Deutsches ResearCh

Forschungszentrum

fiir Kiinstliche Repo rt
Intelligenz GmbH RR-92-35

Using Hierarchical Constraint Satisfaction
for Lathe-Tool Selection in a
CIM Environment

Manfred Meyer

August 1992

Deutsches Forschungszentrum fir Kinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern, FRG D-6600 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341



Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using Al methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces

Intelligent Communication Networks
Intelligent Cooperative Systems.

o000

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director



Using Hierarchical Constraint Satisfaction
for Lathe-Tool Selection in a CIM Environment

Manfred Meyer

DFKI-RR-92-35



This paper will also be published by AAAI Press in the Proceedings of the Fifth
International Symposium on Artificial Intelligence ISAI'92 — The Artificial Intelligence
Technology Transfer Conference, Cancun, Mexico, December 7-11, 1992.

This work has been supported by The Federal Ministry for Research and Technology
(BMFT) under grant ITW 8902 C4.

© Deutsches Forschungszentrum fir Kinstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.



Using Hierarchical Constraint Satisfaction
for Lathe-Tool Selection
in a CIM Environment
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E-mail: meyer@dfki.uni-kl.de

Abstract

In this paper we shall discuss how to treat the automatic selection of
appropriate lathe tools in a computer-aided production planning (CAPP)
application as a constraint satisfaction problem (CSP) over hierarchically
structured finite domains. Conceptually it is straightforward to formulate
lathe-tool selection in terms of a CSP, however the choice of constraint
and domain representations and of the order in which the constraints are
applied is nontrivial if a computationally tractable system design is to be
achieved. Since the domains appearing in technical applications often can
be modeled as a hierarchy, we investigate how constraint satisfaction algo-
rithms can make use of this hierarchical structure. Moreover, many real-life
problems are formulated in a way that no optimal solution can be found
which satisfies all the given constraints. Therefore, in order to bring Al
technology into real-world applications, it becomes very important to be
able to cope with conflicting constraints and to relax the given CSP until
a (suboptimal) solution can be found. For these reasons, the constraint
system CONTAX has been developed, which incorporates an extended hi-
erarchical arc-consistency algorithm together with discrete constraint re-
laxation and has been used to implement the lathe-tool selection module
of the ARC-TEC planning system.

Area of application: computer-integrated manufacturing, computer-
aided production planning

AI techniques: hierarchical constraint satisfaction, constraint relax-
ation



1 Introduction

The rapid development of manufacturing and computer technologies has gener-
ated new problems. To solve these problems modern tools and techniques are
required. Artificial Intelligence (Al) is one of the most appropriate techniques
for solving complex industrial problems [Kusiak, 1938].

The ARC-TEC project at DFKI constitutes an Al approach to implement the
idea of computer-integrated manufacturing (CIM). Along with conceptual solu-
tions, it provides a continuous sequence of software tools for the Acquisition,
Representation, and Compilation of TEChnical knowledge (cf. [Bernardi et al.,
1991]). This shell combines the KADS knowledge-acquisition methodology, the
KL-ONE representation theory [Brachman and Schmolze, 1935], and WAM com-
pilation [Hein and Meyer, 1992] and constraint-handling techmologies [Mever ef
al., 1992]. For its evaluation, an expert system for production planning has been
developed.

The input to the production planning system is a very low-level description of
a rotational-symmetric workpiece as it comes from a CAD system. Geometrical
description of the workpiece’s surfaces and topological neighborhood relations are
the central parts of this representation. If possible at all, production planning
with these data starting from (nearly) first principles would require very complex
algorithms. Thus, planning strategies on such a detailed level are neither available
nor do they make sense. Instead human planners [Schimalhofer ef al., 1991]
have a library of skeletal plans in their minds. Each of these plans is associated
with a more or less abstract description of a (part of a) workpiece, which are
called workpiece features [Klauck et al., 1991]. Such a feature is defined by its
association to a corresponding manufacturing method. The generation of an
abstract feature description of the workpiece is the first step of the production
planning process. The obtained features characterize the workpiece with respect
to its production. In a second step the skeletal plans (associated to the features)
are retrieved and merged resulting in an abstract NC program, which is then
transformed into code for the concrete CNC machine.

