
A New Library for Real-time Continuous Collision Detection1

Holger Täubig, Udo Frese
Cyber-physical Systems, DFKI Bremen, Germany

Abstract
We present the Kinematic Continuous Collision Detection Library (KCCD), a new library for real-time continuous col-
lision detection for humanoid and industrial robots. The C++ library operates on joint state intervals. Such, it does not
only test a single or N intermediate configurations but assures safety of a whole movement. The library uses sphere swept
convex hulls (SSCH) as its volume representation, computes swept volumes and their distances for all body pairs of a
robot, and provides an operation set that allows for a trade-off between accuracy and computation time. The paper gives
an overview of the applied algorithm and describes basic features of the library, additionally provided configuration and
visualization tools, as well as existing applications.

1 Introduction
We recently developed a new library for continuous col-
lision detection based on fast swept volume computation
as part of our project B-Catch [1, 2, 3], which we are go-
ing to make publicly available. The project B-Catch is in-
volved with controlling a humanoid robot at high speed.
For that reason we aimed for a self-contained, reactive
collision detection module that handles significant brak-
ing distances geometrically precisely with limited compu-
tation time. Even though developed for a special purpose
(safeguarding a humanoid robot only consisting of revolute
joints) the library offers a variety of computation results,
features such as conservative handling of measurement er-
rors and motion, and varied robot configurations, i.e., dif-
ferent joint types. It is also very well suited to be applied
in industrial environments as shown in Fig. 1 for which all
states of moveable parts or joints can be measured; percep-
tion itself is beyond the scope of the library.

Figure 1: Example of an industrial environment in which
the library can be applied.

In this paper we present the library for continuous 3d col-
lision detection for industrial and humanoid robots and ad-

ditional tools. The library will be available in C++. It
is based on a special volume representation called sphere
swept convex hull (SSCH). SSCHs standouts include mod-
elling of round and edged objects using very view points
and less numerical problems due to the non-use of connec-
tivity information such as triangle meshes.
Configuration files declare a kinematic tree consisting of
the robot’s defining joint frames and one or multiple bod-
ies in each joint frame. After loading a configuration the
state vector has to be updated cyclically and the collision
detection function called. Each call reuses previous results
and stops computation as early as possible taking into ac-
count which information is necessary. E.g., when looking
for the smallest distance of all body pairs it will not com-
pute a distance of a pair exactly if it is already known to
be larger than another pair’s distance. A more fancy reduc-
tion of computational effort is the distance update scheme
which we apply.
The key feature of the library is to provide continuous col-
lision detection by using an interval per joint as input (e.g.,
joint angle interval). The interval covers the whole braking
motion instead of a single configuration for that joint. Po-
tential collisions are computed for any configuration vector
within the input interval vector. In that, a vector lies within
a interval vector if each of its elements lies within the cor-
responding interval of the interval vector. This specifica-
tion of the results that will be computed yields a conserva-
tive interpretation of the movement to be checked: it is the
cross product of the intervals each joint moves within. This
is appropriate for short and mid term movements, which is
sufficient for reactive collision avoidance.
The library can provide different computation results: col-
lision or not, the body pair having the smallest distance
below a given safety margin, or the distances of all body
pairs. In every one of these cases the distance of a body

1Research supported by the DFG under Grant No. FR2620/1-1 (BCATCH).

pair is the smallest possible distance of the two bodies dur-
ing the input motion. Further, the library supports comput-
ing the collision model from a given Open Inventor model,
i.e., computing an appropriate SSCH for each rigid body.
The rest of this paper gives an overview of the volume rep-
resentation SSCH and the algorithm (Sec. 3), summarizes
basic properties and features (Sec. 4), and shows existing
application examples (Sec. 5).

2 Related Work
For algorithmic details and theoretical foundations as well
as a thorough discussion of related work we refer to [1].
We would like to highlight [4] and [5], these textbooks pro-
vide a very good and comprehensive overview of real-time
collision detection methods.
There are other collision detection libraries available such
as PQP[6], SWIFT[7], V-Clip[8], and SOLID[9], but their
focus differs from the particular robotics focus of our new
library. A major functionality of the KCCD library is the
processing of the robot kinematic which provides the real-
time swept volume computation. The computation of the
distances between these swept volumes is another part, in
the KCCD library essentially based on a GJK[10] imple-
mentation. This second part compares to the functional-
ity of the before mentioned libraries. However, we did
not apply them because they usually operate on triangle
mesh representations and use bounding volume techniques
to achieve a very good performance[6, 7]. As a conse-
quence, on the one hand they are able to handle complex
objects consisting of thousands of triangles but on the other
hand operate on rigid objects and usually require a prepro-
cessing for the construction of triangle meshes and bound-
ing volume hierarchies that is rather computationally ex-
pensive. But the swept volumes to be checked for colli-
sion vary in successive time steps, i.e., the volume shape
changes more than only its pose, which would make the
preprocessing computation necessary in each time step.
Furthermore, these libraries cannot be applied for the task
as a whole, thus including swept volume computation, as
to the knowledge of the authors the libraries do not support
continuous collision detection but operate on single states
for their objects in each time step.
———————————————————————

