
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-92-51

On Abduction and Answer Generation
through

Constrained Resolution

Hans-Jürgen Bürckert, Werner Nutt

October 1992

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11, FRG
Tel.: (+49 681) 302-5252
Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit
organization which was founded in 1988 by the shareholder companies Daimler-Benz, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Atlas Elektronik, Digital-Kienzle, Philips, Sema Group
Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are funded
by the German Ministry for Research and Technology, by the shareholder companies, or by
other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Intelligent Communication Networks
Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

On Abduction and Answer Generation through
Constrained Resolution

Hans-Jürgen Bürckert, Werner Nutt

DFKI-RR-92-51

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8903 0).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

1

On Abduction and Answer Generation
through Constrained Resolution

Hans-Jürgen Bürckert and Werner Nutt

DFKI, Stuhlsatzenhausweg 3, 6600 Saarbrücken, Germany
e-mail: {hjb, nutt}@dfki.uni-sb.de

Abstract: Recently, extensions of constrained logic programming and constrained
resolution for theorem proving have been introduced, that consider constraints,
which are interpreted under an open world assumption. We discuss relationships
between applications of these approaches for query answering in knowledge base
systems on the one hand and abduction-based hypothetical reasoning on the other
hand. We show both that constrained resolution can be used as an
operationalization of (some limited form of) abduction and that abduction is the
logical status of an answer generation process through constrained resolution, ie.,
it is an abductive but not a deductive form of reasoning.

Keywords: Constrained resolution, query answering, intensional answers,
abduction.

Contents

1 Introduction .. 2

2 Constrained Resolution. 4

3 Query Answering. 9

4 Abductive Framework . 15

5 Concluding Remarks . 17

References. 18

2

1 Introduction

Quite recently a extension of logic programming and theorem proving by socalled open

constraints that is of great interest for knowledge representation applications has been

developped. Open constraints are symbolic constraints, which are no longer interpreted

with respect to a single domain (ie., under closed world semantics) but over classes of

models. In this paper we will show how these approaches are related to other

techniques known from knowledge representation, logic programming, and deductive

databases.

In particular, we will discuss some relationships between constrained resolution

for theorem proving (Bürckert 1990, 1991, Frisch & Scherl 1990), query answering in

constraint-based extensions of logic programming (Jaffar & Lassez 1987, van

Hentenryck 1989, Höhfeld & Smolka 1988, Smolka 1989, Ait-Kaci & Podelski 1991),

extensions of deductive database systems with intensional answers (Cholvy &

Demolombe 1986, Imielsky 1987, Motro & Yuan 1990, Chu et al. 1991), and

abduction-based hypothetical reasoning (Pople 1973, Poole 1988, Eshghi & Kowalski

1989, Konolige 1990, O'Rourke 1990, Denecker & De Schreye 1992, Kakas et al.

1992, Merziger 1992).

Hypothetical reasoning is the process of finding hypotheses that explain observed

facts with respect to some knowledge base. Abductive inferencing is a way to treat this

within a logical framework, where abduction is the following rule of inference: if we

observe B and we know that A always implies B then we may infer that A holds.

Clearly that this kind of inference is not sound, since logically “A implies B” means “not

A or B ”. The latter is in particular true, if A is false, and hence inferring A may be

incorrect.

The proper idea of hypothetical reasoning lies in finding possible causes for a

given observation, which seems not to be adequately modelled by logical implication.

Thus it would be more adequate to use only “relevant” implications as a source for

abductive reasoning: If we have B and we know “A implies B” we infer A , only if A is

not generally false. This means, we abduce only explanations that are consistent with

our knowledge.

One application for abductive reasoning as pointed out by (Poole 1988) lies in

default reasoning (Reiter 1980): Default reasoning is generating possibly unsound, but

3

justified inferences, where the justification is given by any plausible argumentation,

eg., a default rule. Poole argues that default reasoning, for instance by the well-known

default rule “all birds fly”, is from the logical point of view much better modelled by

abduction: Given a distinguished bird, say Tweety, the default inference that Tweety

flies (as long as there is no evidence that it doesn’t) may be seen as abducing a

justification “bird-so-fly” for the inference “tweety flies”.

A different, but – as we will see in a minute – similar view is obtained when we

use McCarthy’s approach of circumscribing “abnormality” predicates (McCarthy

1980): Default rules like “all birds fly” are coded into a logical implication “if something

is a bird and if it is not an abnormal one then it flies” or in predicate logic notation

∀x bird(x) ∧ ¬abnormal(x) ⇒ fly(x).

Circumscription (ie., minimization of the extension of the abnormal-predicate) is used

in order to obtain for a distinguished bird the default inference that it flies: The model

theory is restricted to those models where the set of abnormal birds is as small as

possible, ie., where given birds are normal birds and hence fly, as long as there are no

reasons to assume the contrary.

Now, taking a more “positive” approach, ie., using “normality” predicates instead

of abnormality, we can rewrite the formula above into

∀x bird(x) ∧ normal(x) ⇒ fly(x) .

If we distinguish these normality predicates from all other predicates in that we allow

application of such implication rules only if their normality precondition is consistent

(eg., with some underlying theory of normality), we get the same kind of inference as

above: We can infer that Tweety flies provided it is justified (ie., it is consistent to

assume) that Tweety is a normal bird.

With this view of hypothetical reasoning we can compare it with recent work, that

generalizes logic programming or theorem proving by integrating “open” constraints. In

these approaches constraints are interpreted under an open world assumption, ie., we

have more than one model for the constraint theory (Höhfeld & Smolka 1988, Bürckert

1990, 1991, Frisch & Scherl 1990, Ait-Kaci & Podelski 1991).1 Our normality

predicates can be considered as open constraints that have to be interpreted with

respect to some constraint theory of “normality”: As we will see, a formula

1This is in contrast to CLP-scheme of Jaffar and Lassez, where we have “closed” constraints that are
interpreted over a fixed single model, the domain of computation (Jaffar & Lassez 1987, Maher 1987).

4

constrained´, eg., by normality predicates can only be used in the inference process, if

its constraint is consistent with that constraint theory.

