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Abstract

This paper presents the constraint system FT� which we feel is an in�
triguing alternative to Herbrand both theoretically and practically� As
does Herbrand� FT provides a universal data structure based on trees�
However� the trees of FT �called feature trees� are more general than
the trees of Herbrand �called constructor trees�� and the constraints
of FT are �ner grained and of di�erent expressivity� The basic no�
tion of FT are functional attributes called features� which provide for
record�like descriptions of data avoiding the overspeci�cation intrinsic
in Herbrand	s constructor�based descriptions� The feature tree struc�
ture �xes an algebraic semantics for FT� We will also establish a logical
semantics� which is given by three axiom schemes �xing the �rst�order
theory FT�

FT is a constraint system for logic programming� providing a test
for unsatis�ability� and a test for entailment between constraints� which
is needed for advanced control mechanisms�

The two major technical contributions of this paper are �
� an
incremental entailment simpli�cation system that is proved to be sound
and complete� and ��� a proof showing that FT satis�es the so�called
�independence of negative constraints�
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� Introduction

An important structural property of many logic programming systems is the
fact that they factorize into a constraint system and an extension facility�
Colmerauer�s Prolog II ��� is an early language design making explicit use of
this property� CLP �Constraint Logic Programming ��	�
� ALPS ����� CCP
�Concurrent Constraint Programming ����
� and KAP �Kernel Andorra Pro
log ���
 are recent logic programming frameworks that exploit this property
to its full extent by being parameterized with respect to an abstract class of
constraint systems� The basic operation these frameworks require of a con
straint system is a test for unsatis�ability� ALPS� CCP� and KAP in addition
require a test for entailment between constraints� which is needed for ad
vanced control mechanisms such as delaying� coroutining� synchronisation�
committed choice� and deep constraint propagation� Given this situation�
constraint systems are a central issue in research on logic programming�

The constraint systems of most existing logic programming languages are
variations and extensions of Herbrand ����� the constraint system underly
ing Prolog� The individuals of Herbrand are trees corresponding to ground
terms� and the atomic constraints are equations between terms� Seen from
the perspective of programming� Herbrand provides a universal data struc
ture as a logical system�

This paper presents a constraint system FT� which we feel is an intriguing
alternative to Herbrand both theoretically and practically� As does Her
brand� FT provides a universal data structure based on trees� However� the
trees of FT �called feature trees
 are more general than the trees of Herbrand
�called constructor trees
� and the constraints of FT are �ner grained and
of di�erent expressivity� The basic notion of FT are functional attributes
called features� which provide for recordlike descriptions of data avoiding
the overspeci�cation intrinsic in Herbrand�s constructorbased descriptions�
For the special case of constructor trees� features amount to argument se
lectors for constructors�

Suppose we want to say that x is a wine whose grape is riesling and whose
color is white� To do this in Herbrand� one may write the equation

x � wine�riesling�white� y�� � � � � yn


with the implicit assumption that the �rst argument of the constructor wine

carries the �feature� grape� the second argument carries the �feature� color�
and the remaining arguments y�� � � � � yn carry the remaining �features� of the
chosen representation of wines� The obvious di�culty with this description
is that it says more than we want to say� namely� that the constructor wine

has n�� arguments and that the �features� grape and color are represented
as the �rst and the second argument�
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Figure �� Examples of Feature Trees�

The constraint system FT avoids this overspeci�cation by allowing the de
scription

x�wine�grape � riesling� color� white� ��


saying that x has sort wine� its feature grape is riesling� and its feature color

is white� Nothing is said about other features of x� which may or may not
exist�

The individuals of FT are socalled feature trees� examples of which are
shown in Figure �� A feature tree is a possibly in�nite tree whose nodes are
labeled with symbols called sorts� and whose edges are labeled with symbols
called features� The labeling with features is deterministic in that all edges
departing from a node must be labeled with distinct features� Thus� every
direct subtree of a feature tree can be identi�ed by the feature labeling the
edge leading to it� The constructor trees of Herbrand can be represented as
feature trees whose edges are labeled with natural numbers indicating the
corresponding argument positions�

All but the second and third feature tree in Figure � satisfy the descrip
tion ��
�

The constraints of FT are ordinary �rstorder formulae taken over a signa
ture that accommodates sorts as unary and features as binary predicates�
Thus the description ��
 is actually syntactic sugar for the formula

wine�x
 � �y�grape�x� y
� riesling�y

 �
�y�color�x� y
� white�y

�
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The set of all rational feature trees is made into a corresponding logical
structure T by letting A�x
 hold i� the root of x is labeled with the sort A�
and letting f�x� y
 hold i� x has y as direct subtree via the feature f � The
feature tree structure T �xes an algebraic semantics for FT�

We will also establish a logical semantics� which is given by three axiom
schemes �xing a �rstorder theory FT� Backofen and Smolka ��� show that
T is a model of FT and that FT is in fact a complete theory� which means
that FT is exactly the theory induced by T � However� we will not use the
completeness result in the present paper� but show explicitly that entailment
with respect to T is the same as entailment with respect to FT�

The two major technical contributions of this paper are ��
 an incremental
entailment simpli�cation system that is proved to be sound and complete�
and ��
 a proof showing that FT satis�es the socalled �independence of
negative constraints� ��� ��� ���� The incremental entailment simpli�cation
system is the prerequisite for FT�s use with either of the constraint program
ming frameworks ALPS� CCP or KAP mentioned at the beginning of this
section� The indepence property means among other things that negative
constraints can essentially be handled through entailment simpli�cation�

One origin of FT is A��tKaci�s �term calculus ���� which is at the heart of
the programming language LOGIN ��� and further extended in the language
LIFE ��� with functions over feature structures thanks to a generalization of
the concept of residuation of Le Fun ���� Other precursors of FT are the fea
ture descriptions found in socalled uni�cation grammars ���� ��� developed
for natural language processing� and also the formalisms of Mukai ���� ����
These early feature structure formalism were presented in a nonlogical form�
Major steps in the process of their understanding and logical reformulation
are the articles ��	� ��� ��� ���� Feature trees� the feature tree structure T �
and the axiomatization of T were �rst given in ����

The paper is organized as follows� Section � de�nes the basic notions and
discusses the di�erences in expressivity between Herbrand and FT� Section �
gives a basic simpli�cation system that decides satis�ability of positive con
straints� Section � is not committed to FT but discusses the notion of incre
mental entailment checking and its connection with the indepence property
and negation� Section � gives the entailment simpli�cation system� proves
it sound� complete and terminating� and also proves that FT satis�es the
independence property�
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� Feature Trees and Constraints

To give a rigorous formalization of feature trees� we �rst �x two disjoint
alphabets S and F � whose symbols are called sorts and features� respec
tively� The letters A� B� C will always denote sorts� and the letters f � g� h
will always denote features� Words over F are called paths� The concate
nation of two paths v and w results in the path vw� The symbol � denotes
the empty path� v� � �v � v� and F� denotes the set of all paths�

A tree domain is a nonempty set D � F� that is pre�xclosed� that is� if
vw � D� then v � D� Thus� it always contains the empty path�

A feature tree is a mapping t � D � S from a tree domain D into the set
of sorts� The paths in the domain of a feature tree represent the nodes of
the tree� the empty path represents its root� The letters s and t are used
denote feature trees�

If convenient� we consider a feature tree t as a relation� i�e�� t � F� � S�
and write �w�A
 � t instead of t�w
 � A� As relations� i�e�� as subsets of
F� � S� feature trees are partially ordered by set inclusion� We say that s
is smaller than t if s � t�

The subtree wt of a feature tree t at one of its nodes w is the feature tree
de�ned by �as a relation
�

wt �� f�v� A
 j �wv�A
 � tg�

If D is the domain of t� then the domain of wt is the set w��D � fv j wv �
Dg� Thus� wt is given as the mapping wt � w��D � S de�ned on its domain
by wt�v
 � t�wv
� A feature tree s is called a subtree of a feature tree t if
it is a subtree s � wt at one of its nodes w� and a direct subtree if w � F �

A feature tree t with domain D is called rational if ��
 t has only �nitely
many subtrees and ��
 t is �nitely branching� which is� for every w � D�
wF � D � fwf � D j f � Fg is �nite� Assuming ��
� ��
 is equivalent
to saying that there exist �nitely many features f�� � � � � fn such that D �
ff�� � � � � fng��

Constraints over feature trees will be de�ned as �rstorder formulae� We
�rst �x a �rstorder signature S	F by taking sorts as unary and features as
binary relation symbols� Moreover� we �x an in�nite alphabet of variables
and adopt the convention that x� y� z always denote variables� Under this
signature� every term is a variable and an atomic formula is either a
feature constraint xfy �f�x� y
 in standard notation
� a sort constraints Ax
�A�x
 in standard notation
� an equation x

�
� y� 
 ��false�
� or � ��true�
�

Compound formulae are obtained as usual by the connectives �� �� �� �
� and the quanti�ers � and �� We use ��� and ��� to denote the existential
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and universal closure of a formula �� respectively� Moreover� V��
 is taken
to denote the set of all variables that occur free in a formula �� The letters
� and � will always denote formulae� In the following we won�t make a
distinction between formulae and constraints� that is� a constraint is a
formula as de�ned above�

S 	F�structures and validity of formulae in S 	F structures are de�ned
as usual� Since we consider only S 	 F structures in the following� we will
simply speak of structures� A theory is a set of closed formulae� A model
of a theory is a structure that satis�es every formulae of the theory� A
formula � is a consequence of a theory T �T j� �
 if ��� is valid in every
model of T � A formula � is satis�able in a structure A if ��� is valid in A�
Two formulae �� � are equivalent in a structure A if ���� �
 is valid in
A� We say that a formula � entails a formula � in a structure A �theory
T � and write � j�A � �� j�T �� if ���� � �
 is valid in A �is a consequence
of T �� A theory T is complete if for every closed formula � either � or ��
is a consequence of T �

The feature tree structure T is the S 	 F structure de�ned as follows�

� the domain of T is the set of all rational feature trees�

� t � AT i� t��
 � A �t�s root is labeled with A
�

� �s� t
 � fT i� f � Ds and t � fs �t is the subtree of s at f
�

Next we discuss the expressivity of our constraints with respect to feature
trees �that is� with respect to the feature tree structure T 
 by means of
examples� The constraint

��y�xfy


says that x has no subtree at f � that is� that there is no edge departing from
x�s root that is labeled with f � To say that x has subtree y at path f� � � �fn�
we can use the constraint

�z� � � � �zn���xf�z� � z�f�z� � � � �� zn��fny
�

Now let�s look at statements we cannot express �more precisely� statements
of whom the authors believe they cannot be expressed
� One simple un
expressible statement is �y is a subtree of x� �that is� ��w� y � wx�
�
Moreover� we cannot express that x is smaller than y� Finally� if we assume
that the alphabet F of features is in�nite� we cannot say that x has subtrees
at features f�� � � � � fn but no subtree at any other feature� In particular� we
then cannot say that x is a primitive feature tree� that is� has no proper
subtree�

The theory FT� is given by the following two axiom schemes�
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�Ax�� �x �y �z �xfy � xfz � y
�
� z


�for every feature f


�Ax�� �x �Ax �Bx� 


�for every two distinct sorts A and B
�

The �rst axiom scheme says that features are functional and the second
scheme says that sorts are mutually disjoint� Clearly� T is a model of FT��
Moreover� FT� is incomplete �for instance� �x�Ax
 is valid in T but invalid
in other models of FT�
� We will see in the next section that FT� plays an
important role with respect to basic constraint simpli�cation�

Next we introduce some additional notation needed in the rest of the paper�
This notation will also allow us to state a third axiom scheme that� as shown
in ���� extends FT� to a complete axiomatization of T �

Throughout the paper we assume that the conjunction of formulae is an
associative and commutative operator that has � as neutral element� This
means that we identify � � �� � �
 with � � �� � �
� and � � � with � �but
not� for example� xfy � xfy with xfy
� A conjunction of atomic formulae
can thus be seen as the �nite multiset of these formulae� where conjunction
is multiset union� and � �the �empty conjunction�
 is the empty multiset�
We will write � � � �or � � �� if � is an atomic formula
 if there exists a
formula �� such that � � �� � ��

We will use an additional atomic formula xf� ��f unde�ned on x�
 that is
taken to be equivalent to ��y �xfy
� for some variable y �other than x
�

Only for the formulation of the third axiom we introduce the notion of a
solved�clause� which is either � or a conjunction � of atomic formulae of
the form xfy� Ax or xf� such that the following conditions are satis�ed�

�� if Ax � � and Bx � �� then A � B�

�� if xfy � � and xfz � �� then y � z�

�� if xfy � �� then xf� �� ��

Given a solvedclause �� we say that a variable x is dependent in � if �
contains a constraint of the form Ax� xfy or xf�� and use DV��
 to denote
the set of all variables that are dependent in ��

The theory FT is obtained from FT� by adding the axiom scheme�

�Ax�� ���X�
�for every solvedclause � and X � DV��

�
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Theorem ��� The feature tree structure T is a model of the theory FT�

Proof� We will only show that FT is a model of the third axiom� Let X
be the set of dependent variables of the solvedclause �� X � DV��
� Let �
be any T valuation de�ned on V��
�X � we write the tree ��y
 as ty � We
will extend � on X such that T � � j� ��

Given x � X � we de�ne the �punctual� tree tx � f��� A
g� where A � S
is the sort such that Ax � �� if it exists� and arbitrary� otherwise� Now
we are going to use the notion of tree sum of Nivat ����� where w��t �
f�wv�A
 j �v� A
 � tg ��the tree t translated by w�
� and we de�ne�

��x
 �
�
fw��ty j x

w
� y for some

y � V��
� w � F�g�

Here the �leadsto� relation
w
� is given by� x

�
� x� and x

wf
� y if x

w
� y� and

y�fy � �� for some y� � V��
 and some f � F � Since

��x
 �
�
fw����y
 j � � � g

and w��x
 � ��y
� it follows that ��x
 is a rational tree and that T � � j� ��

�

� Basic Simpli�cation

A basic constraint is either 
 or a possibly empty conjunction of atomic
formulae of the form Ax� xfy� and x