3 Overview of SSCH and the Colli-
sion Detection Algorithm

The library uses sphere swept convex hulls (SSCH) as its
volume representation. A SSCH is given by a finite set of
points P = {[pl]

n
l=1} and a radius r. Its static volume is

defined as

V (r;P) = convP +
{
b ∈ R3

∣∣ |b| ≤ r
}
, (1)

where convP is the convex hull of a point-set P .
So each volume is the Minkowski-sum of a convex polyhe-
dron given by a set of points, and a ball of radius r. Hence,
it can bound both edged and round bodies tightly with few
points. Even though the name may suggest something dif-
ferent, a SSCH is at first a representation of a static volume,
e.g. a body of the robot. It is internally stored as point list
P and radius r and does not contain any robot motion so
far; this is realized by the algorithm in terms of computing
appropriate P and r. P and r do not contain any connectiv-
ity information and the convex hull convP does not have
to be computed explicitly, which avoids typical problems
of computational geometry involving degenerate triangles.
The robot’s configuration consists of a kinematic model
defining joint-frames and a geometrical model with the
robot’s rigid bodies each represented as a SSCH in one
joint-frame. Non-convex bodies may be represented by
multiple volumes as an SSCH is always convex. The kine-
matic model currently can consist of revolute joints and
prismatic joints.
At its heart, the library is essentially involved with swept
volume and distance computation of all relevant body pairs
for an input state interval vector. However, we show the
full collision avoidance algorithm from [1] in the follow-
ing as this covers an important use case of the library. It
computes the input interval vector covering the braking
behaviour and measurement errors (step 1), then calls the
basic library function (which executes step 2 and 3), and
finally responds to the results appropriately (step 4). The
swept volume of one of the robot’s bodies is the volume
covered by this body during the considered motion. The
algorithm operates as follows:

1. Compute all joint intervals Q = [q0; q1], such that
when the robot starts braking the next cycle, it will
stop within this interval. The intervals are based
on joint angles, joint angle velocities, latency, and
worst-case deceleration, as well as joint angle un-
certainties.

2. Compute swept volumes Vi
k of all bodies Bi in all

joints Jk from the body down to the robot base
by successively including the sweeping effect of
one joint Jk after the other. The swept volumes
are represented in coordinates of the corresponding
joint-frame Ck of joint Jk.

3. For each body pair (Bi, Bj)

Compute the distance of Vi
k and Vj

k in
the first common joint-frame Ck on the se-
quences of joints from Bi and Bj down to the
robot base.

4. Stop robot if any of the distances from 3) is zero.2

Further details and theoretical foundations can be found
in [1].

2Alternatively, less or equal a configured safety distance.

4 Features
We will now summarize basic properties and features of
the library.

4.1 Conservative & Real-Time Computation
The library provides a strictly conservative and geometri-
cally precise collision detection or rather distance compu-
tation algorithm. The distance of a body pair therein is
the smallest possible distance of the two bodies during the
considered motion, or precisely for any configuration vec-
tor within the input interval vector. In fact, it computes a
lower bound of the distances of all body pairs in a con-
figurable amount of computation time, thus in real-time.
Similar to tother any-time algorithms, if the bound com-
puted within the time budget is not good enough to rule
out a collision, the robot has to stop, maybe unnecessarily.
The time budget that is necessary in practice depends on
the information to be computed and the robot configura-
tion. Depending on the information needed the algorithm
saves as much computation time as possible. Different
computation results in ascending order of necessary time
budget are: collision or not, body pair having the small-
est distance below a given safety margin, or distances of
all body pairs. The influence of the robot configuration
has two aspects: First, the complexity of the robot’s kine-
matic tree has an inherent influence on the computation
time. Second, the library offers a set of operations (multi-
ple versions of each joint type) that allows for a trade-off
between accuracy and computation time within robot con-
figuration.

4.2 Operate in the LCA-Frame
As a major task the library computes, respectively bounds,
the distance of the swept volumes of two bodies. Both of
these swept volumes as well as their distance depend on
the frame they are computed in. In particular, the effects
of the frame onto both swept volumes do not necessarily
cancel each other out. We showed this general property of
swept volumes in [1] and inferred that “for two bodies [...]
we can choose any frame on the connecting path [in the
kinematic tree] to compute and intersect swept volumes”.
As a consequence, the simplest and probably most efficient
solution is to operate in the lca-frame of a body pair. The
lca-frame is the least-common-ancestor in the kinematic
tree, thus the deepest node, i.e., joint frame, in the tree that
is a parent of both bodies. This is done in the library: for
every body pair it computes both swept volumes and their
distance in the lca-frame of the body pair.