Constraint logic programming approaches use a constraint based version of

resolution as an answer generation procedure that transforms any (constrained) query

to a constrained logic program (ie., a set of constrained definite clauses) into a

consistent answer constraint (Jaffar & Lassez 1987, Höhfeld & Smolka 1988, Smolka

1989). Such a constraint answers the query in that it logically entails the query. Recall

that in classical Horn clause programming this is exactly the status of an answer

substitution. In addition, finding an answer substitutions proves the existential closure

of the query to be a logical consequence of the program. However, as we will see, the

second property no longer holds in the case of general constrained logic programming:

There an answer constraint only proves the query to be true in those models that satisfy

the answer.

If we compare this with abductive reasoning, we can state that answer generation

is an abductive process: It generates consistent assumptions, that together with the

given program entail the query (as an existential statement), but, in general, it does not

prove the query to be a consequence of the program.

So our aim in this paper is to demontrate both that constrained resolution (section

2) may be used as an operationalization of some form of abduction (section 4) and that

logically an answer generation process through constrained resolution (section 3) is an

abductive but not a deductive form of reasoning. We will conclude with a brief

discussion of that abductive view of question answering (section 5).

2 Constrained Resolution

In this section we will recall the notion of constrained resolution (Bürckert 1990, 1991).

We assume the reader to be familiar with some logical and model theoretical

background as provided by textbooks on mathematical logics (eg., Shoenfield 1967).

We also assume some acquaintance with foundations of automated theorem proving

and logic programming (eg., Chang & Lee 1973, Kowalski 1979, Lloyd 1984, Gallier

1986).

5

For constrained resolution we abstract from the classical view of resolution in that

we replace the unification process by a constraint solving procedure.2 Therefore we will

consider constrained clauses over a constraint system.

 A constraint system ℜ consists of a signature Δℜ of predicate and function

sysmbols, a set Mℜ of structures over this signature, an infinite set V of variables, and

a set Cℜ of open formulae over the signature. The set Cℜ is closed under conjunction

and variable substitution. We call Δℜ the constraint signature , Mℜ the constraint

theory, its elements are the constraint models, and the elements of Cℜ are the

constraints . As a special case, the constraint theory might be specified by a consistent

set of closed formulae over Δℜ, called constraint declarations, such that Mℜ is just

the set of all models of this axiomatization.

A constraint Γ is called solvable or satisfiable iff its existential closure ∃ Γ is

satisfied by some constraint model ℑ. The pair (ℑ, α) of a constraint model ℑ and a

variable assignment α: V → ℑ satisfying the constraint Γ in ℑ is called a solution of Γ,

written (ℑ, α) |= Γ. In that case the assignment α is also called an ℑ-solution of the

constraint Γ, and the constraint is called ℑ-solvable. The set of ℑ-solutions α of Γ is

denoted by SOL(ℑ, Γ) and the set of all solutions (ℑ, α) of Γ is denoted by SOL(Γ).

Now, given a constraint system and a set Σ of predicate symbols (disjoint from

Δℜ), a constrained formula is a pair F \ Γ, where F is any formula over Σ and Γ is

any constraint. Both F and Γ may be open formulae and they may have common free

variables; all free variables will be treated as implicitly universally quantified. If

necessary we therefore will sometimes write the above constrained formula as ∀X:Γ(X)

F, where X is the set (or sequence) of the free variables of Γ and F . The free variables

of Γ are also called the constrained variables of the constrained formula F \ Γ. Except

for ease of presentation in some examples we we will not make use of formulae with

constrained existential quantification (ie., formulae of the form ∃X:Γ(X) F) as in

(Bürckert 1991).

A constrained clause is a pair C \ Γ, where C is a (possibly empty) finite set

of literals (atoms and negated atoms) over Σ and Γ is a constraint. We call C the

kernel and Γ the constraint of the clause. Considered as a formula C is a disjunction

of literals. If C contains only one positive literal H and a (possibly empty) set of

2 As shown in (Siekmann 1990, Bürckert 1991, Jouannaud & Kirchner 1991) unification can be
considered as solving equations in certain algebras, and hence it can also be seen as a constraint solving
method.

6

negative literals, we have a constrained definite clause and we also write (H ⇐ B) \

Γ3. We call H the head , B the body of the clause. If the body of a constrained definite

clause is empty we have a constrained fact clause, otherwise it is a constrained rule

clause . If a clause has only negative literals we call it a constrained negative clause or

a goal clause; such a clause can be seen as a rule clause with empty head and hence

is often written ⇐ B \ Γ. If the kernel of a constrained clause is empty we have a

constrained empty clause Δ \ Γ.

The model theory of constrained formulae is given by free expansions of the

constraint models with the symbols of Σ : An (ℜ ,Σ) -structure is defined as a

constraint model, where in addition the predicate symbols of Σ are interpreted as

relations on the carrier. Notice, that in the case where the constraint theory is given by

constraint declarations, the (ℜ,Σ)-structures are exactly those (Δℜ ∪ Σ)-structures that

satisfy the constraint declarations. Atoms, disjunctions, conjunctions, implications,

negations, and quantification are interpreted as usual. Constrained clauses are

interpreted as disjunctions, their constraints play the role of preconditions and all free

variables are universally quantified. This means that a constrained formula is

interpreted as universally quantified implication and that constrained formulae with

unsolvable constraint are tautologies w.r.t. the constraint theory.

Obviously we have the following special cases: A constrained clause is always

satisfiable by those (ℜ,Σ)-structures ℑ, for which the constraint has no ℑ-solution. This

especially applies to empty clauses, ie., constrained empty clauses may be satisfiable.

Example: (1) If we take CLP(R), the CLP-language over the real numbers R, we

have a constraint system consisting of the single constraint model R of real numbers,

where the constraints are arithmetical equations and inequations. As constrained

formulae we have Horn formulae with arithmetic constraints. Solutions are pairs (R,

α), where α maps the variables to such real numbers that solve the constraints.

