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Finite Domains and Exclusions

as First�Class Citizens

Harold Boley

July ��� ����

Abstract� Languages based on logical variables can regard �nite do�
mains� �nite exclusions� and� generally� types as values� Like a variable
can be bound to a non�ground structure which can be later specialized
through in�place assignment of some inner variables� it can also be bound
to� say� a domain structure which can be specialized later through �in�
place deletion� of some of its elements �e�g� by intersection with other
domain structures	� While �nite domains prescribe the elements of a
disjunctive structure� the complementary �nite exclusions forbid the ele�
ments of a conjunctive structure� Domains and exclusions can be values
of variables or occur inside clauses as
in terms or within an occurrence�
binding construct �useful to name arbitrary terms	� In a relational�
functional language �e�g�� RELFUN	 they can also be returned as values
of functions� Altogether� domains and exclusions become �rst�class cit�
izens� Because they are completely handled by an extended uni�cation
routine� they do not require delay techniques needed in �more expres�
sive	 constraint systems� Still� their backtracking�superseding �closed�
representation leads to smaller proof trees �e�ciency	� and abstracted�
intensional answers �readability	� Anti�uni�cation �for generalization	 ex�
changes the roles of domains and exclusions� The operational semantics
of domains� exclusions� and occurrence bindings is speci�ed by a REL�
FUN meta�unify function �and implemented in pure LISP	��

� Introduction

Characteristic for logic programming �LP� is its uniform variable concept� the
single construct of logical variables is usable in di�erent modes �input� output�
or mixed�� However� mainly for e�ciency �control� reasons� committed�choice

languages have compromised this uniformity� they distinguish modes at the user
level �e�g�� 	read
only� annotations�� Similarly� �nite domains� which turned out
to be most useful in constraint systems ��� can entail a compromised variable
concept� they introduce 	domain� variables separately from logical variables� limi

ting which variables may be uni�ed with which kind of term �e�g�� domain vari

ables must not be bound to logical variables��

The latter problem leads us to the issue of extending LP languages by a clean
construct for �nite domains �generally� types�� deeply integrated with existing
LP constructs� In other words� we come to this basic question� Is there a method
of optional� predeclaration
free� variable domain restriction �generally� variable
typing� fully in the spirit of logical variables� This can be answered a�rmatively
by applying the following principle� Instead of introducing a new kind of variable
with an associated domain �type� and a possible value� regard the domain �type�
as an initial value� A domain value can then be successively constrained or
specialized �e�g� by intersecting it with other domain terms� until it ultimately
fails or becomes an ordinary value� �The empty domain is identi�ed with failure�
the singleton domain with its single element��

� This research was supported by the BMFT under Grants ITW ��� C� and ����
����ITW���
��



The 	type
as
value� principle will also be applied to a new type
like construct�
namely �nite exclusions� complementary to �nite domains� � An exclusion term
speci�es the values that cannot be assigned to a variable� It becomes specialized
on uni�cation with other exclusions �here performing union��� fails when uni�ed
with one of its argument values� and transmutes to an ordinary value unequal
to any of its arguments� �The empty exclusion is identi�ed with success��

On domain
exclusion uni�cation the exclusion values are set
theoretically
subtracted from the domain values� Thus� while a domain corresponds to a dis�

junction of solved equalities� an exclusion corresponds to a conjunction of solved

disequalities� where 	solved� stands for single
variable constraints� General dis

equality constraints were introduced to LP by PROLOG II�III ��� By consid

ering only the special case of solved �dis�equalities we can regard constraints
as typed logical variables� all their value specializations can be handled as part
of the uni�cation routine of LP languages� without need for the goal
delaying
mechanisms on which constraint languages are often based�

After having established �nite domains and exclusions as values of variables�
we will show that they may also be used 	anonymously� anywhere a term can oc

cur �e�g� as top
level arguments of clauses�� The �nal step then is to allow domain
and exclusion terms also as values returned by functions of functional LP ex

tensions such as RELFUN ��� Altogether� domains and exclusions become �rst

class citizens of cleanly extended relational� functional� and relational
functional
languages�

� Domain Terms

As the prede�ned term for �nite domains we will use variable
length dom struc

tures� They are built from an arbitrary �nite number� n� of unordered� repetition

free� constants� ci�

�

dom�c�� � � � � cn�

� We will not expand much on further type�like constructs as values� but should note
here that certain unary predicates p �e�g� woman	 could be marked �with a ����
pre�x	 as user�de�ned sorts �p �here �woman	 that may be assigned to variables�
where uni�cation applies p to an ordinary value �e�g� mary	 or looks up �p�s glb �e�g�
�mother	 with another marked predicate �e�g� �parent	 in a �nite sort lattice�

� In accordance with RELFUN�s call�by�value semantics� we also permit active dom

�and exc	 calls� using round parentheses� which remove repetitions before construct�
ing passive dom �and exc	 structures� using square brackets�

� Unlike many �nite�domain systems� we introduce no special treatment for inte�
ger domains here� Conversely� generalizing domain elements beyond arbitrary con�
stants would entail complications in using �nite domains� even ground structures
as in dom�f�a��f�b�� would suggest that uni�cation with f�X� be successful� non�
deterministically binding X to a or b� where in fact the advantage of �nite domains
is their deterministic behavior� as in dom�a�b� uni�ed with X� just binding X to the
entire domain term� Rules for reducing a uni�cation like f�X� is dom�f�a��f�b��

to the deterministic X is dom�a�b�� perhaps via f�X� is f�dom�a�b��� would be a
challenge for non�constant�element extensions of �nite domains�

�



In general� dom structures can be used like ordinary terms�
The empty and singleton domains reduce as follows �unknown indicates fail


ure��

dom�� �� unknown

dom�c� �� c

In our RELFUN implementation� the behavior of dom structures is handled
by an extension of the uni�cation routine �cf� appendix A�� This behavior will
be described by employing RELFUN�s generalized is
primitive for uni�cation�

term is expression

uni�es term �e�g� a variable� with the value of expression �e�g� another term��
For instance� the �left
to
right
ordered� conjunction

X is dom�������� X is dom�������	�

initializes X with the three
element domain containing the integers �� �� and ��
and then intersects it with the four
element domain containing �� �� �� and 	�
thus specializing the X value to the two
element domain dom������ Similarly� the
conjunction