The planning system has been developed using CoLaB [Boley et al., 1991], a
hybrid-knowledge compilation laboratory which integrates the power of forward
and backward reasoning, constraint propagation, and taxonomic classification.
The focus is not on an integrated smooth system, but on exemplifying methodolo-
gies for the use of hybrid formalisms at certain subtasks. These various subtasks
require a number of specialized reasoning mechanisms integrated in COLAB: Fea-
ture aggregation is performed by the forward reasoning component, FORWARD!,

'ForwaRD [Hinkelmann, 1992] is a declarative rule-based system with Horn clauses as its
basic representation scheme, which is tightly coupled with RELFUN to achieve bidirectional
reasoning. It offers two different implementations: The first interprets bottom-up rules directly
using a magic set transformation for goal-directed reasoning. The second transforms bottom-
up and bidirectional rules to RELFUN Horn clauses which are finally compiled into code for an
extended WAM with a special forward code area.

o



-
-

CSSNL 3232 (15 CSRNL3232X15
SNGN151016T03030 1 (X 626 SNGN151016T03030
ver S‘)Om/mn/" SN80 l J ] l- P vesisom/mn  SNBO
t 4045mm/u :
L il w1 ) 1 A P
g 18 8 g || = ’:JT
O S b © R o
AP NG EL L —
b - te}
500
1
CELNL3232 B13 CS-NL3232 B12 780.76.000 13 VINL3232C16 BT32R166N 3240310
ENGN130808T03030 SNGN 120808702020 36.22.100 035 VNMG 160408 FU TPMX1603ER 200M
ve=ssom/mn  SNGO ve*600m/mn  SH20F ve = 550m/min ve s 200m/mn TC30 ve = 120m/mn TC30
t =025mm/u t 2020mm/U t =010mm/u t «0.18mm/u 10 Durchgange (Stg2)
ap=05mm q :gﬁmm ap = bmm ap =05-Imm
/ w 3 Q &
L, 8
= 7
R
—

4

Figure 1: An example workpiece with its selected lathe tools

together with the terminological component, TAXON? The derived features are
finally collected by a program written in RELFUN [Boley, 1990], the backward
reasoning component of COLAB. The abstract NC program is then generated
from the classified workpiece by parameterized retrieval of skeletal plans using
RELFUN and selecting the appropriate lathe tools via CONTAX. the constraint
propagation component of COLAB.

2 The lathe-tool selection problem

The application problem we are dealing with for the rest of this paper will be
to find appropriate lathe tools to manufacture the workpiece. According to the
shape, the material and other attributes of the lathe part to be manufactured,
the work-plan consists of a number of different steps. A typical work-plan may
provide one step for roughing, another step for finishing and a third (facultative)
step for doing the fine finishing of the lathe part. However, a work-plan can be

2TaxoN [Baader and Hanschke, 1991] is a KL-ONE-like knowledge representation system. It
provides two subformalisms: one to define and reason about terminologies, called Thox, and
another (called Abox) to reason about assertional knowledge. A terminology consists of a set
of intensional concept definitions, which are arranged in a subsumption hierarchy (actually a
directed acyclic graph) by the classification service. In the Abox the concepts can be instanti-
ated by individuals. The individuals have attributes and belong to concepts. This assertional
knowledge is used to determine the most specific concepts in the subsumption hierarchy to
which the individuals belong (realization service).



much more complicated. For each processing step, appropriate tools have to be
chosen.

This tool selection depends heavily on a lot of geometrical (e.g. the edge-angle)
as well as technological parameters (e.g. material, process etc.). Moreover, the
tool system itself consists of subparts that have to be combined, e.g. the tool
holder, the material of the plate and its geometry. In practice, there are a lot of
restrictions, 'which holder to use for which plate’, *which kind of plate gcometry
to use for which workpiece’ contour and so on. Figure 1 shows a typical lathe
workpiece together with the selected tools for the different manufacturing features
and lathe-turning steps.