(2) As an example for a constraint system with open constraints one can take a know-

ledge base in a (decidable) terminological language of the KL-ONE family (Brachman

& Schmolze 1985, Nebel 1989, Baader et al. 1990). These are concept description lan-

3 In this notation B is the set {A : ¬A is one of the negative literals of the definite clause}. Notice, that in
the sequel we will mostly drop the parantheses and write H ⇐ B \ C . This is justified, since on the one
hand, a constraint formula can be read as an implication, i.e., (H ⇐ B) ⇐ C . On the other hand this
douple implication is equivalent to (H ⇐ (B ∧ C) . The two writings (H ⇐ B) \ C and H ⇐ (B \ C)
were equivalent, if in the first form we interpreted the bars \ as an implication, and in the second form as
a conjunction. But notice, that the second one is not really a constrained formula, as we do not allow
recursive forms of constrained formulae and, of course, as C might constrain variables of H.

7

guages which are essentially equivalent to sublanguages of predicate logic. They allow

in a socalled TBox the definition of terminology, a concept hierarchy (semantically a

subset hierarchy), and in an ABox the assertion of facts about instance relationships

between objects and concepts: (atomic) concepts are unary predicates, concept

descriptions are certain open formulae built up with concepts and binary relations

(roles) by conjunction, disjunction, negation and restricted forms of quantification (in

order to bind the second arguments of roles, such that the resulting concept description

contains exactly one free variable – ie. semantically they denote sets); objects are

constants that can be used to instantiate the open formulae in order to assert

membership relationships. The constraint models are all models of the terminological

knowledge base. As constraints one can take sets of concept descriptions constraining

the variables of our constrained formulae (cf. Baader et al 1991, Bürckert 1991).

For the proof theory of constrained formulae we consider a resolution based

refutation calculus. Therefore sets of constrained formulae have to be transformed into

constrained clause form, ie., into sets of constrained clauses. This is a non-trivial task,

as the constraints may be unsolvable over some of the constraint models, which leads to

“empty” quantification (see Bürckert et al. 1992 for more details about skolemization of

constrained formulae).

For sets of constrained clauses we then have a resolution and a factoring rule

where unification is replaced by a constrained solvability test. Thus, as mentioned in

the introduction, constrained clauses are used in the inference process only if their

constraints are solvable in the underlying constraint theory.

Constrained resolution rule:4

P(x) ∨ C1 \ Γ1 ¬P(y) ∨ C2 \ Γ2
————————————————— if Γ1 ∧ Γ2 [x = y] is solvable

C1 ∨ C2 \ Γ1 ∧ Γ2 [x = y]

Constrained factoring rule (positive case):
P(x) ∨ P(y) ∨ C \ Γ

——————————— if Γ [x = y] is solvable
P(y) ∨ C \ Γ [x = y]

4 The reading of the rules is as follows: Given the clause schemas above the line, infer the clause schema
below the line, provided the condition holds. The focussed literals with n-ary predicate symbol P are
considered as having n-ary vectors of variables x or y, while the C’s that are separated from them by the
∨ are the remaining possibly empty sets of literals. The equation [x = y] in square brackets means that
the x 's are to be replaced by the corresponding y 's simultaneously at every occurrence in the whole
clause or constraint, respectively (variable substitution). By the way, this demonstrates why we required
the constraints to be closed under conjunction and variable substitution.

8

Constrained factoring rule (negative case):
¬P(x) ∨ ¬P(y) ∨ C \ Γ

———————————— if Γ [x = y] is solvable
¬P(y) ∨ C \ Γ [x = y]

Given a set of constrained clauses S0, a derivation is any (possibly infinite) sequence

(Sn) of clause sets such that Sn+1 is obtained from Sn by a resolution or a factoring step

that selects variants of clauses of Sn matching the schemes above the lines of our rules

and adds the corresponding clauses from below the lines to the clause set. A refutation

is any derivation such that for each constraint model ℑ ∈ Mℜ there exists a clause set

Sn in the derivation which contains an empty clause whose constraint is ℑ-solvable. Or,

to phrase it differently: A refutation is a (possibly infinite) derivation (Sn), such that

∪n Sn contains for every constraint model ℑ an empty clause, whose constraint is ℑ-

solvable . From (Bürckert 1990, 1991) we have the following soundness and

completeness result for constrained resolution.

Theorem: (Refutation Completeness of Constrained Resolution)

A set of constrained clauses is unsatisfiable w.r.t. a constraint theory iff there

is (possibly infinite) refutation starting with that clause set.

By the compactness theorem of first order logics we can simplify this result for

constraint theories with first order axiomatization in that a refutation is already given

by some finite derivation. In this case we can add a collection rule for the constraints of

empty clauses as disjunction of that constraints.

Constraint collection rule:
 Δ \ Γ1 Δ \ Γ2 …

————————————
 Δ \ Γ1 ∨ Γ2 ∨ …

With that rule we have the following corollary.

Corollary: Let the constraint theory M ℜ be given by a set of constraint

declarations. For every unsatisfiable clause set there exists a finite refutation,

such that the final clause set contains an empty clause whose disjunctive

constraint is ℑ-solvable for every constraint model ℑ ∈ Mℜ, ie., it is a logical

consequence of the constraint theory.

The following example shows that completeness indeed requires the derivation of

several empty clauses.

9

Example: Suppose that we have a constraint theory M given by the following two

constraint declarations

 {Γ(a), Γ(b) ∨ Γ(c)}

Let us consider the following set of three constrained clauses:

(1) P(x,x) \ Γ(x)

(2) ¬ P(y,v) \ Γ(y) ∧ v = b

 (3) ¬ P(z,w) \ Γ(z) ∧ w = c

We can derive two constrained resolvents (we simplified the constraints slightly)

from clauses (1) and (2) Δ \ Γ(b)

from clauses (1) and (3) Δ \ Γ(c)

Of course, none of the two empty clauses provides a refutation, but with the

constrained collection rule we get

Δ \ Γ(b) ∨ Γ(c) .

