A Feature-based Constraint System
for Logic Programming with Entailment

Hassan Ait-Kaci* Andreas Podelski* Gert Smolka!

Abstract

This paper presents the constraint system FT, which we feel is an in-
triguing alternative to Herbrand both theoretically and practically. As
does Herbrand, FT provides a universal data structure based on trees.
However, the trees of FT (called feature trees) are more general than
the trees of Herbrand (called constructor trees), and the constraints
of FT are finer grained and of different expressivity. The basic no-
tion of FT are functional attributes called features, which provide for
record-like descriptions of data avoiding the overspecification intrinsic
in Herbrand’s constructor-based descriptions. The feature tree struc-
ture fixes an algebraic semantics for F'T. We will also establish a logical
semantics, which is given by three axiom schemes fixing the first-order
theory FT.

FT is a constraint system for logic programming, providing a test
for unsatisfiability, and a test for entailment between constraints, which
is needed for advanced control mechanisms.

The two major technical contributions of this paper are (1) an
incremental entailment simplification system that is proved to be sound
and complete, and (2) a proof showing that FT satisfies the so-called
“independence of negative constraints”.

*Digital Equipment Corporation, Paris Research Laboratory (PRL), 85 avenue Victor
Hugo, 92500 Rueil-Malmaison, France (email: {hak,podelski}@prl.dec.con).

TGerman Research Center for Artificial Intelligence (DFKI) and Universitat
des Saarlandes, Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, Germany (email:
smolka@dfki.uni-sb.de). Supported in part by the Bundesminister fiur Forschung und
Technologie under contract I'TW 9105.

Contents

1 Introduction

2 Feature Trees and Constraints

3 Basic Simplification

4 Entailment, Independence and Negation

5 Entailment Simplification

6 Conclusion

12

14

20

1 Introduction

An important structural property of many logic programming systems is the
fact that they factorize into a constraint system and an extension facility.
Colmerauer’s Prolog II [8] is an early language design making explicit use of
this property. CLP (Constraint Logic Programming [10]), ALPS [16], CCP
(Concurrent Constraint Programming [21]), and KAP (Kernel Andorra Pro-
log [9]) are recent logic programming frameworks that exploit this property
to its full extent by being parameterized with respect to an abstract class of
constraint systems. The basic operation these frameworks require of a con-
straint system is a test for unsatisfiability. ALPS, CCP, and KAP in addition
require a test for entailment between constraints, which is needed for ad-
vanced control mechanisms such as delaying, coroutining, synchronisation,
committed choice, and deep constraint propagation. Given this situation,
constraint systems are a central issue in research on logic programming.

The constraint systems of most existing logic programming languages are
variations and extensions of Herbrand [14], the constraint system underly-
ing Prolog. The individuals of Herbrand are trees corresponding to ground
terms, and the atomic constraints are equations between terms. Seen from
the perspective of programming, Herbrand provides a universal data struc-
ture as a logical system.

This paper presents a constraint system F'T, which we feel is an intriguing
alternative to Herbrand both theoretically and practically. As does Her-
brand, FT provides a universal data structure based on trees. However, the
trees of T (called feature trees) are more general than the trees of Herbrand
(called constructor trees), and the constraints of F'T" are finer grained and
of different expressivity. The basic notion of FT are functional attributes
called features, which provide for record-like descriptions of data avoiding
the overspecification intrinsic in Herbrand’s constructor-based descriptions.
For the special case of constructor trees, features amount to argument se-
lectors for constructors.

Suppose we want to say that x is a wine whose grape is riesling and whose
color is white. To do this in Herbrand, one may write the equation

x = wine(riesling, white, yq,...,yn)

with the implicit assumption that the first argument of the constructor wine
carries the “feature” grape, the second argument carries the “feature” color,
and the remaining arguments yq, ..., yn carry the remaining “features” of the
chosen representation of wines. The obvious difficulty with this description
is that it says more than we want to say, namely, that the constructor wine
has n 42 arguments and that the “features” grape and color are represented
as the first and the second argument.

wine

wine wine
grape color grape grape color
riesling white riesling riesling red
wine
wine grape color
grape year riesling white
color
riesling white 1988 origin
alsace

Figure 1: Examples of Feature Trees.

The constraint system FT avoids this overspecification by allowing the de-
scription

(1)
saying that x has sort wine, its feature grape is riesling, and its feature color

is white. Nothing is said about other features of z, which may or may not
exist.

x: wine[grape = riesling, color = white]

The individuals of FT are so-called feature trees, examples of which are
shown in Figure 1. A feature tree is a possibly infinite tree whose nodes are
labeled with symbols called sorts, and whose edges are labeled with symbols
called features. The labeling with features is deterministic in that all edges
departing from a node must be labeled with distinct features. Thus, every
direct subtree of a feature tree can be identified by the feature labeling the
edge leading to it. The constructor trees of Herbrand can be represented as
feature trees whose edges are labeled with natural numbers indicating the
corresponding argument positions.

All but the second and third feature tree in Figure 1 satisfy the descrip-
tion (1).

The constraints of F'T are ordinary first-order formulae taken over a signa-
ture that accommodates sorts as unary and features as binary predicates.
Thus the description (1) is actually syntactic sugar for the formula

wine(x) A Jy(grape(z,y) A riesling(y)) A
Jy(color(x,y) A white(y)).

The set of all rational feature trees is made into a corresponding logical
structure 7 by letting A(z) hold iff the root of z is labeled with the sort A,
and letting f(z,y) hold iff z has y as direct subtree via the feature f. The
feature tree structure 7 fixes an algebraic semantics for F'T.