To keep things simple, we may assume that a lathe tool consists of two basic
parts: the cutting plate, which actually cuts the material, and the tool holder,
which serves to hold the cutting plates. We can exchange cither the cutting plate
only or both plate and holder. There is a functional relation between holders
and tools, i.e. for one holder, only a few tools are suited. In our application,
we are now concerned with finding a well-suited tool—or rather: a number of
well-suited tools—starting from a set of constraints which describe the actual
problem, i.e. information about the process to be performed, about the lathe part
to be processed, and internal information about the compatibility of holders and
cutting-plates as well as about holder and plate geometries. Lathe-tool selection
will then result in a set of possible holder/tool combinations for each skeletal plan
or manufacturing feature. Using this information, the planning layer formalized in
RELFUN will finally perform the optimizations necessary to obtain a (sub)optimal
work-plan.

3 Formalizing the lathe-tool selection problem
as CSP

When formalizing the tool selection problem as a CSP, the first thing we have to
do is to restrict the number of input parameters, which crucially determines the
complexity of the problem, since each parameter corresponds to a variable in the
constraint net. For our small example we will use the following variables:

e Holder: This variable denotes the tool holder. In the beginning, it ranges
over the domain of all holders. During constraint propagation, it will be
restricted to the set of holders which can currently be chosen.

e Plate: This variable denotes the cutting plate to be chosen. Analogously
to the holder variable, it ranges over the set of all cutting plates and will
be restricted subsequently.

e Process: This variable corresponds to the actual kind of processing.

e WP-material: This variable contains the material of the lathe workpiece.
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e Beta-max: This variable denotes the maximal angle 3 appearing within

the range of one feature of the workpiece.?

e Edge-Angle: This variable embodies the most important geometrical at-
tribute of a cutting-plate, its edge-angle €.

e TC-Edge-Angle: The tool cutting edge-angle x is a geometrical char-
acteristic of the tool holder. It denotes the angle between the horizontal

cutting direction and the marginal cutting axis of the holder.

Figure 2 gives a better understanding of the geometrical items introduced above.

cutting direction

holder cutting plate

Edge-Angle

TC-Edge-Angle
e Beta-Max

il

rotation axis

Figure 2: The Angle Constraint

Having identified the problem variables, the constraints can be put on the
variables. In the following, we will consider only the most important constraints:

e holder_tcea(Holder, TC-Edge-Angle): This constraint describes the
functional relation between a holder and its tool-cutting edge-angle. It is
represented as a primitive or database constraint by enumerating all the
possible combinations.

e plate_ea(Plate, Edge-Angle): This constraint is a database-constraint,
too. It denotes the fact that each plate has its own edge-angle®.

e compatible(Holder, Plate): This constraint expresses the compatibility
condition between tool holders and cutting plates.

3In general, each of these features corresponds to a single working process.

40f course, we could have implemented the plate as a more complex data structure containing
its edge-angle as an attribute. For the sake of uniformity, we implemented it as a constraint,
just as we did with the holder_tcea constraint.



e hard_enough(Plate, WP-Material): For materials with different de-
grees of hardness, different cutting-plates have to be used. Processing
hardened steel, e.g., may require ceramic or even diamond cutting plates,
whereas aluminum can be cut with other, cheaper plates. Note, however,
that hardness is just one of many attributes of a material which are impor-
tant in order to choose the right cutting plate.

e process_holder(Process, Holder): For the different steps of processing,
different types of holders are appropriate. Well-suited for the purpose of
roughing, e.g., are holders of the CSSNL class.

e process_edge_angle(Process, Edge-Angle): This constraint expresses
a rule of thumb which says that for roughing, plates with big edge-angles
should be chosen, whereas for finishing, smaller edge-angles are appropriate.

e TC-Edge-Angle + Edge-Angle + Beta-Max
< 180°: This numerical constraint expresses the condition that the sum
of the tool-cutting edge-angle and the edge-angle must be less than the
difference between 180° and the maximal ascending feature-angle. This
constraint becomes evident when looking at figure 2, where the angles are
denoted by v, ¢, 3, respectively.