Obviously, that disjunction of constraints is a logical consequence of our constraint

theory and hence is solvable in every constraint model. Thus constrained resolution

provides a case distinction by separating the constraint models with respect to the

constraints of empty clauses saying that we have reached a contradiction in every

model that solve the constraint of a derived empty clause. The case distinction is

complete, when the collection rule has collected enough constraints such that for every

model there is at least one constraint that is solved by that model.

3 Query Answering

In the last section we gave resolution rules and a refutation completeness result for

showing unsatisfiability of constrained clause sets. However, if we address knowledge

representation, logic programming or logic-based information systems, we need a

positive approach in the sense that we allow queries to a given knowledge base and we

expect answers to our queries (Green 1969, Luckham & Nilsson 1971, Kowalski 1979,

Lloyd 1984, Frost 1986, Genesereth & Nilsson 1987). We contrast the different

assumptions underlying answer generation in logic programming on the one hand and

reasoning with open constraints on the other hand.

10

Let us call a satisfiable set of constrained clauses together with the constraint

theory a knowledge base (KB). If we have only definite clauses, we also call it a

constrained logic program (CLP), and if we have only definite clauses without

constraints we will call it a logic program (LP).5 The structures satisfying a KB are

called models of the KB.

If we want to retrieve (implicit) knowledge from a KB, there are the following two

important forms of queries (cf. Frost 1986, Genesereth & Nilsson 1987), “yes-or-no”

questions (eg., Is John one of Sarah’s parents?) and “fill-in-the-blank” or “who”

questions (eg., Is there a parent of Susan? or Who is Sarah’s parent?). Yes-or-no

questions can be answered by standard theorem proving methods: Rewrite the yes-or-

no question as a theorem and try to prove either the theorem or its negation. Depending

on which of the two proofs succeeds the answer is yes or no, respectively, otherwise

there is no answer. The problem of course is the undecidability of first order logics,

which leads to non-termination of these processes in the cases where no answer exists.

Fill-in-the-blank questions, however, still need additional techniques.

Formally, a fill-in-the-blank question is an open formula, where the free variables

play the role of blanks to be filled in by an answer. Logically, we can consider such a

query as an existentially closed theorem that has to be proved with respect to the given

KB. In order to get answers that fill in the blanks we have to generate through the

proof candidates that satisfy the conditions required in the query. What are such

candidates?

One view is that the candidates have to be designated objects. That is they should

be named within the language of the KB: They have to be constants or, more generally,

ground terms of the signature of that KB.6 Hence such an answer is every substitution

of the variables by ground terms, such that the query instantiated by the answer is a

logical consequence of the KB, is true in all models of the KB. Such definite answers,

however, need not exist in general, even if the existential closure of the query is a

theorem of the KB: Take P(a) ∨ P(b) as a KB and take the query ⇐ P(x) . Then

5 This is not directly compatible with our definition of constrained formulae, where we allowed only
predicate symbols for the clause kernels, but no function symbols. However, classical LPs become CLPs,
when we unfold the argument terms ti occurring in a clause by replacing them with new variables xi and
adding as constraints the term equations x i = ti. These constraints have to be interpreted over a single
constraint model, the term algebra or equivalently the ground term algebra, ie., the Herbrand universe
(cf. Jaffar & Lassez 1987, Buntine & Bürckert 1989, Bürckert 1991). This is, what we will call a logic
program.
6 Such candidates are often called witnesses (for the existential requirements of teh query).

11

obviously ∃x P(x) is a logical consequence of the KB, but of course there is no ground

term that satisfies the query in the required way. On the other hand, it is well-known

that for KBs of definite clauses (logic programs), such an answer always exists, if the

query is a goal clause (Lloyd 1984).

The other view – eg., for indefinite KBs – is that the candidates are objects of

models of the KB assigned to the existential variables of the query. This means that

answers are pairs consisting of a model of the KB and an assignment that satisfies the

query in that model.

The second approach is a basis of CLP-schemes with “open” constraints like in

(Höhfeld & Smolka 1988), while the first approach is the usual one for deductive da-

tabases and common logic programming (Kowalski 1979, Lloyd 1984, Frost 1986).

SLD-resolution is known to provide a powerful technique to answer fill-in-the-

blank questions in the definite case: Given a logic program LP and a query (ie., a goal

clause ⇐ Q) the answers can be computed through SLD-resolution. This is a complete

answer generation method in the following sense: For every answer there is an SLD-

derivation computing a more general answer. Here an answer is a substitution σ of

terms – not necessarily of ground terms as specified above, but representing a whole set

of such ground substitutions, its ground instances – for the (free) variables of the query,

such that the universal closure of σB is a logical consequence of LP: LP |= ∀σB . It is

easy to see, that this is equivalent to the formulation that the universal closure of the

implication [σ] ⇒ B is a logical consequence of LP: LP |= ∀([σ] ⇒ B) .7 If we remind

that classical LPs are CLPs, where the constraints are sets of term equations (over a

single constraint model, the term algebra), LP |= ∀([σ] ⇒ B) can equivalently be

rewritten as LP |= B \ [σ]. Computing a more general answer means that through SLD-

resolution an answer substitution is generated such that a given answer is an instance,

ie., it can be obtained from the computed one by further instantiating the variables. It is

well-known that this means that every ground instance of the given answer is also a

ground instance of the computed answer. Comparing this with the constraint view this

in turn means that over the single constraint model given as the ground term algebra all

solutions of the given answer substitutions (considered as an equational constraint) are

also solutions of the computed answer substitution.

7 Here [σ] is an equational representation of the substitution, ie., the conjunction of the substitution
components considered as equations.

12

In constrained logic programming approaches instead of substitutions solvable

constraints have been chosen to play the role of answers: Given a CLP we call a goal

clause ⇐ B \ Γ a query to the CLP. A solvable constraint Δ is called an answer to

this query iff all solutions of that answer constraint satisfy the goal: CLP |= ∀(Δ ⇒ (B ∧

Γ)) .8

Such answer constraints are seen as intensional answers that represent extensional

answers , ie., solutions (ℑ, α) of the answer constraint, by their common property, the

constraint, instead of enumerating all those solutions (cf. Cholvy & Demolombe 1986,

Imielsky 1987, Motro & Yuan 1990, Chu et al. 1991). The free variables of ⇐ B \ Γ

are the blanks to be filled in. Thus we could verbalize the query as the question:

Are there any objects with property Γ, that satisfy B?