X is dom�������� X is dom�������	�� X is dom�����	�

specializes X to a singleton domain� i�e� is equivalent to

X is �

However�

X is dom�������� X is dom�������	�� X is dom�����	��

X is dom�������
�

fails since X now degenerates to the empty domain�
Note that all orders of successive domain constraining are �result
�equivalent�

including the usual left
to
right order of PROLOG�s implementation of SLD
resolution� which we could thus keep for our domain implementation� information
about the current domain specialization can always immediately be stored as
variable values� and goals need never be delayed�

There is an analogy between our �nite
domain structures and the well
known
non
ground structures of LP� binding a variable to a �nite
domain structure
corresponds to binding a variable to a non
ground structure� In both cases�
when uni�ed with another such variable� its value may become specialized�

�� Some elements of the domain structure may become deleted� �The domain
structure can thus transmute to a single element��

�� Some inner variables of the non
ground structure may become bound� �The
non
ground structure can thus become a ground structure��

�



This extension thus preserves the 	specializing
assignment� property of logic
programming �a given value can be subsequently specialized� while arbitrary
reassignment of a variable leads to failure�� �

Two conjunctions exhibit the analogy�

X is dom�������� Y is dom�������	�� X is Y

deletes � from X� � and 	 from Y� assigning dom����� to X and Y�

X is f�A�B�����	�� Y is f���B���D�E�� X is Y

binds A to �� D and E to � and 	� respectively� assigning f���B�����	� to X and
Y�

Note that the �nal �right
most� result of domain specializations need not
be a single value such as � but can still be a domain value such as dom������
because such an 	intensional answer� is perfectly legitmate in our language� lack
of further specialization possibilities does not lead to 	�oundering� goals�

We can carry the analogy one step further� Instead of being assigned to a
variable� a non
ground structure can occur directly everywhere a term can occur
in a formula �e�g�� within another structure�� Such 	anonymous use� can also
be permitted for �nite
domain structures� An anonymous non
ground structure
or domain structure has the same advantages as an anonymous variable� by
eliminating variable names� 	single
occurrence� and 	back
substitutable� variables
�non
ground structures� domain structures� can be immediately identi�ed as
such� programs become more concise� and no spurious bindings will be created�

For instance� since the variables X and Y are only used as intermediate stores�
the above conjunctions via back
substitution become single expressions�

dom������� is dom�������	�

succeeds� bindingless� with the intersection domain dom������

f�A�B�����	� is f���B���D�E�

succeeds� not creating spurious bindings �just A � �� D � �� and E � 	�� with
the most general common non
ground structure f���B�����	��

� Exclusion Terms

While �nite domains prescribe some constant of a disjunction� �nite exclusions
forbid every constant of a conjunction� Thus the constants in an exclusion struc

ture are implicitly 	negative�� If a variable is constrained by an exclusion and

� Of course� assigning type�like �e�g� domain or non�ground	 structures to variables as
initial �non�terminal� values and specializing them to �terminal� values after success�
ful �unifying	 type checks is only possible for specializing�assignment �LP	 languages�
in reassignment �imperative	 languages� a variable has to preserve its original type
�value� � in a separate �slot� � when assigning a terminal value to it because the
type will be needed unchanged on reassigning further terminal values� This preven�
tion of the type�as�value principle� and consequently of type ��rst�classness�� can be
construed as one more disadvantage of imperative languages�

�



a domain assignment �in any order�� both possibly singleton� the constants of
the exclusion delete equal constants of the domain �set di�erence�� If a variable
is constrained by two exclusion assignments� their constants are taken together
�set union�� which specializes the original values�

Our prede�ned term for �nite exclusions will be variable
length exc struc

tures� They are again built from an arbitrary �nite number� n� of unordered�
repetition
free constants� ci�

exc�c�� � � � � cn�

In general� also exc structures can be used like ordinary terms�
The empty exclusion reduces as follows �the anonymous variable� � �� indi


cates success��

exc�� ��

A singleton exclusion cannot be reduced context
freely since its element repre

sents a single 	negative� constant� which has to await a uni�cation partner�

In RELFUN� exc structures are again handled by an extension of the uni�

cation routine �cf� appendix A��

For instance� these conjunctions show three principal uni�cations of exc

structures�

X is exc�������� Y is dom�������	�� X is Y

X is dom�������� Y is exc�������	�� X is Y

X is exc�������� Y is exc�������	�� X is Y

The �rst binds X to an exclusion of �� �� and �� Y to dom�������	�� and then
subtracts the former from the latter� specializing both X and Y to dom���	��
The second symmetrically 	excludes� � through 	 from dom�������� ultimately
binding X and Y to dom��� or �� The third leads to X and Y being bound to the
united exclusion exc���������	��

Note that an exclusion can result from uni�cation only if both respective
uni�cation partners are exc structures� If one partner is a dom structure or a
constant� either of these kinds of terms also appears in successful results� exc
structures �subtract and disappear�� Thus� the �rst result� dom���	�� is a �
su�ciently specialized � �nite domain ��Only constants � or 	 are allowed���
while� say� exc������������� would not be a � su�ciently specialized � �nite
exclusion ��All constants but � and � and � and � and ��� are allowed���

Like for domains� we can choose any order of exclusion constraining� and
thus keep the left
to
right order� the negative information of exclusions is also
stored as part of the variable substitution� not with goals� which� again� need
never be delayed� Also� if only exclusions are involved� the right
most result of
exclusion specializations still is a 	negative answer� such as exc���������	�� if
all intermediate values are identical singleton exclusions� a 	negative singleton
answer� such as exc��� arises�

Exclusions can also be used anonymously� with the same advantages as men

tioned for anonymous domains �see end of section ��� For instance� shortening
the above conjunctions� the expressions

�



exc������� is dom�������	�

dom������� is exc�������	�

exc������� is exc�������	�

succeed bindingless with� respectively� the di�erence domain dom���	�� the dif

ference constant �� and the united exclusion exc���������	��

Summarizing the domain and exclusion constructs� a 	domain assignment�

X � dom�c�� � � � � cn�

corresponds to the disjunction of X
solved equalities

X � c� � � � ��X � cn ���

with ��� being used like RELFUN�s �is�� while an 	exclusion assignment�

X � exc�c�� � � � � cn�

corresponds to the conjunction ofX
solved disequalities �where ��� � ���� shows
that exclusions are negated domains�

X �� c� � � � ��X �� cn ���

with � ��� having no direct analogue in RELFUN� However� since in such con

junctions �in RELFUN written with ��� instead of ���� exclusion values become
united� the equivalent n
ary exclusion assignment