In our example, all but one constraint are of binary nature. Note that in general
this is not necessary. However, many constraint systems can process binary
constraints in a more efficient way than n-ary constraints. Iligure 3 shows the
resulting constraint net for our application example.

4 The constraint system CONTAX

Various approaches and algorithms have been developed to tackle the constraint
satisfaction problem (CSP). The computational complexities of these algorithms
heavily depend on the level of consistency they compute (cf. [Mackworth and
Freuder, 1985]). To reduce the complexity, terminological knowledge can be used
to structure the domains of the variables occurring in the CSP.

The constraint system CONTAX supports constraint propagation methods for
computing locally or globally consistent assignments of values from the given do-
mains to the variables of the CSP. Especially, CONTAX provides a mechanism for
solving constraints over hierarchically structured domains which can be defined
using the terminological language TAXON.

4.1 Constraint satisfaction and local consistency

Given a set of n variables, each with an associated domain and a set of con-
straining relations each involving a subset of the variables, a constraint satisfac-
tion problem can informally be defined as to find all possible n-tuples such that
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Figure 3: The Exemplary Constraint Net

each n-tuple is an instantiation of the n variables satisfying the relations. The
constraining relations are called constraints. Constraints may be of any arity,
whereas many constraint systems restrict them to be unary or binary. The vari-
ables of the CSP together with the constraints defined over them can be regarded
as a constraint graph or constraint net. More formally, the general constraint sat-
isfaction problem can be defined as follows:

Definition 1 (CSP)

Assume a finite set of variables V = {Xi,..., X, }, a finite set D = DyU...UD,
(domains), and a finite set R of relations R; are given, such.that B; © Dy X4 %
D;, , where D; C D and k; is the arity of R;. The constraint satisfaction problem
is to find an assignment o : V — D for the variables such that all constraints are
satisfied simultaneously.

A common example of a constraint satisfaction problem is the graph-coloring
problem. Since graph-coloring is an NP-complete CSP, it is most unlikely that a
polynomial time algorithm exists for solving general CSPs. However, a number
of algorithms based on local propagation have been developed. These algorithms
do not necessarily solve a CSP completely but they eliminate, once and for all,
local inconsistencies that cannot participate in any global solution. These incon-
sistencies would otherwise have been repeatedly discovered by any backtracking
solution. Hence local consistency algorithms can play the role of a preprocessor



for subsequent backtracking search, or they can be coupled with case analysis or
simple domain splitting to recover the complete set of solutions to the CSP.

Constraint satisfaction algorithms can be classified by the level of consistency
they establish between the variables of the constraint net. A k-consistency algo-
rithm removes all inconsistencies involving all subsets of size k of the n variables.
For example, the node, arc, and path consistency algorithms detect and elimi-
nate inconsistencies involving k = 1, 2, and 3 variables, respectively. Freuder’s
generalization of those algorithms for k — n can be used to produce the complete
set of solutions to the CSP [Freuder, 1978].

Local propagation computes arc- or path-consistency. Values not appearing
in any solution are eliminated. Local consistency gives an assignment of sets of
values to the variables. Since the constraints are not satisfied simultaneously
by the same values, this relaxes the problem. Every globally consistent solution
is locally consistent too, but not vice-versa. By that relaxation the complexity
of algorithms is reduced to polynomial time. Thus, local propagation can be
used efficiently in large search spaces to pre-process and improve the behavior of
backtracking algorithms, which run over the reduced search space afterwards.®
Nevertheless, the pruning effect by local propagation depends on the kind of the
problem: local propagation does not necessarily reduce the search space at all.
On the other hand, some special instances of the CSP can be solved without any
backtracking, provided there is some additional information about the structure
of the constraint net [Meseguer, 1989].

4.2 Hierarchically structured domains and hierarchical
arc-consistency

In many real-world applications, objects can be clustered and grouped to classes
according to some of their properties. These classes often form a hierarchy,
which can be described by a subclass-superclass relation, also called isa-relation.
Knowledge representation using isa-hierarchies enables efficient use of attributes
and properties of the considered domains. The transitivity of the isa-relation
guarantees the inheritance of properties from super- to subclasses; subclasses can
be seen as specializations. Any arbitrary domain can be transformed into a di-
rected acyclic graph (DAG), which describes the domain as a hierarchy—in the
worst case only consisting of nodes. In principle, the algorithms for solving any
CSP, especially those dealing with large domains and hence large search spaces,
can make use of structuring the domains.