As an answer we expect to receive for every model of our KB a set of objects9, of

which we can be sure that they all have the required property Γ and that they satisfy F.

Thus let us define answers in that sense more precisely. Given a KB over some

constraint system ℜ we call a constraint Δ an answer to the query ⇐ B \ Γ iff the

following three conditions hold:

(1) SOL(Δ) ≠ Ø (ie., ∃Δ is Mℜ-satisfiable)

(2) SOL(ℑ,Δ) ⊆ SOL(ℑ,Γ) for each constraint model ℑ (ie., Mℜ |= ∀(Δ ⇒ Γ))

(3) KB |= F \ Δ (ie., KB |= ∀X:Δ B)

Thus according to the query above answers can be verbalized as: All objects with

property Δ – such objects exist (1)– satisfy B (3) (and they have the property Γ (2)).

By the above corollary to the completeness theorem constrained resolution

provides a terminating process (for a first order KB) if we know that there is such an

answer for every constraint model. However as for common logic programming, we

would like to have a procedure that is able to generate the answers. (Höhfeld & Smolka

1988) provides such an answer generation procedure for constraint logic programs,

which is based on constrained SLD-resolution. Notice therefore, that standard SLD-

8 Again, this notation is not directly compatible with our constrained formulae, but it shows the analogy
to the notion of an answer in the case of an LP. In order to come to a notation that is more directly
related to constraints, an easy transformation of the formulae shows, that CLP |= ∀(Δ ⇒ (B ∧ Γ)) is
equivalent to the requirement that for each constraint model ℑ all ℑ-solutions of the answer constraint Δ
are also ℑ-solutions of the query's constraint Γ and that the constraint formula B \ Δ (remember that B is
a conjunction of atoms) is a logical consequence of CLP, ie. CLP |= B \ Δ, or rewritten with constrained
quantification: CLP |= ∀X:Δ B .
9 It should be guaranteed that a non-empty set of such objects exists in at least one of the models.

13

resolution can be seen as a goal reduction process starting with a CLP, whose

constraints are term equations, and a query. In every step the goal clause is transformed

into new goal clause using a suitable clause of the CLP. The process terminates when

an empty goal is reached. During this process the equational constraints are collected

and transformed into their unifiers. The resulting final unifier is the computed answer.

For arbitrary constraints the only necessary modification is that we collect the

constraints (via conjunction) and perhaps transform them into equivalent, simplified

forms. The computed answer is then the (simplified) constraint of the final empty goal.

Constrained SLD-resolution rule:
 ⇐ P(y), B2 \ Γ2 P(x) ⇐ B1 \ Γ1
——————————————————— if Γ1 ∧ Γ2 [x = y] is solvable
 ⇐ B1, B2 \ Γ1 ∧ Γ2 [x = y]

A constrained SLD-derivation is a sequence of constrained SLD-resolution steps

starting with some goal clause, such that in every step the resolvent of the direct

predecessor step is used as one parent and a variant of a suitable program clause as the

other parent. This means that the derivation can be seen as a goal transformation

process that transforms a goal clause into the resolvent goal clause with program

clauses. An SLD-refutation of a query is a finite SLD-derivation starting with the query

and terminating with a constrained empty clause. That means that a refutation reduces

the query to a constrained empty clause, whose constraint is an answer to the query.

As we see in the example below we may, however, need several empty goals,

such that their constraints together provide a more general answer for any given

answer, in the sense that every solution of the given answer is also a solution of at least

one of the computed answers. Thus the following theorem of strong completeness or

answer completeness of constrained SLD-resolution says essentially that for every given

answer there exists a (possibly infinite) number of answers that can be computed by

SLD-resolution, which are more general as the given answer in that they cover all

solutions of the given one. The theorem is due to (Maher 1987) and has been worked

out and generalized in (Höhfeld & Smolka 1988). We give a slightly modified

reformulation of their results.

14

Theorem: (Answer Completeness of Constrained SLD-resolution)

a) For each solution (ℑ, α) of a given answer there is an SLD-refutation of the

query, such that (ℑ , α) is an ℑ-solution of the computed answer constraint

b) If the constraint theory is first order, then there are finitely many SLD-

refutations, such that every solution of the given answer is a solution of some

of the computed answers.

If we recall the definition of an answer, we see that the above theorem says, that

given any answer Δ to a query ⇐ B \ Γ constrained SLD-resolution computes answers

Λi (1 ≤ i ≤ n) such that

(1) SOL(Λi) ≠ Ø (1≤ i ≤ n)

(2) ∪1≤i≤n SOL(ℑ, Λi) ⊆ SOL(ℑ, Γ) for each constraint model ℑ

(3) CLP |= B \ Λi (1 ≤ i ≤ n)

(4) SOL(ℑ, Δ) ⊆ ∪1≤i≤n SOL(ℑ, Λi) for each constraint model ℑ

If we consider examples for such CLPs we see, that there is a problem with this

form of query answering. In contrast to classical LP or to CLP with constraints over a

single model (what we called “closed” constraints earlier) when we get an answer

constraint, this need not prove the existentially closed query to be a logical

consequence. In fact the refutation completeness result for constrained resolution shows

that we need the derivation of “enough” answers (ie., empty clauses with constraints),

in order to have a proof: The refutation completeness theorem says that for each

constraint model we have to derive an answer constraint that has solutions in that

model. In contrast to this the answer completeness result does not say anything about

whether the query is a consequence of the KB or not: The answer completeness

theorem works also for queries that are not theorems of the KB, but have answers in

some models.10

Example: Let us again take the constraint theory of the example in the last section

given by the two constraint declarations (a possible reading is given in parantheses):

Γ(a) (“a got a position”)

Γ(b) ∨ Γ(c) (“either b or c got a position”)

10 However, the cases the answer completeness theorem has been proved for are constraint theories with
exactly one model (Jaffar & Lassez 1987, Maher 1987) and hence it follows trivially from the theorem
that here the computation of an answer provides a proof of the query.

