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Abstract

In multi-agent systems a group of autonomous intelligent systems, called
agents, acts and cooperates in a world in order to achieve certain goals. Such
systems are in general assumed to have no central control structure and hence
each agent can only perform actions that are based on his local knowledge and
on his local beliefs. In the literature knowledge of agents is mostly represented
under the view that knowledge is true belief. On the other hand, if agents are
acting in a (real) world their knowledge often is obtained by perception and
communication, and hence typically is not true. Thus, the use of belief—where
agents may have false beliefs—seems more appropriate than the use of knowledge
in multi-agent systems.

Terminological logics provide a well-investigated and decidable fragment of
first-order logics that is much more expressive than propositional logic and well
suited to describe a world agents are acting in. However, knowledge or belief of
agents can only be represented in a very limited way. In this paper we investigate
how terminological logics can be extended in such a way that belief of agents
can be represented in an adequate manner. We therefore exemplarily extend
the concept language ALC by a modal operator O, which is indexed by agents.
Thereby, O;¢ represents the fact “agent i believes ¢”. This belief operator will be
interpreted in terms of possible worlds using the well-known modal logic KD45.

This extended language ALCp provides a uniform formalism to describe both,
a world agents are acting in and the beliefs agents have about this world and
about their own and other agents’ beliefs. Thus, it can be seen as a two-
dimensional extension of ALC which allows both, reasoning about objective facts
that hold in the world and reasoning on the level of possible worlds. We will give
sound and complete algorithms to check consistency of the represented beliefs
and to decide whether an ALCg-sentence is logically entailed by the beliefs of
agents. Hence, when acting in a world agents can use beliefs which are explicitly
represented as well as implicit beliefs that are entailed by their knowledge base.
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1 Introduction

Research on the field of multi-agent systems deals with the question how a group of
autonomous intelligent systems, called agents, can cooperate in order to achieve certain
goals (see, e.g., [6, 15]). As an example, a forwarding agent a and a shipping agent b
may cooperate in order to carry out overseas transportation orders.

Although the tasks that multi-agent systems are required to perform are normally
stated in terms of the global behavior of the system, the actions that an agent performs
can depend only on his local knowledge and on his local beliefs. Thus, there is a close
relationship between knowledge, belief, and action in multi-agent systems (see, e.g.,
[27, 28, 16]). Suppose, in the above example agent a wants to offer a price for carrying
out some transportation order o;. If he believes that there is no other forwarding
agent who also can carry out oy, he will most likely offer another price as in the case
where he believes that there is a competitor for this order. And if he even knows
that there is no competitor for this order, he perhaps offers an exorbitant price. In a
recent paper [21] we investigated how knowledge of agents can be represented on the
basis of terminological logics, whereby we used the classical view of knowledge as true
belief. That means, an agent knows ¢ if he believes that ¢ holds and ¢ actual does
hold. On the other hand, as pointed out in, say [23], the knowledge represented in a
knowledge base typically is not true. Thus, the use of beliefs—where agents may have
false beliefs—seems more appropriate than knowledge for formalizing the reasoning and
deduction of a knowledge base. In the current paper we concern with the question how
agents can be equipped with beliefs about the world they are acting in, about beliefs
of other agents, and also about their own beliefs. Thereby, it should be taken into
consideration that different agents may have different beliefs about the same notions.
For example, forwarding agent @ may believe that company XY is a rich company and
a good client, while forwarding agent B believes that company XY is rich but not a
good client. Using the language ALCjp, which is presented in the next section, this can
be formalized by

0O,(company XY: rich-company M good-client) and
0,(company XY: rich-company M —good-client)

¢

respectively, where O;¢ is to be read as “agent ¢ believes ¢”.

Since the work of Hintikka [18], modal logics have widely been accepted to be an
adequate formalism for representing knowledge and belief of agents. The intuitive
idea here is that besides the real world agents can imagine a number of other worlds
(situations) to be possible. By imposing various conditions on this possibility relation,
we can capture a number of interesting axioms. For example, if we require that the
world that the agent finds himself in is always one of the worlds he considers possible
(which amounts to saying that the possibility relation is reflexive), then it follows that
the agent does not know false facts. When using a possibility relation which captures
axioms of knowledge (belief) an agent is said to know (believe) a fact ¢ iff ¢ is true



in all worlds he thinks to be possible. For example, an agent knows (believes) that
there exists a monster of Loch Ness if there is such a monster in all worlds he considers
possible. To express the beliefs of an agent a in this approach a binary operator
BELIEF (a,¢) is used, where ¢ is a formula over some logical language £. If we
want to devise a formalism for representing the beliefs of agents we have to take two
decisions. Firstly, we have to decide what the general properties of belief are we want
this formalism to capture. Secondly, we have to choose a suitable logical representation
language £ which allows to describe the beliefs of agents.

There are many approaches to determine axioms characterizing belief (see, e.g.,
(22, 28, 24, 25, 26, 12, 17]). We will use the following axiomatization which has been
most commonly used in the literature. The first of these properties states that an
agent does not believe false facts. That means, an agent cannot believe both a fact
and its negation, though he can believe facts which actually do not hold in the world.
Secondly, if an agent believes a fact then he believes that he believes it (positive
introspection), and if he does not believe in a fact then he believes that he does not
believe in it (negative introspection). From this it follows, e.g., that agents believe that
their beliefs are true (weak reflexivity). Finally, the probably most important property
is that agents can reason on the basis of their beliefs. For example, suppose agent a
believes that each truck which is owned by John can be used to transport gasoline and
he believes that John owns the truck truck-1. In this case, agent a must be able to
conclude that John’s truck truck-1 can (probably) be used to transport gasoline, and
thus may negotiate with John for a transportation order.

As logical language to describe belief of agents we will use a terminological logic.
Terminological logics provide a well-investigated and decidable fragment of first-order
logics that is much more expressive than propositional logic. They are based on the
work of Brachman and Schmolze [9] and have been developed as a structured formalism
to describe the relevant concepts of a problem domain and the interactions between
these concepts. Starting with atomic concepts (unary predicates) and roles (binary
predicates), one therefore defines complex concepts with the help of operators provided
by a concept language, and interactions between (complex) concepts are expressed by
a set of so-called terminological axioms. On the other hand, by so-called assertional
axioms, objects can be associated with concepts and relationships between objects can
be defined via roles. For example, we can use these logics to represent facts like “each
truck which is owned by John can be used to transport gasoline” or “John owns truck-1
which is a truck”.

In the literature, a lot of concept languages have been considered (see, e.g., [8, 29,
3]). But they all have in common that they are only suitable for representing objective
facts about the world, and knowledge or beliefs of agents can only be represented
in a very limited way. Thus, we need an extended concept language which allows
the representation of belief according to the above given (informal) axiomatization.
Since the work of Schild [31] it is known that the concept language ALC provides a



terminological logic which is a notational variant of the propositional modal logic K.
However, it is not investigated there how to extend this logic to a two-dimensional logic
which allows reasoning on both the objective level and the level of possible worlds. In
order to combine both levels one has to define syntax and semantics of an extended
language. Baader and Ohlbach [5] present a multi-dimensional extension of ALC,
where multi-modal operators can be used at all levels of the concept terms and they
can be used to modify both concepts and roles. However, the underlying logic is simply
the basic modal logic K, and it is not yet clear how to extend their approach in such
a way that modal logics different from K can be handled. Moreover, they could not
succeed in proving completeness of their satisfiability algorithm.

In this paper we will present a different extended language where (sequences of)
modal operators are only allowed in front of terminological and assertional axioms. This
language allows one to interpret the modal operators w.r.t. modal logics different from
K, e.g., S4 (see [21]) or KD45 (in the present paper). Thislanguage, called ALCp, can be
seen as a two-dimensional representation language with terminological and assertional
axioms as primitives where each primitive may describe a part of the world and each
agent can believe a set of such primitives to hold in the world. The modal operators,
which are indexed with agents, are interpreted in terms of possible worlds in such a way
that they satisfy the above axiomatization of belief, what amounts in using the modal
logic KD45. Thus, the resulting language provides a uniform formalism to describe
both, a world agents are acting in as well as the beliefs agents have about this world and
about their own and other agents’ beliefs. We will give sound and complete algorithms
for deciding satisfiability of ALCg-formulas and for testing whether an ALCg-formula
is entailed by a given set of ALCp-formulas. Hence, when acting in a world agents can
use beliefs which are explicitly represented as well as implicit beliefs that are entailed
by their knowledge base.

2 Syntax and Semantics of ALCp

In this section we will formally introduce the language ALCg which extends the concept
language ALC by a modal operator O; for each agent. Syntax and semantics of ALC
and ALCgs are given in Subsections 2.1 and 2.2, respectively.

2.1 The Concept Language ALC

Terminological logics provide two formalisms to describe a problem domain: a termino-
logical formalism to represent taxonomical knowledge by defining concepts, which can
be seen as sets of objects, and an assertional formalism which can be used to describe
concrete objects. Therefore, one starts with a set of atomic concepts (unary predicates)
and a set of roles (binary predicates). In the concept language ALC concepts are then



built up from atomic concepts, the top concept T, the bottom concept L, and roles
inductively by:

1. Each atomic concept, T, and L are concepts.

2. If C and D are concepts and R is a role, then
(a) C N D (concept conjunction),
b) C'UD (concept disjunction),
(

d) VR.C (value restriction), and

)
)
c) =C (concept negation),
)
) 3R.C (exists restriction)

(
(
(e

are concepts.