�
� y� The following �ve basic simpli��

cation rules constitute a simpli�cation system for basic constraints� which�
as we will see� decides whether a basic constraint is satis�able in T �

��
xfy � xfz � �

xfz � y
�
� z � �

��
Ax �Bx � �



A �� B

��
Ax �Ax � �

Ax � �

��
x

�
� y � �

x
�
� y � ��x� y�

x � V��
 and x �� y

�



��
x

�
� x � �

�

The notation ��x� y� is used to denote the formula that is obtained from
� by replacing every occurrence of x with y� We say that a constraint �
simpli�es to a constraint � by a simpli�cation rule 	 if �

�
is an instance of

	� We say that a constraint � simpli�es to a constraint � if either � � �
or � simpli�es to � in �nitely many steps each licensed by one of the �ve
simpli�cation rules given above�

Example ��� We have the following basic simpli�cation chain� leading to
a solved constraint�

xfu � yfv �Au �Av � z
�
� x � y

�
� z

� xfu � yfv �Au �Av � z
�
� x � y

�
� x

� xfu � xfv �Au �Av � z
�
� x � y

�
� x

� xfv � Au �Av � u
�
� v � z

�
� x � y

�
� x

� xfv � Av �Av � u
�
� v � z

�
� x � y

�
� x

� xfv � Av � u
�
� v � z

�
� x � y

�
� x

Using the same steps up to the last one� the constraint xfu � yfv � Au �
Bv � z

�
� x� y

�
� z simpli�es to 
 �in the last step� Rule � instead of Rule �

is applied
� �

Proposition ��� If the basic constraint � simpli�es to �� then FT� j� �
��

Proof� The rules �� � and � perform equivalence transformations with
respect to every structure� The rules � and � correspond exactly to the
two axiom schemes of FT� and perform equivalence transformations with
respect to every model of FT�� �

We say that a basic constraint � binds a variable x to y if x
�
� y � � and x

occurs only once in �� At this point it is important to note that we consider
equations as ordered� that is� assume that x

�
� y is di�erent from y

�
� x if

x �� y� We say that a variable x is eliminated� or bound by �� if � binds
x to some variable y�

Proposition ��� The basic simpli�cation rules are terminating�
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Proof� First observe that the simpli�cation rules don�t add new variables
and preserve eliminated variables� Furthermore� rule � increases the number
of eliminated variables by one� Hence we know that if an in�nite simpli�
cation chain exists� we can assume without loss of generality that it only
employs the rules �� � and �� Since rule � decreases the number of feature
constraints �xfy�� which is not increased by rules � and �� we know that if
an in�nite simpli�cation chain exists� we can assume without loss of gener
ality that it only employs the rules � and �� Since this is clearly impossible�
an in�nite simpli�cation chain cannot exist� �

A basic constraint is called normal if none of the �ve simpli�cation rules
applies to it� A constraint � is called a normal form of a basic constraint
� if � can be simpli�ed to � and � is normal� A solved constraint is a
normal constraint that is di�erent from 
�

So far we know that we can compute for any basic constraint � a normal
form � by applying the simpli�cation rules as long as they are applicable�
Although the normal form � may not be unique for �� we know that � and �
are equivalent in every model of FT�� It remains to show that every solved
constraint is satis�able in T �

Every basic constraint � has a unique decomposition � � �N ��G such that
�N is a possibly empty conjunction of equations �x

�
� y� and and �G is a

possibly empty conjunction of feature constraints �xfy� and sort constraints
�Ax�� We call �N the normalizer and and �G the graph of ��

Proposition ��� A basic constraint � �� 
 is solved i� the following con�
ditions hold�

�� an equation x
�
� y appears in � only if x is eliminated in �	


� the graph of � is a solved clause	

�� no primitive constraint appears more than once in ��

Proposition ��	 Every solved constraint is satis�able in every model of
FT�

Proof� Let � be a solved constraint and A be a model of FT� Then we know
by axiom scheme Ax� that the graph �G of a solved constraint � is satis�able
in an FTmodel A� A variable valuation � into A such that A� � j� �G can
be extended on all eliminated variables simply by ��x
 � ��y
 if x

�
� y � ��

such that A� � j� �� �

��



Theorem ��� Let � be a normal form of a basic constraint �� Then � is
satis�able in T if and only if � �� 
�

Proof� Since � and � are equivalent in every model of FT� and T is a model
of FT�� it su�ces to show that � is satis�able in T if and only if � �� 
�
To show the nontrivial direction� suppose � �� 
� Then � is solved and we
know by the preceding proposition that � is satis�able in every model of
FT� Since T is a model of FT� we know that � is satis�able in T � �

Theorem �� For every basic constraint � the following statements are
equivalent�

T j� ��� � � model A of FT� � A j� ��� � FT j� ����

Proof� The implication � � � holds since T is a model of FT�� The
implication �� � follows from the fact that T is a model of FT� It remains
to show that �� ��

Let � be satis�able in some model of FT�� Then we can apply the sim
pli�cation rules to � and compute a normal form � such that � and � are
equivalent in every model of FT�� Hence � is satis�able in some model of
FT�� Thus � �� 
� which means that � is solved� Hence we know by the
preceding proposition that � is satis�able in every model of FT� Since � and
� are equivalent in every model of FT��FT� we have that � is satis�able in
every model of FT� �

� Entailment� Independence and Negation

In this section we discuss some general properties of constraint entailment�
This prepares the ground for the next section� which is concerned with
entailment simpli�cation in the feature tree constraint system�

Throughout this section we assume that A is a structure� 
 and � are for
mulae that can be interpreted in A� and that X is a �nite set of variables�

We say that 
 disentails � in A if 
 entails �� in A� If 
 is satis�able
in A� then 
 cannot both entail and disentail �X� in A� We say that 

determines � in A if 
 either entails or disentails � in A�

Given 
� � andX � we want to determine in an incrementalmanner whether

 entails or disentails �X�� Typically� 
 will not determine �X� when �X�

is considered �rst� but this may change when 
 is strengthened to 
 � 
��
The basic idea leading to an incremental entailment checker is to simplify �

��



with respect to the context 
 and the local variables X � Given 
� X and
�� simpli�cation must yield a formula � such that


 j�A �X� �X��

The following facts provide some evidence that this is the right invariant for
entailment simpli�cation�

Proposition ��� Let 
 j�A �X� �X�� Then�

�� 
 j�A �X� i� 
 j�A �X�	


� 
 j�A ��X� i� 
 j�A ��X�	

�� if � � 
� then 
 j�A ��X�	

�� if �X� is valid in A� then 
 j�A �X��

Statements � and � say that it doesn�t matter whether entailment and dis
entailment are decided for � or �� Statement � gives a local condition for
disentailment� and Statement � gives a local condition for entailment� The
entailment simpli�cation system for feature trees given in the next section
will in fact decide entailment and disentailment by simplifying such that
the condition of Statement � is met in the case of entailment� and that the
condition of Statement � is met in the case of disentailment�

In practice� one can ensure by variable renaming that no variable ofX occurs
in 
� The next fact says that then it su�ces if entailment simpli�cation
respects the more convenient invariant

A j� 
 � � 
 � ��

This is the invariant respected by our system �cf� Proposition ���
�

Proposition ��� Let X � V�

 � �� Then�

�� if A j� 
 � � 
 � �� then 
 j�A �X� �X�	


� 
 j�A ��X� i� 
 � � is unsatis�able in A�

That is� the conjunction 
 � � is satis�able if and only if 
 either entails
�X�� or it does not determine �X��

The socalled independence of negative constraints ��� ��� ��� is an important
property of constraint systems� If it holds� simpli�cation of conjunctions of
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positive and negative constraints can be reduced to entailment simpli�cation
of conjunctions of positive constraints�

To de�ne the independence property� we assume that a constraint system
is a pair consisting of a structure A and a set of socalled basic constraints�
From basic constraints one can build more complex constraints using the
connectives and quanti�ers of predicate logic� We say that a constraint
system satis�es the independence property if


 j�A �X��� � � � �� �Xn�n i� �i� 
 j�A �Xi�i

for all basic constraints 
� ��� � � � � �n and all �nite sets of variables
X�� � � � � Xn�

Proposition ��� If a constraint system satis�es the independence prop�
erty� then the following statements hold 
� � and ��� � � � � �n are basic con�
straints��

�� 
 ���X��� � � � ����Xn�n unsatis�able in A i� �i� 
 j�A �Xi�i	


� if 
 ���X��� � � � ����Xn�n is satis�able in A� then 
 ���X��� �
� � �� ��Xn�n j�A �X� i� 
 j�A �X��

� Entailment Simpli�cation

We now return to the feature tree constraint system� Throughout this sec
tion we assume that 
 is a solved constraint and X is a �nite set of variables
not occurring in 
� We will call 
 the context� the variables in X local�
and all other variables global�

If T is a theory and � and � are possibly open formulae� we write � j�T �
�read� � entails � in T 
 if ����� �
 is valid in T �

Theorem 	�� For every basic constraint �� the following equivalences hold�


 j�T ��X� i� 
 j�FT�
��X� i� 
 j�FT ��X��

Proof� Implication �� � �� holds since FT� �FT� Implication �� � ��
holds since T is a model of FT� To show implication �� � ��� suppose

 j�T ��X�� Then we know by Proposition ��� that 
�� is unsatis�able in
T � Thus we know by Theorem ��� that 
�� is unsatis�able in every model
of FT�� Hence we know by Proposition ��� that 
 j�FT�

��X�� �

��



For every basic constraint � and every variable x we de�ne

�x ��

�
y if x

�
� y � � and x is eliminated�

x otherwise�

A basic constraint � is X�oriented if x
�
� y � � always implies x � X

or y �� X � A basic constraint � is pivoted if x
�
� y � � implies that x is

eliminated in � �and then y is a �pivot�
�

The following entailment simpli�cation rules simplify basic constraints
to basic constraints with respect to a context 
 and local variables X �

��
xfu � �

u
�
� v � �

yfv � 
 � �� �y � x

��
�

�u
�
� �v � �

���
��

xfu � yfv � 
�
�x � �y� �u �� �v�

� Xoriented and pivoted

��
�



Ax �By � 
 � �� �x � �y� A �� B

��
Ax � �

�
Ay � 
 � �� �y � x

��
x

�
� y � �

x
�
� y � ��x� y�

�
x �� y� x � V��
�
�x � X or y �� X


��
x

�
� y � �

y
�
� x � �

x �� X� y � X

��
�

��x� y�
x

�
� y � 
� x � V��


��
x

�
� x � �

�

We say that a basic constraint � simpli�es to a constraint � with respect
to 
 and X if � � � or � simpli�es to � in �nitely many steps each licensed
by one of the eight simpli�cation rules given above� The notions of normal
and normal form with respect to 
 are de�ned accordingly�

��



Example 	�� Let 
 � xfu � yfv �Au � Bv and X � fzg� Then we have
the following simpli�cation chain with respect to 
 and X �

x
�
� z � y

�
� z

���X z
�
� x � y

�
� z by Rule E�

���X z
�
� x � y

�
� x by Rule E�

���X u
�
� v � z

�
� x � y

�
� x by Rule E�

���X 
 by Rule E��

Let us now take as context �
 � xfu � yfv � Au� Then �� � u
�
� v � z

�
�

x� y
�
� x is normal with respect to �
 and X � We shall see that this normal

form tells us that �
 does not determine ��� If �
 gets strengthened either
to �
 � Bv �as above
� or to �
 � x

�
� y� then the strengthened context does

determine� it disentails in the �rst and entails in the second case� The basic
normal form of �
 � x

�
� y is yfu �Au � v

�
� u � x

�
� y� with respect to this

context �� simpli�es to z
�
� y� �

In the previous example� � � z
�
� x � y

�
� x simpli�es to �� � u

�
� v � z

�
�

x � y
�
� x with respect to 
 � xfu � yfv � Au � Bv and X � fzg� This

corresponds to a basic simpli�cation as follows�


 � � �
xfu � yfv � Au �Bv � z

�
� x � y

�
� x

� xfu � xfv � Au �Bv � z
�
� x � y

�
� x

� xfv � Au �Bv � u
�
� v � z

�
� x � y

�
� x

� 
� � ���

We observe that 
 � �� is equal to 
� � ���� modulo renaming y by ��y � x

and u by ��u � v� and modulo the repetition of xfv�

Lemma 	�� Let � simplify to �� with respect to 
 and X� not using Rule E�
in an entailment simpli�cation step�� Then 
�� simpli�es to some 
�����
which is equal to 
��� up to variable renaming and repetition of conjuncts�

Proof� Clearly� each entailment simpli�cation rule� except for E�� corre
sponds directly to a basic simpli�cation rule �namely� E� and E� to B�� E�
to B�� E� to B�� E� and E� to B�� and E� to B�
�

If the application of the entailment simpli�cation rule to � relies on a con
dition of the form �x � y or �x � �y where x �� �x or y �� �y� then
x

�
� �x � � or y

�
� �y � �� and Rule B� is �rst applied to 
��� eliminating

x by �x �y by �y
�

When comparing 
��� and 
������ renamings take account of these variable
eliminations� Note that� if the rule applied to � is E�� then 
� has one feature
constraint xfv less than 
 � which� after renaming� has a repetition of
exactly this constraint� �

��



Proposition 	�� If � simpli�es to � with respect to 
 and X� then 
 � �
and 
 � � are equivalent in every model of FT��

Proof� Follows from Lemma ��� and Proposition ���� �

Proposition 	�	 The entailment simpli�cation rules are terminating� pro�
vided 
 and X are �xed�

Proof� First we strengthen the statement by weakening the applicability
conditions �y � x in Rules E� and E� to �y � �x� Then from Lemma ���
follows� � 
 Each entailment simpli�cation rule applies to �� with respect
to 
 and X if and only if it applies to ��� with respect to 
� and X �
except possibly for E�� when the corresponding variable has already been
eliminated in an �extra� basic simpli�cation step�

If 
 � has one conjunct of the form xfu less than 
� then � 
 still holds�
regarding a new application of E� this is ensured by its �therefore so
complicated� � � 
 applicability condition�

With condition � 
� it is possible to prove by induction on n� For every
entailment simpli�cation chain �� ��� � � � � �n with respect to 
 and X � there
exists a !basic plus Rule E�� simpli�cation chain 
 � �� 
� � ���� � � � � 
n�k �
��n�k � where k � 	 is the number of �extra� variable elimination steps�
Since� according to Proposition ���� basic simpli�cation chains are �nite� so
are entailment simpli�cation chains� �

So far we know that we can compute for any basic constraint � a normal
form � with respect to 
 and X by applying the simpli�cation rules as long
as they are applicable� Although the normal form � may not be unique� we
know that 
 � � and 
 � � are equivalent in every model of FT��

Proposition 	�� For every basic constraint � one can compute a normal
form � with respect to 
 and X� Every such normal form � satis�es� 
 j�T

�X� i� 
 j�T �X�� and 
 j�FT �X� i� 
 j�FT �X��

Proof� Follows from Propositions ���� ���� ��� and ���� �

In the following we will show that from the entailment normal form � of �
with respect to 
 it is easy to tell whether we have entailment� disentailment
or neither� Moreover� the basic normal form of 
 � � is exactly 
 �� in the
�rst case �and in the second� where 
 � 
 � 

� and �almost� in the third
case �cf� Lemma ���
�

��



Proposition 	� A basic constraint � �� 
 is normal with respect to 
 and
X if and only if the following conditions are satis�ed�

�� � is solved� X�oriented� and contains no variable that is bound by 
	


� if �x � y and xfu � 
� then yfv �� � for every v	

�� if �x � �y and xfu � 
 and yfv � 
� then �u � �v	

�� if �x � y and Ax � 
� then By �� � for every B	

�� if �x � �y and Ax � 
 and By � 
� then A � B�

Lemma 	�� If � �� 
 is normal with respect to 
 and X� then 
 � � is
satis�able in every model of FT�

Proof� Let � �� 
 be normal with respect to 
 and X � Furthermore� let

 � 
N � 
G and � � �N � �G be the unique decompositions in normalizer
and graph� Since the variables bound by 
N occur neither in 
G nor in ��
it su�ces to show that 
G � �N � �G is satis�able in every model of FT�

Let �N �
G
 be the basic constraint that is obtained from 
G by applying all
bindings of �N � Then 
G��N ��G is equivalent to �N ��N �
G
��G and no
variable bound by �N occurs in �N�
G
��G� Hence it su�ces to show that
�N �
G
 � �G is satis�able in every model of FT� With the conditions �"�
of the preceding proposition it is easy to see that �N �
G
 � �G is a solved
clause� Hence we know by axiom scheme Ax� that �N�
G
��G is satis�able
in every model of FT� �

Theorem 	�� �Disentailment� Let � be a normal form of � with respect
to 
 and X� Then 
 j�T ��X� i� � � 
�

Proof� Suppose � � 
� Then 
 j�T ��X� and hence 
 j�T ��X� by
Proposition ����

To show the other direction� suppose 
 j�T ��X�� Then 
 j�T ��X� by
Proposition ��� and hence 
�� unsatis�able in T by Proposition ���� Since
T is a model of FT �Theorem ���
� we know by the preceding lemma that
� � 
 �since � is assumed to be normal
� �

We say that a variable x is dependent in a solved constraint � if � contains a
constraint of the form Ax� xfy or x

�
� y� �Recall that equations are ordered�

��



thus y is not dependent in the constraint x
�
� y�
 We use DV��
 to denote

the set of all variables that are dependent in a solved constraint ��

In the following we will assume that the underlying signature S 	 F has at
least one sort and at least one feature that does not occur in the constraints
under consideration� This assumption is certainly satis�ed if the signature
has in�nitely many sorts and in�nitely many features�

Lemma 	��
 �Spiting� Let ��� � � � � �n be basic constraints di�erent from

� and X�� � � � � Xn be �nite sets of variables disjoint from V�

� Moreover�
for every i � �� � � � � n� let �i be normal with respect to 
 and Xi� and let �i
have a dependent variable that is not in Xi� Then 
���X����� � ����Xn�n
is satis�able in every model of FT�

Proof� Let 
 � 
N � 
G be the unique decomposition of 
 into normalizer
and graph� Since the variables bound by 
N occur neither in 
G nor in any
�i� it su�ces to show that 
G���X���� � � ����Xn�n is satis�able in every
model of FT� Thus it su�ces to exhibit a solved clause � such that 
G � �
and� for every i � �� � � � � n� V��
 is disjoint with Xi and ���i is unsatis�able
in every model of FT�

Without loss of generality we can assume that every Xi is disjoint with V�


and V��j
�Xj for all j� Hence we can pick in every �i a dependent variable
xi such that xi �� Xj for any j�

Let z�� � � � � zk be all variables that occur on either side of equation xi
�
� y �

�i� i � �� � � � � n �recall that xi is �xed for i
� None of these variables occurs
in any Xj since every �i is Xioriented� Next we �x a feature g and a sort
B such that neither occurs in 
 or any �i�

Now � is obtained from 
 by adding constraints as follows� if Axi � �i� then
add Bxi� if xify � �i� then add xif�� to enforce that the variables z�� � � � � zk
are pairwise distinct� add

zkgzk�� � � � � � z�gz� � z�g� �

It is straightforward to verify that these additions to 
 yield a solved clause
� as required� �

Proposition 	��� If � is solved and DV��
 � X� then FT j� ���X��

Proof� Let � � �N��G be the decomposition of � in normalizer and graph�
Since every variable bound by � is in X � it su�ces to show that ���X�G is a
consequence of FT� This follows immediately from axiom scheme Ax� since
�G is a solved clause� �

��



Theorem 	��� �Entailment� Let � be a normal form of � with respect to

 and X� Then 
 j�T �X� i� � �� 
 and DV��
 � X�

Proof� Suppose 
 j�T �X�� Then we know 
 j�T �X� by Proposition ����
and thus 
 � ��X� is unsatis�able in T � Since 
 is solved� we know that 

is satis�able in T and hence that 
 � �X� is satis�able in T � Thus � �� 
�
Since 
 � ��X� is unsatis�able in T and T is a model of FT� we know by
Lemma ���	 that DV��
 � X �

To show the other direction� suppose � �� 
 and DV��
 � X � Then FT j�
���X� by Proposition ����� and hence T j� ���X�� Thus 
 j�T �X�� and
hence 
 j�T �X� by Proposition ���� �

Theorem 	��� Let � be a basic constraint� Then 
 j�T �X� i� 
 j�FT
�X��

Proof� One direction holds since T is a model of FT� To show the other
direction� suppose 
 j�T �X�� Without loss of generality we can assume
that � is normal with respect to 
 and X � Hence we know by Theorem ����
that � �� 
 and DV��
 � X � Thus FT j� ���X� by Proposition ���� and
hence 
 j�FT �X�� �

Theorem 	��� �Independence� Let ��� � � � � �n be basic constraints� and
X�� � � � � Xn be �nite sets of variables� Then


 j�T �X��� � � � �� �Xn�n i� �i� 
 j�T �Xi�i�

Proof� To show the nontrivial direction� suppose 
 j�T �X����� � ���Xn�n�
Without loss of generality we can assume that� for all i � �� � � � � n� Xi is
disjoint from V�

� �i is normal with respect to 
 and X�� and �i �� 
� Since

���X���� � � ����Xn�n is unsatis�able in T and T is a model of FT� we
know by Lemma ���	 that DV��k
 � Xk for some k� Hence 
 j�T �Xk�k
by Theorem ����� �

	 Conclusion

We have presented a constraint system FT for logic programming providing a
universal data structure based on rational feature trees� FT accommodates
recordlike descriptions� which we think are superior to the constructor
based descriptions of Herbrand�

�	



The declarative semantics of FT is speci�ed both algebraicly �the feature
tree structure T 
 and logically �the �rstorder theory FT given by three
axiom schemes
�

The operational semantics for FT is given by an incremental constraint sim
pli�cation system� which can check satis�ability of and entailment between
constraints� Since FT satis�es the independence property� the simpli�cation
system can also check satis�ability of conjunctions of positive and negative
constraints�

We see four directions for further research�

First� FT should be strengthened such that it subsumes the expressivity of
rational constructor trees ��� ��� As is� FT cannot express that x is a tree
having direct subtrees at exactly the features f�� � � � � fn� It turns out that
the system CFT ���� obtained from FT by adding the primitive constraint

xff�� � � � � fng

�x has direct subtrees at exactly the features f�� � � � � fn
 has the same nice
properties as FT� In contrast to FT� CFT can express constructor con
straints� for instance� the constructor constraint x

�
� A�y� z
 can be ex

pressed equivalently as Ax � xf�� �g � x�y � x�z� if we assume that A is a
sort and the numbers �� � are features�

Second� it seems attractive to extend FT such that it can accommodate a
sort lattice as used in ��� �� �� �� ���� One possibility to do this is to assume
a partial order � on sorts and replace sort constraints Ax with quasi�sort
constraints �A�x whose declarative semantics is given as

�A�x �
	
B�A

Bx�

Given the assumption that the sort ordering � has greatest lower bounds if
lower bounds exist� it seems that the results and the simpli�cation system
given for FT carry over with minor changes�

Third� the worstcase complexity of entailment checking in FT should be
established� We conjecture it to be quasilinear in the size of 
 and ��
provided the available features are �xed a priory�

Fourth� implementation techniques forFT at the level of the Warren abstract
machine ��� need to be developed�
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