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Abstract

Terminological Knowledge Representation Systems �TKRS� are
tools for designing and using knowledge bases that make use of termi�
nological languages �or concept languages�
 We analyze from a theo�
retical point of view a TKRS whose capabilities go beyond the ones of
presently available TKRS
 The new features studied� all of practical
interest� can be summarized in three main points
 First� we consider a
highly expressive terminological language� called ALCNR� including
general complements of concepts� number restrictions and role con�
junction
 Second� we allow to express inclusion statements between
general concepts� and terminological cycles as a particular case
 Third�
we prove the decidability of a number of desirable TKRS�deduction
services �like satis�ability�� subsumption� and instance checking�
through a sound� complete and terminating calculus for reasoning in
ALCNR�knowledge bases
 Our calculus extends the general tech�
nique of constraint systems and can be easily turned into a procedure
using exponential space
 As a byproduct of the proof� we get also
the result that inclusion statements in ALCNR can be simulated by
terminological cycles� if descriptive semantics is adopted


�The research was partly done while the �rst author was visiting the Dipartimento di

Informatica e Sistemistica� Universit�a di Roma �La Sapienza��
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� Introduction

A general characteristic of many proposed Terminological Knowledge Repre�

sentation Systems �TKRSs
 such as kripton �BPL���� nikl �KBR�
�� back
�QK���� loom �MB���� classic �BBMAR���� KRIS �BH���� and others �see
�Ric��� WS���
� is that they are made up of two di�erent components� In�
formally speaking� the 	rst is a general schema concerning the classes of

individuals to be represented� their general properties and mutual relation�
ships� while the second is a �partial
 instantiation of this schema� containing
assertions relating either individuals to classes� or individuals to each other�

This characteristic� which the mentioned proposals inherit from the seminal
TKRS kl�one �BS���� is shared also by several proposals of Database models
such as Abrial�s �Abr���� candide �BGN���� and taxis �MBW����
Retrieving information in actual Knowledge Bases �KBs
 built up using

one of these systems is a deductive process involving both the schema �TBox

and its instantiation �ABox
� In fact� the TBox is not just a set of constraints
on possible ABoxes� but contains intensional information about classes� This
information is taken into account when answering queries to the KB�

During the realization and use of a KB� a TKRS should provide a me�
chanical solution for at least the following problems �from now on� we use
the word concepts to refer to classes
�

�� Concept satis�ability� given a KB and a concept C� does there exist at
least one model of the KB assigning a non�empty extension to C� This

is important not only to rule out meaningless concepts in the KB design
phase� but also in processing the user�s queries� to eliminate parts of a
query which cannot contribute to the answer�

�� Subsumption� given a KB and two concepts C and D� is C more gen�
eral than D in any model of the KB� Subsumption detects implicit
dependencies among the concepts in the KB�

�� KB�satis�ability� are an ABox and a TBox consistent with each other�
That is� does the KB admit a model� A positive answer is useful in

the validation phase� while the negative answer can be used to make
inferences in refutation�style� The latter will be precisely the approach
taken in this paper�

�� Instance checking� given a KB� an individual a and a concept C� is a
an instance of C in any model of the KB� Note that retrieving all indi�

viduals described by a given concept �a query in the Database lexicon

can be formulated as many parallel instance checkings�
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The above questions can be precisely characterized once the TKRS is given
a semantics �see next section
� which de	nes models of the KB and gives a
meaning to expressions in the KB� Once the problems are formalized� one
can start both a theoretical analysis of them� and�maybe independently�

a search for reasoning procedures accomplishing the tasks� Completeness
of procedures can be judged with respect to the formal statements of the
problems�
Up to now� all the proposed systems �except for KRIS
 give incomplete

procedures for solving the above problems ���� That is� some inferences are
missed� in some cases without a precise semantical characterization of which
ones are� If the designer or the user needs a �more
 complete reasoning�
she�he must either write programs in a suitable programming language �as

in the Database proposal of Abrial� and in taxis
� or de	ne appropriate in�
ference rules completing the inference capabilities of the system �as in back�
loom� and classic
� From the theoretical point of view� for several systems

�e�g� loom
 it is not even known if complete procedures can ever exist�i�e��
the decidability of the corresponding problems is not known�
Recent research on the computational complexity of subsumption had

an in�uence in many TKRSs on the choice for incomplete procedures� The

research started with �BL���� which analyzed complexity of subsumption be�
tween pure concept expressions� abstracting from KBs �we call this problem
in the sequel as pure subsumption
� The motivation for focusing on such
a small problem was that pure subsumption is a fundamental inference in

any TKRS� It turned out that pure subsumption is tractable �i�e� worst�case
polynomial�time solvable
 for simple languages� and intractable �e�g� NP�
hard� coNP�hard or PSPACE�hard
 for slight extensions of such languages�
as subsequent research de	nitely con	rmed �Neb��� DLNN��a� DLNN��b�

SSS��� DHL����� Also� beyond computational complexity� pure subsump�
tion was proved undecidable in the two TKRS kl�one �SS��� and nikl

�Pat����

Note that extending the language results in enhancing its expressiveness�
therefore the result of this research could be summarized as� The more a
TKRS language is expressive� the higher is the computational complexity of
reasoning in that language�as Levesque 	rst noted �Lev���� This result has

been interpreted in two di�erent ways� leading to two di�erent TKRSs design
philosophies�

�� �General�purpose languages for TKRSs are intractable� or even unde�
cidable� and tractable languages are not expressive enough to be of
practical interest�� Following this interpretation� in several TKRSs
�such as nikl� loom and back
 incomplete procedures for pure sub�
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sumption are considered satisfactory �e�g� see �MB��� for loom
� Once
completeness is abandoned for this basic subproblem� completeness of
overall reasoning procedures is not an issue anymore� but other issues
arise� such as how to compare incomplete procedures �HKNP���� and

how to judge a procedure �complete enough� �Mac���� As a practical
tool� inference rules can be used in such systems to achieve the expected
behavior of the KB w�r�t� the information contained in it�

�� �A TKRS is �by de	nition
 general�purpose� hence it must provide

tractable and complete reasoning to a user�� Following this line� other
TKRSs �such as kripton and classic
 provide limited tractable lan�
guages for expressing concepts� following the �small�can�be�beautiful�
approach �see �Pat���
� The gap between what is expressible in the

TKRS language and what is needed to be expressed for the application
is then 	lled by the user� by a �sort of
 programming with inference
rules� Of course� the usual problems present in program development
and debugging arise �McG����

What is common to both approaches is that a user must cope with incom�

plete reasoning� The di�erence is that in the former approach� the burden
of regaining useful yet missed inferences is mostly left to developers of the
TKRS �and the user is supposed to specify what is �complete enough�
� while
in the latter this is mainly left to the user� These are perfectly reasonable ap�

proaches in a practical context� where incomplete procedures and specialized
programs are often used to deal with intractable problems� In our opinion in�
complete procedures are just a provisional answer to the problem�the best
possible up to now� In order to improve on such an answer� a theoretical

analysis of the general problems ��� is to be done� But most importantly�
theoretical analysis is needed for making terminological cycles �see �Neb��a�
Chapter ��
 fully available in TKRSs� Such a feature is of undoubtable prac�
tical interest �Mac���� yet present TKRSs can only approximate cycles� by

using forward inference rules�
Previous theoretical results do not deal with the problems ��� in their

full generality� For example� the problems are studied in �Neb��a� Chapter

��� but only incomplete procedures are given� and cycles are not considered�
In �DLNS��� the complexity of instance checking has been analyzed� but only
KBs without a TBox are treated� Instance checking has also been analyzed in
�Vil���� but addressing only that part of the problem which can be performed

as parsing�
Previous theoretical work on cycles was done in �Baa��b� Baa��a� BBH����

Neb��a� Neb��� Sch���� but considering KBs formed by the TBox alone�
Moreover� these approaches do not deal with number restrictions �except
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for �Neb��a� Section ������
� which are a basic feature already provided by
TKRSs� and the techniques used do not seem easily extensible to reason�
ing with ABoxes� We compare in detail several of these works with ours in
Section ��

In this paper� we propose a TKRS equipped with a highly expressive
language� including constructs of practical interest� and prove decidability
of problems ���� In particular� our system uses the language ALCNR�
which supports general complements of concepts� number restrictions and

role conjunction� Moreover� the system allows one to express inclusion state�
ments between general concepts and� as a particular case� terminological
cycles� We prove decidability by means of a suitable calculus� which is devel�
oped extending the quite well established framework of constraint systems

�see �DLNN��a� SSS���
� thus exploiting a uniform approach to reasoning in
TKRSs� Moreover� our calculus can easily be turned into a decision proce�
dure�

The paper is organized as follows� In Section � we introduce the lan�
guage� and we give it a Tarski�style extensional semantics� which is the most
commonly used� Using this semantics� we establish relationships between
problems ��� which allow us to concentrate only on KB�satis	ability� In

Section � we provide a calculus for KB�satis	ability� and show correctness
and termination of the calculus� Hence� we conclude that KB�satis	ability
is decidable in ALCNR� which is the main result of this paper� The calcu�
lus we provide to show decidability works in double exponential space� In

Section � we consider a re	nement of our calculus� working in exponential
space� In Section � we compare our approach with previous results on de�
cidable TKRSs� and we establish the equivalence of general �cyclic
 inclusion
statements and general concept de	nitions using the descriptive semantics�

Finally� we discuss in detail several practical impacts of our results in Sec�
tion 
�

� Preliminaries

In this section we 	rst present the basic notions regarding concept languages�
Then we describe knowledge bases built up using concept languages� and
reasoning services that must be provided for extracting information from

such knowledge bases�






��� Concept Languages

In concept languages� concepts represent the classes of objects in the domain
of interest� while roles represent binary relations between objects� Complex
concepts and roles can be de	ned by means of suitable constructors applied

to primitive concepts and primitive roles� In particular� concepts and roles
in ALCNR can be formed by means of the following syntax �A denotes a
primitive concept� Pi �for i � �� � � � � k
 denotes a primitive role� C and D

denote arbitrary concepts and R an arbitrary role
�

C�D �� A j �primitive concept

� j �top

� j �bottom

�C uD
 j �conjunction


�C tD
 j �disjunction

�C j �complement

�R�C j �universal quanti	cation

�R�C j �existential quanti	cation


�	 nR
 j �
 nR
 �number restrictions

R �� P� u � � � u Pk �role conjunction


When no confusion arises we drop the brackets around conjunctions and
disjunctions� A subconcept of a concept C is any substring of C �including C

itself
 that is a concept� according to the syntax rules� Di�erent occurrences
of substrings of C are considered as di�erent subconcepts� even if they are
syntactically equal� Notice that the number of subconcepts of C is bounded

by the length of the string expressing C�
We interpret concepts as subsets of a domain and roles as binary relations

over a domain� More precisely� an interpretation I � � I� �I
 consists of a
nonempty set  I �the domain of I
 and a function �I �the extension function

of I
 which maps every concept to a subset of  I and every role to a subset
of  I � I � such that the following equations are satis	ed ��fg denotes the
cardinality of a set
�

�I �  I

�I � 


�C uD
I � CI �DI

�C tD
I � CI �DI

��C
I �  I n CI

��R�C
I � fd� �  
I j �d� � �d�� d�
 � RI � d� � CIg

��R�C
I � fd� �  
I j �d� � �d�� d�
 � RI � d� � CIg

�



�	 nR
I � fd� �  
I j �fd� j �d�� d�
 � RIg 	 ng

�
 nR
I � fd� �  
I j �fd� j �d�� d�
 � RIg 
 ng

�P� u � � � u Pk

I � P I

� � � � � � P I
k

��� Knowledge Bases

A knowledge base built by means of concept languages is generally formed
by two components� The intensional one� called TBox� and the extensional
one� called ABox�
We 	rst turn our attention to the intensional component of a knowledge

base� i�e� the TBox� As we said before� the intensional level speci	es the
properties of the concepts of interest in a particular application� Syntacti�
cally� such properties are expressed in terms of so�called inclusion statements
�see �Neb��a� Chapter ��
� An inclusion statement �or simply inclusion
 has

the form
C v D

where C and D are two arbitrary concepts� Intuitively� the statement spec�
i	es that every instance of C is also an instance of D� More precisely� an

interpretation I satis�es the inclusion C v D if CI � DI �
A TBox is a 	nite set of inclusions� An interpretation I is a model for a

TBox T if I satis	es all inclusions in T �
Many TKRSs provide the user with mechanisms for stating concept def�

initions �e�g� �Neb��a� Section ����
 of the form A
�
� D �interpreted as set

equality
� or A !
 D �primitive concept de	nition� interpreted as set inclu�
sion
� with the restrictions that the left�hand side concept A must be a con�

cept name�� that for each concept name at most one de	nition is allowed�
and that no so�called terminological cycles are allowed� i�e� no concept name
may occur�neither directly nor indirectly�within its own de	nition�
We do not impose any of these restrictions to the form of inclusions�

obtaining statements that are syntactically more expressive than concept
de	nitions� In particular� a de	nition of the form A

�
� D can be expressed

in our system using the pair of inclusions A v D and D v A� whereas an
inclusion of the form C v D� where C and D are arbitrary concepts� cannot

be expressed with concept de	nitions� Moreover� cyclic inclusions are allowed
in our statements� realizing terminological cycles�

�In many TKRSs� what we call �primitive concepts� are called concept names� preserv�

ing the term �primitive concept� for concept names that do not appear on the left hand

side of a de�nition� However� in our setting this distinction is not necessary� since we do

not use concept de�nitions�

�



As shown in �Neb���� there are at least three types of semantics for ter�
minological cycles� namely the least 	xed point� the greatest 	xed point� and
the descriptive semantics� However� 	xed point semantics apply only to 	xed
point statements like A

�
� D �where D is a �function� of A� i�e� A appears

in D
� which are less general than our inclusion statements� Instead� the
descriptive semantics interprets statements as just restricting the set of pos�
sible models� with no de	nitional import� Hence� it can be suitably extended
to our case� and is exactly the one we adopt�

We can now turn our attention to the extensional level� i�e� the ABox�
The ABox essentially allows one to specify instance�of relations between in�
dividuals and concepts� and between pairs of individuals and roles�

Let O be an alphabet of symbols� called individuals� Instance�of relation�
ships are expressed in terms of membership assertions of the form�

C�a
� R�a� b


where a and b are individuals� C is a concept� and R is a role� Intuitively� the
	rst form states that a is an instance of C� whereas the second form states
that a is related to b by means of the role R�
In order to assign a meaning to membership assertions� the extension

function �I of an interpretation I is extended to individuals by mapping
them to elements of  I in such a way that aI �� bI if a �� b �Unique Name
Assumption
� An interpretation I satis�es the assertion C�a
 if aI � CI�
and satis�es R�a� b
 if �aI� bI
 � RI � An ABox is a 	nite set of membership

assertions� I is a model for an ABox A if I satis	es all the assertions in A�
An ALCNR�knowledge base " is a pair " � hT �Ai where T is a TBox

and A is an ABox� An interpretation I is a model for " if it is both a model
for T and a model for A�
We can now formally de	ne the problems ��� mentioned in the introduc�

tion� Given a KB "�

�� Concept Satis�ability � C is satis�able w�r�t "� if there exists a model
I of " such that CI �� 
�

�� Subsumption � C is subsumed by D w�r�t� "� if CI � DI for every
model I of "�

�� KB�satis�ability � " itself is satis�able� if it has a model�

�� Instance Checking � a is an instance of C� written " j� C�a
� if the
assertion C�a
 is satis	ed in every model of "�

�



In the sequel� we describe interpretations by giving only  I � and the
values of I on primitive concepts and primitive roles� It is straightforward to
see that all values of I on complex concepts and roles are uniquely determined
imposing that I must satisfy the equations given at the end of previous
subsection�

Example ��� Consider the following knowledge base " � hT �Ai�

T � f�TEACHES�Course v �Studentu �DEGREE�BS
 t Prof�

Prof v �DEGREE�MS�
�DEGREE�MS v �DEGREE�BS�
MS u BS v �g

A � fTEACHES�john� cs���
� �
 � DEGREE
�john
� Course�cs���
g

" is a fragment of an hypothetical knowledge base describing the organization
of a university� The 	rst inclusion� for instance� states that the persons
teaching a course are either graduate students �students with a BS degree


or professors� It is easy to see that " is satis	able� For example� the following
interpretation I satis	es all the inclusions in T and all the assertions in A�
and therefore it is a model for "�

 I � fjohn� cs���� csbg� johnI � john� cs���I � cs���

StudentI � fjohng� ProfI � 
� CourseI � fcs���g� BSI � fcsbg
MSI � 
� TEACHESI � f�john� cs���
g� DEGREEI � f�john� csb
g

Notice also that it is possible to draw several non�trivial conclusions from "�
For example� we can infer that " j� Student�john
� Intuitively this can be
shown as follows� john teaches a course� thus he is either a student with a

BS or a professor� But he can�t be a professor since professors have at least
two degrees �BS and MS
 and he has at most one� therefore he is a student�

We now show that� given the previous semantics� the problems ��� can
all be reduced to KB�satis	ability �or to its complement
 in linear time� In
fact� given a KB " � hT �Ai� two concepts C and D� an individual a� and

an individual b not appearing in "� the following relations hold�

C is satis	able w�r�t " i� hT �A � fC�b
gi is satis	able

C is subsumed by D w�r�t� " i� hT �A � f�C u �D
�b
gi is not satis	able

" j� C�a
 i� hT �A � f��C
�a
gi is not satis	able

Consequently� we can concentrate just on KB�satis	ability in the next
section�
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� Decidability Result

In this section we provide a calculus for deciding KB�satis	ability� In partic�

ular� in Subsection ��� we present the calculus and we state its correctness�
Then� in Subsection ���� we prove the termination of the calculus� This will
be su#cient to assess the decidability of all problems ���� thanks to the
relationships between the four problems�

��� The calculus and its correctness

Our method makes use of the notion of constraint system �DLNN��a� SSS���

DLNS���� and is based on a tableau�like calculus �Fit��� that tries to build
a model for the logical formula corresponding to a KB�
Consider an alphabet of variable symbols V �disjoint from the other alpha�

bets de	ned so far
� The elements of V are denoted by the letters x� y� z� w�
In the sequel we use the term object as an abstraction for individual and
variable �i�e� an object is an element of O � V
� Objects are denoted by the
symbols s� t and� as in Section �� individuals are denoted by a� b�
A constraint is a syntactic entity of one of the forms�

s�C� sP t� �x�x�C� s �
�
� t�

where C is a concept and P is a primitive role� Concepts are assumed to
be simple� i�e� the only complements they contain are of the form �A� where
A is a primitive concept� Arbitrary ALCNR�concepts can be rewritten into
equivalent simple concepts in linear time �DLNN��a�� A constraint system

is a 	nite nonempty set of constraints�
Given an interpretation I� we de	ne an I�assignment � as a function that

maps every variable of V to an element of  I � and every individual a to aI

�i�e� ��a
 � aI for all a � O
�
A pair �I� �
 satis�es the constraint s�C if ��s
 � CI� the constraint

sP t if ���s
� ��t

 � P I � the constraint s � �� t if ��s
 �� ��t
� and 	nally� the
constraint �x�x�C if CI �  I �notice that � does not play any role in this

case
� A constraint system S is satis�able if there is a pair �I� �
 that satis	es
every constraint in S�
An ALCNR�knowledge base " � hT �Ai can be translated into a con�

straint system S� by replacing every inclusion C v D � T with the con�

straint �x�x��C tD� every membership assertion C�a
 with the constraint
a�C� everyR�a� b
 with the constraints aP�b� � � � � aPkb ifR � P�u� � �uPk� and
including the constraint a �

�
� b for every pair �a� b
 of individuals appearing

in A� It is easy to see that " is satis	able if and only if S� is satis	able�

��



In order to check a constraint system S for satis	ability� our technique
adds constraints to S until either an evident contradiction is generated or
an interpretation satisfying it can be obtained from the resulting system�
Constraints are added on the basis of a suitable set of so�called propagation

rules�
Before providing the rules� we need some additional de	nitions� Let S

be a constraint system and R � P� u � � � u Pk �k 	 �
 be a role� We say
that t is an R�successor of s in S if sP�t� � � � � sPkt are in S� We say that t

is a ��successor of s in S if for some role R� t is an R�successor of s� We
call ��predecessor the inverse relation of ��successor� If S is clear from the
context we simply say that t is an R�successor or a ��successor of s �or ��
predecessor
� Moreover� we denote by successor the transitive closure of the

relation ��successor� and we denote by predecessor its inverse�
We denote by S�x�s� the constraint system obtained from S by replacing

each occurrence of the variable x by s�

We say that s and t are separated in S if the constraint s �
�
� t is in S�

Given a constraint system S and an object s� we de	ne the function ���� �

as follows� ��S� s
 �� fC j s�C � Sg� Moreover� we say that two variables
x and y are S�equivalent� written x �s y� if ��S� x
 � ��S� y
� Intuitively�

two S�equivalent variables can represent the same element in the potential
interpretation built by the rules� unless they are separated�

The propagation rules are�

�� S �u fs�C�� s�C�g � S

if �� s�C� u C� is in S�

�� s�C� and s�C� are not both in S

�� S �t fs�Dg � S

if �� s�C� t C� is in S�
�� neither s�C� nor s�C� is in S�
�� D � C� or D � C�

�� S �� ft�Cg � S

if �� s��R�C is in S�
�� t is an R�successor of s�
�� t�C is not in S

�� S �� fsP�y� � � � � sPky� y�Cg � S

��



if �� s��R�C is in S�
�� R � P� u � � � u Pk�
�� y is a new variable�

�� there is no t such that t is an R�successor of s in S and
t�C is in S�
�� if s is a variable there is no variable w in S such that w

is a predecessor of s and s �s w

�� S �� fsP�yi� � � � � sPkyi j i � ���ng � fyi �
�
� yj j i� j � ���n� i �� jg � S

if �� s� �	 nR
 is in S�
�� R � P� u � � � u Pk�

�� y�� � � � � yn are new variables�
�� there do not exist n pairwise separated R�successors of
s in S�
�� if s is a variable there is no variable w such that w is a

predecessor of s and s �s w


� S �� S�y�t�

if �� s� �
 nR
 is in S�
�� s has more than n R�successors in S�

�� y� t are two R�successors of s which are not separated

�� S ��x fs�Cg � S

if �� �x�x�C is in S�
�� s appears in S�
�� s�C is not in S�

We call the rules �t and �� nondeterministic rules� since they can
be applied in di�erent ways to the same constraint system� All the other

rules are called deterministic rules� Moreover� we call the rules �� and ��

generating rules� since they introduce new variables in the constraint system�
All other rules are called nongenerating ones�

The use of the condition based on the S�equivalence relation in the gen�
erating rules �condition �
 is related to the goal of keeping the constraint
system 	nite even in presence of potentially in	nite chains of applications of
generating rules� Its role will become clearer in the sequel�

One can verify that rules are always applied to a system S either because
of the presence in S of a given constraint s�C �condition �
� or� in the case of
the��x�rule� because of the presence of an object s in S� When no confusion
arises� we will say that a rule is applied to the object s �instead of saying that

it is applied to the constraint system S
�
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Proposition ��� 	Invariance
 Let S and S� be constraint systems� Then�

�� If S� is obtained from S by application of a deterministic rule� then S

is satis�able if and only if S� is satis�able�

�� If S � is obtained from S by application of a nondeterministic rule� then
S is satis�able if S� is satis�able� Furthermore� if a nondeterministic

rule applies to S� then it can be applied in such a way that it yields a
constraint system S� which is satis�able if and only if S is satis�able�

Given a constraint system� more than one rule might be applicable to it�
We de	ne the following strategy for the application of rules�

�� apply a rule to a variable only if no rule is applicable to individuals�

�� apply generating rules only if no nongenerating rule is applicable�

�� apply a generating rule to a variable x only if no rule is applicable to
a predecessor of x�

Notice that a constraint system S can be seen as a directed graph with the
objects in S as nodes and an arc from s to t� if there is a constraint sP t in S�
If a constraint system is derived from anALCNR�knowledge base " then the
corresponding graph has some particular properties� Namely� every variable
has a single ��predecessor and� for each variable� the subgraph composed by
itself and its successors is always a tree� We refer to this property in what
follows as the tree structure property�

In the sequel� we assume that rules are always applied according to this
strategy and that we always start with a constraint system S� coming from
an ALCNR�knowledge base "� The following lemma is a direct consequence
of these assumptions�

Lemma ��� 	Stability
 Let S be a constraint system and x be a variable
in S� Let a generating rule be applicable to x according to the strategy� Let S�

be any constraint system derivable from S by any sequence 	possibly empty

of applications of rules� Then

�
 A variable y is a predecessor of x in S i� it is a predecessor of x in S�

�
 No rule is applicable to a predecessor y of x in S�

�
 ��S� x
 � ��S�� x
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Proof� �Sketch


�
 A case analysis considering all rules shows that no predecessors are

added or discarded�

�
 By contradiction� Suppose S � S� �� S� �� � � � �� Sn � S�� where

� � ft�u�����	�
��xg and a rule is applicable to a predecessor y of
x in S�� Then there exists a minimal i� i 
 n� such that this is the case
in Si� Note that i �� � because of the strategy� So no rule is applicable
to any predecessor of x in S�� � � � � Si��� By an exhaustive analysis of

all rules we see that�whichever is the rule applied from Si�� to Si�
no rule is applicable to any predecessor y of x in Si� contradicting the
assumption�

�
 By contradiction� Suppose ��S� x
 �� ��S�� x
� Then a rule must have
been applied to the direct predecessor of x or to x itself� The former
cannot be because of �
� A case analysis shows that the only rules which

can have been applied to x are generating ones and the �� and the
�� rules� But these rules add new constraints only to the successors
of x and not to x itself and therefore do not change ���� x


In particular Lemma ��� proves that for a variable x which has a successor�
���� x
 is stable� i�e� it will not change because of subsequent applications of
rules�

A constraint system is complete if no propagation rule applies to it� A
complete system derived from a system S is also called a completion of S�
A clash is a constraint system having one of the following forms�

� fs��g

� fs�A� s��Ag� where A is a primitive concept�

� fs� �
 nR
g � fsP�ti� � � � � sPkti j i � ���n$ �g
� fti �

�
� tj j i� j � ���n$ �� i �� jg�

where R � P� u � � � u Pk�

A clash is evidently an unsatis	able constraint system� Therefore� any
constraint system containing a clash is unsatis	able� The purpose of the
calculus is to generate completions� and look for the presence of clashes inside�

If a completion S contains no clash� we prove that it is always possible to
generate a model for " on the basis of S� Before looking at the technical
details of the proof� let us consider an example of application of the calculus
for checking satis	ability�
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Example ��� Consider the following knowledge base " � hT �Ai�

T � fItalianv �FRIEND�Italiang

A � fFRIEND�peter� susan
�
�FRIEND��Italian�peter
�
�FRIEND�Italian�susan
g

The corresponding constraint system S� is�

S� � f�x�x��Italiant �FRIEND�Italian�
peterFRIENDsusan�

peter��FRIEND��Italian�
susan��FRIEND�Italian
peter �

�
� susang

A sequence of applications of the propagation rules to S� is as follows�

S� � S� � fsusan��Italiang ����rule


S� � S� � fpeter��Italiant �FRIEND�Italiang ���x�rule

S� � S� � fsusan��Italiant �FRIEND�Italiang ���x�rule

S� � S� � fpeter��Italiang ��t�rule

S� � S� � fsusanFRIENDx� x�Italiang ����rule


S	 � S� � fx��Italiant �FRIEND�Italiang ���x�rule

S
 � S	 � fx��FRIEND�Italiang ��t�rule

S� � S
 � fxFRIENDy� y� Italiang ����rule

S� � S� � fy��Italiant �FRIEND�Italiang ���x�rule


S�� � S� � fy��FRIEND�Italiang ��t�rule


One can verify that S�� is a complete clash�free constraint system� In par�
ticular� ���rule is not applicable to y� In fact� since x �S�� y condition � is
not satis	ed� From S�� one can build an interpretation I� as follows�

 I � fpeter� susan� x� yg
peterI � peter� susanI � susan� ��x
 � x� ��y
 � y�
ItalianI � fx� yg
FRIENDI � f�peter� susan
� �susan� x
� �x� y
� �y� y
g

It is easy to see that I is indeed a model for "�

In order to prove that it is always possible to obtain an interpretation
from a complete constraint system we need some additional notions� Let S
be a constraint system and x� w be variables in S� We call w a witness of x

in S if the three following conditions hold�

�� x �s w

�




�� w is a predecessor of x in S

�� no rule is applicable to any predecessor of x�

Notice that the third condition ensures that no new constraint will be
imposed on x� We say x is blocked �by w
 if x has a witness �w
 in S�
The following lemma states some properties of witnesses�

Lemma ��� Let S be a constraint system� x a variable in S� If x has a

witness then 	i
 x has no successor and 	ii
 x has exactly one witness�

Proof� �i
 By contradiction� Suppose that x is blocked in S and xPy is in
S� During the completion process leading to S a generating rule must have
been applied to x in a system S�� It follows from the de	nition of the rules�

that in S � for every predecessor w of x we had x��s�w� Now from Lemma ���
we know� that for the constraint system S derivable from S� and for every
predecessor w of x in S we also had x��sw� Hence there is no witness for x
in S� contradicting the hypothesis that x is blocked�

�ii
 By contradiction� Assume there are two witnesses w� and w� of x in
S� then w� �s x �s w�� Then one must be the predecessor of the other
because no variable has more than one ��predecessor� i�e� because of the tree

structure property� Let�s say w� is the predecessor of w�� Because no rule is
applicable to w�� w� is blocked by w�� Then we have a successor �x
 for a
blocked variable �w�
� This contradicts �i
�

As a consequence of Lemma ���� in a constraint system S� if w� is a wit�

ness of x then w� cannot have a witness itself� since both the property of
being a predecessor and of S�equivalence are transitive� The uniqueness of
witness for a blocked variable is important for de	ning the following partic�
ular interpretation out of S�

Let S be a constraint system� We de	ne the canonical interpretation IS
and the canonical IS�assignment �S as follows�

��  IS �� fs j s is an object in Sg

�� �S�s
 �� s

�� s � AIS i� s�A is in S

�� �s� t
 � P IS i�

�a
 sP t is in S or

�b
 s is a blocked variable� w is the witness of s in S and wPt is in S�

��



We call �s� t
 a P�role�pair of s in IS if �s� t
 � P IS � we call �s� t
 a role�
pair of s in IS if �s� t
 is a P�role�pair for a role P � We call a role�pair explicit
if it comes up from case ���a
 of the de	nition of the canonical interpretation
and we call it implicit if it comes up from case ���b
�

From Lemma ��� it is obvious that a role�pair cannot be both explicit
and implicit� Moreover� if a variable has an implicit role�pair then all its
role�pairs are implicit and they all come from exactly one witness� as stated
by the following lemma�

Lemma ��� Let S be a completion and x a variable in S� Let IS be the

canonical interpretation for S� If x has an implicit role�pair �x� y
� then

�� all role�pairs of x in IS are implicit

�� there is exactly one witness w of x in S such that for all roles P in S

and all P �role�pairs 	x�y
 of x the constraint wPy is in S�

Proof� Point � follows from �i
 of Lemma ��� and point � follows from �ii

of Lemma ��� together with the de	nition of IS �

We have now all the machinery needed to prove the main theorem of this
subsection�

Theorem ��� 	Correctness
 Let S be a complete constraint system� S is
satis�able i� it contains no clash�

Proof�

��� Clearly� a system containing a clash is unsatis	able� Hence� S is satis�
	able only if it contains no clash�
��� Suppose S contains no clash� Let IS and �S be the canonical interpre�
tation and I�assignment for S� We prove that the pair �IS � �S
 satis	es every

constraint c in S� If c has the form sP t or s �
�
� t� then �IS� �S
 satis	es them

by de	nition of IS and �S � If c has the form s�C� we show by induction on
the structure of C that s � CIS �
Base case� If C is a primitive concept� then s � CIS by de	nition of IS � If
C � �� then obviously s � �IS � Finally� if C � �� then s�� cannot occur
in S� since S is clash�free�
Induction step� we analyze in turn each possible form of the concept C�

�A
 if s��A is in S then A is a primitive concept since all concepts are
simple� Then the constraint s�A is not in S since S is clash�free� Then
s �� AIS � that is� s �  IS n AIS � Hence s � ��A
IS �

C� u C�
 if s�C�uC� � S then �since S is complete
 s�C� is in S and s�C� is in S�
By induction hypothesis� s � CIS

� and s � CIS
� � Hence s � �C�uC�
IS �

��



C� t C�
 Similar to the previous case�

�R�D
 We have to show that for all t with �s� t
 � RIS it holds that t � DIS �

If �s� t
 � RIS � then according to Lemma ��� one of the following two
cases must occur�

�� t is an R�successor of s in S� Since S is complete� t�D must also
be in S� Then by induction hypothesis we have t � DIS �

�� s is blocked by a witness w in S and t is an R�successor of w in S�
Then by de	nition of witness� w��R�D is in S and then because
of completeness of S� t�D must be in S� By induction hypothesis

we have again t � DIS �

�R�D
 We have to show that there exists a t �  IS with �s� t
 � RIS and

t � DIS � Since S is complete one of following two cases must occur�

�� There is a t that is an R�successor of s in S and t�D is in S� Then
by induction hypothesis and the de	nition of IS we have t � DIS

and �s� t
 � RIS �

�� s is a variable blocked by a witness w in S� Hence w��R�D is in
S� Since w cannot be blocked and S is complete� we have that

there is a t that is an R�successor of w in S and t�D is in S� So
by induction hypothesis we have t � DIS and by the de	nition of
IS we have �s� t
 � RIS �

�
 nR

 By contradiction� Assume that s �� �
 nR
IS � Then there exist atleast
n$ � distinct objects t�� � � � � tn�� with �s� ti
 � RIS � i � ���n$ �� This
means that� since R � P� u � � �uPk there are pairs �s� ti
 � P IS

j � where

i � ���n $ �� j � ���k� Then according to Lemma ��� one of the two
following cases must occur�

�� All sPjti for j � ���k� i � ���n $ � are in S� Because of com�
pleteness the �� �rule is not applicable� This means that all
the ti�s are pairwise separated� i�e� that S contains the constraints

ti �
�
� tj� i� j � ���n $ �� i �� j� This contradicts the fact that S is

clash�free�

�� There exists a witness w of s in S with all wPiti for j � ���k� i �
���n$ � are in S� But this leads to the same contradiction�

�	 nR

 By contradiction� Assume that s �� �	 nR
IS � Then there exist atmost
m � n �m possibly �
 distinct objects t�� � � � � tm with �s� ti
 � RIS � i �
���m� We have to consider two cases�
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�� s is not blocked in S� Since there are only m R�successors of s
in S� the �� �rule is applicable to s� This contradicts the fact
that S is complete�

�� s is blocked by a witness w in S� Since there are m R�successors
of w in S� the �� �rule is applicable to w� But this leads to the

same contradiction�

If c has the form �x�x�D then� since S is complete� for each object t in S� t�D
is in S�and� by the previous cases� t � DIS � Therefore� the pair �IS � �S

satis	es �x�x�D� Finally� since �IS � �S
 satis	es all constraints in S� �IS � �S

satis	es S�

��� Termination of the calculus

Lemma ��� Let S be a constraint system� let n be the number of concepts
appearing in S 	including subconcepts
� and let S� be derived from S by means
of the propagation rules� If in S� there are more than �n variables� then there

are at least two variables x�y such that x �s� y�

Proof� Each constraint x�C � S� may contain only concepts of the constraint
system S� Since there are n such concepts� given a variable x there cannot

be more than �n di�erent sets of constraints x�C in S��

Lemma ��� Let S be a constraint system� let n be the number of concepts
in S� and let S� be any constraint system derived from S by applying the
propagation rules with the given strategy� Then� every variable in S� can
have at most �n predecessor variables�

Proof� Suppose there is a variable x having at least �n $ � predecessors�
From Lemma ���� we know that in the set of variables constituted by all
predecessors of x there are at least two variables y�� y� such that y� �s y��
and because of the tree structure property of variables one variable is a

predecessor of the other�say� y� is a predecessor of y�� From the de	nitions
of witness and blocked we know that y� is blocked and y� is its witness�
Hence� from Lemma ���� y� cannot have any successor� contradicting the

hypothesis that x was a successor of y��

Theorem ��� 	Termination
 Let S be a constraint system� Every com�
pletion of S is �nite�

��



Proof� This follows from Lemma ��� and the tree structure of constraint
systems�

We come now to the main result of this section�

Theorem ���
 	Decidability
 Given an ALCNR�knowledge base "� check�
ing whether " is satis�able is a decidable problem�

Proof� This follows from Theorems ��
 and ��� and the fact that " is satis�
	able if and only if S� is satis	able�

Notice that� since the domain of the canonical interpretation  IS is al�
ways 	nite� we have also implicitly proved that ALCNR�knowledge bases
have the �nite model property� i�e� any satis	able knowledge base has a 	nite
model� This property has been extensively studied in modal logics �HC���
and dynamic logics �Har���� In particular a technique� called �ltration� has
been developed both to prove the 	nite model property and to build a 	nite

model for a satis	able formula� This technique allows one to build a 	nite
model from an in	nite one by grouping the worlds of a structure in equiva�
lence classes based on the set of formulae that are satis	ed in each world� It

is interesting to observe that our calculus� based on witnesses� can be con�
sidered as a variant of the 	ltration technique where the equivalence classes
are determined on the basis of our S�equivalence relation� However� because
of number restrictions� variables that are S�equivalent cannot be grouped�

since they might be separated �e�g� they might have been introduced by the
same application of the���rule
� Nevertheless� they can have the same suc�
cessors� as stated in point ���b
 of the de	nition of canonical interpretation�
This would correspond to grouping variables of an in	nite model in such a

way that separations are preserved�

� A Calculus Working in Exponential Space

The calculus proposed in the previous section requires to compute all the
completions of the constraint system S�� Unfortunately� such completions
may be of double exponential size w�r�t� the size of "� This can be seen
by considering the tree structure of variables in S� each branch may have

exponential size� and there can be an exponential number of branches
For an exponential space algorithm it is therefore crucial not to keep an

entire complete constraint system in the memory but to store only small

portions at a time� Let�s make this idea more precise�
We give propagation rules� called trace rules� that build up only a portion

of complete constraint systems�
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The trace rules consist of the�u���t��������x� and the���rule �the
nongenerating rules
 together with the following two generating rules that
replace the ��� and the ���rule and are obtained from them by adding an
further condition �n� 

�

��� S �T� fsP�y� � � � � sPky� y�Cg � S

if �� s��R�C is in S�
�� R � P� u � � � u Pk�
�� y is a new variable�
�� there is no t such that t is an R�successor of s in S and

t�C is in S
�� if s is a variable� then there is no variable w in S such
that w is a predecessor of s and s �s w�

� for all constraints tPx in S� t is a predecessor of s or

s � t

��� S �T� fsP�yi� � � � � sPkyi j i � ���ng � fyi �
�
� yj� j i� j � ���n� i �� jg � S

if �� s� �	 nR
 is in S�
�� R � P� u � � � u Pk�
�� y�� � � � � yn are new variables�
�� there do not exist n pairwise separated R�successors of

s in S�
�� if s is a variable� then there is no variable w such that
w is a predecessor of s and s �s w�

� for all constraints tPx in S� t is a predecessor of s or

s � t

Let T be a constraint system obtained from S� by application of the trace
rules� We call T a trace of S� if no trace rule applies to T �
If the trace rules are applied according to the strategy� they exhibit the

following behavior �see Figure �
� Given an object s� if at least one gener�

ating rule is applicable� all its ��successors y�� � � � � yn are introduced� Then�
after nongenerating rules are applied� one variable yi is �nondeterministically

chosen� and all ��successors of yi are introduced� Unlike normal propagation

rules� no successor is introduced for any object di�erent from yi� Then� one
variable is chosen among the ��successors of yi� only its ��successors are added
to the constraint system� and so on�
The reason why we introduce all the ��successors of the �chosen� object

is the following� For every chosen object s all ��successors of s must be
present simultaneously at some stage of the computation� since only the
interplay of role conjunction and number restrictions forces us to identify
certain successors� This is important because� when identifying variables�
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Figure �� A trace

the constraints imposed on them are combined� which may lead to clashes
that otherwise would not have occurred�
Trace rules have been de	ned in �DLNN��a� for deciding satis	ability and

pure subsumption between ALCNR�concepts� Algorithms that generate all
complete constraint systems derivable from a constraint system while keeping
only one trace in memory at a time have been given �for sublanguages of
ALCNR
 in �SSS��� HN��� HNSS����

Proposition ��� Let " be an ALCNR�knowledge base� S� its associated
constraint system� and let n be the size of "� Then�

�� The length of a trace rule derivation issuing from S� is bounded by �n�

�� Every complete constraint system extending S� can be obtained as the

union of �nitely many traces�

�� Suppose S is a complete constraint system extending S� and T is a
�nite set of traces such that S �

S
T	T T � Then S contains a clash if

and only if some T � T contains a clash�

Proof� �sketch
 For part ��
� reminding that the number of concepts
�including subconcepts
 appearing in " is bounded by n� the claim follows