An interpretation I is a function over some non-empty domain A? which maps each
atomic concept C' to a subset C7 of A, each role R to a subset R! of Al x A, T to
A, and L to 0. Furthermore, M is mterpreted as set intersection, Ll as set union, and
- as set complement w.r.t. AI. The value and the exists restrictions are interpreted by

VR.C) = {d e AT|Vd : (d,d') € R - d' € C}
[AR.C) ={de Al |3d :(d,d') e RTAd € C'}

For example, if man and truck are atomic concepts and owns is a role we can define
the concept of men who own a truck by man M 3 owns.truck.

The taxonomical knowledge of a problem domain can be defined by an ALC-TBoxz
(terminology), which consists of a finite set of terminological axioms. A terminological
aziom is of the form

o (' = D (concept equivalence) or

e C # D (negated concept equivalence)

where C, D are concepts. An interpretation I satisfies C = D iff C! = D’ and it
satisfies C # D iff C! # D!. An interpretation I satisfies an ALC-TBox T iff I
satisfies each axiom in 7. For example, if carrier, person, and truck are concepts and
owns is a role, we can define exactly the persons who own a truck to be a carrier by

carrier = person Il 3 owns.truck.

The assertional formalism of ALC allows one to introduce concrete objects by stat-
ing that they are instances of concepts and roles: If a is an object and C a concept,
then a : C is a concept instance. If a and b are objects and R is a role, then aRb is



a role instance. Concept instances and role instances are called assertional azioms,
and a finite set of assertional axioms is called an ALC-ABoz. An interpretation I
maps objects to elements of its domain A’ and satisfies a : C iff af € C', and aRb iff
(af,b') € RI. We assume that different objects in an ABox are mapped to different
elements in A (unique name assumption). An interpretation I satisfies an ALC-ABox
A iff I satisfies each axiom in A. As an example, if John and truck-1 are objects, we
can express that John owns truck-1 which is a truck by the assertional axioms

John owns truck-1 and truck-1 : truck.

Thus, we can describe the relevant concepts of a problem domain by terminological
axioms, i.e., by an ALC-TBox, and properties of objects as well as relations between
them by assertional axioms, i.e., by an ALC-ABox. We say an interpretation / satisfies
aset Axy,..., Ax, of terminological and assertional axioms iff I satisfies each of these
axioms. We then write I = Ax,..., Ax,.

For sake of simplicity we will sometimes use the expressions C € D and C Z D
where C and D are concepts. An interpretation I satisfies C T D iff T C D' and
it satisfies C Z D iff C! ¢ Df. The next lemma states that these expressions are
abbreviations for certain terminological axioms.

Lemma 2.1 Let C and D be concepts, and let I be an interpretation. Then

1. I satisfies C © D iff I satisfies~-CUD =T.
2. I satisfies C L D iff I satisfies ~-CUD # T.

Proof: For 1., firstly suppose I satisfies C C D. Then for each element d in A’ either
d € [~C)! or both d € CT and d € D' holds. That means, I satisfies ~CU(CND) =T
what can be simplified to =C U D = T. Conversely, suppose I satisfies ~CU D = T.
Then for each element d € Al either d ¢ C! or d € D! holds. Thus, from d € C!
follows d € D!, i.e., CT C D'. The proof of 2. is analogous. a

For example, if truck and vehicle are concepts we can define each truck to be a
vehicle by truck C vehicle, what is an abbreviation for ~truck U vehicle = T.

2.2 The Extended Language ALCp

Now we will introduce the language ALCs which extends ALC by a new operator O;
for each agent i.! We allow these operators in front of terminological and assertional

In the following, we will abbreviate agents by numbers, and we suppose only a finite number of
agents to be given.



axioms. Thereby, the operator O;, read as “agent i believes”, allows us to express the
beliefs agent ¢ has about the world, about beliefs of other agents, and about his own
beliefs. We extend the definition of terminological and assertional axioms as follows.

o If TAis a terminological axiom, then O; TA and -0, TA are terminological axioms
as well.

o If CIis a concept instance, then O; CI and —=0; CI are concept instances as well.

o If RIis a role instance, then O; Rl is a role instance as well.

Note, that we do not allow formulas of the form —0;(aRb). The reason for this re-
striction is that such axioms would be equivalent to stating that there exists a world
in which the role instance a Rb does not hold. And negation of roles is not allowed in

ALC.

These extended assertional and terminological axioms are called ALCjz-formulas
and can, e.g., be used to state that agent i believes that each truck is a vehicle by

0; (truck C vehicle).

Analogously, the ALCg-formulas 0O;~0; (vehicle-1 : truck) and 0;-0; (vehicle-1 :
truck) are to be read as “agent 7 believes that agent j doesn’t believe that vehicle-1 is a
truck” and “agent 7 believes that he doesn’t believe truck-1 to be a truck”, respectively.
Allowing O; immediately in front of concepts (possibly 0;C may be interpreted as “the
set of individuals agent : believes to be a C”) causes essential algorithmic problems
and is out of the scope of this paper.

We will interpret the operators O; in terms of possible worlds, i.e., besides the real
world there exist a number of worlds agents consider to be possible. If agent i considers
world w' possible at world w, we say w’ is accessible from w by agent i. The accessibility
relation of agent 1 is given by all pairs (w,w’) such that w’ is accessible from w by agent
t. Since different worlds are possible in our approach, the interpretation of concepts
and roles in ALCp-formulas depends on the world we are currently speaking of. That
means, in different worlds concepts may contain different objects and roles may contain
different pairs of objects. This will be expressed by taking an additional parameter, the
world parameter, into consideration when interpreting concepts and roles. Formally,
we use the notion of a K -interpretation K; which consists of a non-empty domain AXr
and maps objects to elements in AX7 while satisfying the unique name assumption,
atomic concepts to subsets of AKX x W, T to AKT x W, L to 0 x W, and roles to
subsets of AX1 x AK1 x W. Furthermore, M is interpreted as set intersection, U as set
union, and — as set complement w.r.t. AK7 x W, and the value and exists restrictions
are interpreted by

[V R.C)%! = {(d,w
[3R.CJ%1 = {(d,w

) | (d',w) € CK1 for each d' with (d,d’,w) € RK}
) | (d',w) € CK1 for some d' with (d,d’,w) € RK1}.



Definition 2.2 A Kripke structure K is a triple (W,T, Kr). Thereby, W is a non-
empty set of worlds, T is a finite set of accessibility relations, one accessibility relation
~; for each agent 1, and K is a K-interpretation.

The satisfiability of an ALCg-formula F in a Kripke structure K = (W,I', K1) and a
world w € W, written as K,w }= F, is recursively defined by:

K,wlkC=D iff {d|(d,w)€ CXr}={d|(d,w)e DX}
K,wlkC+#D iff {d|(d,w)eCKr}+#{d]|(d,w)e DX}
Kwlka:C iff (a,w)e CKr

K,w |= aRb iff (a,b,w) € RK1

K,w E0G iff K,w' =G for each world w' with (w,w’) €
K,wl=-0,G iff thereis a world v’ with (w,w’) € 7 and K,w' [ G

where G is an ALCg-formula, C, D are concepts, a, b are objects, and R is a role.

A set Fi,..., F, of ALCs-formulas is satisfiable iff there exists a Kripke structure
K = (W,T,K;) and a world wo € W such that K,wo |= F; for ¢t = 1,...,n. We then
write K & F, ... Fy.

In the following we will use the notion modality to denote (negated) indexed O
operators, and ALCg-formulas without any modalities are called ALC-formulas. For
example, the ALCy-formula O,-0;(vehicle-1 : truck) contains the modalities O; and
-0;, and the ALCp-formula vehicle-1 : truck is an ALC-formula.

3 Testing Satisfiability of ALCp-formulas

Using ALCp-formulas, a “real world” and belief of agents can be defined as follows. The
real world is given by a finite set of ALC-formulas, and the belief of agent ¢ is given by
a finite set of ALCp-formulas with the leading modality O;. Of course, we do not only
want to represent a world and beliefs of agents, but we are interested in algorithms to
test (i) consistency of the represented facts, i.e., whether a given set of ALCp-formulas
is satisfiable, and (i) whether an ALCp-formula is a logical consequence of a given set
of ALCg-formulas. In this section we will give an algorithm for testing satisfiability
of a set of ALCs-formulas. Building upon this we will show how to decide whether or
not an ALCp-formula is a logical consequence from a given set of ALCp-formulas in
Section 4.

3.1 The ALCpz Frame Algorithm

We will now present an algorithm for testing satisfiability of a finite set Fi,..., F;, of
ALCg-formulas. By definition, a set Fy,..., F,, of ALCp-formulas is satisfiable iff there



exists a Kripke structure K such that K = Fy,..., F,. Of course, we are not interest-
ed in arbitrary Kripke structures to satisfy Fi,..., F,, but only in Kripke structures
which interpret the belief operators O in F,..., F,, in such a way that they satisfy the
properties described in Section 1. We therefore introduce the notion of KD45 Kripke
structures.