The class hierarchy can be defined directly by enumerating the isa-links be-
tween classes. Moreover, the classes may declaratively be defined in terms of
concept definitions in the sense of terminological languages like KL-ONE, which

The algorithm AC-3 [Mackworth, 1977] for achieving arc-consistency has a time complexity
of O(ea®). Its space complexity is O(e + na), with e constraints (arcs), n variables (nodes) and
a cardinality of a for all domains.



then are classified to get the subsumption hierarchy. For this purpose, CONTAX
employs the terminological language TAXON and its classification algorithms to
structure the domains. The classifier does usually not build a tree, since one
concept may be a subconcept of more than one other. More likely, the resulting
hierarchy describing the domain of some constraint variables becomes a DAG
representing this lattice.

To exploit the hierarchical structure of domains, the propagation algorithms
had to be extended to deal with concepts instead of elements of a domain. The
main aim is to reduce the complexity measured by the number of evaluations
of the constraining relations. Therefore, CONTAX provides an extended and
improved version of the hierarchical arc-consistency algorithm (// AC") presented
in [Mackworth et al., 1985]. It uses two new predicates, which evaluate the
constraints between arbitrary concepts by using inheritance mechanisms. Since
the concepts represent a large number of elements at once, this improves the
efficiency of the propagation algorithm.

In [Mackworth et al., 1985] some assumptions about the constraints and hi-
erarchies are made. The HAC algorithm only deals with binary constraints over
binary, singly rooted, strict trees as domains. For any real-world C5P the re-
strictions made by HAC seem to be inappropriate. In addition to that, it is
useful—especially for large domains—to allow definitions of constraints between
arbitrary concepts. Since the hierarchies are seen as structured inheritance net-
works, we have to make clear what inheritance means for constraints:

Definition 2 (inheritance of constraints)
Let Rj € Dy x ... x D; x ... x Dy be a constraint, ((ll,..:,(li,...,(lk) € R;

be a tuple in R;. Then for all d;, € D; the tuple (dy,....d;,....dy) € R; iff
isa(d;, d;).

A locally consistent value assignment can be defined in terms of hierarchical
arc-consistency. For simplicity reasons, we only give the definition for binary
constraints here.® However, the actual CONTAX implementation uses an extended
notion dealing with n-ary constraints:

Definition 3 (arc-consistency)

A value assignment o : V. — 2D of a set of values to each variable of the constraint
net with o(X;) = D; C D; is arc-consistent iff for all variable pairs (\,,\])
and for all constraints R;; defined over them it holds that for each d € D; there
exists at least one d € D; such that the pair (d, d) satisfies the constraint R;;,
that is Ri;(d,d) holds.

The image D of the value assignment o only includes the most universal concepts
that establish arc-consistency.

Hierarchical arc-consistency can now be defined based on the inheritance of
constraints through isa-links:

6Since any n-ary relation can be expressed as a set of binary relations, this is no serious
restriction in theory.



Definition 4 (hierarchical arc-consistency)
A wvalue assignment o : V — 2P with o(X;) = D; C D; is hierarchically
arc-consistent, if it is arc-consistent and most universal, i.e. for all d € D;
there does not exist a more general concept ¢ € D;,q # d and isa(d,q) such that
the assignment

~iarn ) (Dp\dYU {q} if k=4
"(“\")_{ a(Xk) ifl ot §

is arc-consistent, too.

The hierarchical constraint satisfaction problem (HCSP) is then to compute
a hierarchical arc-consistent value assignment which can then using backtracking
be further restricted towards a globally consistent value assignment satisfying all
constraints simultaneously.