X is exc�c�� � � � � cn�

naturally corresponds to the following conjunction of n unary ones�

X is exc�c��� � � �� X is exc�cn�

Thus� �nite exclusions express negative information as values �	object
centered��
that can be simply passed around and uni�ed like positive information� while LP
extensions via a � ��� connective �symmetric� suggest two
variable constraints
like X �� Y � normally entailing another layer of complexity such as the need
to delay a disequality until a variable becomes bound� �A possible non
ground
extension of exclusions for representing two
variable constraints will be discussed
in section ���

� Occurrence Bindings

Let us further introduce a generally useful construct for binding a variable to
some �initial� value�s� at one or more of its occurrences in arbitrary formulas� If
this is a type
like value� e�g� a non
ground structure or a domain or an exclusion�
it can become specialized by subsequent uni�cation�

�



Occurrence bindings are written as binary bnd structures built from a vari

able� v� and a term� t� �

bnd�v� t�

In general� bnd structures can be used as terms�
Taking a non
ground
structure example�

bnd�X�f�A�B�����	�� is f���B���D�E�

binds X to f�A�B�����	�� which is then uni�ed with f���B���D�E�� binding A to
�� D and E to � and 	� respectively� thus specializing the X value to f���B�����	��

An analogous �nite
domain example�

bnd�X�dom�������� is dom�������	�

binds X to dom�������� which is then uni�ed with dom�������	�� thus special

izing the X value to dom������

A complementary �nite
exclusion example�

bnd�X�exc�������� is dom�������	�

binds X to exc�������� which is then uni�ed with dom�������	�� thus special

izing the X value to dom���	��

If the uni�cation partner of an occurrence binding is directly given� here
as the is
rhs �right
hand side�� the bnd structure can always be equivalently
replaced by an initializing �	pre
typing�� is call�

X is f�A�B�����	�� X is f���B���D�E�

X is dom�������� X is dom�������	�

X is exc�������� X is dom�������	�

For bnds in clause heads� however� the uni�cation partner is not directly given�
as will be illustrated by the relational examples in section ����

The binding construct� pairing a variable with a value� can again be assigned
to a variable� Actually� in our implementation it is generated from dom�exc

bound variables at the end of reference chains to keep track of domain�exclusion
specializations �while non
ground structures can be specialized via direct in
place
assignments��

� Domains�Exclusions in Relation De�nitions

��� Facts and dom�exc Reductions

Starting with domains� the fact with a single
occurrence variable X�

� One could also use an in�x notation like v � t for increased conciseness� If t was
the sort�marked predicate �p� bnd�v� �p� would then shorten to v � �p� The current
implementation still has restrictions wrt the t�s allowed in bnds� Section ��� will detail
on the elimination of occurrence bindings�

�



likesjohn�bnd�X�dom�ann�mary�susan����

is equivalent to the fact using the domain anonymously �regard �X� as � ���

likesjohn�dom�ann�mary�susan���

Both can be equivalently queried by ���� precedes comments�

likesjohn�mary� � success

likesjohn�peggy� � failure

likesjohn�Whom� � success� Whom � dom�ann�mary�susan�

likesjohn�dom�mary�peggy�susan�� � success

likesjohn�bnd�Whom�dom�mary�peggy�susan���

� success� Whom � dom�mary�susan�

likesjohn�exc�mary�peggy�� � success

likesjohn�bnd�Whom�exc�mary�peggy���

� success� Whom � dom�ann�susan�

We can reduce the dom fact� obtaining the three 	multiplied out� facts

likesjohn�ann��

likesjohn�mary��

likesjohn�susan��

Note that the queries would be answered equivalently� However� 	intensional�
answers �delivering one closed dom structure� would become 	extensional� answers
�enumerating several constants�� so the bnd�dom query� instead of binding Whom

to dom�mary�susan�� would �rst bind Whom to mary� and then� via backtracking�
to susan�

If we let clsi������ik�x� denote a clause with term x at some position i�� � � � � ik
�i� �  being the head� i� � � the �rst premise� ����� i� �  being i��s oper

ator�constructor� i� � � its �rst argument� ���� etc�� and cls��x� a clause not
having the term x at any position� then a general multout algorithm can be de

�ned recursively via an equation schema �treating queries as answer
head rules��

multout�cls��dom�c�� � � � � cn��� � cls��dom�c�� � � � � cn��

multout�clsi������ik�dom�c�� � � � � cn��� �

��
�
multout�clsi� �����ik�c���
� � �

multout�clsi� �����ik�cn��

For example� multout�likes�john� dom�ann�mary� susan�� matches the second
equation via the instantiation multout�cls����dom�ann�mary� susan��� whose
rhs�s through the �rst equation lead to the three domless facts shown above�

Continuing with exclusions� the fact with a single
occurrence variable X�

likesjohn�bnd�X�exc�mary�claire�linda����

� Since the last premise may constitute the value of a functional clause� the multout

algorithm below will also work for function de�nitions�

!



is equivalent to the fact using the exclusion anonymously �since �X� is � ���

likesjohn�exc�mary�claire�linda���

Both can be interchangeably queried by

likesjohn�mary� � failure

likesjohn�peggy� � success

likesjohn�Whom� � success� Whom � exc�mary�claire�linda�

likesjohn�dom�mary�peggy�susan�� � success

likesjohn�bnd�Whom�dom�mary�peggy�susan���

� success� Whom � dom�peggy�susan�

likesjohn�exc�mary�peggy�� � success

likesjohn�bnd�Whom�exc�mary�peggy���

� success� Whom � exc�peggy�mary�claire�linda�

If we have a 	closed universe� of a �nite number� say !� of individuals�
e�g� fann� claire� john� linda�mary� peggy� susan� tinag� we could reduce the exc
fact� obtaining the �ve 	complemented out� facts

likesjohn�ann��

likesjohn�john��

likesjohn�peggy��

likesjohn�susan��

likesjohn�tina��

where the bnd�dom query would now �rst bind Whom to peggy� then� via back

tracking� to susan� �These facts are also the multiplied out form of a dom fact��

If the 	non
Horn� extension of a �classic� strong� negation construct is avail

able for facts� e�g� via false
valued functions in RELFUN� one could also ap

proximate the exc fact in an 	open universe�� with in�nite complements� by

likesjohn�dom�mary�claire�linda�� �� � � false�

likesjohn�X��

Queries as shown above could now bind a second argument Whom to the dom by
�successfully�� returning false� but would� e�g�� also return a bindingless false
for mary �rather than yielding unknown due to uni�cation failure�� The impurity
of the cut
protected 	catch
all� fact seems to favor our proposal to express such
special cases of negation by the special
purpose construct exc directly in clause
heads� permitting non
Horn clauses as �Horn clauses " exclusions��

��� Clauses and bnd�to�is Reductions

A typed version of a well
known PROLOG program contains a rule with a non

single
occurrence variable X� whose head occurrence is domain
bound�

likesjohn�bnd�X�dom�ann�mary�susan��� �� likesX�wine��

likesdom�mary�peggy�susan��wine��

�



The query

likesjohn�Whom�

here binds Whom to dom�mary�susan�� The query �inde�nite even wrt john�

likesdom�fred�john��bnd�Whom�dom�ann�susan�tina���

binds Whom to susan �not selecting fred or john from the anonymous dom��
A 	negatively� typed version of the program again contains a rule with a

non
single
occurrence variable X� whose head occurrence is exclusion
bound�

likesjohn�bnd�X�exc�mary�claire�linda��� �� likesX�wine��

likesexc�mary�peggy�susan��wine��

The query

likesjohn�Whom�

now binds Whom to exc�peggy�susan�mary�claire�linda�� The query

likesdom�fred�john��bnd�Whom�dom�ann�susan�tina���

binds Whom to dom�ann�tina� �again leaving �fred or john� anonymous��
A binding construct bnd�v� t in a clause head can always be replaced by v

by introducing a new premise v is t� If v is t is further transformed to t��v��
applying a unary predicate t� corresponding to t� the entire reduction is similar
to the reduction of a sorted logic to an unsorted one�

Thus� the bnd�dom rule is equivalent to

likesjohn�X� �� X is dom�ann�mary�susan�� likesX�wine��

and� with t� � ann�mary�or�susan� to

likesjohn�X� �� ann�mary�or�susanX�� likesX�wine��

ann�mary�or�susandom�ann�mary�susan���

Also� the bnd�exc rule is equivalent to

likesjohn�X� �� X is exc�mary�claire�linda�� likesX�wine��

and� with t� � not�mary�claire�and�linda� to

likesjohn�X� �� not�mary�claire�and�lindaX�� likesX�wine��

not�mary�claire�and�lindaexc�mary�claire�linda���

The reduced form can perform 	type� checking only after uni�cation� once
the former bnd variable is bound� Unlike the transformation �in section �� of

bnd�X�dom�������� is dom�������	� � fact pbnd�X�dom����������

bnd�X�exc�������� is dom�������	� � fact pbnd�X�exc����������

to the 	pre
typing� �domain�exclusion
initializing� not possible for clause heads
as indicated by the ���
comments�

� 



X is dom�������� X is dom�������	� � X is dom������� not in pX��

X is exc�������� X is dom�������	� � X is exc������� not in pX��

the above bnd
to
is reduction thus performs 	post
typing� �domain�exclusion

specializing� generally applicable�� as in

X is dom�������	�� X is dom������� � rule pX� �� X is dom��������

X is dom�������	�� X is exc������� � rule pX� �� X is exc��������

Unfortunately� post
typed clauses no longer permit the selectivity of typed
�e�g� domain
constrained or sorted� uni�cation and WAM
indexing and of typed
anti
uni�cation �for generalization� see section ��� Also� at least if compared with
the ���
in�x syntax of bnd as usable for our versions of the PROLOG example�

likesjohn�X�dom�ann�mary�susan�� �� likesX�wine��

likesjohn�X�exc�mary�claire�linda�� �� likesX�wine��

the is
reduced formulations are less readable�
Combining post
typing with the reformulation of an is
assigned exclusion

as a conjunction of solved disequalities �cf� ��� in section ��� we can repeatedly
transform any n
ary
exc
head clause

p����� X �exc�c�� � � � � cn�� ���� �� q������� � � �� qz������

to an equivalent unary
exc
body clause

p����� X� ���� �� X is exc�c��� � � �� X is exc�cn�� q������� � � �� qz������

�for anonymous exclusions we choose a new variable for �X��� 	 representing

p����� X� ���� �� X �� c�� � � �� X �� cn� q������� � � �� qz������

where the non
Horn
clause character engendered by the exc terms is revealed
by the � ��� constraints preceding the ordinary premises�

� Finite	Domain�Exclusion Functional Programming

Having introduced �nite domains and exclusions into relational programming as
terms that can be values of logical variables� we now transfer them to functional
programming as terms that can be arguments and values of functions� �Similarly�
the binding construct can be employed in function arguments and values��

Domains and exclusions thus become �rst
class citizens of relational

functional languages such as RELFUN�

� While we may also combine post�typing with the reformulation of an is�domain as
a disjunction of solved equalities �cf� ��	 in section �	� we can directly apply the
multout algorithm �cf� section ���	 to any n�ary�dom�head clause

p�����X �dom�c�� � � � � cn�� ���	 �� q�����	� � � � � qz����	�

to obtain n equivalent domless clauses

p�����X �c�� ���	 �� q�����	� � � �� qz����	� � � � p�����X �cn� ���	 �� q�����	� � � �� qz����	�

�for anonymous domains we just omit �X ��	�

��



��� Domains�Exclusions as Function Arguments

The use of �nite domains as arguments of functions works like their use in rela

tions� For instance� the two directed equations ������ is a left
to
right directed
����

separatesdom�canada�mexico�usa��japan� ��� pacific�

separatesdom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk�� ��� atlantic�

use 	anonymous� dom arguments for compactly de�ning a separates function�
�They could be multiplied out to �� domless equations� analogous to the �� facts
in section ���

The query

separatesbnd�Source�dom�canada�usa�panama���

Destination�

binds Source to dom�canada�usa�� Destination to japan� and returns
pacific� on backtracking it rebinds Destination to the European subdomain
and returns atlantic�

Analogously� �nite exclusions act as function arguments as was shown for
relation arguments� For instance� the safe�divide function

safe�divideNominator�bnd�Denominator�exc����� ���

�Nominator�Denominator��

or� using a post
typing function de�nition ����� and ��� permit intervening
relational premises��

safe�divideNominator�Denominator� �� Denominator is exc��� �

�Nominator�Denominator��

	excludes� Denominator
named arguments which would lead to division by zero�
Thus� the query

safe�divide
���

returns � because � �� � is true� On the other hand� the query

safe�divide
���

yields unknown �rather than an error from the ���
built
in� because � �� � is
false�

Many function de�nitions� e�g� factorial and fibonacci �below� over the nat

urals� become more declarative than in PROLOG by excluding� in a de�ning
clause� arguments of earlier clauses� the de�nition thus needs no cut and in fact
has disjoint� order
independent �	OR
parallel�� clauses� The fib de�nition can
even be shortened to two clauses via complementary dom and exc arguments�

fibdom������ ��� ��

fibbnd�N�exc������� ��� �fib�N�����fib�N������

��



��� Functions with Domain�Exclusion Values

The use of �nite domains as values of functions works as follows� Like any other
term� a domain term can be speci�ed as �part of� the returned value in a function
de�nition� Such a function then returns the �nite domain to its caller as a 	closed�
term representing a �nite number of non
deterministic values� which without
domain terms available would typically be enumerated via backtracking�

For instance� the directed equations

directionold� ��� dom�east�west��

directionnew� ��� dom�north�south��

directionall� ��� dom�north�west�south�east��

use dom values for compactly de�ning a direction function� The �rst clause� e�g��
can be regarded as a 	closed� form of the non
deterministic� two
clause function
de�nition produced by multout �section �����

directionold� ��� east�

directionold� ��� west�

A main call uni�es returned domain terms just like for anonymously speci�ed
domains� For instance� using the variable
length tup function for list building�

tupdirectionold��directionnew��

just like

tupdom�east�west��dom�north�south��

returns �dom�east�west��dom�north�south���
In particular� a domain functionally returned to the top
level gives the user

a more compact representation of results than their enumeration� much like a
domain assigned to a relational request variable�

We may also call domain
valued functions within is
calls� For example� while
the query

D is directionold�� D is directionnew�

fails �the domains are disjoint�� the query

D is directionall�� D is directionnew�

succeeds� temporally binding D to dom�north�west�south�east�� but then spe

cializing it to dom�north�south��

The is
embedded non
ground functional query

�new�dom�west�north�� is tupWhich�directionWhich��

succeeds by binding� as its second attempt� Which to new and building the list
�new�dom�north�south��� whose most general 	instantiation� in common with
the is
lhs �left
hand side� is the domless ground list �new�north��

Analogously� an exclusion term can be �part of� the returned value of a
function� For instance� the de�nition

��



permittedbutcher�shop� ��� exc�dog��

permittedpet�shop� ��� exc�cat�dog��

prohibits certain entries to butcher and pet shops� the non
ground call

permittedWhere�

enumerates the exclusion values exc�dog�� binding Where to butcher�shop� and
exc�cat�dog�� binding Where to pet�shop�

Two such permitted calls may be embedded into an is
call�

�cat�dom�kid�dog�� is tuppermittedWhere��permittedWhere��

This succeeds by specializing the is
lhs to �cat�kid�� consistently binding
Where to butcher�shop�

Finally� a function can also return a mix of domains and exclusions� For
example� the dishes �dis�liked by several people may be de�ned thus�

dishjohn� ��� dom�chilli�pizza�sushi�chop�suey��

dishmary� ��� exc�sushi��

dishfred� ��� exc�spaghetti�pizza��

dishtina� ��� dom�sushi�chop�suey�hamburger��

For constraining the set of candidate restaurants� they could perform
intersection
di�erence operations equivalent to

�D�D�D�D� is tupdishjohn��dishmary��dishfred��dishtina��

binding D to the �fortunately unique� solution chop�suey�


 Domain and Exclusion Anti	Uni�cation

In section ��� we have de�ned the multout algorithm for 	multiplying out� �

nite domains from clauses into an extensional form� and noted that the general
reduction of �nite exclusions would involve a strong form of negation�

Conversely� the automatic generation of intensional� domain�exclusion
using
clauses from ordinary ones constitutes an interesting generalization task� In par

ticular� a set of 	similar� clauses can often be generalized by individually generat

ing a �nite domain in each distinguishing argument position� thus 	compressing�
the clauses� information�Generalizing more than one argument position at a time
�giving rise to new combinations when multiplying out� amounts to 	inducing�
new information from the clauses�

For instance� inverting two multout transformations� the �� relational�ized�
separates facts

��



separatespacific�canada�japan��

separatespacific�mexico�japan��

separatespacific�usa�japan��

separatesatlantic�canada�denmark��

separatesatlantic�canada�france��

separatesatlantic�canada�germany��

separatesatlantic�canada�italy��

separatesatlantic�canada�spain��

separatesatlantic�canada�sweden��

separatesatlantic�canada�uk��

separatesatlantic�mexico�denmark��

separatesatlantic�mexico�france��

separatesatlantic�mexico�germany��

separatesatlantic�mexico�italy��

separatesatlantic�mexico�spain��

separatesatlantic�mexico�sweden��

separatesatlantic�mexico�uk��

separatesatlantic�usa�denmark��

separatesatlantic�usa�france��

separatesatlantic�usa�germany��

separatesatlantic�usa�italy��

separatesatlantic�usa�spain��

separatesatlantic�usa�sweden��

separatesatlantic�usa�uk��

can be generalized �compressed� to the two facts


separatespacific�dom�canada�mexico�usa��japan��

separatesatlantic�dom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk���

which are relationalized versions of the separates function in section ���� ��

	 If some �interactive
automatic	 analyzer notices that a certain domain such as
dom�canada�mexico�usa� occurs repeatedly in a program� it may be useful to
have it de�ned more globally as a predicate �with a user�provided name	 such as
america	dom�canada�mexico�usa�
 and replace the domain by the predicate name
used as a ����marked sort� e�g� in the clause separates	pacific��america�japan
�
A comparison of the equivalent notations �dom�� � ��� and ������ reveals our con�
vention that domains
exclusions do not carry a �typing symbol� such as the ���
for sorts� their dom
exc�constructor marks them as types with �built�in� uni�cation
behavior� on the other hand� ����less predicate names are just constants unifying
with themselves� Domains
exclusions exhibit their built�in properties in all places
they are permitted as �rst�class citizens� Making them passively passable data struc�
tures �without list�coding as in appendix A	� e�g� for amalgamated object
meta�level
programming� is as hard as for logical variables� requiring a kind of quote operator�

�
 In RELFUN the relationalize algorithm can be used to make relational
functional
knowledge more accessible to such inductive�LP methods� which we study wrt e�orts
in knowledge Validation and Exploration by Global Analysis �VEGA	�

��



A simple method for this �least general� generalization is pairwise domain

anti�uni�cation of the input facts� For ease of presentation we will assume that
clauses are represented as structures� e�g� regarding an atom �fact� as a structure
whose constructor stands for the predicate� Domain anti
uni�cation of two struc

tures works like classic anti
uni�cation �� �in our implementation� ��� �nested�
structures having di�erent constructors or arities yield a new variable� with the
following modi�cations� For a �named or anonymous� variable and a domain it
yields a variable in the manner classic anti
uni�cation handles variable�constant
pairings� For di�erent constants it yields a dom term containing these constants�
not a �sometimes overly general� new variable� �For a constant and a struc

ture it has to yield a new variable since currrent dom terms cannot contain
structures�� Generally �constants can be treated as singleton domains�� domain
anti
uni�cation of two dom terms yields their union �uni�cation� intersection��
Identical dom �later� exc� terms can directly yield one copy unchanged� short

cutting spurious unions �later� intersections��

The complementary exclusion anti�uni�cation for a �named or anonymous�
variable and an exclusion yields a variable in the manner classic anti
uni�cation
handles variable�constant pairings� It yields the intersection �uni�cation� union�
of two exc terms� For an exclusion and a constant �singleton domain� it yields the
exc term minus the constant� Generally� the domain�exclusion anti�uni�cation

of a dom and an exc term� in any order� yields the exc term with the elements
of the dom term set
theoretically subtracted �uni�cation� domain with exclusion
subtracted�� An empty
exclusion outcome� as usual� represents the always suc

cessful anonymous variable� Altogether� the domain�exclusion complementarity
commutes nicely with the uni�cation�anti
uni�cation duality�

Let us start an example for domain anti
uni�cation with� say� the �rst two
input facts�

separatespacific�canada�japan��

separatespacific�mexico�japan��

Anti
uni�cation generalizes them via a domain in the second argument�

separatespacific�dom�canada�mexico��japan��

This intermediate result domain
anti
uni�ed with the third input fact�

separatespacific�usa�japan�� � usa � dom�usa�

leads to the completely generalized pacific fact above� Similarly� the remaining
input facts� via three groups of textually ordered domain
anti
uni�cation steps�
generalize their third argument to a common domain�

separatesatlantic�canada�

dom�denmark�france�germany�italy�spain�sweden�uk���

separatesatlantic�mexico�

dom�denmark�france�germany�italy�spain�sweden�uk���

separatesatlantic�usa�

dom�denmark�france�germany�italy�spain�sweden�uk���

��



The completely generalized atlantic fact above is then obtained as for the
pacific side� �Equivalently� the second argument could be generalized �rst��

Suppose we have one additional input fact���

separatesatlantic�panama�denmark��

For group formation on the third argument� domain anti
uni�cation would leave
this fact as a singleton group since denmark is the only European partner speci

�ed for panama� Now� the four resulting groups di�er in two arguments� not just
in one� Still domain
anti
unifying them would generalize the second argument
and 	absorb� denmark into the domain of the third argument�

separatesatlantic�dom�canada�mexico�usa�panama��

dom�denmark�france�germany�italy�spain�sweden�uk���

This generalized atlantic fact expresses more information than the input facts�
namely an induction from Denmark to the other European countries �which
happens to be empirically true�� again multiplying out the result makes these
induced facts explicit�

separatesatlantic�panama�france��

� � �

separatesatlantic�panama�uk��

However� since �domain� anti
uni�cation can �nd a generalization for each pair
of structures� its use most be controlled� An example of overgeneralization would
result from further domain
anti
unifying the completely generalized pacific and
atlantic facts above� generating a single fact expressing much more than the ��
inputs via geographically vacuous Paci�c�Atlantic and Japan�Europe domains�

An example for exclusion anti
uni�cation can take two versions of a fact from
section ��� as input�

likesX�exc�mary�claire�linda��� � Everybody likes all except MCL

likesjohn�exc�mary�tina��� � John likes all except Mary � Tina

Anti
uni�cation generalizes them via an intersection of the exclusions in the
second argument�

likesX�exc�mary��� � Everybody likes all except Mary

This is the least general generalization of the input facts since exactly the subex

clusion common to both facts is kept� In cases where we have a closed universe�
say fann� claire� john� linda�mary� peggy� susan� tinag of section ���� the inputs
can be rewritten as complementary domain facts�

likesX�dom�ann�john�peggy�susan�tina��� � ��

likesjohn�dom�ann�claire�john�linda�peggy�susan���

�� Such a separates enrichment was proposed by Manfred Meyer and Knut Hinkel�
mann� Thanks also to Otto K�uhn� Michael Sintek� and Panagiotis Tsarchopoulos�
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Domain anti
uni�cation via union generalizes them to

likesX�dom�ann�claire�john�linda�peggy�susan�tina���

which is the complement of the exclusion
anti
uni�cation result above�
Finally� domain
exclusion anti
uni�cation of the input facts

likesX�exc�mary�claire�linda���

likesjohn�dom�mary�tina��� � ���

via subtraction generalizes them to

likesX�exc�claire�linda���

Here� the exclusion is minimally weakened �its extension being minimally en

larged� to accomodate what is speci�ed by the domain� This can again be il

lustrated for the case of a closed universe� anti
unify �� with ��� and re

complement the result� Such least general generalizations by domain
exclusion
anti
uni�cation thus remove dom
exc contradictions in a set of clauses� e�g�
about John�s liking of Mary in the above input facts� similarly� exclusion anti

uni�cation removes the less obvious exc
exc contradictions concerning constants
that occur in only one of the exclusions� e�g� about John�s liking of� say Claire�
in the previous input facts� This may be exploited for 	theory revision� �� of
knowledge bases containing exclusion terms�

� Operational Semantics

Since all user
de�ned relations and functions are invoked through uni�cation�
we were able to handle the relational
functional domain extensions in a uniform�
e�cient manner by building our �rst
class domain and exclusion notions� as
well as the larger part of our bnds� into the �pure LISP� uni�cation routine
unify of the de�nitional interpreter of RELFUN� �A smaller� less interesting part
of occurrence bindings is built into the term
instantiation routine� not treated
here�� In appendix A we use a meta
interpreter approach for specifying the
operational semantics of the extended unify via RELFUN clauses only relying on
non
extended uni�cation� This will contain enough detail both to document the
actual RELFUN implementation and to permit transfers to other LP languages�

While constants will stand for themselves� non
constant terms will be coded
as ground lists as shown by the table below� where ��� indicates recursive coding�

constant constant

Identifier �vari� identifier�

Identifier�level �vari� identifier� level�

�a�� � � � � an� �tup� a��� � � � � a
�

n�

constructor�a�� � � � � an� �constructor�� a��� � � � � a
�

n�

dom�c�� � � � � cn� �dom� c�� � � � � cn�

exc�c�� � � � � cn� �exc� c�� � � � � cn�

bnd�v� t� �bnd� v�� t��

�!