Definition 3.1 A set Fy,...,F, of ALCg-formulas is KD45-satisfiable iff there ez-
ists a Kripke structure K = (W,I', K1) which satisfies Fy,..., F, and which has the
properties

(P1) if K,w = O;F then K,w |= -0,~F

(P2) if K,w = O;F then K,w = 0,0,F

(P8) /11 {PK fip = O P othen 4w B Op=0, F

for each ALCs-formula F, for each agent i, and for each world w € W.2 A Kripke
structure which satisfies (P1), (P2), and (P38) is called KD45 Kripke structure.

Property (P1) corresponds to “an agent cannot believe in both a fact and its nega-
tion”, (P2) to “if an agent believes something, then he believes that he believes it”,
and (P3) to “if an agent does not believe in a fact then he believes that he does not
believe in this fact”. The property “agents must be able to reason on the basis of their
beliefs”, is guaranteed by choosing Kripke structures for the representation of belief

(cf., e.g., [17]).
It is a well-known fact that K = (W, T, K) is a KD45 Kripke structure if the

accessibility relation +; of each agent 7 is serial, Euclidean, and transitive (see, e.g.,
[25]). A relation y CW x W is
e serial iff for each u in W there is a v in W such that (u,v) € 7,
o Euclideaniff for all u, v, w in W holds: if (u,v) € v and (u,w) € 5 then (v,w) € 7,
e transitive iff for all u,v,w in W holds: if (u,v) € v and (v,w) € v then (u,w) € 7.

We will use the standard notation O;F as an abbreviation for =~0,—F such that the
properties (P1) and (P3) can be rewritten as

(P1") if K,w = 0O;F then K,w | O;F
(P3) if K,w = O;F then K,w = 0;0;F.

In the following we will use the one or the other version of these two properties, whichev-
er is more appropriate.

2Since these properties hold for arbitrary worlds this amounts in saying that all these properties are
mutually believed, i.e., each agent’s belief has these properties, each agent believes that each agent’s
belief has these properties and so on.
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To keep notation simple we transform ALCg-formulas into negation normal form.
An ALCp-formula (concept) is in negation normal form iff in the formula (concept)
negation signs occur immediately in front of atomic concepts only. Concepts can be
transformed into an equivalent negation normal form by the rules

--C — C -(CnNnD) —» -~Cu-D -(VR.C) —» 3IR.-C
-T = 1 -(CuD) — -Cn=-D -(3R.C) — VR.-C
-L = T

where C is a concept and R is a role (see, e.g., [20]). Building upon this, ALCp-formulas
can be transformed into negation normal form by applying the rules

-—-F — F ~(C=D) — a,:(CN-D)u(=-CND)
-0 F — O-F ~(C#D) — C=D
-O;F — 0,-F -(a:C) — a:-C

to the outermost negation sign. Thereby, F' is an ALCp-formula, C', D are concepts,
a is an object, and a, is a new object. For example, the negation normal form of the

ALCp-formula
~0;,(A=-(YR.0)) is  Oi(an:(ANYR.C)U(-AN 3R.~C))

where a, is a new object. The next lemma states that an ALCp-formula is KD45-
satisfiable iff its negation normal form is KD45-satisfiable.

Lemma 3.2 Let F be an ALCg-formula, F* be the negation normal form of F, and
K be a KDJ5 Kripke structure. Then K |= F iff there is a KD45 Kripke structure K'
such that K' |= F*.

Proof: If we apply one of the rules ==F — F, ~0;F — O;=F, -0 F — 0;-F, or
=(a:C) = a:-C to an ALCp-formula F, then K obviously satisfies the formula on
the left hand side of the rule iff K satisfies the right hand side of the rule.

Now suppose K = (W,I,K;) and K = ~(C = D), i.e.,, K,wo | =~(C = D) for
some world wp in W. In this case there is an element u € AKT such that (u,wp) is either
in CK7 and in [-D])¥7 or in [~C]X? and in D¥’. Let now K' = (W',I", K}) be a Kripke
structure which is identical to K but aX7 := u. Then, K’ is a KD45 Kripke structure®
and K',wy = a, : (CN=D)U(~CN D). Conversely, if K’ is a KD45 Kripke structure
such that K',wo |= a, : (C 1 =D)U (=C N D), then obviously K',wo |= ~(C = D). O

If F is an ALCp-formula in negation normal form it has a (possibly empty) leading
sequence o* = o;, ... o, of non-negated modalities where each o;; is either O or < and

3Note, that a, is a new element and the unique name assumption only has to hold for objects
occurring in an ABox.
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each index 7; is an agent. We now replace each subsequence of modalities indexed with
the same agent in o* by the last modality in this subsequence. The obtained ALCj-
formula is called the KD45 normal form F' of F. For example, the KD45 normal form
of 0;01020,04(a : C) is given by ¢;0,0,(a : C). As an immediate consequence of
Proposition 4.27 in [10], for each KD45 Kripke structure K = (W, T, K;) and for each
world w € W holds that K,w |= F iff K,w = F".

Assumption: In the following we suppose each ALCs-formula to be in KD45
normal form (and thus especially in negation normal form).

To formulate a calculus for testing KD45 satisfiability of ALCsz formulas we in-
troduce the notions of labeled ALCp-formulas and of a world constraint system. A
labeled ALCp-formula consists of an ALCp-formula F' together with a label w, written
as F' || w. Thereby, w is a constant representing a world in which F holds. A world
constraint is either a labeled ALCs-formula or a term w ™M; w’. The constants w and
w' represent worlds and X; represents the accessibility relation of agent i. A world
constraint system is a finite, non-empty set of world constraints.

A Kripke structure X = (W,T, K|) satisfies a world constraint system W iff for
each label w in W there is a world w® € W such that (i) K, wX |= F for each world
constraint F' || w in W and (i) (w®,v¥) € 4; for each world constraint w X; v in W.
A world constraint system W is (KD45-)satisfiable iff there exists a (KD45) Kripke
structure which satisfies W.

For testing KD45-satisfiability of a set F, ..., F, of ALCg-formulas we firstly trans-
late them into a world constraint system. The world constraint system W is induced by

Fry...,F, f W = {F||w,...,F,||we}, where wy is a new constant (which represents
the real world). Obviously, Fi,..., F, are KD45-satisfiable iff W is KD45-satisfiable.

KD45-satisfiability of a world constraint system W is tested by the frame algorithm
which has a world constraint system as input that is induced by a finite number of
ALCp-formulas and which successively adds new world constraints to W by applying
the four propagation rules in Figure 1. Thus, the result of the frame algorithm with
input W is a (modified) world constraint system W’. We will call each world constraint
system that can be obtained from W by a finite number of propagation rule applications
a derived system in the following.

The intuitive idea behind these propagation rules is as follows: Firstly, for W —
W', if there is a world constraint O;F || w in W we add a world v such that (i) v is
accessible from w by agent i and (i) F || v holds. Furthermore, whenever O;F; || w
is in W we add O;F} || v because of property (P}), and whenever 0;Gy || w is in W
we add both 0;Gy || v and Gy || v because of property (P;) and the definition of O;.
This rule is similar to the unsigned prefixed KD45 tableaux rules in [14]. Secondly, for
W —o W', if 0,;Gy || w,...,0,Gp, || w are in W but there is no world u accessible from
w by agent ¢, we have to introduce a new world v—accessible from w by agent i—where
Gillv,...,Gn || v and O;Gy || v,...,0,G,, || v holds. This is due to the properties
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W —o {w X; v, Fllv, OiFi||v, .. ., OiFy||v, Gillv, BiGil|v, - . ., G| |v, 0G| [v}UW
if OF||w,OiF ||w,...,Q0iF,||w are the world constraints with leading
modality ©; in W, 0,G; || w,...,0;Gn, || w are the world constraints
with leading modality O; in W, there is no label u in W such that the
world constraints F || u, OiFy ||ty .., CiFn || u, Gi || u,...,Gn || 4,
0;Gy || u,...,0;Gp, || u are exactly the labeled ALCp-formulas with
label v in W, and v is a new label.

W —o, {wH;u} UW
if O;F||w,CiF||w,...,0:F,||w are the world constraints with leading
modality ©; in W, 0,;G, || w, . ..,0;Gp, || w are the world constraints
with leading modality O; in W, there is a label u in W such that the
world constraints F || u, O;Fy || u,...,QiFn || u, Gy || uy..., G || 4,
0,Gy || 4. .., 0;Gp || u are exactly the labeled ALCp-formulas with
label v in W, and w X; u is not in W

Wo=g {w ™ ’l),G1 Hv’DiGl ||U"--aGm ”v’DiGm HU} uw
if no world constraint of the form O;F||w is in W, 0;G1||w, ..., 0;Gn ||w

are the world constraints with leading modality O; in W, there is

no label u in W such that the world constraints Gy || u,...,Gn || 4,
0;G1 ||, . .., 0;Gn||u are are exactly the labeled ALCp-formulas with

label u in W, and v is a new label.
W —q, {w™; u} UW

if no world constraint of the form O;F||wis in W, 0;G1||w,...,0;Gp||w
are the world constraints with leading modality O; in W, there is a
label v in W such that Gy ||u,...,Gn ||y, 0;G1 || 4, ...,0,Gp, || u are
are exactly the labeled ALCp-formulas with label u in W, and w X; u
is not in W.