4.3 The User’s View on CONTAX

Using CONTAX to formalize and solve a constraint satisfaction problem in prin-
ciple involves the following steps:

e identifying the variables and constraints that constitute the given problem
and defining the domains over which the variables range,

o defining the problem constraints,
e connecting variables and constraints to build the constraint net, and

e finally propagating some initial value assignments through the constraint
net to restrict the domains of the variables and to achieve a solution for the

underlying HCSP.
4.3.1 Defining domains

In its simplest form, plain domains can be defined by simply enumerating all the
elements belonging to the domain. For example, the statement

(def-domain alloy-steel
(low-alloy-steel high-alloy-steel))

introduces a new domain of some workpiece materials. Using the hierarchical
structure of the domain, a statement like

(def-domain steel

(building-steel alloy-steel
stainless-steel))

10



defines the hierarchical domain steel to be the union of some more specialized
domains which have been defined before as plain or even hierarchical domains.

If some considered domain relates to a terminology defined using the KL-ONE-
like terminological reasoning system TAXON, the terminology along with all its
concepts can be imported and used by CONTAX, e.g. via a statement

(import-terminology workpiece-materials).

The classified concepts (i.e., the subsumption dag) can directly he used as the do-
main hierarchy for CONTAX, where the TAXON Abox individuals serve as leaves.

To be usable in real-life applications, CONTAX also supports variables ranging
over intervals of integers. Such interval domains, e.g. the domain of angles defined

by
(def-intdomain angle (0 90)),

can directly be mapped to hierarchical domains.

4.3.2 Defining constraints

CONTAX provides different types of constraints: primitive (or extensional), pred-
icative and compound constraints. All constraint types may be defined over any
number of variables.

Primitive constraints are defined by enumerating all the tuples satislying the
constraint. This kind of constraint can also be regarded as a database constraint.
One step towards a more comfortable definition of constraints is to make use
of non-leaf concepts when enumerating the relations. Consider, for example,
the following constraint defining compatibility between workpiece material and
cutting-plates:

(def-primitive-constraint compatible
:interface (material plate)
:domains (material plate)

:tuples
((cast cnmm)
(alloy-steel dnmm-41)
(steel dnmm-71) ...))

Here the fact that all kinds of steel are compatible with the dnmm-71 plate are
expressed by simply including the ‘abstract’ tuple (steel dnmm-71) instead of
all the tuples for different kinds of steel.

Some constraints occurring in a real-world application are difficult or even im-
possible to be explicitly enumerated as primitive constraints. This is true, for
example, for numerical constraints which should be evaluated by the underlying
Lisp system. Therefore, constraints can also be defined by providing a LIsP func-
tion or lambda-expression (as argument to the :predicate keyword) which then

11



will be evaluated to test a given tuple for membership in the relation. Consider,
for example, the <_180 constraint in the lathe-tool application:’

(def-lisp-constraint <_180
:interface
(beta-max tc-edge-angle edge-angle)
:predicate
(lambda (beta-max tcea edge-angle)
(< (+ beta-max tcea edge-angle)
180)))

Other constraints may be defined by a RELFUN procedure. In this case, for each
tuple which has to be tested for membership in the relation, the appropriate
RELFUN goal is evaluated.

Often it may happen that the same constraint subnet occurs many times be-
tween different variables of the entire CSP. Therefore, it becomes very useful
to define this subnet as a compound constraint which itself represents an entire
constraint net. Local variables of the constraint subnet that only serve to con-
nect local constraints need not to occur in the :interface list. For example,
the exemplary constraint net in Figure 3 can be defined as a single compound
constraint named tool_sel. The local variable edge_angle is determined by the
variable plate and therefore need not to be visible from outside the tool_sel
constraint:

(def-compound-constraint tool_sel
:interface
(holder plate process wp-material
beta-max tc-edge-angle)
:constraints
((holder_tcea holder tc-edge-angle)
(plate_ea plate edge-angle)
(<_180 tc-edge-angle
edge-angle
beta-max)
(compatible holder plate)
(hard_enough plate wp-material)
(process_holder process holder)
(process_edge_angle process
edge-angle)))

"Although the variables beta-max, edge-angle, and tc-edge-angle range over finite dis-
crete domains and it therefore would be possible to explicitly enumerate all tuples satisfying the
<-180 constraint, in practice it is much more comfortable and even more efficiently computable
to define this constraint as a predicative constraint using the underlying LIsP system.