��



from Lemma ���� Part ��
 is obvious considering the tree structure of a
constraint system� Part ��
 is obvious considering the de	nition of clash and
trace�

Part ��
 of the above proposition says that to detect clashes in a constraint
system S� it su#ces to inspect the traces S is formed by� one trace at a time�

Since an ALCNR�knowledge base " is satis	able if and only if there
exists a complete constraint system derivable from S� without a clash� it fol�
lows from Proposition ��� that satis	ability of an ALCNR�knowledge base
can be decided nondeterministically with exponential space� A possible al�
gorithm using space �p
n� where p�n
 is a polynomial in the size of S� may
be the following� compute one complete constraint system� one trace at a
time� guessing �in the application of the nondeterministic rules����t
 the

choices leading to traces without a clash�
Then from Savitch�s theorem �see e�g� �HU��� Theorem ������
 it is well

known that
NSPACE ��p
n�
 � DSPACE ���
p
n�
�

Hence we can conclude with the main result of this section�

Theorem ��� Satis�ability of an ALCNR�knowledge base " can be decided
with exponential space�

A lower bound of the complexity of KB�satis	ability in obtained exploit�

ing previous results about the language ALC� which is a sublanguage of
ALCNR that does not include number restrictions and role conjunction�
We know from McAllester �McA���� and �independently
 from an observa�
tion of Werner Nutt �Nut��� that KB�satis	ability in ALC�knowledge bases
is EXPTIME�hard �and hence it is hard for ALCNR�knowledge bases� too
�
Hence� we do not expect to 	nd any algorithm solving the problem in poly�
nomial space� unless PSPACE�EXPTIME� Nevertheless� the algorithm out�

lined above may require double exponential time� It is still open whether
there exists an algorithm working in �simple
 exponential time�

� Relation to previous work

In this section� we discuss the relation of our paper to previous work about
reasoning with inclusions� In particular� we 	rst consider previously proposed
reasoning techniques that deal with inclusions and terminological cycles� then

we discuss the relation between inclusions and terminological cycles�
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��� Reasoning Techniques

As mentioned in the introduction� there is work done by Baader et� al�
�BBH����� Baader �Baa��b� Baa��a�� Nebel �Neb��b� Neb��� and Schild
�Sch����

In �Neb��b� the language T F � containing concept conjunction� univer�
sal quanti	cation and number restrictions� and TBoxes containing �possibly
cyclic
 concept de	nitions� role de	nitions and disjointness axioms �stating

that two primitive concepts are disjoint
 are considered� Nebel shows that
subsumption of T F �concepts w�r�t� TBoxes is decidable� However� the argu�
ment he uses is not constructive� He shows that it is su#cient to consider
	nite interpretations of a size bounded by the size of the TBox in order to

decide subsumption�
In �Baa��b� the e�ect of the three types of semantics�descriptive� great�

est 	xed�point and least�	xed�point semantics�for the language FL�� con�
taining concept conjunction and universal quanti	cation� is described with

the help of �nite automata� Baader reduces subsumption of FL��concepts
w�r�t� TBoxes containing �possibly cyclic
 equivalences of the form A

�
� C

�which he calls terminological axioms
 to decision problems for 	nite au�
tomata� In particular� he shows that subsumption w�r�t� descriptive seman�

tics can be decided in polynomial space using B
uchi automata�
Using results from �Baa��b�� in �Neb��� a characterization of the above

subsumption problem w�r�t� descriptive semantics is given with the help of de�

terministic automata �whereas B%uchi automata are nondeterministic
� This
also yields a PSPACE�algorithm for deciding subsumption�
In �BBH���� the attention is restricted to the language ALC� In particu�

lar� that paper considers the problem of checking the satis	ability of a single

equation of the form C � �� where C is an ALC�concept� This problem�
called the universal satis�ability problem� is shown to be equivalent to check�
ing the satis	ability of an ALC�TBox �see Proposition ��� in the sequel
�
In �Baa��a�� an extension of ALC� called ALCreg� is introduced� which

supports a constructor to express the transitive closure of roles� By means
of transitive closure of roles it is possible to replace cyclic de	nitions of the
form A v D with equivalent acyclic ones� The problem of checking the
satis	ability of an ALCreg�concept is solved in that paper� It is also shown
that using transitive closure it is possible to reduce satis	ability of an ALC�
concept w�r�t� an ALC�TBox T � fC� v D�� � � � � Cn v Dng into the concept
satis	ability problem in ALCreg �w�r�t� the empty TBox
� Since the problem
of concept satis	ability w�r�t� a TBox is trivially harder than checking the
satis	ability of a TBox� this paper extends the result given in �BBH�����
The technique exploited in �BBH���� and �Baa��a� is based on the notion

��



of concept tree� A concept tree is generated starting from a concept C in order
to check its satis	ability �or universal satis	ability
� The way a concept tree
is generated from a concept C is similar in �avor to the way a complete
constraint system is generated from the constraint system fx�Cg� However�
the extension of the concept tree method to deal with number restrictions
and individuals in the knowledge base is neither obvious� nor suggested in
the cited papers� on the other hand� the extension of the calculus based on
constraint systems is immediate� provided that additional features have a

counterpart in First Order Logic�
In �Sch��� some results more general than those in �Baa��a� are obtained

by considering languages more expressive than ALCreg and dealing with the
concept satis	ability problem in such languages�

The results in �Sch��� are obtained by establishing a correspondence be�
tween concept languages and Propositional Dynamic Logics �PDL
� and re�
ducing the given problem to a satis	ability problem in PDL� Such an ap�

proach allows Schild to 	nd several new results exploiting known results in
the PDL framework� However� it cannot be used to deal with every con�
cept language� In fact� the correspondence cannot be established when the
language includes some concept constructors having no counterpart in PDL

�e�g� number restrictions� or individuals in an ABox
�
In conclusion� all these approaches� i�e� reduction to automata problems�

concept trees and reduction to PDL� deal only with TBoxes and they don�t
seem to be suitable to deal also with ABoxes� On the other hand� the con�

straint system technique� even though it was conceived for TBox�reasoning�
can be easily extended to ABox�reasoning� as also shown in �Hol���� �BH���
and �DLNS����

��� Inclusions versus Concept De�nitions

Now we compare the expressive power of TBoxes de	ned as a set of inclusions
�as done in this paper
 and TBoxes de	ned as a set of �possibly cyclic


concept de	nitions of the form A !
 D and A
�
� D�

Unlike �Baa��a� and �Sch���� we consider reasoning problems dealing with
TBox and ABox together� Moreover� we use the descriptive semantics for the
concept de	nitions� as we do for the inclusions� The result we have obtained

is that inclusion statements and concept de	nitions actually have the same
expressive power� In details� we show that the satis	ability of a knowledge
base " � hA�T i� where T is a set of inclusion statements can be reduced
to the satis	ability of a knowledge base "� � hA��T �i such that T � is a

set of concept de	nitions� The other direction� from concept de	nitions to
inclusions� is trivial since de	nitions of the form A