15

Let us then consider a CLP over this constraint theory given by the single constrained

fact clause

P(x, x) \ Γ(x) (“everybody with a position promotes himself”)

and let us have the following query

⇐ P(y,z) \ Γ(y) ∧ z = b (“does somebody with a position promote b?”)

The existential closure of this query would be true, if b got the position, since then he

promotes himself. Exactly this will also be the answer Γ(x) ∧ x = b that will be derived

by constrained SLD-resolution.11 However, from our KB we do not know, whether b

or c is the one who got a position, and hence the existential closure of the query (ie. the

proposition “somebody with a position promotes b”) does not follow from the KB. That

this may cause problems becomes more apparent, when we rephrase the query as a who

question: “who with a position promotes b?” Now, an answer “b provided b got the

position” might not be extremely useful.

Thus our answer generation process might produce answers, although the given

set of constrained clauses is not unsatisfiable (over the constraint theory). Instead the

generated answer is a condition, under which the query would become true. Hence,

answer generation through constrained resolution is a form of hypothetical reasoning.

It is not a proof or refutation procedure, and as we see with the example it cannot be

considered as a sound deduction process for existential sentences. Thus the question is,

what is the logical status of this form of answer generation?

4 Abductive Framework

In order to find an answer to the question closing the last section, we will consider

abductive frameworks for first order logics. Abductive frameworks have been

introduced for example in (Poole 1988) or (Eshghi & Kowalski 1989) as a way of

formalizing hypothetical reasoning within first order logics and they have been

generalized to non-classical logics in (Konolige 1990).

11 Notice, that if we call a set of answers complete iff it covers the solutions of any possible answer, it is
easy to verify that the set consisting just of the answer of our example forms a complete set for the query.

16

An abductive framework is given by a first order signature, a consistent set of

formulae over this signature (the KB) and a set of open formulae of the signature (the

abducibles). Now, given any closed formula Q , called observation, we say that a

ground instance (or a set of ground instances) C of the abducibles is an explanation

for Q iff KB ∪ C |= Q . In order to avoid trivial explanations, one usually requires in

addition that the explanation has to be consistent with the KB (and sometimes also with

additional integrity constraints, Eshghi & Kowalski 1989). In (Poole 1989) there is a

short discussion of explanations with free variables and a generalization is mentioned

that is of interest for us: Here an explanation can be any instance of the abducibles,

where free variables have to be existentially closed.

If we compare this with query answering as introduced in the last section we can

see a very close connection. The reason is that by the deduction theorem of first order

logics C is an explanation for Q iff KB |= C ⇒ Q.12 The difference that remains to

query answering lies in the quantifiers, since we had there that C is an answer to Q13 iff

KB |= ∀(C ⇒ Q) .

However, when we consider examples of existentially quantified observations, we

see that there is something wrong with Poole's definition. Suppose we observe that

some antelope is running away:

∃x:antelope(x) run-away(x).

Assume further that we know (i.e. we have a KB saying) that an antelope runs away, if

it notices a lion:

∀x:antelope(x) ∀y:lion(y) notice(x, y) ⇒ run-away(x).

12 By the way there is in fact a very strong connection between abduction and deduction at least in the
case of first order logics, which follows with the deduction theorem: If we remember that C ⇒ Q is
equivalent to ¬Q ⇒ ¬C and if we again apply the deduction theorem, we obtain that C is an explanation
for Q iff KB ∪ ¬Q |= ¬C. With this view abduction can be reduced to deduction: In order to abduce C
from the KB and the observation Q one can equivalently deduce ¬C from the KB and the negated
observation ¬Q. This is one of the main reasons why abduction works that well in the first order case and
of course this explains also the operationalization problems with abduction for more expressive logics,
where the deduction theorem is no longer valid (eg. in epistemic logics based on modal logic
approaches). The other problems with abduction that lie in the requirements that the abduced
explanations must be consistent with the KB and the search for good or even best explanations (eg. in
the sense of minimal explanations) are also not specific to abduction. They occur in a similar manner for
deduction, if we use it for deriving new theorems. Here we also want to have interesting sentences to be
derived, or sentences that are as general as possible.
13 Now C and Q are open formulae, while for abduction Q was a closed formula and C is ground or
existentially closed.

17

Then one would not be extremely happy with the explanation that Poole’s form of

abduction would result in, namely that some antelope notices a lion:

∃x:antelope(x) ∃y:lion(y) notice(x, y).

Instead, we would expect that the explanation links the antelope that we observed

running away with the one that noticed the lion. Now, this link will be established when

explanations for existentially quantified observations are defined in the same way as we

did for answers to existential queries.

Thus an adaption of Poole's approach for explanations with free variables as

follows will be necessary: For observations Q with free variables that are to be read as

existentially quantified we require that in an explanation C the same free variables

occur and that the universally closed implication ∀(C ⇒ Q) is a consequence of the

KB.

With that modification of the notion of an explanation in an abductive framework

we see that query answering through constrained resolution is in fact hypotheses

generation through abduction: Taking constraints as abducibles and the constraint

theory with the constrained clauses as KB, we have an abductive framework, where

query answering through constrained resolution generates explanations, the answer

constraints, for existentially quantified observations, the existential closures of queries.

5 Concluding Remarks

Of course there is another very close connection between query answering and

hypothetical reasoning completely apart from what we discussed before: Finding

explanations is by its definition a form of query answering, namely answering why-

questions. However, as we have seen in the last section there is also that more technical

relationship between abduction of explanations to observations and generating answers

to queries by a constrained resolution approach. The question remains now, whether

this is really the same?

A closer analysis shows, however, that there remains an important difference. If

we want to use constrained resolution for generating explanations we only can collect

direct causes as explanations. What constrained resolution cannot provide is explaining

chains of causes and effects like if A ⇒ B and B ⇒ C and we observe C then A is an

explanation for C . The reasons lie in the syntactical restrictions that we put on

18

constrained formulae. Constraints are preconditions, hence they are candidates for

explanations. But they are syntactically restricted to be only preconditions, hence they

cannot model chains of causes and effects.