We will also establish a logical semantics, which is given by three axiom
schemes fixing a first-order theory F'T. Backofen and Smolka [6] show that
7T is a model of FT and that FT is in fact a complete theory, which means
that FT is exactly the theory induced by 7. However, we will not use the
completeness result in the present paper, but show explicitly that entailment
with respect to 7 is the same as entailment with respect to F'7T.

The two major technical contributions of this paper are (1) an incremental
entailment simplification system that is proved to be sound and complete,
and (2) a proof showing that FT satisfies the so-called “independence of
negative constraints” [7, 14, 15]. The incremental entailment simplification
system is the prerequisite for F'T”s use with either of the constraint program-
ming frameworks ALPS, CCP or KAP mentioned at the beginning of this
section. The indepence property means among other things that negative
constraints can essentially be handled through entailment simplification.

One origin of FT is Ait-Kaci’s -term calculus [1], which is at the heart of
the programming language LOGIN [3] and further extended in the language
LIFE [5] with functions over feature structures thanks to a generalization of
the concept of residuation of Le Fun [4]. Other precursors of F'T are the fea-
ture descriptions found in so-called unification grammars [13, 12] developed
for natural language processing, and also the formalisms of Mukai [17, 18].
These early feature structure formalism were presented in a nonlogical form.
Major steps in the process of their understanding and logical reformulation
are the articles [20, 23, 11, 22]. Feature trees, the feature tree structure 7,

and the axiomatization of 7 were first given in [6].

The paper is organized as follows. Section 2 defines the basic notions and
discusses the differences in expressivity between Herbrand and FT. Section 3
gives a basic simplification system that decides satisfiability of positive con-
straints. Section 4 is not committed to F'T but discusses the notion of incre-
mental entailment checking and its connection with the indepence property
and negation. Section 5 gives the entailment simplification system, proves
it sound, complete and terminating, and also proves that FT satisfies the
independence property.

2 Feature Trees and Constraints

To give a rigorous formalization of feature trees, we first fix two disjoint
alphabets & and F, whose symbols are called sorts and features, respec-
tively. The letters A, B, C' will always denote sorts, and the letters f, ¢, h
will always denote features. Words over F are called paths. The concate-
nation of two paths v and w results in the path vw. The symbol ¢ denotes
the empty path, ve = ev = v, and F* denotes the set of all paths.

A tree domain is a nonempty set D C F* that is prefix-closed, that is, if
vw € D, then v € D. Thus, it always contains the empty path.

A feature tree is a mapping t: D — S from a tree domain D into the set
of sorts. The paths in the domain of a feature tree represent the nodes of
the tree; the empty path represents its root. The letters s and ¢ are used
denote feature trees.

If convenient, we consider a feature tree ¢t as a relation, i.e., t C F* x S,
and write (w, A) € t instead of t(w) = A. As relations, i.e., as subsets of
F* x 8, feature trees are partially ordered by set inclusion. We say that s
is smaller than ¢ if s C ¢.

The subtree wt of a feature tree ¢t at one of its nodes w is the feature tree
defined by (as a relation):

wt = {(v,A)| (wv, A) € t}.

If D is the domain of ¢, then the domain of wt is the set w™1D = {v | wv €
D}. Thus, wt is given as the mapping wt : w='D — & defined on its domain
by wt(v) = t(wv). A feature tree s is called a subtree of a feature tree ¢ if
it is a subtree s = wt at one of its nodes w, and a direct subtree if w € F.

A feature tree ¢ with domain D is called rational if (1) ¢ has only finitely
many subtrees and (2) ¢ is finitely branching, which is: for every w € D,
wFND={wfeD| feF}is finite. Assuming (1), (2) is equivalent
to saying that there exist finitely many features fi,..., f, such that D C
{f17 .. -7fn}*'

Constraints over feature trees will be defined as first-order formulae. We
first fix a first-order signature SW.F by taking sorts as unary and features as
binary relation symbols. Moreover, we fix an infinite alphabet of variables
and adopt the convention that z, y, z always denote variables. Under this
signature, every term is a variable and an atomic formula is either a
feature constraint z fy (f(2,y) in standard notation), a sort constraints Az
(A(2z) in standard notation), an equation z = y, L (“false”), or T (“true”).
Compound formulae are obtained as usual by the connectives A, V, —, <,
- and the quantifiers 3 and V. We use 3¢ and Y¢ to denote the existential

and universal closure of a formula ¢, respectively. Moreover, V(¢) is taken
to denote the set of all variables that occur free in a formula ¢. The letters
¢ and ¢ will always denote formulae. In the following we won’t make a
distinction between formulae and constraints, that is, a constraint is a
formula as defined above.

S W F-structures and validity of formulae in & & F-structures are defined
as usual. Since we consider only & & F-structures in the following, we will
simply speak of structures. A theory is a set of closed formulae. A model
of a theory is a structure that satisfies every formulae of the theory. A
formula ¢ is a consequence of a theory T' (T | ¢) if V¢ is valid in every
model of 7. A formula ¢ is satisfiable in a structure A if 3¢ is valid in A.
Two formulae ¢, ¢ are equivalent in a structure A if 9((;5 — 1)) is valid in
A. We say that a formula ¢ entails a formula ¢ in a structure A [theory
T] and write ¢ =4 ¥ [¢ =7] if 9((15 — 1p) is valid in A [is a consequence
of T]. A theory T is complete if for every closed formula ¢ either ¢ or —¢
is a consequence of T,

The feature tree structure 7 is the S W F-structure defined as follows:

e the domain of 7 is the set of all rational feature trees;
o t € AT iff t(e) = A (¢’s root is labeled with A);
o (s,t)€ fTiff f € Dy and t = fs (¢ is the subtree of s at f).

