. Let K := ker(\,p) and Ky g := ker(A + b, u + d).

Suppose a € K, 4. We show that K, 4 = a + K. The inclusion “2” is valid for
arbitrary semirings. A proof for this fact is contained in the proof of Proposition 8.9.
To prove the inclusion “C”, let a’ € K} 4. Since a, a’ € K 4, we have aA+b = ap+d
and a’\ + b= a’u + d. From this we conclude that (a’ —a)A = a’A +b— (aX +b) =
a'p+b—(ap+0b)=(a’"—a)u, hencea’ —a € K. Thusa’' =a+(a'—a)€a+ K. O

Our next step is to relate covers to complete sets of inhomogeneous solutions.

If a = (ac)eec is a familiy of vectors in S, then we denote with na:S¥ — S&
the unique left linear mapping that satisfies e.nz = a. for all c € C.

Let S = (S.)cec be a family of subsets of S} Then we define the set of linear
mappings Ig by

Is := {na } a € [lec Sc},

where [].cc S. is the cartesian product of the S., that is, the set of all families
a = (a.)cec such that a. € S..

Theorem 8.11 Let o, 7: SFYC — SYYC respect constants, and let K := ker(o};, 77).
Suppose S = (S.)cec 1s a family of sets such that S, is a K-cover of ker(c®,7¢) for
every ¢ € C. Then:

1. Is is a complete set of inhomogeneous solutions for o and T

2. Is is a minimal complete set of inhomogeneous solutions for o and T if each
S. is a minimal K -cover of ker(c®, 7).

Proof. 1. We prove the claim using Proposition 8.8. Let (a.).cc be a family of
vectors such that a. € ker(c¢,7¢) for all ¢ € C. Since each set S. is a K-cover of
ker(o°, 7¢), there exists for every ¢ € ' an element b. € S. such that b. <k a.. Let
b := (b.)cec. Then ny € Is and eqf, = be <y a..

2. Assume that Ig is not minimal. Then there exist na, np, € Ig such that a # b
and 7a <k Tb. Let a = (a.)cec and b = (b.)cec- Since a # b, there is some
c € C such that a. # b.. From na <k np we obtain a. = e.n; <k ey, = be, which
contradicts the minimality of S.. O
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SXUC

e input: mappings o, 7: S&YY — SYUYC that respect constants

hoovi hoovi
o let ( C(;" C}” ), ( COT CIT > be the matrices describing o, 7

e let D" be a matrix representing a most general unifier of o and 7"

e for c € (Alet b. and d. be the c-th column of C; and Ci, respectively
o'let K= {a €S | Cha =Cla)
e for c € C find a (minimal) K-cover S, of {a € S | Cta +b. = Clta +d.}

e the set of matrices

h i
{( DO 13 ) ‘ the e-th column of D' is in S, }

represents a (minimal) complete set of unifiers with constants of o and

Figure 2: Schema of an algorithm for unification with constants

Since an algorithm for computing covers, that is for solving inhomogeneous linear
equations, will depend on the structure of the semiring S¢ a general theory cannot
be developed beyond the preceding theorem.

8.4 Computing Complete Sets of Unifiers with Constants
By Theorem 8.11 we know how to obtain complete sets of inhomogeneous solutions

for 0 and 7. By Theorem 8.6 we can combine such a set with a most general unifier
of o, and 7, to construct a complete set of unifiers with constants.

Theorem 8.12 (Unification with Constants) Suppose o, 7: SXYC — SYYC re-
spect constants. Let 6 be a most general unifier of oy and 14, and let S = (S.)cec be
a family of sets such that S. is a (minimal) ker(oj, 7)-cover of ker(o®, 7¢) for every

ce C. Then
U?S = {(5, Na) ’ a € [lec 5c}

is a (minimal) complete set of unifiers with constants of o and 7.
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From Theorem 8.12 we derive the schema of an algorithm that computes com-
plete sets of unifiers with constants. We present it in Figure 2. To make it
work for a theory £, two procedures have to be provided: when given X xY-
matrices Cy, C; over Sg, the first one computes a generating set of vectors for
K := {a € 8 | C1a = Cya}, and the second one computes for arbitrary vectors
by, by € SY a K-cover of {a € S | Cra+ by = Cya + by}. Loosely speaking, the first
procedure solves homogeneous linear equations over Sg, and the second one solves
inhomogeneous equations.