If we want to apply theorem proving or logic programming techniques for

knowledge retrieval in KBs, we are confronted with the problem that for general KBs it

is to strong to allow only designators – ie., term substitutions – as answers to fill-in-the-

blank questions. The reason is that for indefinite KBs – differently as for LPs (Horn

clause KBs) – there need not exist designators for the witnesses of an existential query

(cf. Gallier & Raatz 1985). A solution is to take intensional answers, which, however,

need to be restricted, as otherwise any formula implying the query can be taken as an

answer. Open constraint theories and (simplified) constraints – eg., terminological

languages – could serve as such a restricted answer language as we have seen.

However, it is not yet clear how query answering in general KBs should be

formalized. And, as we have seen, open constraints provide only abductive answers.

The question remains whether it is an adequate definition of an answer, when it comes

out that an answer to a fill-in-the-blank question is only a hypothesis under which the

question will be true. To see this let us reconsider the antelope example again. When we

read the observation as a question: Is there any antelope running away? (or as a who

question: Which antelope is running away?) then it might not be an adequate answer to

say: Yes, there is a running antelop, but only if there exists a lion and that antelope has

noticed it (or in case of the who question: the antelope that has noticed the lion, if there

were one .)

In order to get complete answers that guarantee that the query is logically entailed

by the KB one needs to derive enough answers, that provide a complete case

distinction. However, this need no longer be decidable, even for constraint systems,

where solvability of constraints is decidable (cf. Baader et al. 1992). Thus, for

knowledge representtaion applications we need still more investigations providing

adequate and operationalizable constraint systems.

References
Ait-Kaci, H., Podelski, A.: Towards a meaning of LIFE . Proc. of Int. Symp. on

Programming Language Implementation and Logic Programming, Springer
LNCS 528, 255-274, 1991.

19

Baader, F., Bürckert, H.-J., Hollunder, B., Nutt, W., Siekmann, J.H.: Concept Logics .
In: Computational Logic (Ed. J.W. Lloyd), Springer Basic Research Series, 177-
202, 1990.

Baader, F., Bürckert, H.-J., Nebel, B., Nutt, W., Smolka, G.: On the Expressivity of
Feature Logics with Negation, Functional Uncertainty, and Sort Equations. To
appear in J. of Logic, Language, and Information, 1992.

Buntine, W., Bürckert, H.-J.: Solving Equations and Disequations . SEKI-Report SR-
89-03, Universität Kaiserslautern, 1989.

Bürckert, H.-J.: A Resolution Principle for Clauses with Constraints. Proc. of Int.
Conf. on Automated deduction, Springer LNAI 449, 178-192, 1990.

Bürckert, H.-J.: A Resolution Principle for a Logic with Restricted Quantifiers.
Springer LNAI 568, 1991.

Bürckert, H.-J., Hollunder, B., Laux, A.: A Refutation Procedure for Concept Logics.
DFKI-Research Report, forthcoming.

Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Theorem Proving . Academic Press,
1973.

Cholvy, L., Demolombe, R.: Querying a Rule Base . Proc. of Intern. Conf. on Expert
Database Systems, 365-371, 1986.

Chu, W.W., Lee, R.-C., Chen, Q.: Using Type Inference and Induced Rules to Provide
Intensional Answers . Proc. of Intern. Conf. on Data Engineering, 396-403, 1991.

Denecker, M., De Schreye, D.: A family of abductive procedures for normal abductive
programs, the soundness and completeness wrt. Completion semantics. CW-
Report 136, K.U. Leuwen, 1992.

Eshghi, K., Kowalski, R.: Abduction Compared with Negations by Failure. Proc. of 6th
ICLP, 1989.

Frisch A., Scherl, R.B.: A Constraint Logic Approach to Modal Deduction. Proc. of
JELIA, Springer LNAI 478, 1990.

Frost, R.A.: Introduction to Knowledge Base Systems . Collins, London, 1986.
Gallier, J.: Logic for Computer Science: Foundations of Automated Theorem Proving.

Harper and Row, 1986.
Gallier, J., Raatz, S.: Logic Programming and Graph Rewriting. Symp. of Logic

Programming, 208-219, 1985.
Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan

Kaufmann, 1987.
Green, C.: Theorem-Proving by Resolution as a Basis for Question-Answering Systems.

Machine Intelligence, 4:183-205, 1969.
van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press, 1989.
Höhfeld, M., Smolka, G.: Definite Relations over Constraint Languages. LILOG-

Report 53, IBM Deutschland, Stuttgart, 1988.
Imielsky, T.: Intelligent Query Answering in Rule Based Systems . J. Logic

Programming, 4:229-257, 1987.
Jaffar, J., Lassez, J.-L.: Constrained Logic Programming . Proc. ACM Symp. on

Principles of Programming Languages, 1987.
Jouannaud, J.-P., Kirchner, C.: Solving Equations in Abstract Algebras: A Rule-based

Survey of Unification. In Lassez, J.-L., Plotkin, G. (eds.): Essays in Honour of
Alan Robinson: MIT Press, 1991.

Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming . Research
report, forthcoming.

20

Konolige, K.: A General Theory of Abduction. Working Notes of Spring Symposium
on Automated Deduction (Ed.: O'Rourke, P.), Techn. Report 90-32, University of
California, Irvine, 1990.

Kowalski, R.: Logic for Problem Solving . North-Holland, 1979.
Lloyd, J.W.: Foundations of Logic Programming. Springer, 1984.
Luckham, D.C., Nilsson, N.J.: Extracting Information from Resolution Proof

Trees . Artificial Intelligence, 2(1):27–54, 1971.
Maher, M.: Logic Semantics for a Class of Committed-Choice Programs. Proc. 4th

ICLP, 1987.
McCarthy, J.: Circumscription – A Form of Non-monotonic Logic . Artificial

Intelligence, 13:27-39, 1980.
Merziger, G.: Approaches to Abductive Reasoning – An Overview. DFKI Research

Report RR-92-08, 1992.
Motro, A., Yuan, Q.: Querying Database Knowledge . Proc. of ACM SIGMOD Intern.