12



4.3.3 Building the constraint net

Since CONTAX is implemented in an object-oriented fashion based on CLOS, vari-
ables and constraints are realized as CLOS objects. Therefore, the constraint
net is simply built by creating instances of the variable and constraint objects.
Variable instances are created by e.g.

(make-variable :name MVAR
:domain material)

(make-variable :name PVAR
:domain plate)

After having created all needed instances of the problem variables, they can be
linked by creating the constraint instances, e.g. an instance of the compatible
constraint:

(make-constraint :name C1
:type compatible
:material MVAR
:plate PVAR
:weight hard)

4.3.4 Providing information for constraint relaxation

Many real-life problems are over-specified, that is, they are formulated in such
a way that no single optimal solution satisfying all the given constraints can be
found. In order to bring Al technology into real-world applications it becomes
very important to be able to cope with conflicting constraints and to provide a
mechanism to relax the given CSP until a (suboptimal) solution can be found.

Therefore, CONTAX allows to specify additional information to be used if the
constraint problem turns out to be over-specified and the constraint solver detects
an inconsistency:

e First, constraints can be weighted. That is, each constraint can be attached
to a weight out of the discrete set of five weights ranging from soft to hard.
By default, CONTAX regards all constraints to be hard constraints which
cannot be relaxed.®

e Second, the tuples constituting primitive constraints can be weighted, too.
The tuples listed as argument for the :tuples keyword in the constraint
definition form the minimum definition of the relation. For relaxation pur-
poses the relation can be extended by including additional tuples. These

81t has been shown, e.g. by [Descotte and Latombe, 1985], that in general only a small num-
ber of discrete weights is necessary to represent the user’s knowledge about priorities between
constraints. Providing a larger or even an infinite set of weights would violate the declarative
style of knowledge processing using constraints, since the user would then be able to directly
code control information into the priorities of the constraints.

13



relaxzation tuples are also given a weight ranging over the discrete set from
relaxl to relax5. Obviously, this results in a more fine-grain relaxation
behavior than weighting entire constraints only.

By this means, CONTAX offers a very declarative and natural way to specify, for
example, that the plate dnmm-41 may also be used for stainless-steel if other
(better) combinations cannot be used for some reason:

(def-primitive-constraint compatible
:interface (mat pl)
:domains (material plate)
:tuples
((cast cnmm)
(alloy-steel dnmm-41)
(steel dnmm-71) ... )
:relaxl
((stainless-steel dnmm-41)))

4.3.5 Computing a hierarchical arc-consistent value assignment

After having defined all variables, constraints, and their connections forming a
constraint net, CONTAX is ready to perform its real job, namely to propagate
value restrictions through the constraint net in order to compute a hicrarchical
arc-consistent value assignment.

The basic idea of the CONTAX constraint propagation algorithm is first to start
with the mostly relaxed problem, to check whether a hicrarchical arc-consistent
value assignment can be computed, and then to strengthen the problem step
by step until it either becomes equal to the hard problem formulation (without
using any relaxation tuples) or an inconsistency occurs, in which case the most
previously computed hierarchical arc-consistent value assignment is returned:

1. All constraints are relaxed as far as possible, i.e. all relaxation tuples and all
hard constraints are taken into account. The relaxation value assignment o,
is set to be the empty assignment o, : V' — L. All constraints are pushed
onto a queue () of constraints that have to be revised, that is, checked for
hierarchical arc-consistency.

2. A constraint C(Xy,...,X,) € Q is selected to get revised and is deleted
from ). The domains of the variables X;,..., X, are then checked for
hierarchical arc-consistency w.r.t. (.

3. If the domain of some variable becomes empty, an inconsistency has been
detected and the relaxation value assignment o, is returned as the hierar-
chical arc-consistent value assignment for the (relaxed) HCSP.
Otherwise, if the domain of some variable X has been restricted due to the
application of some constraint, all other constraints ', ..., C,, connected

with X have to be revised again: Q «— QU{Cy,...,C,}
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4. If the constraint queue Q is not empty, the process continues with step 2.
Otherwise, the current value assignment o is hierarchical arc-consistent
and is stored as new relaxation value assignment o,.