When computing unifiers with constants, every constant gives rise to its own
inhomogeneous equation that is independent from other constants. In order to
construct a complete set of unifiers with constants the solutions to each of these
equations have to be combined in all possible ways with the solutions corresponding
to other constants.

Most of the algorithms which have been given in the literature for unification with

constants in the theories AC [LS76, HS87], ACI [BB88], and AG can be obtained
as instances of the schema. As to AG, the optimized algorithm in [LBB84] is the
one that corresponds to our approach. Remarkably, Stickel’s algorithm for AC-
unification with free constants [Sti81] uses a different technique.

As an illustration, we apply the schema in Figure 2 to a problem in the theory

GAUSS.

Example 8.13 Consider the term unification problem
) +ys+ila) +ea = ya+i(y2) + e +ilar) +i(i(i(c2)))
yitystysteatie) = ptiy)+at+a

in the theory GAUSS. Let X := {z;,22}, Y := {y1,92,v3}, and C := {c1,c;}. The
above term unification problem is equivalent to the unification problem for the two
constant respecting mappings

o', 7" Faauss(X U C) — Faauss(Y U Q)

which are given by the equations

o' = i) Fys+i(a) + e

290" = y1+ys+ys+a +i(c)

T’ =y +i(y2) + o +ila) +i(i(i(e))

o = oy + y2) +a+a
and ¢;0' = 17’ = ¢, and ¢0’ = 37’ = ¢s.

In order to solve the unification problem for ¢’ and 7" we consider the analogue

problem for o := 0'"™ and 7 := 7" The mappings o4 and 7, are described by the
matrices
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while o; and 7; have the matrices

1asaignt -t e i) g S g
("'_(li> and C,-( 9 0).

We already knov'v from Example 7.8 that the matrix

241
D=} 2
—1
represents a most general unifier ol o and 7.

It remains to solve the inhomogeneous equations corresponding to the constants
c; and c;. The ¢;-th columns of C? and C} are

il “oif ey
bc‘_(l) and dcl—< 9 )

Since Z §¢Z, the canonical semiring of the theory GAUSS, is a ring, the inhomoge-
neous equation C"*a + b., = Cha + d., is equivalent to (C* — C")a = d., — b,, and
any solution for this equation provides a ker(oj, 7 )-cover of ker(o®, 7). Therefore
it suffices to find one solution to the equation

il Sd - T NP i
TR of el B E
as

The vector a = (1.7.0) is such a solution. Hence, the set {(1,7.0)} is a ker(o}, 7} )-
cover of ker(o'.7).

For the constant ¢, we have to solve (C" — ("o = d., — b,, that is

A, DO BN e
(R 1 S i R
as

The vector a = (0,1,0) is a solution to this equation. Hence, the set {(0,1,0)} is a
ke"(aﬁa T}I)‘COVG[‘ of 1\'61'(002 : 762 )

Combining the covers computed for the two constants we obtain the matrix
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Il
O S =
o = O

Now, the singleton set containing
D" D
p=(5 )

represents a complete set of unifiers with constants of ¢ and 7. From D we can
compute a unifier §’ of o’ and 7', which is represented by the substitution

[y1/2 4+ 2+ i(2) + a1y y2 iz + 2) +i(er) + 2, y3/i(i(2))]

8.5 Characterization of the Unification Type

We now characterize the unification type of a monoidal theory with respect to uni-
fication with constants by algebraic means.

A semiring is of cover type infinitary if for all right linear mappings A, p and
vectors b, d there exists a minimal ker(A, p)-cover of ker(A+ b, u + d). A semiring is
of cover type finitary or unitary if there always exists such a minimal ker(\, pu)-cover
that is finite or a singleton, respectively. A semiring is of cover type nullary if it is
not of type infinitary.