Figure 1: Propagation rules of the ALCp frame algorithm.

(P!) and (P;) of KD45 Kripke structures. Finally, the rules —o, and —g, are used to
guarantee termination of applying propagation rules to a derived system.

Now we will show that the ALCg frame algorithm has the following two important
properties. Firstly, it terminates for every world constraint system W as input which
is induced by a finite set Fy,...,F, of ALCs-formulas. Secondly, if W' is the result
of the frame algorithm with input W, then Fi, ..., F,, are KD45-satisfiable iff for each
label w in W’ the set of ALC-formulas with label w in W’ is satisfiable.
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Termination of the frame algorithm is stated by the next proposition. Its proof
will employ techniques which have been developed for proving termination of term
rewriting systems (see [11]).

Proposition 3.3 If W is a world constraint system which is induced by a finite set of
ALCg-formulas, there is no infinite chain of applications of propagation rules to W.

In order to prove this proposition we will map derived systems to multisets which
are equipped with a well-founded strict partial ordering >>. Multisets are like sets,

but multiple occurrences of elements are allowed, e.g., {2,3,3,4} is a multiset which is
different from the set {2,3,4}.

A given ordering > on elements in a set S can be extended to an ordering > on
finite multisets over S as follows. If M and M’ are finite multisets over S then M > M’
iff M" is obtained from M by replacing one or more elements in M by a finite number
of elements in S, each of which is smaller than one of the replaced elements (w.r.t. >).
For example, {2,3,3,4} is larger than the multisets {2,3,1,2,3} and {4}. Dershowitz
and Manna [11] showed that the ordering >> on finite multisets over S is well-founded
if the original ordering on S is so.

We will use a mapping ¥ which maps derived systems to multisets whose elements
are pairs of non-negative integers. These pairs are ordered lexicographically from left
to right, i.e., (1, ;) is larger than (c},c}) iff () ¢, > ¢} or (ii) ¢, = ¢, and ¢; > ).
Since the orderings on both components are well-founded, the lexicographical ordering
on these pairs is also well-founded. Finite multisets of these pairs are now compared
w.r.t. the multiset ordering which is induced by this lexicographical ordering. This is
the well-founded ordering > mentioned above.

In order to simplify notation of the mapping ¥ we introduce the following notions.
If F||wand G || w are labeled ALCs-axioms with the same label w, we say that
G || w is a modal subformula of F || w iff there is a (possibly empty) sequence o* of
modalities such that o*G and F are identical. For example, ¢;0,0;F || w, 0,0, F || w,
O;F || w, and F || w are all modal subformulas of ¢;0,0,F || w. If F||w is a labeled
ALCp-formula we denote the set {G | G || w is a modal subformula of F'||w} by MSub
(F||w). For a derived system W, MSub" (w) denotes the set UF || wew MSub (F || w).

Now we can define the mapping ¥ as follows.
Definition 3.4 Let Wy be a world constraint system which is induced by a finite num-
ber of ALCs-formulas, let W be a world constraint system which is derived from W,

by applications of the propagation rules of the ALCg frame algorithm, and let w be a
label in W. We define

1. S is the power set of {MSub™°(wq) | wy is the (only) label in Ws}, and Ngs is the
number of elements in S.
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2. N}V is the number of labels in W which are different from wo.
3. YW (w) is the number of modalities in the set {F ||w | F ||w € W}.
4. ¥ (w) is the cardinality of {w M; v | w X; v € W for some agent j and label v}.

5. The mapping Y% (w) is now defined by the pair
(Ns = NI, oY (w) — ¢ (w))

of integers, and W(W) is the multiset {¢" (w) | w is a label in W}.

Given a derived system W and a label w in W we firstly show that both components of
%W (w) are non-negative integers. It is easy to verify that each of the four propagation
rules only introduces labeled ALCg-formulas Hi || v,..., Hy, || v such that each H; is
an ALCg-formula in MSub™® (w,). In other words, the set {Hy, ..., H,} is an element
in S. Because of the definition of the propagation rules a new label v—together with
some labeled ALCg-formulas H, || v, ..., H, || v—is only introduced if there is no label
u in W such that the world constraints H; || u,...,H, || u are exactly the labeled
ALCp-formulas with label v in W. That means, for each element in S at most one
new label can be introduced, and hence N5 — N}V > 0 for each derived system W.
On the other hand, since each propagation rule can be applied to a modality in a
labeled ALCg-axiom at most once (because of the disjoint preconditions of the four
propagation rules) and adds exactly one world constraint of the form w X; v, we can
conclude that ¥ (w) — 15 (w) > 0 for each label w in W.

We will now show that each chain Wy —; W; —, ... —, W, of propagation
rule applications to derived systems corresponds to the decreasing chain W(Wp) >
U(W;) > ... > ¥(W,). Thus, proposition 3.3 is an immediate consequence of the
next lemma.

Lemma 3.5 If W' is obtained from the derived system W by an application of a prop-
agation rule, then U(W) > ¥(W').

Proof: We have to show this lemma for each of the propagation rules.

(1) Assume that W’ is obtained from W by applying the —¢ or the —g rule to
one or more world constraints labeled with label w. Such a rule application adds a
world constraint w X; v to W, where j is an agent and v is a new label. Hence, the
number of labels in W’ is greater than the number of labels in W and for each label
w in W' the first component of ¥)"'(u) is less than the first component of %" (w), i.e.,
U(W) > ¥(W).

(2) Now assume that W' is obtained from W by an application of the —¢, or
the —qg, rule. Such a propagation rule application does not introduce a new label
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to W. Thus, the first components of ¥% (u) and ¥W'(u) are identical for each label
u. Let us now consider how the values ¥ (w) and 3 (w) are changed. Obviously,
PV (w) = ¥ (w) and ¥ (w) = YI¥'(w) + 1. From this it follows immediately that
T (w) > IV (w). O

Thus, the application of the frame algorithm to a world constraint system W in-
duced by a finite set of ALCs-formulas Fjy,..., F, terminates and results a world con-
straint system, say W’. In order to test KD45-satisfiability of W', for each label w in
W' we determine the set of all those ALCp-formulas which are labeled by w and which
do not contain any modality. That means, such a set contains only ALC-formulas
and is therefore called the ALC test set of label w. More formally, if W' is a world
constraint system, the ALC test set A(w) of label w in W’ is given by the set

{F|F||w€& W’ and F does not contain any modality}.

We will show in the following that a finite set Fy,..., F,, of ALCp-formulas is KD45-
satisfiable iff the ALC test set A(w) of each label in W’ is satisfiable. Thereby, W' is
the result of the frame algorithm with input {F} || wo,...,Fn || wo}. One direction is
given by the next lemma.

Lemma 3.6 Let W be a world constraint system which is induced by the finite set
{Fy,...,F,} of ALCg-formulas, and let W' be the result of the frame algorithm with
input W. If K = (W,T, K1) is a KD{5 Kripke structure which satisfies W, then for
each label w in W' there is a world wX € W such that K,wX |= F for each labeled
ALCp-formula F ||w in W'.

Proof: Since W' is the result of the frame algorithm with input W' there is a chain W =
Wy —1 Wi =4 ... = Wi = W with =€ {—¢,—0,, —0,—a,} for ¢ € {1,...,k}.
We will show that K satisfies each labeled ALCp-formula in W’ by induction over the.
number of rule applications in this chain. By assumption, K = (W,T, K;) satisfies
Wo = {F, || wo,...,F, || wo}, i.e., there is a world w in W such that K,wl:
Fiyony Ky ul = B,

We thus can assume that, after j rule applications, for each label w in W; there
is a world wX in W such that K,w® |= F for each labeled ALCp-formula F || w in
W;. If W; —; W;y there are four possibilities. Firstly, suppose W; —o Wji1 by
applying the —¢ rule to O;F' || w in W;. In this case, there are labeled ALCp-formulas
OiF || w, OiFy || w,. .., OiFy || w, 0;Gy || w, ..., 0;Gp || w in Wj, and Wy, is given by

Wju{w M; U,FH’U,O,'F] ”v,--'aOiFn'IvaiGl HU,...,D,'Gm ”'U,G1 ||’U,...,Gm ”’U}
where v is a new label. By induction hypothesis there is a world w¥ in W such that

(i) K,wK E O;F and (i1) K,wX | 0,G; for j = 1,...,m. Because of (i) there
is a world v¥ in W (not necessarily different from wX) such that (w¥,vX) € 7, and
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K, v |= F. Furthermore, because of (ii) and property (P2) of KD45 Kripke structures,
both K,wX = 0;G; and K, w¥ = 0,0,G, holds for j = 1,...,m. And thus, since
(wk,vE) € 5;, especially K,v® | G; and K, v¥ | O0,G; holds for j = 1,...,m.
Finally, K,w¥X |= O;F; for j = 1,...,n by induction hypotheses, i.e., K, wk | 0;0;F;
because of property (P3') of KD45 Kripke structures. Hence, also K ,vX |= O;F; holds
for j = 1,...,n. Summing up, for each labeled ALCp-formula F' || v in W; we have
K,vK = F.