Next we discuss the expressivity of our constraints with respect to feature
trees (that is, with respect to the feature tree structure 7°) by means of
examples. The constraint

—~Jy(z fy)

says that z has no subtree at f, that is, that there is no edge departing from
x’s root that is labeled with f. To say that has subtree y at path fi--- f,.,
we can use the constraint

32’1 te ElZn_l($f12’1 A 21f22’2 A A Zn—lfny)-

Now let’s look at statements we cannot express (more precisely, statements
of whom the authors believe they cannot be expressed). One simple un-
expressible statement is “y is a subtree of 2”7 (that is, “Jw: y = wa”).
Moreover, we cannot express that z is smaller than y. Finally, if we assume
that the alphabet F of features is infinite, we cannot say that @ has subtrees
at features fi,..., f, but no subtree at any other feature. In particular, we
then cannot say that z is a primitive feature tree, that is, has no proper
subtree.

The theory FTy is given by the following two axiom schemes:

(Ax1) VaVyVz(zfyhafz—y=2)
(for every feature f)

(Ax2) Vz (AzANBzx — 1)
(for every two distinct sorts A and B).

The first axiom scheme says that features are functional and the second
scheme says that sorts are mutually disjoint. Clearly, 7 is a model of FTy.
Moreover, F'T is incomplete (for instance, dz(Ax) is valid in 7 but invalid
in other models of FTy). We will see in the next section that F'Ty plays an
important role with respect to basic constraint simplification.

Next we introduce some additional notation needed in the rest of the paper.
This notation will also allow us to state a third axiom scheme that, as shown
in [6], extends F'Ty to a complete axiomatization of 7.

Throughout the paper we assume that the conjunction of formulae is an
associative and commutative operator that has T as neutral element. This
means that we identify ¢ A (0 A 0) with 8 A (¢ A @), and ¢ A T with ¢ (but
not, for example, z fy A z fy with zfy). A conjunction of atomic formulae
can thus be seen as the finite multiset of these formulae, where conjunction
is multiset union, and T (the “empty conjunction”) is the empty multiset.
We will write ¢ C ¢ (or ¢ € ¢, if ¢ is an atomic formula) if there exists a
formula " such that ¥ A ¢’ = ¢.

We will use an additional atomic formula z f1 (“f undefined on z”) that is
taken to be equivalent to =3y (z fy), for some variable y (other than z).

Only for the formulation of the third axiom we introduce the notion of a
solved-clause, which is either T or a conjunction ¢ of atomic formulae of
the form z fy, Az or z f] such that the following conditions are satisfied:

1. if Ax € ¢ and Bz € ¢, then A = B;

2. ifwfy € ¢ and xfz € ¢, then y = z;

3. if xfy € ¢, then x f] ¢ ¢.
Given a solved-clause ¢, we say that a variable z is dependent in ¢ if ¢

contains a constraint of the form Az, z fy or f], and use DV(¢) to denote
the set of all variables that are dependent in ¢.

The theory FT is obtained from FTg by adding the axiom scheme:

(Ax3) Y3X¢
(for every solved-clause ¢ and X = DV(¢)).

Theorem 2.1 The feature tree structure T is a model of the theory F'T.

Proof. We will only show that FT is a model of the third axiom. Let X
be the set of dependent variables of the solved-clause ¢, X = DV(¢). Let a
be any 7-valuation defined on V(¢) — X; we write the tree a(y) as t,. We
will extend a on X such that 7, «a |= ¢.

Given 2 € X, we define the “punctual” tree t, = {(¢,A)}, where A € §
is the sort such that Ax € ¢, if it exists, and arbitrary, otherwise. Now

we are going to use the notion of tree sum of Nivat [19], where w™lt =
{(wv, A) | (v, A) € t} (“the tree t translated by w”), and we define:

a(z) = L—Ij{w_lty | # % y for some
y € V(p), we Fr}.

Here the “leads-to” relation ~% is given by: z ~> z, and vl yif x <% ¢ and
y' fy € ¢, for some y' € V(¢) and some f € F. Since

a(e) = Jfula(y) | ...}
and wa(z) = a(y), it follows that a(z) is a rational tree and that 7, a |= ¢.

a

3 Basic Simplification

A basic constraint is either L or a possibly empty conjunction of atomic
formulae of the form Az, z fy, and x = y. The following five basic simplifi-
cation rules constitute a simplification system for basic constraints, which,
as we will see, decides whether a basic constraint is satisfiable in 7.

1 sfyhzefzho
CafrAy=zAG
5 Ax AN Bx A ¢ A4 B
1
5 Ax N Az A ¢
T Az Ao
4. AR reV(p)and z #y

2= yA oz — 4]

The notation @[z — y] is used to denote the formula that is obtained from
¢ by replacing every occurrence of x with y. We say that a constraint ¢
simplifies to a constraint ¢ by a simplification rule p if % is an instance of
p. We say that a constraint ¢ simplifies to a constraint ¢ if either ¢ = ¢
or ¢ simplifies to v in finitely many steps each licensed by one of the five
simplification rules given above.