�
� D can be expressed by

�




the pair of inclusions A v D and D v A� while a primitive concept de	nition
A !
 D can be rewritten as the inclusion A v D �as already mentioned in
Section �
�
As a notation� given a TBox T � fC� v D�� � � � � Cn v Dng� we de	ne

the concept CT as CT � ��C� t D�
 u � � � u ��Cn t Dn
� As pointed out
in �Baa��a� for ALC� an interpretation satis	es a TBox T i� it satis	es the
equation CT � �� This result easily extends to ALCNR� as stated in the
following proposition�

Proposition ��� Given a TBox T � fC� v D�� � � � � Cn v Dng� an inter�
pretation I satis�es T i� it satis�es the equation CT � ��

Proof� An interpretation I satis	es an inclusion C v D i� it satis	es the
equation �C t D � �� I satis	es the set of equations �C� t D� � ��� � � �
�Cn tDn � � i� I satis	es ��C� tD�
 u � � � u ��Cn tDn
 � �� The claim
follows�

Given a knowledge base " � hA�T i and a concept A not appearing in
"� we de	ne the knowledge base "� � hA��T �i as follows�

A� � A � fA�b
 j b is an individual in "g

T � � fA !
 CT u �P��A u � � � u �Pn�Ag

where P�� P�� � � � � Pn are all the primitive roles appearing in "� Note that
T � has a single inclusion� which could be also thought of as one primitive
concept de	nition�

Theorem ��� " � hA�T i is satis�able i� "� � hA��T �i is satis�able�

Proof� In order to simplify the machinery of the proof� we will use for T �

the following �logically equivalent
 form�

T � � fA v CT � A v �P��A� � � � � A v �Pn�Ag

��� Suppose " � hA�T i satis	able� For Theorem ��
� there exists a
complete constraint system S without clash� which de	nes a canonical in�

terpretation IS which is a model of "� De	ne the constraint system S� as
follows�

S� � S � fw�A j w is an object in Sg

and call IS� the canonical interpretation associated to S�� We prove that IS�

is a model of "��
First observe that every assertion in A is satis	ed by IS� since IS� is

equal to IS except for the interpretation of A� and A does not appear in A�

��



Therefore� every assertion in A� is also satis	ed by IS� � either because it is
an assertion of A� or �if it is an assertion of the form A�b

 by de	nition of
S��
Regarding T �� note that by de	nition of S�� we have AI

S� �  I
S� �  IS �

therefore both sides of the inclusions of the formA v �Pi�A �i � �� � � � � n
 are
interpreted as  I

S� � hence they are satis	ed by IS� � Since A does not appear
in CT � we have that �CT 
IS� � �CT 
IS � Moreover� since IS satis	es T � we also
have� by Proposition ���� that �CT 
IS �  IS � therefore �CT 
IS� � �CT 
IS �

 IS �  I
S� � It follows that also both sides of the de	nition A v CT are

interpreted as  I
S� � In conclusion� IS� satis	es T ��

��� Suppose "� � hA��T �i satis	able� Again� because of Theorem ��
�
there exists a complete constraint system S� without clash� which de	nes a

canonical interpretation IS� which is a model of "�� We show that IS� is also
a model of "�
First of all� the assertions in A are satis	ed because A � A�� and IS�

satis	es every assertion in A�� To prove that IS� satis	es T � we 	rst prove
the following equation�

AI
S� �  I

S� ��


Equation � is proved by showing that� for every object s �  I
S� � s is in AI

S� �
In order to do that� observe a general property of constraint systems� every
variable in S� is a successor of an individual� This comes by the de	nition

of the generating rules� which add variables to the constraint system only
as ��successors of existing objects� and at the beginning S�� contains only
individuals�
Then� the above equation is proved by observing the following three facts�

�� for every individual b in  I
S� � b � AI

S� �

�� if an object s is in AI
S� � then because IS� satis	es the inclusions AI

S� �
��P��A
IS� � � � � � AI

S� � ��Pn�A
IS� � every ��successor of s is in AI
S� �

�� the successor relation is closed under the ��successor relation

From the Fundamental Theorem on Induction �e�g� cfr� �Wan��� page ���
we conclude that every object s of  I

S� is in AI
S� � This proves that Equation

� holds�

From Equation �� and the fact that IS� satis	es the inclusion AI
S� �

�CT 
IS� � we derive that �CT 
IS� �  I
S� � that is IS� satis	es the equation

CT � �� Hence� from Proposition ���� IS� satis	es T � and this completes
the proof of the theorem�

Note that the above reduction strongly relies on the fact that disjunction
�t� is within the language �in order to express all inclusions inside the concept

��



CT 
� Therefore� the proof does not hold for those TKRS not allowing for
disjunction of concepts �such as back
�
The machinery present in this proof is not new� In fact� realizing that

the inclusions A v �P��A� � � � � A v �Pn�A simulate a transitive closure on

the roles P�� � � � � Pn� one can recognize similarities with the proofs given by
Schild �Sch��� and Baader �Baa��a�� The di�erence is that their proofs rely on
the notion of connected model �Baader uses the equivalent notion of rooted
model
� In contrast� the models we obtain are not connected� when the

individuals in the knowledge base are not� What we exploit is the weaker
property that every variable in the model is a successor of an individual�

� Discussion

In this paper we proved the decidability of the main inference services of a
TKRS based on the concept language ALCNR� We believe that this result is
not only of theoretical importance� but has the following impacts on existing

TKRS�
First of all� a complete procedure working in exponential space can be eas�

ily devised from the calculus provided in Section �� From this procedure� one
can build more e#cient �but still complete
 ones by applying standard op�

timization techniques such as those described in �BHN����� Such procedure
might work well in practical cases� despite their worst case intractability�
Secondly� a complete procedure �possibly optimized
 o�ers a benchmark

for comparing incomplete procedures� not only in terms of performance� but
also in terms of missed inferences� Let us illustrate this point in detail� by
providing a blatant paradox� consider the mostly incomplete constant�time
procedure� answering always �No� to any check� Obviously this useless pro�

cedure outperforms any other one� if missed inferences are not taken into ac�
count� This paradox shows that incomplete procedures can be meaningfully
compared only if missed inferences are considered� But to recognize missed
inferences over large examples� one needs exactly a complete procedure�even

if not an e#cient one�like ours�
Thirdly� new incomplete procedures can be obtained from the calculus

by modifying some of the propagation rules� Since the rules build up a
model� modi	cations to them have a semantical counterpart which gives a

precise account of the incomplete procedures obtained� For instance� de	ne
the depth of a variable x as the number of variables which are predecessors of
x� Then� an incomplete calculus could be devised� which generates variables

only to a given depth�say� linear depth in the size of the KB� This calculus
would miss contradictions �and hence inferences� by refutation
 occurring in

��



variables which are �far away� from the known individuals of the KB� and
this is a meaningful explanation of the incompleteness� even for a non�expert
user� From a computational point of view� an immediate consequence of
the complexity analysis carried over in this paper is that such an incomplete

procedure would run in polynomial space�
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