Secondly, if W; —g W4, there are world constraints 0;G || w, . .., 0;Gp, || w in W;
and Wiy, = W, U {w X; v,Gy || v,0,;Gy || v,...,Gm || v, 0;Gr || v} where v is a new
label. By induction hypothesis, K,w® | 0;G; for j = 1,...,m and for some world
wk € W. Because of K,wX | 0;G; and property (P1’) of KD45 Kripke structures
especially K, wX = ©;G; holds. Hence, there is a world v¥ (not necessarily different
from wX) such that (w®,vX) € 4; and K,v¥ |= G;. Furthermore, because of property
(P2) of KD45 Kripke structures, both K, wX | 0,;G; and K, w® |= 0;0,G; holds for
j=1,...,m. And thus, since (w¥,vX) € v;, especially K, v = G and K, o* | O,G;
holds for j = 1,...,m. Summing up, we have K,v¥ = 0;G; and K,vX | G; for
i P )

Finally, if W; —¢, W,41 or W; —g, W, there is nothing to show since these rules

do not change the set of labeled ALCp-formulas in W; at all. a

The next lemma states that a world constraint system W', which is a result of

the frame algorithm, is KD45-satisfiable if the ALC test set of each label in W' is
satisfiable.

Lemma 3.7 Let W be a world constraint system which is induced by a finite set of
ALCg-formulas, and let W' be the result of the frame algorithm with input W. If the
ALC test set A(w) of each label w in W' is satisfiable, then W is KD/5-satisfiable.

Proof: Let K be the Kripke structure (W, T, K1) where

e W is given by the set of all labels in W’.

e I consists of an accessibility relation v; for each agent ¢. Thereby, ; is given by
the Euclidean and transitive closure of the set {(w,v) | w X; v in W'} U {(w,w) |
w is a label in W’ and for no label v in W’ there is w X; v-in W'}. It is easy to
verify that each accessibility relation «; is serial.

e K; is given such that K,w |= F for each labeled ALCg-formula F || w in W'
where F' does not contain any modality. Such a K-interpretation K; exists,
since we assumed the ALC test set of each label in W' to be satisfiable. Given
interpretations Iy,..., I, which satisfy the ALC test sets of each label in W’
respectively, the construction of K is straightforward.
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Obviously, each 9; is Euclidean, transitive, and serial and hence K is a KD45 Kripke
structure.

We will now prove that K satisfies each world constraint ¢ in W’. If ¢ is of the form
w X; v there is nothing to show because of the definition of K. The fact K = F'||w for
each labeled ALCs-formula F' || w in W' can be shown by induction over the number
of modalities in F'. If F' does not contain any modality, then K, w = F because of the
construction of K. Thus we can assume that K, w |= F for each labeled ALCz-formula
F || w in W' such that F' contains n modalities.

If F' contains n 4+ 1 modalities, there are two possibilities: the leading modality is
either O; or ©;. Firstly, suppose W’ contains a world constraint O, F' || w, where F' has
n modalities. We then have to show that K, w |= O,;F) i.e., that K,v |= F for each v
such that (w,v) € 5;. Since O, F ||w is in W, during the frame algorithm a propagation
rule has been applied to the world constraints with label w, such that w X; u is in W’
for some label u. It is easy to verify that w M; v € W' for some label v (not necessarily
different from w) if O,F || w or O;F || w is in W’ for some ALCz-formula F. Thus,
because each v; is transitive and Euclidean, there are two possibilities for (w,v) € v;:

. ¢3! s 1
1. thereis a path w = w;, ™; w;,, w;, X; Wiy, ..., w;,_, X; w;, =vin W' or

o

there are two paths starting with some label z, namely
Z ='wy, Ww,,, wi, Mi'wg oo w5 wi = v and
z = 11)]'1 ™, 71)]'2, II)J’Q X, wjav veey ﬁ]jl—l ™; ’IIJJ'l =w in W'.

For case 1., assume that W’ contains a world constraint O;F || w. Because of the
definition of the propagation rules it holds that, whenever O; F' || w is in W’ and w X; v
(or w M; w) is added to some derived system W;, then both F'[|v and O;F || v are in
W;. Analogously, whenever a world constraint v X; u is added to a system W (with
7' 2 j+1), the derived system W;: contains O;F ||u and F ||u, and so on. Hence, since
none of the propagation rules deletes a world constraint, we can conclude that F' || v is
in W' if there is a path w = w;, X; w;,, w;, X; Wiy, ..., wi,_, ¥ w;, = vin W’. And, by
induction hypothesis, we know that K,v = F because F' contains only n modalities.

For the second case, assume the two above given paths starting with label z are in
W'. We firstly show that

(%) if O;F ||wis in W/, then O,F || z is also in W'.
It is sufficient to show that O;F'||u is in W; whenever O;F||u’ is in W, where W, —¢
Wi, Wi =0, Wig1, W; —a W;4q, or W, —g, W;4q, and u X; u' is added to W; b
it 2 o V3.t J it1s J o ot bl 3 DY

this rule application. This holds because of the definitions of the four propagation rules
and since ALCp-formulas are in KD45 normal form, such that (x) follows immediately.
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1. Let W be the world constraint system which is induced by Fi, ..., Fj.
2. Let W’ be the result of the frame algorithm with input W.

3. For each label w in W’ do: If the ALC test set of w is not satisfiable, then
STOP and return “KD45-unsatisfiable”.

4. Return “KD45-satisfiable”.

Figure 2: The KD45-satisfiability algorithm.

That means, if O; F'||w is in W’ we know that O;F ||z is in W’'. As argued above, in
this case W’ contains the labeled ALCs-formula F'||v because of the path z M; ... X; v.
Again, we know K,v |= F because of the induction hypothesis.

Secondly suppose W’ contains <;F || w. We then have to show that K,v = F for
some world v such that (w,v) € ;. This is obvious, since either (z) the —¢ rule has
been applied to O;F || w and added both world constraints w X; v and F' || v for some
label v, or (i¢) the —o, rule has been applied to O;F' ||w and added w ™X; u to W' such
that F' ||u € W’. Summing up, K satisfies each world constraint in W’ and hence in

W C W'. Thus, W is KD45-satisfiable. a

The next theorem summarizes the previous results.

Theorem 3.8 Let Fy,..., F, be a finite set of ALCy-formulas, and let W be the world
constraint system which is induced by Fy,...,F,. If W' is the result of the frame
algorithm with input W, then the set Fy,..., F, is KDj5-satisfiable iff the ALC test
set A(w) of each label w in W' is satisfiable.

Proof: The ALCg-formulas Fy,..., F, are KD45-satisfiable iff W is KD45-satisfiable.
Firstly, suppose K is a KD45 Kripke structure which satisfies W. Then, because of
Lemma 3.6, for each label w in W’ there is a world w® € W such that K, w® = F for
each ALCp-formula F' || w in W’. Thus, especially the ALC test set of each label w in
W' is satisfied by K. Conversely, suppose that the ALC test set A(w) of each label w
in W' is satisfiable. Then W is KD45-satisfiable because of Lemma 3.7. a

Summing up, we obtain the algorithm for testing KD45-satisfiability of ALCp-
formulas Fi,..., F, which is given in Figure 2. An algorithm for testing satisfiability
of ALC test sets has been given in [21].

Unfortunately, the number of labels in the constructed world constraint system is in
the worst case exponential in the number of input ALCp-formulas: Let Oy Fy, ..., O F,
be ALCg-formulas where each F; is an ALC-formula. The induced world constraint
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system W, is then given by
Wo = {<>1F1 H Wo, . . .,<>1Fn H 'U)o}.

Applying the —¢ rule successively to Oy F || wo, ..., O1F, || wo results the world con-
straint systems

Wl — WOU{wOMIwlaFlle,olF?“wla"'aoanle}
W, = WU {w X, w2,<>1F1||w2,F2||w2,<>1F3||w2,...,<>1Fn||w2}

Wn = W‘n.—l U {’LUO Nl wn,OlFl “ Wpy - .,Oan_l || wn,Fn || wn}

Each of the world constraint systems Wi, ..., W, contains n —1 labeled ALCgz-formulas
with a leading modality <, i.e., to each of these derived systems the —¢ rule can be
applied n —1 times.* To each of the thereby obtained derived systems the — rule can
be applied n — 2 times and so on. summing up, an exponential number of labels—and
hence of labeled ALCp-formulas—is generated.

In order to test KD45-satisfiability of a set of ALCg-formulas we are mainly inter-
ested in the constructed ALC test sets which have to be tested on satisfiability. The .
following example shows that the number of different ALC test sets in a derived system
W may essentially be smaller than the number of labels in W.

Example 3.9 Let the ALCg-formulas Oy Fy, O1Fy, Oy F3 be given where Fy, Fy, F3 are
ALC-formulas. Applying the frame algorithm to

{C1F1 || wo, Or1 F || wo, O1F3 || wo}
results a world constraint system W' which has 13 different labels. However, only three

different ALC test sets (namely {Fy}, {F:}, and {Fs}) are constructed.