Example 3.1 We have the following basic simplification chain, leading to
a solved constraint:

cfunNyfohNAuNAvAz=a Ny ==z

cfunNyfoNAuNAvAz=2x ANy ==z

rfunNzfoANAuNAVAN z=2xANy=1=
cfoNAuNAVA u=vAz=czAy==z
cfoNAvANAVAN u=vAz=2xANy==z
efoANAVAN u=vAz=2xANy==

TR TN

Using the same steps up to the last one, the constraint z fu A yfo A Au A
BvAz=2aAy=zsimplifies to L (in the last step, Rule 2 instead of Rule 3
is applied). O

Proposition 3.2 If the basic constraint ¢ simplifies to ¢, then FTy |= ¢ —
.

Proof. The rules 3, 4 and 5 perform equivalence transformations with
respect to every structure. The rules 1 and 2 correspond exactly to the
two axiom schemes of FTg and perform equivalence transformations with
respect to every model of FTy. a

We say that a basic constraint ¢ binds a variable x to yif x = y € ¢ and «
occurs only once in ¢. At this point it is important to note that we consider
equations as ordered, that is, assume that z = y is different from y = z if
x # y. We say that a variable z is eliminated, or bound by ¢, if ¢ binds
x to some variable y.

Proposition 3.3 The basic simplification rules are terminating.

10

Proof. First observe that the simplification rules don’t add new variables
and preserve eliminated variables. Furthermore, rule 4 increases the number
of eliminated variables by one. Hence we know that if an infinite simplifi-
cation chain exists, we can assume without loss of generality that it only
employs the rules 1, 3 and 5. Since rule 1 decreases the number of feature
constraints “z fy”, which is not increased by rules 3 and 5, we know that if
an infinite simplification chain exists, we can assume without loss of gener-
ality that it only employs the rules 3 and 5. Since this is clearly impossible,
an infinite simplification chain cannot exist. a

A basic constraint is called normal if none of the five simplification rules
applies to it. A constraint ® is called a normal form of a basic constraint
¢ if ¢ can be simplified to ¢ and @ is normal. A solved constraint is a
normal constraint that is different from L.

So far we know that we can compute for any basic constraint ¢ a normal
form 1 by applying the simplification rules as long as they are applicable.
Although the normal form ¥ may not be unique for ¢, we know that ¢ and
are equivalent in every model of FTy. It remains to show that every solved
constraint is satisfiable in 7.

Every basic constraint ¢ has a unique decomposition ¢ = ¢n A ¢ such that
¢n is a possibly empty conjunction of equations “x = y” and and ¢g is a
possibly empty conjunction of feature constraints “z fy” and sort constraints
“Az”. We call ¢ the normalizer and and ¢ the graph of ¢.

Proposition 3.4 A basic constraint ¢ # L is solved iff the following con-
ditions hold:

1. an equation x = y appears in ¢ only if x is eliminated in ¢;
2. the graph of ¢ is a solved clause;

3. no primitive constraint appears more than once in ¢.

Proposition 3.5 Fuvery solved constraint is satisfiable in every model of

FT.

Proof. Let ¢ be a solved constraint and A be a model of F'T. Then we know
by axiom scheme Ax3 that the graph ¢¢ of a solved constraint ¢ is satisfiable
in an FT-model A. A variable valuation a into A such that A, a | ¢¢ can

be extended on all eliminated variables simply by a(z) = a(y)if 2 =y € ¢,
such that A, a |= ¢. a

11

Theorem 3.6 Let 1 be a normal form of a basic constraint ¢. Then ¢ is

satisfiable in T if and only if » # L.

Proof. Since ¢ and 1 are equivalent in every model of F'Ty and 7 is a model
of FTy, it suffices to show that v is satisfiable in 7 if and only if ¢ # L.
To show the nontrivial direction, suppose ©» # L. Then 1) is solved and we
know by the preceding proposition that i is satisfiable in every model of
FT. Since 7 is a model of FT, we know that is satisfiable in 7. O

Theorem 3.7 For every basic constraint ¢ the following statements are
equivalent:

TEI¢ o Imodel Aof FTyp: Ao & FT =3¢

Proof. The implication 1 = 2 holds since 7 is a model of FTy. The
implication 3 = 1 follows from the fact that 7 is a model of FT. It remains
to show that 2 = 3.

Let ¢ be satisfiable in some model of FTy. Then we can apply the sim-
plification rules to ¢ and compute a normal form % such that ¢ and > are
equivalent in every model of FTy. Hence ® is satisfiable in some model of
FTy. Thus ¢ # L, which means that 1 is solved. Hence we know by the
preceding proposition that 1) is satisfiable in every model of F'T. Since ¢ and
1 are equivalent in every model of FToCFT, we have that ¢ is satisfiable in
every model of FT. a

4 Entailment, Independence and Negation

In this section we discuss some general properties of constraint entailment.
This prepares the ground for the next section, which is concerned with
entailment simplification in the feature tree constraint system.

Throughout this section we assume that A is a structure, v and ¢ are for-
mulae that can be interpreted in A, and that X is a finite set of variables.

We say that v disentails ¢ in A if v entails —¢ in A. If v is satisfiable
in A, then v cannot both entail and disentail 3X¢ in A. We say that ~
determines ¢ in A if ¥ either entails or disentails ¢ in A.

Given v, ¢ and X, we want to determine in an incremental manner whether
~ entails or disentails 3X ¢. Typically, v will not determine 3X ¢ when 3.X ¢
is considered first, but this may change when v is strengthened to y A 7.
The basic idea leading to an incremental entailment checker is to simplify ¢

12

with respect to the context v and the local variables X. Given v, X and
¢, simplification must yield a formula % such that

Y EAIXP— IX .
The following facts provide some evidence that this is the right invariant for
entailment simplification.