5. If there are no more constraints that can be strengthened, i.e. all constraints

and no relaxation tuples are currently taken into account, o, is returned as
the value assignment satisfying the entire C5P.
Otherwise, the CSP is strengthened in some aspect, i.c. some sct of re-
laxation tuples is removed or some constraint is added that has not yet
been taken into account. The constraint queue @ is set to hold the newly
strengthened constraints and the process continues with step 2.

Step 2 contains the very heart of the constraint propagation algorithm, which
is how to select the next constraint from Q) to revise. Here, a set of heuristics are
used, for example, to prefer the constraint with the mostly restricted domains of
its variables.

Step 5 incorporates the very heart of the relaration procedure, i.c. the selection
of the next strengthening step. Again, this selection is also based on heuristics
guided by the discrete weights of the relaxation tuples and the constraints them-
selves.

4.3.6 Implementation issues

The CONTAX system has been implemented in Common Lisp and runs on a va-
riety of hardware platforms including Symbolics UX1200 Lisp boards. In order
to develop an open system which can easily be extended towards other types of
domains, the mechanisms like dispatching on type and the use of generic func-
tions as provided by the Common Lisp Object System (CLOS) have been used
intensively.

Besides being integrated in COLAB, there also exists a stand-alone version of
CONTAX with a programmer interface to LISP [Meyer and Steinle, 1992] that en-
ables any LisP-based application to use CONTAX as its own constraint-reasoning
formalism.

5 Using CoONTAX for lathe-tool selection

The constraint system CONTAX presented so far has been used to formalize and
solve the lathe-tool selection problem as it occurs in a real-life process planning
application. The principal approach how to formalize the lathe-tool selection
problem as a CSP has been given before using a small example. However, in our
real-life application we have to deal with a considerably larger set of constraints
on some more variables ranging over much larger domains.

The current implementation of the lathe-tool selection module [Tolzmann,
1992] covers 59 different cutting plates, 62 holders, and 22 different materials. The

15



problem constraints determining the tool selection include technological ‘rules’
like
If the workpiece is stable (a criterion depending on the
length/diameter ratio) and the edge-angle is of class large or
medium,
then prefer a medium tool-cutting edge-angle (tc-edge-angle)

as well as economical ones like

If the current process is rough-turning the workpiece,

then a quadratic plate should be preferred to a triangular one wher-
ever possible. Quadratic plates can be used more often in a process
since they have one more tip.

Due to the compact notation of concepts (or classes) representing subsets of
the domains, together with the ability to define constraints over abstract concepts
and making use of inheriting properties from superconcepts to subconcepts, the
increasing domain sizes of more than 400 elements in total poses no real efficiency
problems. Since variables and constraints are compiled into CLOS objects, the
most time-consuming task has been the generation of the constraint network.
Thus, as in our concrete application all constraints and variables that have to
be generated are known in advance, the constraint net can be built up when
loading the whole planning system; the constraint-solving process itself can then
be performed very efficiently.

Moreover, as expected, the problem formulation acquired from human experts
as well as from text-books turned out to be contradictive. Thus, constraints had
to be weighted in order to cope with such implicit contradictions. The ability of
CONTAX to relax the problem step by step until it becomes solvable, has been
essential for the success of our approach. Trying to formulate the problem using
other constraint systems, would have required a complete problem reformulation.

6 Conclusion

In this paper we have shown how the notion of hierarchical arc-consistency intro-
duced by [Mackworth et al., 1985] can serve as a basis for developing a constraint
system over hierarchically structured finite domains.

The application of lathe-tool selection motivated the development of a con-
straint relaxation procedure, which enables the system to cope with over-specified
constraint problems.

Both extensions of classical constraint systems, exploiting hierarchically struc-
tured domains and incorporating constraint relaxation methods, have been es-
sential for our approach to use constraint propagation for lathe-tool selection in
a real-life application.
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