4.3 Supported Joint Types
The kinematic tree is build from separate joints during con-
figuration of the robot. The library currently supports pris-
matic joints and revolute joints completely. Complete sup-

port means providing multiple conservative implementa-
tions per joint type. These are: a fast calculation of the
joint without state intervals (interval width is zero), and
two versions of the joint with intervals. One of the interval
versions is more accurate and computationally expensive,
the other one is faster and generates a larger approxima-
tion error. But both versions are strictly conservative. The
robot configuration defines which one is chosen. In this
way, the user can balance between accuracy and computa-
tion time. Further details on prismatic and revolute joints
can be found in [1].
Current work in progress is the integration of so called ve-
hicle joints into the library. Vehicle joints allow to model
vehicles and their braking behaviour as shown in [11],
where equivalent techniques and representations have been
used for 2D collision detection for vehicles. The result
will be an integrated 2D/3D collision detection for vehi-
cles with manipulators or industrial settings as in Fig. 1.
For practical purposes we recently also added joints that
cover arbitrary 3D translation and rotation. They differ
from prismatic respectively revolute joints in that they use
3 dimensions in input state vector instead of having a con-
figured fixed axis and just on degree of freedom. They can
be used to position and orient moveable objects arbitrar-
ily in the scene (position and orientation must be measured
and given as part of the state vector) but they do not pro-
vide a motion representation consisting of 3 dimensional
intervals. Instead, uncertainty in terms of a single valued
error bound can be configured. This is meant to be the
upper bound of the measurement error, which is the max-
imum distance to the true position for 3D translations and
the maximum rotation angle between true and measured
orientation for 3D orientations. Again, implementations
are conservative. Resulting volumes cover all states within
the configured uncertainty bounds.

4.4 Configuring the Collision Volumes
One of the time consuming and safety-critical issues within
configuration is the creation of a SSCH representation for
each rigid body of the robot. As most users own a CAD
model of their robot, we alleviate that configuration step
by providing a automatic volume optimization tool that
computes a conservative SSCH for a given Open Inven-
tor model. The Open Inventor model has to contain ex-
actly one rigid body and the user can choose the number
of points used by the SSCH. Complex CAD models have
to be split into separate files containing just one rigid body
per file, other CAD models converted to Open Inventor be-
fore the tool can be applied.

4.5 Visual Configuration Inspection
Our library is thought to provide a part of the software of
a safety device. Even though it is not certified according
to an appropriate standard so far, we nevertheless prepared
it to cover the features that would be necessary for such a

certification. One of these features required by norms such
as IEC 61508 is to provide a instrument for the user to
check the correctness of the configuration. State-of-the-art
in comparable domains such as safety laser rangefinders
is the visual inspection of the configured safety zones; in
our case that means visualization of the collision model.
An additional tool provides that by overlaying the colli-
sion volumes into the live image of a camera that has an
arbitrary but fixed position. This is done while the robot
is moving, so the tool has to be provided with the current
state vector.
In the beginning of that visualization the camera pose is
determined semi-automatically by a simple labelling pro-
cess. The accuracy of this labelling was 0.3◦ orientation
error and 1cm distance error for the camera pose within
our original application (cf. Sec. 5.1).

5 Applications

5.1 Humanoid Robot Justin

Fig. 2 presents results from the original application of the
library. It is used to safeguard DLR’s humanoid Justin in
the B-Catch project, whose task is to catch two simultane-
ously thrown balls [2, 3]. On the left Justin and its colli-
sion model (green volumes) are shown. The 26 bodies of
Justin’s collision model (20 joints) only contain 80 points
and 26 radii. A single body’s representation uses only 3.1
points on average, less than 4 for a tetrahedron, the sim-
plest polyhedral volume. Nevertheless, the collision model
is tight and conservative. The bounded computation time
needed by the library to apply this model is 0.4ms on a
INTEL T2500@2GHz processor.
Fig. 2 right provides the swept volumes that arised in an
experiment of moving Justin’s hands towards each other
with different velocities until the safety module brakes.
It shows the colliding swept volumes at the time braking
is triggered. The swept volumes grow with the velocity
because the braking distance (the considered movement)
grows with the velocity.