Example 8.14 By Proposition 8.10, every ring is of cover type unitary. Obviously,
a finite semiring is of cover type finitary. Thus the boolean semiring B is of cover
type finitary. The semiring of natural numbers N is of cover type finitary. O

As the main result of this subsection we show that for a monoidal theory £ the
unification type for unification with constants and the cover type of Sg are the same.

Theorem 8.15 Let £ be a monoidal theory that is unitary for elementary unifica-
tion. Then £ is unitary, finitary, infinitary, or nullary for unification with constants
if and only if S¢ is of cover type unitary, finitary, infinitary, or nullary, respectively.

Proof. The claim on type nullary is equivalent to the claim on type infinitary,
since a theory is nullary if and only if it is not infinitary, and a semiring is of cover
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type nullary if and only if it is not of cover type infinitary. It remains to show the
claim on the types infinitary, finitary, and unitary.

“=" Suppose that £ is infinitary (finitary, unitary) with respect to unification
with constants. We show that Sg is of cover type infinitary (finitary, unitary).

Let A, p:SY — S¥ be right linear and b, d € S¥. Without loss of generality
suppose that C' = {c} contains a single constant. Let o, 7: S¥YC — S¥“C be the
constant respecting mappings that satisfy oy = A, e.o7 = b, and 75 = p, e. 77 = d.

Observe that 0 = A+ band 7° = p + d.

Since & is infinitary with respect to unification with constants, there exists a
minimal complete set U of unifiers with constants of o and 7. By Theorem 8.5, the
set

Iy = {6; | 6 € U and §, is a most general unifier of o, and 74}

is a minimal complete set of inhomogeneous solutions for o and 7 that has the same
cardinality as U. By Proposition 8.8, for every vector a € ker(c®, 7¢) there is some
n € Iy such that e.n* <y a, where K := ker(o},7;). Hence, S := {en* | n € Iy}
is a K-cover of ker(c°,7°). Every n € Iy is uniquely determined by the value e.n*.
Thus Iy and S have the same cardinality. Since for any 6, n € Iy we have § <k 7
if and only if e.6* <y e.n*, the minimality of Iy entails the minimality of S.

Now observe that K = ker(o}, ) = ker(A,u) and that ker(o®,7°) = ker(A +
b, + d). Hence, S is a minimal ker(A, p)-cover of ker(A + b, u + d) that has the
same cardinality as U.

“&” Suppose that Sg is of cover type infinitary. We show that for every unifi-
cation problem with constants there exists a minimal complete set of unifiers with
constants.

Let o, 7: SXY¢ — SYYC respect constants. Since & is unitary, there exists a most
general unifier § of o, and 74. Since Sg is of cover type infinitary, there exists for
every constant ¢ € C' a minimal ker(c}, 71 )-cover S. of ker(c¢, 7¢). By Theorem 8.12,
U = {{6,ma) ‘ a € [l.ec Sc} is a minimal complete set of unifiers with constants of
o and 7. This proves that £ is infinitary for unification with constants if Sg is of
cover type infinitary.

Obviously, the cardinality of U is the product of the cardinalities of the covers S..
Therefore, U is finite if each S. is finite, and U is a singleton if each S. is a singleton.
This proves that &£ is finitary or unitary for unification with constants if S¢ is of
cover type finitary or unitary, respectively. O

The above theorem allows us to draw a series of immediate conclusions, which
are given in the following corollaries.
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Corollary 8.16 Let £ be a monoidal theory such that S¢ is finite. Then & is finitary
with respect to unification with constants.

Proof. If S¢ is finite, then £ is unitary by 7.11, and Sg¢ is of cover type finitary.
Thus € is finitary with respect to unification with constants. O

Corollary 8.17 Let £ be a group theory. Then £ has the same type with respect to
unification with constants as with respect to unification without constants.

Proof. By Theorem 7.6 we know that & is either unitary or nullary. If £ is
unitary then & is also unitary with respect to unification with constants, since S¢ is
a ring and rings are of cover type unitary. If £ is nullary then & is also nullary with
respect to unification with constants. O

Corollary 8.18 (Unitary-Or-Nullary) Let £ be a group theory. Then £ is either
unitary or nullary with respect to unification with constants.