Proposition 4.1 Let v =4 3X¢ < IX. Then:

L yEFa3Xo iff vEAIXy;
2. v |:A -1X¢ iff v |:A -3X;
3. if v=1, then vE4-3X¢;

4. if AX is valid in A, then v =4 3Xo.

Statements 1 and 2 say that it doesn’t matter whether entailment and dis-
entailment are decided for ¢ or 1. Statement 3 gives a local condition for
disentailment, and Statement 4 gives a local condition for entailment. The
entailment simplification system for feature trees given in the next section
will in fact decide entailment and disentailment by simplifying such that
the condition of Statement 4 is met in the case of entailment, and that the
condition of Statement 3 is met in the case of disentailment.

In practice, one can ensure by variable renaming that no variable of X occurs
in v. The next fact says that then it suffices if entailment simplification
respects the more convenient invariant

AEYANG = v AP

This is the invariant respected by our system (ef. Proposition 5.4).

Proposition 4.2 Let X N V(y)=0. Then:

1.if AEYANG =AY, then vE4IX P — IXY;

2.y Ea-3IXO iff YA is unsatisfiable in A.

That is, the conjunction v A ¢ is satisfiable if and only if + either entails
1X ¢, or it does not determine 31X ¢.

The so-called independence of negative constraints [7, 14, 15] is an important
property of constraint systems. If it holds, simplification of conjunctions of

13

positive and negative constraints can be reduced to entailment simplification
of conjunctions of positive constraints.

To define the independence property, we assume that a constraint system
is a pair consisting of a structure A and a set of so-called basic constraints.
From basic constraints one can build more complex constraints using the
connectives and quantifiers of predicate logic. We say that a constraint
system satisfies the independence property if

vEAIX1d V..V IX e, Mf Tit s 3N

for all basic constraints v, ¢1,...,¢, and all finite sets of variables
X, ., X,

Proposition 4.3 If a constraint system satisfies the independence prop-
erty, then the following statements hold (v, ¢ and ¢1, ..., ¢, are basic con-
straints):

1. yAN=3X101 Ao A-3X 0, unsatisfiable in A iff iy =4 3X0;

2. 0f yA-IAX o AL ATX @, is satisfiable in A, then v A =3 X1 P1 A
S A3X, 0, EA X iffy Ea 3X O

5 Entailment Simplification

We now return to the feature tree constraint system. Throughout this sec-
tion we assume that 7 is a solved constraint and X is a finite set of variables
not occurring in y. We will call v the context, the variables in X local,
and all other variables global.

If T is a theory and ¢ and ¢ are possibly open formulae, we write ¢ =1
(read: ¢ entails ¢ in T') if V(¢ — 1)) is valid in 7.

Theorem 5.1 For every basic constraint ¢, the following equivalences hold:

Proof. Implication “2 = 3” holds since F Ty CFT. Implication “3 = 1”7
holds since 7 is a model of FT. To show implication “1 = 27, suppose
v |E7 73X ¢. Then we know by Proposition 4.2 that y A ¢ is unsatisfiable in
7. Thus we know by Theorem 3.7 that v A ¢ is unsatisfiable in every model
of F'Ty. Hence we know by Proposition 4.2 that |:FT0 -3X ¢. a

14

For every basic constraint ¢ and every variable # we define

bz = {y if 2=y € ¢ and z is eliminated;
' x otherwise.

A basic constraint ¢ is X-oriented if z = y € ¢ always implies z € X
ory ¢ X. A basic constraint ¢ is pivoted if 2 = y € ¢ implies that z is
eliminated in ¢ (and then y is a “pivot”).

The following entailment simplification rules simplify basic constraints
to basic constraints with respect to a context v and local variables X.

1-55%%% yfvevNo, oy=u
& vfulhyfoCry,
2. m wa = ¢y7 ¢u 7£ ¢v7

¢ X-oriented and pivoted
3.2 AenByCynG. dr=oy A#B

Ax N ¢
¢

AyevyNo, oy=1u

L aZyAg {x#y,xEV@%
r=yAdlr — y] (xe€XorydX)

6.32%%% v ¢ X, ye X

7 _9 = V(g
3 — 4] r=yE€y, x€eV(P)
r=x Ao

8. 7¢

We say that a basic constraint ¢ simplifies to a constraint ¢ with respect
to v and X if ¢ = 1 or ¢ simplifies to 1 in finitely many steps each licensed
by one of the eight simplification rules given above. The notions of normal
and normal form with respect to v are defined accordingly.

15

Example 5.2 Let v = afuAyfo A Au A Bv and X = {z}. Then we have
the following simplification chain with respect to v and X:

T=z2ANYy==z
>.x Z2=TANYy=2z2 by Rule E6
>.x Z2=vANy==x by Rule E5
Z.x Uu=vAz=xAy==2x by Rule E2
=, x L by Rule E3.

Let us now take as context ¥ = xfu A yfv A Au. Then b=u=vAz=
x Ay = x is normal with respect to ¥ and X. We shall see that this normal
form tells us that 5 does not determine ¢. If 5 gets strengthened either
to 4 A Bv (as above), or to ¥ A & = y, then the strengthened context does
determine: it disentails in the first and entails in the second case. The basic
normal form of ¥ Az = yis yfu A Au Av = u A x = y; with respect to this
context ¢ simplifies to z = y. a

In the previous example, ¢ = z = 2 A y = z simplifies to py = u = v Az =
x Ay = x with respect to v = zfu A yfv A Au A Bv and X = {z}. This
corresponds to a basic simplification as follows:

TN =
cfunyfonAunBy Az=zxAy=z
= zfuhzfoNAuANBy ANz=zAy==zx
= cfoANAuNBv ANu=vAz=zAy==zx
= 7 N
We observe that v A ¢; is equal to 7' A ¢}, modulo renaming y by ¢1y = z
and u by ¢1u = v, and modulo the repetition of = fv.