5.2 Industrial Application

Within the project INVERITAS the library is used to pre-
vent collisions of their demonstrator. INVERITAS is
a joint project including the partners EADS-ASTRIUM,
Jena-Optronik and the Robotics Innovation Center of the
DFKI. The project is involved with the prototypic realiza-
tion of a broad-spectrum rendezvous and capture system.
The library is used to protect their physical technology
demonstrators consisting of an six-axis industrial robot and
a cable-guided 3D-movement system in the environment of
DFKI’s exploration hall. Fig. 3 shows this example of an
industrial setup. The six-axis industrial robot and its pay-
load, a satellite, is configured using prismatic and revolute
joints. The location of the cable guided 3D-movement sys-

tem is configured using 3D translation and rotation joints.
Its pose is received from the exploration hall system. The
exploration hall environment will also be modelled but is
not shown in the figure. The shown configuration uses 50
points and 13 radii for 13 bodies in a 12 DOF system. Still,
this is a rather small example but the library is capable of
larger ones.

Figure 2: (left) DLR’s mobile humanoid Justin and its col-
lision model. (right) Experiment of moving Justin’s hands
towards each other with 0.22, 0.65, and 1.1m/s (top to bot-
tom) until the safety module brakes [1]. Figures show the
colliding swept volumes at the time braking is triggered.
The hands are omitted here for better visibility.

Figure 3: Collision detection setup in the INVERITAS
project consisting of an six-axis industrial robot, its pay-
load (a satellite) and a cable-guided 3D-movement system
(cable not included).

5.3 Distance of All Body Pairs Example
The library has further been used for reactive self collision
avoidance [12], where it provides the N body pairs hav-
ing smallest distance to an appropriate control law. For

each of these body pairs their distance and potential col-
lision points, i.e., the points on the two bodies that have
minimum distance, were computed. This application is an
example for a different computation result provided by the
library. It also used DLR’s humanoid Justin and its colli-
sion model shown in Fig. 2.

6 Summary
We presented a new library for real-time continuous col-
lision detection based on fast swept volume and distance
computation. We described basic features, additional con-
figuration and visualization tools, and currently existing
applications. The library will soon be available online at
www.dfki.de/cps/3d-collision-avoidance.

References
[1] H. Täubig, B. Bäuml, and U. Frese, “Real-time swept

volume and distance computation for self collision
detection,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), San Francisco, USA, 2011, pp. 1585–1592.

[2] B. Bäuml, O. Birbach, T. Wimböck, U. Frese, A. Di-
etrich, and G. Hirzinger, “Catching flying balls with a
mobile humanoid: System overview and design con-
siderations,” in Proceedings of the 11th IEEE-RAS
International Conference on Humanoid Robots (Hu-
manoids), Bled, Slovenia, 2011, pp. 513–520.

[3] B. Bäuml, F. Schmidt, T. Wimböck, O. Birbach,
A. Dietrich, M. Fuchs, W. Friedl, U. Frese, C. Borst,
M. Grebenstein, O. Eiberger, and G. Hirzinger,
“Catching flying balls and preparing coffee: Hu-
manoid Rollin’Justin performs dynamic and sensitive
tasks,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), Shang-
hai, China, 2011, video.

[4] C. Ericson, Real-Time Collision Detection, ser. The
Morgan Kaufmann Series in Interactive 3D Technol-
ogy. Morgan Kaufmann, 2005.

[5] G. van den Bergen, Collision Detection in Interactive
3D Environments, ser. The Morgan Kaufmann Series
in Interactive 3D Technology. Morgan Kaufmann,
2003.

[6] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha,
“Fast distance queries with rectangular swept sphere
volumes,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), San
Francisco, USA, 2000, pp. 3719–3726.

[7] S. A. Ehmann and M. C. Lin, “Accelerated proxim-
ity queries between convex polyhedra by multi-level
voronoi marching,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Takamatsu, Japan, 2000, pp. 2101–
2106.

[8] B. Mirtich, “V-clip: fast and robust polyhedral col-
lision detection,” ACM Transactions on Graphics
(TOG), vol. 17, no. 3, pp. 177–208, July 1998.

[9] G. van den Bergen, “Efficient collision detection
of complex deformable models using AABB trees,”
Journal of Graphics Tools, vol. 2, no. 4, pp. 1–14,
April 1997.

[10] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A
fast procedure for computing the distance between
complex objects in three-dimensional space,” IEEE
Journal of Robotics and Automation, vol. 4, no. 2,
pp. 193–203, April 1988.

[11] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr,
E. Vorobev, and D. Walter, “Guaranteeing functional
safety: design for provability and computer-aided
verification,” Autonomous Robots, vol. 32, no. 3, pp.
303–331, April 2012.

[12] A. Dietrich, T. Wimböck, H. Täubig, A. Albu-
Schäffer, and G. Hirzinger, “Extensions to reactive
self-collision avoidance for torque and position con-
trolled humanoids,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation
(ICRA), Shanghai, China, 2011, pp. 3455–3462.