Corollary 8.19 A unitary group theory is also unitary with respect to unification
with constants.

Corollary 8.20 A group theory with finitely many commuting homomorphisms is
unitary with respect to unification with constants.

Proof. By Corollary 7.17 a group theory with finitely many commuting homo-
morphisms is noetherian and thus unitary. O

Example 8.21 It follows from 8.20 that AG, AGH, and GAUSS are unitary with
respect to unification with constants.

Corollary 8.16 implies that ACI is finitary with respect to unification with con-
stants. It has been shown that ACT is not unitary [BBSS].

It is well-known that AC' is finitary with respect to unification with constants,
but not unitary [LS76]. O

Until now we only know examples of unitary monoidal theories that are unitary
or finitary with respect to unification with constants. In particular, we do not know
whether unitary monoidal theories exist which are infinitary or nullary with respect
to unification with constants. Since semirings and monoidal theories are closely
related, the question whether such theories exist can be reformulated algebraically:
Is there a semiring such that for every system of homogeneous equations the set of
solutions is a finitely generated right module, but there is a system of inhomogeneous
equations such that the corresponding set of solutions is not a finite union of cosets?
By Corollary 8.17 we already know that such a semiring would be a proper semiring.
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9 Conclusion

Many special monoidal theories, like AC, ACI, and the theory of abelian groups,
turned out to be important in automated deduction. They have been built into the
unification algorithms of theorem provers and into Knuth-Bendix-like completion
procedures for term rewriting systems.

All of these theories have the common characteristic that unification problems
can be reduced to linear equation systems over a semiring. For problems without
constants the systems are homogeneous. If constants are present, inhomogeneous
systems have to be solved in addition. In the case of elementary unification, problems
either have a most general unifier, or arbitrarily general unifiers exist. In the case
of unification with constants we have a similar result for group theories: a group
theory has the same unification type with constants as it has without constants.
In particular, group theories with finitely many commuting homomorphisms are
unitary without and with constants. :

Since the reduction of a given unification problem to linear equations is the same
for all monoidal theories, we have been able to set up a general schema for unification
algorithms. This has to be filled with a solution procedure for linear equations in
order to yield a complete unification algorithm.

Since such an algorithm depends on the structure of the semiring, the general
theory cannot go further. But algebra can still provide useful techniques. For
instance, if the semiring is a field, Gauss’s algorithm can be employed. A variant
of Gauss’s algorithm exists for solving linear equations over euclidean rings [Sim84].
Examples of such rings are the integers or the gaussian numbers. This yields, for

instance, algorithms for the theories AG (cf. [LBB84]) and GAUSS.

In other cases special methods have to be developed. The widespread use of AC-
unification motivated rescarch on efficient algorithms for solving linear equations
over the natural numbers [BCD90, CI'89, Dom91, Hue78]. The paper by Baader
and Bittner [BB88] on unification in ACI implicitly contains an algorithm for solv-
ing systems of linear equations over the boolean semiring B, although it seems that
the authors were not aware of this fact. Applying Grobner Base techniques, Baader
devised algorithms for the rings Z[X;,..., X,] and Z(X;,...,X,) of polynomials
over the integers with commuting and noncommuting variables. These rings cor-
respond to the theories of abelian groups with n commuting and noncommuting
~homomorphisms. respectively [Baa90].

In [BN91] it has been shown how a unification algorithm for a monoidal theory
& = (X, F) can be used for certain conservative extensions of £. If H is a monoid,
then the theory £(H) is obtained from £ by adding a set of generators of H to X,
where they are considered as unary function symbols, and by adding to E identities
which express that the new function symbols are composed in the same way as
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the corresponding elements of the monoid H. For example, the theory ACH can
be obtained from AC by adjoining a free monoid with one generator. The theory
E(H) is a conservative extension of £. The semiring Sg(py of E(H) is isomorphic
to the monoid semiring Sg(H ), which is obtained from Sg by adjoining the monoid
H. Exploiting this algebraic structure, it has been shown in [BN91] how for finite
monoids H an algorithm for £ can be extended to an algorithm for £(H).
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