An optimized version of the KD45-satisfiability algorithm—which does not generate a
worst case exponential overhead of labeled ALCgz-formulas—is presented in the follow-
ing section.

4 Optimization and Computing ALCz-Inferences

In this section we consider optimizations of the KD45-satisfiability algorithm as well
as the problem of computing logical inferences from given ALCg-formulas. In 4.1 we

For sake of simplicity we disregard the —, rule here. It is easy to verify that applications of this
rule do not influence the exponential behaviour of the frame algorithm with input Oy Fy, ..., O F,.



will present an algorithm which—based upon the results of the previous section—
determines ALC test sets without computing an exponential number of labeled ALCp-
formulas. These sets then have to be tested on satisfiability, i.e., we have to decide
whether or not a set of terminological and assertional axioms is satisfiable. Termi-
nological axioms are defined to be of the form C = D or C # D where C,D are
(complex) concepts. However, in most of the existing terminological representation
systems terminological axioms are not allowed in this general form but they have to
satisfy additional conditions. In 4.2 we investigate in which cases only such restricted
terminological axioms have to be considered in order to test satisfiability of ALC test
sets. Finally, in 4.3 we will show how to decide whether or not a given ALCp-formula
is logically entailed by a set of ALCg-formulas.

4.1 Computing ALC test sets

The KD45-satisfiability algorithm presented in the previous section works in two phas-
es: Firstly, a set of ALC test sets is computed and then each of these sets is tested
on satisfiability. The thereby used propagation rules of the frame algorithm have the
advantage to “reflect” the properties of KD45 Kripke structures, and hence soundness
and completeness of the KD45-satisfiability algorithm could be proved in a very natural
way. On the other hand, the frame algorithm has the disadvantage to possibly con-
struct a large number of labeled ALCp-formulas in order to determine a small number

of ALC test sets (cf. example 3.9).

In the following we will have a closer look at the properties of the frame algorithm.
Building upon these properties we will then develop an algorithm which computes ALC
test sets immediately from the ALCp-formulas to be tested on KD45-satisfiability, i.e.,
we do no longer have to compute a (large) number of labels from which ALC test sets
then are extracted.

The main idea of this new approach is as follows: Suppose o Fy, ..., o F, are ALCp-
formulas which are to be tested on KD45-satisfiability, where each o} is a (possibly
empty) sequence of modalities and each F; is an ALC-formula. By looking at the

structure of the sequences o},..., o we will then decide syntactically which elements
in the power set of {F},..., F,} will be computed as an ALC test set by the frame
algorithm with input o] F; || wo, ..., 0L F, || we. The following example shows that this

task is not obvious.

Example 4.1 Let A be a primitive concept and let C, D be concepts.

1. Let S be the set {O(A = C),01(A = D)}. Applying the frame algorithm to
the induced world constraint system W = {C1(A = C) || wo, O1(A = D) || wo}
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results the derived system W', given by the world constraints

C1(A=0C)[|wo  C1i(A=D) || wo

wo Xy wy A=C|lw C1(A=D) || wy
wo My wy C1(A=0) || we A=D || w,
wy Xy ws A=D || ws
wa My wy A=C|lw,

The ALC test set A(wp) of wo is empty, while A(w;) = A(wy) = {A = C} and

2. On the other hand, starting with the set S = {0,(4 = C),0,(A = D)} leads to
only one non-empty ALC test set, namely {A = C,A = D}.

The leading sequences of modalities in the input ALCp-formulas obviously influence
the determined ALC test sets. &

Let us firstly introduce the following notions. If W is a derived system, a subset
consisting of world constraints wy M;, wy,...,w,_y X; _, w, is called a path if the w;
are labels in W and each ¢; is an agent. The norm of this path is given by the sequence
11/ .. . iy Which arises from ¢; ... 4,_; be replacing each subsequence ¢, . .. TR 1§ S R
by i;. For example, the norm of the path w; M;, w,, w, M, w3, w3 My, wy, wy M, ws is
given by 272,. '

In the following we will present correlations between labeled ALCg-formulas which
are taken as input of the frame algorithm and the labeled ALCz-formulas which are
generated during the frame algorithm with this input. In order to simplify notation
we thereby assume the input is of the form ojF; || wo, ..., 0L F, || wo where each o}
is a (possibly empty) sequence of modalities and each two ALC-formulas F; and F;
are syntactically different (e.g., by marking them with numbers). Since the presented
correlations only depend on the modalities in the input ALCg-formulas this can be
done without loss of generality.

Firstly, if W’ is the result of an application of the frame algorithm, the next lemma
states that there is a correlation between paths in W’ and the sets of ALCy-formulas

in W'.

Lemma 4.2 Let W be a world constraint system which is induced by a finite set of
ALCg-formulas, let W' be the result of the frame algorithm with input W, and let P
be a path wo M;, wy,...,wo_y X; w, in W' with norm (P) = iy...i,. Then the
set of labeled ALCy-formulas in W' with label w, is a subset of {F || wn,0; F || w, |
0 0i, F'||wg € W'} where o € {O,0}.

gy ok

22



Proof: Let wo ™X; u be in W'. If O;F || wo, ..., iFn || wo, 0iGh || wo, . . «, OiGm || wo are
the labeled ALCp-formulas in W’ with label wy and with leading modality O; or <,
the labeled ALCp-formulas in W’ with label u are a subset of S, given by

{CiF |u, ... ,CiFaflu) B;Gy ||y, iy BiGm | uy F1 |, 5000 FH uy G2y 5 o0 G| u}

or, alternatively, by {F || u,0;F || w | o; F' || wo € W'}. This follows immediately from
the definition of the four propagation rules. Since we assumed ALCg-formulas to be in
KD45 normal form, none of the world constraints Fy ||u, ..., Fp||u,G1 ||ty ..., Gm || u
has a leading modality O; or ;. Hence, if for some label u’ there is u ™; u’ in W’ the
labeled ALCpg-formulas with label u’ in W’ also are a subset of S, and so on. Summing
up, if there is a path wg ™; w;,, ..., w;,_, M; w, we know that the set of labeled ALCj-
formulas with label wy in W’ is a subset of S = {F' || wk, 0;F || wk | 0;F || wo € W'}.

Let us now consider a path P with norm (P) = i5. If there is a path wo X
Wiy« ooy Wiy, X wi,wp X; wj,, then the set of labeled ALCp-formulas with label wy
in W' is a subset of S = {F || wg, 0; F || wi | 0;F || wo € W'}. Hence, the set of labeled
ALCp-formulas with label w;, in W' is a subset of {F' || w;,,0; F ||wj, | o;F ||wy € S}.
Analogously to the argumentation above we obtain the following: If there is a path
wo M; Wiy, Wi, Xiowg, wi My wjy, ., wi—g MG wg in Wit follows that the set of
labeled ALCs-formulas with label w; in W’ is a subset of { F'||wy, 0; F'||w; | 0; F||w € S}.

Since S consists only of elements o; F || wy or F' || wy such that o;F || wg is in W' it
follows that o, F' || wy € S at most if o; o; F' || wg € W’. That means, the set of labeled

ALCs-formulas with label w; in W’ is a subset of {F'||wi, 0; F' ||w; | 0;0; F ||we € W'}.

With this argumentation the lemma follows immediately by induction. a

In an ALC test set only ALC-formulas, i.e. ALCp-formulas without modalities, do
occur. If W is a world constraint system and W' is the result of applying the frame
algorithm to W the next lemma provides a correlation between labeled ALCz-formulas
in W’ without modalities and labeled ALCs-formulas in W. Thereby, a sequence of
modalities is called sequence for short. If S is the sequence oy ...0,, with o € {;0},
then S[j] denotes o, and indezes (S) denotes 1,...,n. Furthermore, an ALCs-formula

F occurs in a derived system iff there is a (possibly empty) sequence o* and a label w
in W such that o*F || w is in W.

Lemma 4.3 Let W be a world constraint system which is induced by a finite number
of ALCg-formulas, let W' be the result of the frame algorithm with input W, and let F
and G be ALC-formulas occurring in W. If there is a label w, in W' such that F || w,
and G ||w, are both in W', then there are two sequences S and S’ such that (¢) SF'|| w
and S'G || wo are in W and (it) indexes (S) = indexes (5').

Proof: Let wo ™M;, wy, ..., ws—1 X;, w, be the path from we to w, in W' where each

in

w;j—1 M, w; has been added into W’ by an application of the —¢ or the —g rule. It is
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sufficient to investigate this path since the —¢, and the —g, rule do not add any new
labeled ALCp-formulas at all, and it is easy to verify that there is exactly one such
path.

If F||w, and G||w, are both in W', there are labeled ALCp-formulas o;, ...o;, F'||wy
and o;, ...0; G || wo in W where each o is either O or O and each 7; is an agent. This
follows immediately by Lemma 4.2 and the fact that H ||wo € W' iff H || wo € W for
each ALCp-formula H since no propagation rule introduces a labeled ALCg-formula
with label wq into a derived system. Thus, there are sequences S and S’ such that

indexes (S) = indexes (S') and both SF' || wy and S'G || wo are in W. a

If W' is the result of applying the frame algorithm to a world constraint system
W, the following proposition provides syntactical conditions that W satisfies whenever
there is an ALC test set A(w) for some label w in W which contains a non-empty set

of ALC-axioms.