Lemma 5.3 Let ¢ simplify to ¢ with respect to v and X, not using Rule E6
(in an entailment simplification step). Then vy A ¢ simplifies to some v' A ¢
which is equal to v A ¢ up to variable renaming and repetition of conjuncts.

Proof. Clearly, each entailment simplification rule, except for E6, corre-
sponds directly to a basic simplification rule (namely, E1 and E2 to B1, E3
to B2, E4 to B3, E5 and E7 to B4, and E8 to B5).

If the application of the entailment simplification rule to ¢ relies on a con-
dition of the form ¢z = y or ¢a = ¢y where & # ¢z or y # ¢y, then
x = ¢ € pory= oy € ¢, and Rule B4 is first applied to v A ¢, eliminating
x by ¢z (y by ¢y).

When comparing v A ¢1 and 7/ A ¢, renamings take account of these variable
eliminations. Note that, if the rule applied to ¢ is E2, then 7’ has one feature
constraint z fv less than v — which, after renaming, has a repetition of
exactly this constraint. a

16

Proposition 5.4 If ¢ simplifies to b with respect to v and X, then v A ¢
and v A\ are equivalent in every model of F'Ty.

Proof. Follows from Lemma 5.3 and Proposition 3.2. a

Proposition 5.5 The entailment simplification rules are terminating, pro-
vided v and X are fived.

Proof. First we strengthen the statement by weakening the applicability
conditions ¢y = x in Rules E1 and E4 to ¢y = ¢x. Then from Lemma 5.3
follows: (*) Each entailment simplification rule applies to ¢ with respect
to v and X if and only if it applies to ¢| with respect to 4" and X —
except possibly for E5, when the corresponding variable has already been
eliminated in an “extra” basic simplification step.

If 4" has one conjunct of the form afu less than v, then (*) still holds;
regarding a new application of E2 this is ensured by its (therefore so
complicated. . .) applicability condition.

With condition (*), it is possible to prove by induction on n: For every
entailment simplification chain ¢, ¢q,..., ¢, with respect to v and X, there
exists a ‘basic plus Rule E6’ simplification chain ¥ A ¢, v1 A &), ..., Vs A
¢;z+kv where k£ > 0 is the number of “extra” variable elimination steps.
Since, according to Proposition 3.3, basic simplification chains are finite, so
are entailment simplification chains. a

So far we know that we can compute for any basic constraint ¢ a normal
form 1 with respect to v and X by applying the simplification rules as long
as they are applicable. Although the normal form % may not be unique, we
know that v A ¢ and v A 1 are equivalent in every model of FT.

Proposition 5.6 For every basic constraint ¢ one can compute a normal
form b with respect to v and X . Every such normal form 1 satisfies: v =1

3X¢ iff v 13X, and v [Fpr 3X6 iff ¥ Fpr 3X 0.

Proof. Follows from Propositions 5.4, 5.5, 4.2 and 4.1. a

In the following we will show that from the entailment normal form ¢ of ¢
with respect to 7 it is easy to tell whether we have entailment, disentailment
or neither. Moreover, the basic normal form of v A ¢ is exactly v A 4 in the
first case (and in the second, where y A L = 1), and “almost” in the third
case (cf. Lemma 5.3).

17

Proposition 5.7 A basic constraint ¢ # L is normal with respect to vy and
X if and only if the following conditions are satisfied:

1. ¢ is solved, X -oriented, and contains no variable that is bound by v;

2. if ox =y and x fu € v, then yfv & ¢ for every v;
3. if dx = oy and x fu € v and yfv € v, then dpu = dv;
4. if px =y and Az € v, then By &€ ¢ for every B;

5. if px = ¢y and Ax € v and By € v, then A = B.

Lemma 5.8 If ¢ # L is normal with respect to v and X, then v A ¢ is
satisfiable in every model of FT.

Proof. Let ¢ # L be normal with respect to v and X. Furthermore, let
v =98 Avg and ¢ = ¢y A ¢g be the unique decompositions in normalizer
and graph. Since the variables bound by vy occur neither in y5 nor in ¢,
it suffices to show that v A ¢n A ¢g is satisfiable in every model of F'T.

Let ¢n(7¢) be the basic constraint that is obtained from y¢ by applying all
bindings of ¢n. Then y¢ A¢n A is equivalent to ¢ APn () AP and no
variable bound by ¢x occurs in ¢n(7v5) A ¢ Hence it suffices to show that
dN(va) N ¢ is satisfiable in every model of F'T. With the conditions 2-5
of the preceding proposition it is easy to see that ¢n(7) A ¢ is a solved
clause. Hence we know by axiom scheme Ax3 that ¢n(7¢) A ¢q is satisfiable
in every model of FT. a

Theorem 5.9 (Disentailment) Let ¢ be a normal form of ¢ with respect
toy and X. Then v =7 -3X¢ iff v = L.

Proof. Suppose ¢p = L. Then vy |=7 =3X ¢ and hence v =7 -3X¢ by
Proposition 5.6.