Conf. on Management of Data, 173-183, 1990.
Pople, H.E.Jr.: On the mechanization of abductive logic. Proc. of 3rd IJCAI, 147-152,

1973
Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36:27.47,

1988.
Poole, D.: Explanation and Prediction: An Architecture for Default and Abductive

Reasoning. Computational Intelligence, 5(2):97-110, 1989.
Reiter, R.: A Logic for Default Reasoning . Artificial Intelligence, 13:81-132, 1980.
O'Rourke, P.: Working Notes of Spring Symposium on Automated Deduction. Techn.

Report 90-32, University of California, Irvine, 1990.
Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, 1967.
Siekmann, J.H.: Unification Theory. A Survey. In Kirchner, C. (ed.): Unification.

Academic Press, 1-68, 1990.
Smolka, G.: Logic Programming over Polymorphically Order-Sorted Types.

Dissertation, Universität Kaiserslautern, 1989.

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI
-Bibliothek-
PF 2080
67608 Kaiserslautern
FRG

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben
angegebenen Adresse oder per anonymem ftp
von ftp.dfki.uni-kl.de (131.246.241.100) unter
pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders
gekenn-zeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of
all published papers so far are obtainable from
the above address or per anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100) under
pub/Publications.
The reports are distributed free of charge except
if otherwise indicated.

DFKI Research Reports

RR-92-45
Elisabeth André, Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth André, Wolfgang Finkler, Winfried
Graf, Thomas Rist, Anne Schauder, Wolfgang
Wahlster: WIP: The Automatic Synthesis of
Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck, Ralf Legleitner, Ansgar
Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar
Dengler, Jana Koehler, Gabriele Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan, Susanne Biundo:
A New Logical Framework for Deductive
Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel
Kader Diagne, Stephan Oepen: Natural
Language Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader, Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On
Principles and Problems of Defeasible
Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics
and Circumscription
19 pages

RR-93-02
Wolfgang Wahlster, Elisabeth André, Wolfgang
Finkler, Hans-Jürgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language
and Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard
Nebel, Hans-Jürgen Profitlich, Enrico Franconi:
An Empirical Analysis of Optimization
Techniques for Terminological Representation
Systems
28 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit:
GGD: Graph Grammar Developer for features
in CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination
Tech-niques and Decision Problems for
Disunification
29 pages

RR-93-06
Hans-Jürgen Bürckert, Bernhard Hollunder,
Armin Laux: On Skolemization in Constrained
Logics
40 pages

RR-93-07
Hans-Jürgen Bürckert, Bernhard Hollunder,
Armin Laux: Concept Logics with Function
Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut
Hinkelmann, Manfred Meyer: COLAB: A Hybrid
Knowledge Representation and Compilation
Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jörg Würtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's
Interval Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski,Ralf
Treinen: Equational and Membership
Constraints for Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof
Klöckner, Volker Schölles, Markus A. Thies,
Wolfgang Wahlster: PLUS - Plan-based User
Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz: Object-
Oriented Concurrent Constraint Programming
in Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional m-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting —
Message Classification in Printed Business
Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach
to Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and
Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi -
Agent Worlds viaTerminological Logics
35 pages

RR-93-33
Bernhard Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A
Theoretical and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske
(Eds.): Neuere Entwicklungen der deklarativen
KI-Programmierung — Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini,
Daniele Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-
Based Layout Manager for Multimedia
Presentations
9 pages

RR-93-42
Hubert Comon, Ralf Treinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-44
Martin Buchheit, Manfred A. Jeusfeld, Werner
Nutt, Martin Staudt: Subsumption between
Queries to Object-Oriented Databases
36 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven,
and Goal-directed Reasoning
81 pages

DFKI Technical Memos

TM-91-15
Stefan Busemann: Prototypical Concept
Formation An Alternative Approach to Knowledge
Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication
and Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg
Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production
Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof
Kremer:
Konzeption einer deklarativen Wissensbasis
über recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Günther Hein: Propagation Techniques in
WAM-based Architectures — The FIDO-III
Approach
105 pages

DFKI Documents

D-92-23
Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations-
und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas
Labisch: Integrating Top-down and Bottom-up
Reasoning in COLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein
Modell zur Repräsentation von
Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke, Thom Frühwirth:
Terminological Reasoning with Constraint
Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters,
Gernod Laufkötter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer
Jahresbericht 1992
194 Seiten

D-93-05
Elisabeth André, Winfried Graf, Jochen
Heinsohn, Bernhard Nebel, Hans-Jürgen
Profitlich, Thomas Rist, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jürgen Müller (Hrsg.):
Beiträge zum Gründungsworkshop der
Fachgruppe Verteilte Künstliche Intelligenz
Saarbrücken 29.-30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur
partiellen Textanalyse
53 Seiten

D-93-08
Thomas Kieninger, Rainer Hoch: Ein Generator
mit Anfragesystem für strukturierte
Wörterbücher zur Unterstützung von
Texterkennung und Textanalyse
125 Seiten

D-93-09
Hans-Ulrich Krieger, Ulrich Schäfer:
TDL ExtraLight User's Guide
35 pages

D-93-10
Elizabeth Hinkelman, Markus
Vonerden,Christoph Jung: Natural Language
Software Registry
(Second Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.):
DFKI Workshop on Knowledge Representation
Techniques — Proceedings
88 pages

D-93-12
Harold Boley, Klaus Elsbernd, Michael Herfert,
Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations
and Functions Made Easy
86 pages

D-93-14
Manfred Meyer (Ed.): Constraint Processing –
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-15
Robert Laux: Untersuchung maschineller
Lernverfahren und heuristischer Methoden im
Hinblick auf deren Kombination zur
Unterstützung eines Chart-Parsers
86 Seiten

D-93-20
Bernhard Herbig:
Eine homogene Implementierungsebene für
einen hybriden
Wissensrepräsentationsformalismus
97 Seiten

D-93-21
Dennis Drollinger:
Intelligentes Backtracking in Inferenzsystemen
am Beispiel Terminologischer Logiken
53 Seiten