Proposition 4.4 Let W be a world constraint system which is induced by a finite
number of ALCg-formulas, let W' be the result of the frame algorithm with input W,
and let F' and G be ALC-formulas occurring in W. If there is a label w, in W' such
that F || w, and G || w, are both in W', then there are sequences S and S’ such that (7)
indexes (S) = indexes (S'), (it) SF || wo and S'G || wo are in W, and (iit) there is no
position j in S (respectively in S') such that S[j] = S'[j] = O;, for some agent i;.

Proof: Because of Lemma 4.3 we know that there are sequences S and S’ with index-
es (S) = indexes (S') and both SF' || wg and S'G || wg are in W. Suppose j is the first
position such that S[j] = S'[j] = <O;;.

in W’ there is a label w; in wy, ..., w, such that O;; of F'||w; and O;; 05 G || w; are in
W', where o} and o} are (possibly empty) sequences of modalities and indexes (o}) =
indexes (03). Therefore we use the fact that for each position k£ < j at least one of the
modalities in {S[k],S'[k]} is not a labeled O-modality.

If Oy, 01 F||wo and ©;; 05 G ||wo are both in W' there is nothing to show. Otherwise,
we have to distinguish two cases:

Starting with label wg we firstly show that for each path wo ™;, wy,...,wa—q M wy,

(¢) ©i0* Oy, 0f F || wo and O; 0* O;; 03 G || wo are in W’ or
(¢2) O; 0% Oy, 0f F || wp and O; 0% Oy 05 G || wo are in WY,

where ¢ is an agent and o* is a (possibly empty) sequence of modalities.®> Without loss
of generality we do not consider the case where O;0* O, of F'||wo and ©;0* ;05 G || wo

SIn order to simplify notation we will use o* in both the sequences of F' and of G. Formally we
had to distinguish these occurrences since everything we know about them is that they do not differ
in their indexes. However, here it should always be clear by context which occurrence is meant.
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are in W, since it is symmetrical to case (). Note, that applying propagation rules to
labeled ALCyz-formulas with label w, whose leading modalities are not indexed with
i—obtaining, say, label v—cannot result the first element in a path leading to a label
w such that F || w and G || w are both in W’. This is due to the fact that in this case
neither F nor G occurs in labeled ALCs-formulas labeled with v.

For case (i), after an application of the —¢ or the —o, rule to &; 0* Oy, 0f F || wo,
for some label v the world constraints

0*Oy; 01 Fllv, 0"0Ci0;G|lv, 0;0" Oy 0 Gl|v (@)

are exactly the labeled ALCp-formulas in the currently derived world constraint system
which are labeled with v and contain F' or G. Analogously, after an application of the
—o-or the =, rule to O; H ||wo—where H is different from 0*O; of F—for some label
v the world constraints

;0" Oy 0} F [lv, 0704 03G v, Dio" Oy 03 Gl (8)

are exactly the labeled ALCp-formulas in the currently derived world constraint system
which are labeled with v and contain F' or G.

For case (ii), after an application of the —g or the —qg, rule to labeled ALCp-
formulas with label wo whose leading modalities are indexed by ¢, for some label v the
world constraints

0;0"C; 03 F |[v, 00y 01 F |[v, Dio'Oijo;Gllv, 0 Oy 0L Gl ()

are exactly the labeled ALCp-formulas in the currently derived world constraint system
which are labeled with v and contain F or G. And, finally, after an application of the
—¢o or the —¢, rule to some labeled ALCg-formula O;H || wy we obtain the same
labeled ALCp-formulas as in case () above.

Since we assumed ALCg-formulas to be in KD45 normal form, the leading modality
in o* is not indexed with 7. Hence, for case (a), propagation rule applications to
0; 0" Oy, 03 G || v cannot result the first element in a path leading to a label w such that
F||w and G ||w are both in W'. Analogously, for case (j), applying propagation rules
to 0*O;, 03 G || v cannot lead to a label w such that F || w and G || w are both in W'
For the same reason in case () either rule applications to labeled ALCp-formulas with
leading modality 7 and label v, or to labeled ALCp-formulas whose leading modality is
the first modality in o* and label v, may lead to a label w such that F'||w and G || w
are both in W".

Summing up, if v is the first element in a path wg X;,,...,™M; w,, then either
(1) 0*Oy; 01 F||v and 0*O;; 05 G || v are in W' or
(2) ©;0* O 0f Fllv and DO;o* Oy 03 G| v arein W’ or

(3) O;o" Qi 01 Fl[v and 0O;0" O 03 G || v are in W’
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Hence, to v the same argumentation is applicable as to label wy above.

Let now w; be a label in wy, .. .,w, such that O;; of F'||w; and O;; 0] G || w; are in
W'. Without loss of generality during the frame algorithm the —¢ (respectively the
—¢,) rule has been applied to O;; o] F' || w; before it has been applied to ;; 03 G || w;.
If of (and hence 03) is the empty sequence, then F' || v and ;G || v are in W', where
w; ™, v has been introduced by this rule application. But F || w, cannot be in W’
because of the remaining application of the —¢ rule to O;; o* G || w;. On the other
hand, if o] (and hence 03) is not empty, its leading modality is different from ¢; (since
ALCg-formulas are in KD45 normal form) and thus there cannot be a label w, in W’
such that F' || w, and G || w, are both in W’ because of the remaining application of
the —¢ or the —¢, rule to O;; o* G || w;.

In both cases this contradicts the assumption that there is a label w, in W’ such
that F' || w, and G || w, are both in W’ i.e., there cannot exist a position j such that
S[y] = S'[j] = Oy, for some agent i;. O

Finally, we present a proposition which states that also the opposite direction of
proposition 4.4 holds.

Proposition 4.5 Let W be a world constraint system which is induced by a finite set
of ALCg-formulas, let W' be the result of the frame algorithm with input W, and let F'
and G be ALC-formulas which occur in W. If SF ||wo and S'G || wo are in W, where
S, S’ are sequences such that indexes (S) = indexes (S') and there is no position j in S
(respectively in S') such that S[j] = S'[j] = Oi; for some agent i}, then there is a label
wy, in W' such that F || w, and G || w, are both in W'.

Proof: Let S, and S/, arise from S and S’ by deleting the first modality, respectively. If
SF || we and S'G || wy are in W, there are three cases:

1. S[1] = S[1] = O;, and the —g or the —g, rule is applied to ALCs-formulas of
the form O; H || wo. In this case SF || wy, S'G || w1, S«F || w1, and S.G || w; are
all in W' if wg ™M;, w, is introduced by this rule application.

2. Without loss of generality S[1] = <;,, $'[1] = O,,, and the —¢ or the —¢, rule
is applied to some ALCg-formula &; H || wy, where H is different from F. In
this case SF' || w; and S'G || w; are in W’ if wg M;, w, is introduced by this rule
application.

3. Without loss of generality S[1] = ©;,, $'[1] = O;,, and the — or the —, rule is
applied to SF'||wp. In this case S, F'||w; and S, G ||w; are both in W’ if wy M;, w,
is introduced by this rule application. It does not influence the argumentation

that S'G || w, is also in W".
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For label w; the argumentation is the same such that the proposition follows immedi-
ately by induction. a

Propositions 4.4 and 4.5 together give us an answer to the question which ALC test
sets are generated by an application of the frame algorithm. We summarize this result
in the following theorem.

Theorem 4.6 f Let W be a world constraint system which is induced by a finite set
of ALCg-formulas and let W' be the result of the frame algorithm with input W. Then
there is a label w in W' such that the ALC test set A(w) contains the ALC-formulas
Fy,...,F, iff there are sequences Sy,...,S, in W such that

o S F||wo,...,SnFn || we are in W,
e indexes(S;) = ... = indexes(S,), and

e there is no position j such that for two sequences S’ and S" in {Sy,...,S,} holds
S'[j] = §"[3] = ©i; for some agent 1;.

Proof: If the ALC test set A(w) contains the ALC-axioms Fy,..., F;,, none of the F}
does contain modalities. Thus, because of Proposition 4.4 there are sequences Sy, ..., S,
such that Sy Fy ||wo, - .., SnFn || wo are in W and indexes(S;) = ... = indexes(S,). Now
suppose, that S'F’ || wy and S"F" || wo with F’ and F" in {Fy,..., F,} are in W such
that S'[j] = $"[j] = i, for some agent 7;. Again because of Proposition 4.4, we can
conclude that either F'||w or F"||w is not in W’. This contradicts that A(w) contains
Fi,...,F,. The other direction follows immediately from Proposition 4.5. O

An optimized version of the KD45-satisfiability algorithm is given in Figure 3. For
the input of this algorithm remember that each ALCg-formula is of the form SF' where
S is a (possibly empty) sequence of modalities and F' is an ALC-formula. In step 2.
of the algorithm for each sequence S; in {S1,...,5,} the set S; of all ALC-formulas
in {Fy,...,F,} is computed such that the conditions of Theorem 4.6 are satisfied.
Multiple generations of the same ALC test sets are avoided by testing whether or not
the ALC-formula F; is already in an ALC test set Sk.