To show the other direction, suppose v =7 =3X ¢. Then v =7 =3X % by
Proposition 5.6 and hence v At unsatisfiable in 7 by Proposition 4.2. Since
7 is a model of F'T (Theorem 2.1), we know by the preceding lemma that
1 = L (since 7 is assumed to be normal). a

We say that a variable z is dependent in a solved constraint ¢ if ¢ contains a
constraint of the form Az, z fy or x = y. (Recall that equations are ordered;

18

thus y is not dependent in the constraint = y.) We use DV(¢) to denote
the set of all variables that are dependent in a solved constraint ¢.

In the following we will assume that the underlying signature S W F has at
least one sort and at least one feature that does not occur in the constraints
under consideration. This assumption is certainly satisfied if the signature
has infinitely many sorts and infinitely many features.

Lemma 5.10 (Spiting) Let ¢1,..., ¢, be basic constraints different from
L, and Xq,..., X, be finite sets of variables disjoint from V(7). Moreover,
for every i = 1,...,n, let ¢; be normal with respect to v and X;, and let ¢;
have a dependent variable that is not in X;. Then yA-IX1p1A. . .A-TX 0,
1s satisfiable in every model of F'T.

Proof. Let v = vn A yg be the unique decomposition of v into normalizer
and graph. Since the variables bound by v occur neither in y4 nor in any
¢i, it suffices to show that v A =3 X101 A.. . A=TX,, 0, is satisfiable in every
model of FT. Thus it suflices to exhibit a solved clause ¢ such that v C 6
and, for every i = 1,...,n, V(8) is disjoint with X; and 6 A ¢; is unsatisfiable
in every model of FT.

Without loss of generality we can assume that every X; is disjoint with V()
and V(¢;)—X; for all j. Hence we can pick in every ¢; a dependent variable
z; such that z; ¢ X; for any j.

Let z1,..., 2z be all variables that occur on either side of equation z; = y €
¢i, 0 =1,...,n (recall that z; is fixed for ¢). None of these variables occurs
in any X; since every ¢; is X;-oriented. Next we fix a feature g and a sort
B such that neither occurs in v or any ¢;.

Now 6 is obtained from 4 by adding constraints as follows: if Az; € ¢;, then
add Bz;; if z; fy € ¢;, then add z; f{; to enforce that the variables zq,..., z
are pairwise distinct, add

ZkGZk—1 N .. N zogz1 A z19] .
It is straightforward to verify that these additions to v yield a solved clause
6 as required. a

Proposition 5.11 If ¢ is solved and DV(¢) C X, then FT |= VX ¢.

Proof. Let ¢ = ¢n Adg be the decomposition of ¢ in normalizer and graph.
Since every variable bound by ¢ is in X, it suffices to show that VIX ¢¢ is a
consequence of F'T. This follows immediately from axiom scheme Ax3 since
¢q is a solved clause. a

19

Theorem 5.12 (Entailment) Let ¢ be a normal form of ¢ with respect to
yand X. Then vE7r 3X¢ iff v# L and DV(¢p)C X.

Proof. Suppose v =7 3X ¢. Then we know v =7 3X ¢ by Proposition 5.6,
and thus v A =3X ¢ is unsatisfiable in 7. Since ~ is solved, we know that v
is satisfiable in 7" and hence that vy A 3X ¢ is satisfiable in 7. Thus ¢ # L.
Since ¥ A =3X ¢ is unsatisfiable in 7 and 7 is a model of FT, we know by
Lemma 5.10 that DV(¢) C X.

To show the other direction, suppose 1» # L and DV(¢)) C X. Then FT |=
V3X 1 by Proposition 5.11, and hence 7 |= V3X 1. Thus v =7 3X ¢, and
hence v =7 3X ¢ by Proposition 5.6. a

Theorem 5.13 Let ¢ be a basic constraint. Then v =7 3X¢ iff v Epr
3X¢.

Proof. One direction holds since 7 is a model of FT. To show the other
direction, suppose v |7 3X ¢. Without loss of generality we can assume
that ¢ is normal with respect to v and X. Hence we know by Theorem 5.12
that ¢ # L and DV(¢p) C X. Thus FT V3X ¢ by Proposition 5.11 and
hence v Epr 3X ¢. 0

Theorem 5.14 (Independence) Let ¢y,...,d, be basic constraints, and
X1,..., X, be finite sets of variables. Then

viEr AX11 V...V IXno, iff Ji vy =7 IXd;

Proof. To show the nontrivial direction, suppose v |7 3X161V...VIX, 0.
Without loss of generality we can assume that, for all 7 = 1,...,n, X; is
disjoint from V(7), ¢; is normal with respect toy and X1, and ¢; # L. Since
~yA=AX P AL AT X ¢, is unsatisfiable in 7 and 7 is a model of FT, we
know by Lemma 5.10 that DV(¢y) C Xy for some k. Hence v =7 IX¢s
by Theorem 5.12. a

6 Conclusion

We have presented a constraint system F'T for logic programming providing a
universal data structure based on rational feature trees. F'T accommodates
record-like descriptions, which we think are superior to the constructor-
based descriptions of Herbrand.

20

The declarative semantics of F'T is specified both algebraicly (the feature
tree structure 7) and logically (the first-order theory FT given by three
axiom schemes).

The operational semantics for F'T'is given by an incremental constraint sim-
plification system, which can check satisfiability of and entailment between
constraints. Since F'T satisfies the independence property, the simplification
system can also check satisfiability of conjunctions of positive and negative
constraints.

We see four directions for further research.