Summing up, soundness, completeness, and termination of this algorithm follow
immediately from the results in Section 3 and in this subsection. It is easy to verify
that step 2. of this optimized KD45-satisfiability algorithm works in polynomial time
in the length of the input ALCp-formulas and generates a polynomial number of ALC
test sets. Thus, in contrast to the KD45-satisfiability algorithm in the previous section,
it does not generate a worst case exponential overhead of ALCg-formulas.

Let us now reconsider example 3.9: Given the ALCg-formulas OqFy, OqFy, and
O1F3 the optimized KD45-satisfiability algorithm constructs the ALC test sets {7},
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1. Let S;F1,...,S5.F, be the ALCs-formulas to be tested on KD45-satisfiability,
where each S; is a (possibly empty) sequence of modalities and each F; is an

ALC-formula.

2. fori=1,...,ndo
if F; € Sy for some k € {1,...,71—1}

then S; =10
else
5e ==1TH]

forj:=:¢+1,...,ndo
if indexes(S;) = indexes(S;) and
there is no position k such that S;[k] = S;[k] = O, for some agent [
then ; :=8; U{F;}
endfor
endfor

3. For each non-empty set s in {Si,...,S,} do: If s is not satisfiable, then STOP
and return “KD45-unsatisfiable”.

4. Return “KD45-satisfiable”.

Figure 3: The optimized KD45-satisfiability algorithm.

{F,}, and {F3} without applying the frame algorithm. Analogously, from O,(A = ()
and O;(A = D) the only ALC test set {A = C, A = D} is generated immediately from
the syntactical structure of the input ALCp-formulas (cf. example 4.1).

4.2 Restricted ALC-TBoxes

In Section 2 we defined an ALC-TBox as a set of terminological axioms of the form
C =D and C # D, where C and D are concepts. However, most of the existing ter-
minological representation and inference systems (e.g., Back [30], cLassic [7], KRZS
[2]) only allow terminological axioms of the form A = C, where A is a primitive con-
cept and C' is a concept. Such a terminological axiom is called (concept) definition of
A.° Building upon this, an ALC-TBox is then defined as a finite set of terminological
axioms which satisfies the following restrictions:

e cach atomic concept appears at most once as the left hand side of a terminological
axiom, and

60ften so-called concept specializations of the form A T C are allowed which abbreviate the
terminological axiom A = C'M A* where A* is a new primitive concept.
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e in this set cycles do not occur.

Thereby, a set S of terminological axioms contains a cycle iff there exists a termino-
logical axiom A = C in § such that A occurs in the concept C' which arises from C
by iterated substitutions of primitive concepts in C' by the right hand sides of their
definition in S. For example, if A and B are primitive concepts the sets {4 = A} and
{A=CnNB,B=DU3R.A} of terminological axioms contain cycles. In the following
we will call ALC-TBoxes satisfying the additional conditions described above restricted
ALC-TBozes in order to distinguish them from the ALC-TBoxes defined in Section 2.

It can be shown that each restricted ALC-TBox 7 can be transformed into an
equivalent restricted ALC-TBox 7' such that each right hand side of a concept def-
inition in 7’ does only contain concepts which do not occur as a left hand side in
T' (see, e.g., [20]). For example, if A;, A3, A3 are primitive concepts, the restricted
ALC-TBox T = {A; = A, M A3, A; = C U D,A3 = 3R.C} can be transformed into
T'={A, =(CUD)N3R.C,A; = CUD,A; = IR.C}. Thus, each primitive concept
A on the left hand side of a terminological axiom A = C in 7' can be seen as an abbre-
viation for the concept C. With this it is easy to verify that testing consistency of an
ALC-ABox A w.r.t. a restricted ALC-TBox 7T is equivalent to only testing consistency
of an ALC-ABox A’. Thereby, A’ arises from A by successively replacing all primitive
concepts by the right hand sides of their definitions in 7. The size of A’ is worst case

exponential in in the size of A and 7 (see, e.g., [20]) and testing satisfiability of A’ is
known to be PSPACE-complete (see [19]). Possible optimizations are discussed in [1].

An algorithm for testing consistency of ALC test sets which may contain termino-
logical axioms as defined in Section 2 has been given in [21]. As an easy consequence of
a result by Fischer and Ladner [13] this test is EXP-TIME complete. Moreover, when
using more expressive terminological logics than ALC this test becomes undecidable
(for the terminological logic ACCF this has been shown in [4]), while this is not the
case when using restricted ALC-TBoxes only.

Let now S be a set of ALCs-formulas. Because of the above given discussion on
efficiency and decidability of testing satisfiability of an ALC-TBox and an .ALC-ABox it
is an interesting question whether or not the terminological axioms in each ALC test set
which is generated from S define a restricted ALC-TBox. The answer to this question
can be given with the help of Theorem 4.6 which can be used to formulate sufficient
syntactical conditions which—if satisfied—guarantee that only restricted ALC-TBoxes
have to be tested in order to test KD45-satisfiability of a set of ALCz-formulas. For
example, these conditions could be given by

1. agents only have positive beliefs, i.e., negation signs do not occur in front of
O-operators, and

2. for each sequence S of modalities holds that the set of ALCg-formulas occurring
in the scope of S define a restricted ALC-TBox.
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For practical applications, however, such conditions seem not reasonable and, even
worse, when computing logical consequences (see next subsection) such syntactical
conditions in general cannot be maintained. Hence, for testing satisfiability of ALC
test sets we in general have to take terminological axioms into account which do not
define a restricted ALC-TBox.

4.3 Computing ALCs-Inferences

We will now show how to use the KD45-satisfiability algorithm in order to test whether
or not a given ALCp-formula is a logical consequence from a set Fi,..., F, of ALCg-
formulas. Again, we are only interested in KD45 Kripke structures and thus define: F
is a KD45 consequence of Fy, ..., F, iff for each KD45 Kripke structure K = (W, T, K|)
and for each world w in W holds: if K,w |= F;,...,F,, then K,w | F. Firstly, let
F be an ALCg-formula of the form o*(C = D), o*(C # D), or o*(a : C), where o* is
an abbreviation for a (possibly empty) sequence of modalities. Then, F is an KD45
consequence of Fy, ..., F, iff the set F,..., Fy,,[~F]* of ALCp-formulas is not KD45-
satisfiable, where [~ F|* denotes the negation normal form of —F. Note, that —F is an
ALCs-formula if F' is of the above described form.

If, on the other hand, F' is of the form O*(aRb), where O* is an abbreviation for
a (possibly empty) sequence of non-negated indexed O operators, we cannot use this
test method since negation signs are not allowed in ALCp-formulas which contain a
role instance. To handle this case, we extend the notion of ALCx-formulas as follows:
if R is a role, a, b are objects, and ¢,,...,1%,, are agents, then <, ...O; (aRb) is an

ALCp-formula.

Alternatively, these ALCp-formulas could be defined by o;, ... o;, (aR'b) where (1)
each o;; is either O;; or -0, , (¢¢) R' is either R or ~R, and (777) the number of negation
signs in o, ...0;, (aR'b) is even. Using this definition it is easy to see that the negation
normal form of the new ALCp-formulas does not contain negation of roles. Therefore,
on a technical level we could allow such formulas as ALCx-axioms in Section 2. But a
restriction like “the number of negation signs is even” seems not to be adequate when
defining a language to describe beliefs of agents. However, for testing whether or not
an ALCp-formula is entailed by a set F,..., F, of ALCs-axioms, this definition turns
out to be reasonable.

Note, that KD45-satisfiability of a set of ALCp-formulas can be handled by the
KD45-satisfiability algorithm in Section 3 even if we use the above introduced extended
definition of ALCp-formulas: Firstly, the algorithm only treats the modalities of ALCp-
formulas, i.e., it works independently from the syntactical structure of formulas without
modalities. Secondly, satisfiability of the resulting ALC test sets still can be tested,
since they do not contain negation of roles. And, finally, it does not matter whether a Rb
is in an ALC test set because of an input ALCs-formula O;, ... 0O; (aRb), or because
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of an input ALCp-formula <;, ... <;, (aRb). Summing up, when using the extended
definition of ALCg-formulas we need not to change the KD45-satisfiability algorithm
at all. The following proposition provides a test whether or not an ALCp-formula
0;, ... 0;, (aRb) is entailed by a set of ALCp-formulas.

Proposition 4.7 Let Fy,..., F, be a finite set of ALCg-formulas such that F,... F,
are KD/5-satisfiable, let a and b be objects, let R be a role, and let 1y, ..., 1, be agents.
Then O;, ... 0; (aRb) is a KD45 consequence of Fy,..., F, iff O;, ... 0; (aRb) is one
of the ALCz-formulas in Fy,..., F,.

Proof: The test whether or not O;, ... 0; (aRb) is a KD45 consequence of Fy, ..., F, is
equivalent to testing whether or not Fi,..., F,, Oy ... O (a=Rb) is KD45-satisfiable.
However, since Oy, ... <O;, (a—Rb) is not an ALCp-formula, this case cannot be handled
by the KD45-satisfiability algorithm of Section 3. Alternatively, let us have a look
at the application of the frame algorithm to the world constraint system W which is
induced by {F,...,F,, 0,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>