First, F'T should be strengthened such that it subsumes the expressivity of
rational constructor trees [7, 8]. As is, F'I' cannot express that z is a tree

having direct subtrees at exactly the features fy,..., f,. It turns out that

the system CFT [24] obtained from FT by adding the primitive constraint
w{flv' . 7fn}

(z has direct subtrees at exactly the features fi,..., f,,) has the same nice

properties as FT. In contrast to FT, CFT can express constructor con-

straints; for instance, the constructor constraint z = A(y,z) can be ex-

pressed equivalently as Az A 2{1,2} A 2ly A 22z, if we assume that A is a
sort and the numbers 1,2 are features.

Second, it seems attractive to extend FT such that it can accommodate a
sort lattice as used in [1, 3, 4, 5, 23]. One possibility to do this is to assume
a partial order < on sorts and replace sort constraints Az with quasi-sort
constraints [A]z whose declarative semantics is given as

[A]lz = \/ Bz.
B<A

Given the assumption that the sort ordering < has greatest lower bounds if
lower bounds exist, it seems that the results and the simplification system
given for F'T' carry over with minor changes.

Third, the worst-case complexity of entailment checking in FT should be
established. We conjecture it to be quasi-linear in the size of v and ¢,
provided the available features are fixed a priory.

Fourth, implementation techniques for F'T" at the level of the Warren abstract
machine [2] need to be developed.

References

[1] H. Ait-Kaci. An algebraic semantics approach to the effective resolution
of type equations. Theoretical Computer Science, 45:293-351, 1986.

21

[2]

[3]

H. Att-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction.
The MIT Press, Cambridge, MA, 1991.

H. Ait-Kaci and R. Nasr. LOGIN: A logic programming language with
built-in inheritance. The Journal of Logic Programming, 3:185-215,
1986.

H. Ait-Kaci and R. Nasr. Integrating logic and functional program-
ming. Lisp and Symbolic Computation, 2:51-89, 1989.

H. Ait-Kaci and A. Podelski. Towards a Meaning of LIFE. Proceedings
of the 3rd International Symposium on Programming Language Imple-
mentation and Logic Programming (Passau, Germany), J. Maluszyniski
and M. Wirsing, editors. LNCS 528, pages 255274, Springer-Verlag,
1991.

R. Backofen and G. Smolka. A complete and decidable feature the-
ory. Draft, German Research Center for Artificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, Germany, 1991. To ap-
pear.

A. Colmerauer. Equations and inequations on finite and infinite trees.
In Proceedings of the 2nd International Conference on Fifth Generation
Computer Systems, pages 85-99, 1984.

A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical
principles and current trends. Technology and Science of Informatics,
2(4):255-292, 1983.

S. Haridi and S. Janson. Kernel Andorra Prolog and its computation
model. In D. Warren and P. Szeredi, editors, Logic Programming, Pro-
ceedings of the Tth International Conference, pages 31-48, Cambridge,
MA, June 1990. The MIT Press.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Pro-
ceedings of the 14th ACM Symposium on Principles of Programming
Languages, pages 111-119, Munich, Germany, Jan. 1987.

M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI
Lecture Notes 16. Center for the Study of Language and Information,
Stanford University, CA, 1988.

R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A for-
mal system for grammatical representation. In J. Bresnan, editor, The
Mental Representation of Grammatical Relations, pages 173-381. The
MIT Press, Cambridge, MA, 1982.

22

[13]

M. Kay. Functional grammar. In Proceedings of the Fifth Annual Meet-
ing of the Berkeley Linguistics Society, Berkeley, CA, 1979. Berkeley
Linguistics Society.

J.-L. Lassez, M. Maher, and K. Marriot. Unification revisited. In
J. Minker, editor, Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann, Los Altos, CA, 1988.

J. L. Lassez and K. McAloon. A constraint sequent calculus. In Fifth
Annual IFEFE Symposium on Logic in Computer Science, pages 52—61,
June 1990.

M. J. Maher. Logic semantics for a class of committed-choice programs.
In J.-L. Lassez, editor, Logic Programming, Proceedings of the Fourth
International Conference, pages 858-876, Cambridge, MA, 1987. The
MIT Press.

K. Mukai. Partially specified terms in logic programming for linguistic
analysis. In Proceedings of the 6th International Conference on Fifth
Generation Computer Systems, 1988.

K. Mukai. Constraint Logic Programming and the Unification of In-
formation. PhD thesis, Tokyo Institute of Technology, Tokyo, Japan,
1991.

M. Nivat. Elements of a theory of tree codes. In M. Nivat, A. Podelski,
editors, Tree Automata (Advances and Open Problems), Amsterdam,
NE, 1992. Elsevier Publishers.

W. C. Rounds and R. T. Kasper. A complete logical calculus for record
structures representing linguistic information. In Proceedings of the 1st
IEFEE Symposium on Logic in Computer Science, pages 38-43, Boston,
MA. 1986.

V. Saraswat and M. Rinard. Concurrent constraint programming. In
Proceedings of the Tth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 232-245, San Francisco, CA, January 1990.

G. Smolka. Feature constraint logics for unification grammars. The
Journal of Logic Programming, 12:51-87, 1992.

G. Smolka and H. Ait-Kaci. Inheritance hierarchies: Semantics and
unification. Journal of Symbolic Computation, 7:343-370, 1989.

G. Smolka and R. Treinen. Relative simplification for and indepen-
dence of CFT. Draft, German Research Center for Artificial Intelli-
gence (DFKI), Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, Germany,
1992. To appear.

23