Substitutions will be represented as lists of pair lists of variables and their val

ues of the form ��v��� t

�

�
�� � � � � �v�n� t

�

n�� �bottom��� i�e� the empty substitution
becomes ��bottom�� �not ��� see below��

For instance� the call

unify �bnd��vari�x���exc�a�b�c��� �dom�b�c�d�e�� � �bottom� � �

successfully returns the substitution � ��vari�x���dom�d�e��� �bottom� ��
In appendix A� the unify function takes two terms X and Y and a substitu


tion Environment �initially often empty�� and returns the substitution extended
by the mgu of X and Y in Environment �on success� or �� �on failure�� It calls
unify�ua with ultimate�assoc
dereferenced X�Y arguments for case analysis�
This workhorse decomposes one or two bnds into their variable and expression
parts for unify�bnd� where a missing bnd �variable� is indicated by ��� Mixed
dom�exc arguments are handed to dom�exc� performing �set
as
list� subtraction�
Homogeneous doms are handed to dom�intersection for �set
as
list� intersec

tion� In both cases �only� the non
emptiness of the result list is checked �so this
can be optimized�� Homogeneous excs are successful in any case� Plain partner
arguments to doms and excs are checked via member calls simplifying earlier cases
with singleton doms reduced to the plain argument� The last unify�ua clause
does unify on constructors �incl� tup� and calls unify�args �not expanded here�
for corecursive processing of their arguments� The unify�bnd function essentially
parallels the dom and exc cases of unify�ua� but hands subtraction� intersec

tion� and union results to unify�bnd�env for extension of the Environment

argument� using the variable�s� of the bnd�s���� Such bnds for dom�exc
variable
updates may be generated by the function ultimate�assoc� it returns the deref

erenced value of a variable in Environment� except if the value is a dom or an
exc� in which case it creates a bnd pair of the variable immediately preceding in
the reference chain and of the dom or exc expression�

While RELFUN�s generalized is
primitive also automatically pro�ts from
the dom�exc
enhanced uni�cation� for ordinary built
in relations and functions
the actual arguments that are �nite domains have to be 	multiplied out� �built
in
calls cannot have exclusion arguments�� for built
in �constant
valued� functions
the values then have to be recollected into a new domain structure�

As we have seen in section ���� the multout transformation could be per

formed statically for user
de�ned operations� too� thus eliminating the domain
extension for a non
enhanced LP implementation� However� this would lose the
combinatorial e�ciency advantage of �nite domains� Also� their complementarity
with �nite exclusions� not allowing this treatment� would become occluded�

For a model
theoretic characterization �� of programs containing �rst
class
�nite domains� the multout transformation could also be exploited semantically�

�� Thus� while the update of non�ground structures in relational languages leads to
bindings of free inner variables� the update of dom and exc structures leads to bindings
shadowing previous ones� as known from function calls and let blocks in interpreters
for functional languages� In a �WAM	 compiler implementation we could get the
e�ciency of in�place assignment via real in�place deletion
addition of elements of
dom
exc structures allocated on the heap�

��



Of course� a characterization via a domain
extended Herbrand base would be
more 	direct�� And again� leaving domains in the semantic kernel would allow to
exploit the domain�exclusion complementarity�

� Conclusions

Let us brie�y summarize our notion of �nite domains and exclusions�

	 They are useful even without constraint �delay�� techniques because their
backtracking
superseding 	closed� representation leads to
� smaller proof trees �e�ciency��
� abstracted� intensional answers �readability��

	 We have generalized them to �rst
class citizens �values of logical variables
and of functions� usable anonymously as arguments and inside structures�
no 	�oundering� for non
singleton domain results��

	 Their complementarity wrt uni�cation �most general specialization� 	changes
signs� wrt anti
uni�cation �least general generalization��

	 Their operational semantics and interpreter implemention is given by ex

tensions of the uni�cation routine of LP languages �speci�ed here via meta

uni�cation��

The examples of this paper have indicated ways of employing our �nite do

main�exclusion concept for the compact representation of �rst
order knowledge�
In RELFUN� domain�exclusion terms can also be used in the operator position�
thus permitting a higher
order notation for knowledge like �Functions factorial�
fibonacci� or exponential applied to  return �� �domain anti
uni�cation also
generalizing operators�constructors could extract this from three multiplied out
functional clauses��

dom�fac�fib�exp��� ��� �� � F�dom�exp�sin��� gives �� F�exp

It will be instructive to observe which particular use of our domain�exclusion
extension of LP is most pro�table for a real
world representation task� e�g� in the
areas of materials engineering �� or calendar management �e�g� just unify two
agents� restrictions� �All dates except May �� and ��� and �Only May �
����
exc����may����may� is dom���may��������may���

An area for further theoretical work would be the extension of Herbrand
models for �nite domains and� more demanding �perhaps via TP 	� ���� �

nite exclusions� Concerning domain�exclusion anti
uni�cation� it will be inter

esting to see how further inductive
LP or machine
learning methods based on
classic anti
uni�cation may pro�t from the domain�exclusion extension� us

ing our recent LISP implementation �� of the rules introduced in section ��
On the uni�cation side� an e�cient WAM compiler�emulator extension for
our �variable
length�� �nite domains and exclusions should be written� build

ing on the RELational�FUNctional machine ��� FIDO III ��� �� and FLIP
��� all in COMMON LISP� WAM instructions for unifying constants such as

� 



get constant would need a membership�non
membership test case for dom�exc
structures� new instructions get dom�get exc could unify dom�exc structures�
performing� e�g�� intersection�union for other dom�exc structures �perhaps main

taining canonically ordered elements�� etc� Also� it could be studied how our
specialized �nite domains�exclusions could be fruitfully characterized as a
CLP�FD�
like instance of the constraint
logic programming scheme ��� and if
they could be usefully combinedwith our RELFUN
implemented �nite
domain
constraints FINDOM �� or those in FIDO ��� or with concrete domains ��� or
other� more general constraint formalisms�

Finally� let us explore a possible non
ground extension of the treatment of
solved disequations� e�g� X �� �� as exclusion bindings� e�g� X is exc���� if only
to con�rm that ground exclusions in fact constitute the 	local optimum� sug

gested by section �� Can we treat unsolved disequations� e�g� X �� Y� as exclu

sion bindings with non
ground rhs�s� e�g� X is exc�Y� and�or Y is exc�X��
Well� we could store both binding directions� but let us choose one direction� say
X is exc�Y�� and put this into the substitution� If further computation instan

tiates Y to a constant� say �� perhaps via a binding chain� the disequation reduces
to a solved form� X is exc���� treated as usual� If X thus specializes to a con

stant� �� we can 	swap� the disequation to a solved form� Y is exc���� within the
substitution� For an added disequation� say the unsolved X is exc�Z�� the two
bindings may be simpli�ed to one� here X is exc�Y�Z�� For Y is exc�Z�� after
swapping� they can be joined to Y is exc�X�Z�� this avoids �possibly circular�
instantiations like X is exc�exc�Z��� non
equivalent to X is exc�Z� because
���� is not transitive� If any variable of such a �generated� non
singleton� non

ground exclusion becomes instantiated� this exclusion becomes partially solved�
now constraining uni�able values �e�g� is
lhs�s�� For example� X is exc�Y�Z��

Z is � or X is exc�Y��� excludes the binding X is �� If such non
ground
exclusions �generally� types� can treat a larger class of constraints as bindings
directly put into the substitution� unlike constraints as delayed goals� they will
thus require very careful substitution updates and uses�
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A The RELFUN Meta	unify

Since this RELFUN uni�cation meta
speci�cation in RELFUN is deterministic
�fortunately�� there are many cuts �unfortunately� ��� which are� however� not
needed for obtaining the �rst �and only� solution� just for preventing �meaning

less� attempts to search for more solutions� Using RELFUN�s relationalize
command� this unify function would become a relation� also runnable in PRO

LOG� binding an additional �rst argument to the result substitution�

unify	X�Y�Environment
 ���

unify�ua	ultimate�assoc	X�Environment
�

ultimate�assoc	Y�Environment
�

Environment
�

unify�ua	�bnd�Xvar�Xexpr���bnd�Yvar�Yexpr��Environment
 ��

�� unify�bnd	Xexpr�Yexpr�Xvar�Yvar�Environment
�

unify�ua	�bnd�Xvar�Xexpr��Y�Environment
 ��

�� unify�bnd	Xexpr�Y�Xvar����Environment
�

unify�ua	X��bnd�Yvar�Yexpr��Environment
 ��

�� unify�bnd	X�Yexpr����Yvar�Environment
�

unify�ua	X�Y�Environment
 �� equal	X�Y
 �� Environment�

unify�ua	�variNamel��Y�Environment
 ��

�� ���variNamel��Y�Environment��

unify�ua	X��variNamel��Environment
 ��

�� ���variNamel��X�Environment��

unify�ua	�domDelem���excEelem��Environment
 ��

�� conjn	dom�exc	�domDelem���excEelem�
�Environment
�

unify�ua	�excEelem���domDelem��Environment
 ��

�� conjn	dom�exc	�domDelem���excEelem�
�Environment
�

unify�ua	�domXdelem���domYdelem��Environment
 ��

�� conjn	dom�intersection	�domXdelem���domYdelem�
�

Environment
�

unify�ua	�excXeelem���excYeelem��Environment
 �� �� Environment�

unify�ua	�domDelem��Y�Environment
 ��

�� conjn	membern	Y�Delem
�Environment
�

unify�ua	X��domDelem��Environment
 ��

�� conjn	membern	X�Delem
�Environment
�

unify�ua	�excEelem��Y�Environment
 ��

�� conjn	negn	membern	Y�Eelem

�Environment
�

unify�ua	X��excEelem��Environment
 ��

�� conjn	negn	membern	X�Eelem

�Environment
�

unify�ua	X�Y�Environment
 �� atom	X
 �� ���

unify�ua	X�Y�Environment
 �� atom	Y
 �� ���

unify�ua	�XfirstXrest���YfirstYrest��Environment
 ��

� New�environment is unify	Xfirst�Yfirst�Environment
 �

conjn	New�environment�unify�args	Xrest�Yrest�New�environment

�

unify�args	������Environment
 �� �� Environment�

unify�args	���Y�Environment
 �� �� ���

unify�args	X����Environment
 �� �� ���
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� vertical�bar treatment omitted� generate list from ���rest

unify�args	�XfirstXrest���YfirstYrest��Environment
 ��

� New�environment is unify	Xfirst�Yfirst�Environment
 �

conjn	New�environment�unify�args	Xrest�Yrest�New�environment

�

unify�bnd	�domDelem���excEelem��Xvar�Yvar�Environment
 ��

� Differ is dom�exc	�domDelem���excEelem�
 �

conjn	Differ�unify�bnd�env	Differ�Xvar�Yvar�Environment

�

unify�bnd	�excEelem���domDelem��Xvar�Yvar�Environment
 ��

� Differ is dom�exc	�domDelem���excEelem�
 �

conjn	Differ�unify�bnd�env	Differ�Xvar�Yvar�Environment

�

unify�bnd	�domXdelem���domYdelem��Xvar�Yvar�Environment
 ��

� Inter is dom�intersection	�domXdelem���domYdelem�
 �

conjn	Inter�unify�bnd�env	Inter�Xvar�Yvar�Environment

�

unify�bnd	�excXeelem���excYeelem��Xvar�Yvar�Environment
 ��

�� unify�bnd�env	exc�union	�excXeelem���excYeelem�
�

Xvar�

Yvar�

Environment
�

unify�bnd	�domDelem��Y�Xvar�Yvar�Environment
 ��

neq	�variNamel��Y
 ��

conjn	membern	Y�Delem
�unify�bnd�env	Y�Xvar�Yvar�Environment

�

unify�bnd	X��domDelem��Xvar�Yvar�Environment
 ��

neq	�variNamel��X
 ��

conjn	membern	X�Delem
�unify�bnd�env	X�Xvar�Yvar�Environment

�

unify�bnd	�excEelem��Y�Xvar�Yvar�Environment
 ��

neq	�variNamel��Y
 ��

conjn	negn	membern	Y�Eelem

�

unify�bnd�env	Y�Xvar�Yvar�Environment

�

unify�bnd	X��excEelem��Xvar�Yvar�Environment
 ��

neq	�variNamel��X
 ��

conjn	negn	membern	X�Eelem

�

unify�bnd�env	X�Xvar�Yvar�Environment

�

unify�bnd	�variNamel��Y�Xvar�Yvar�Environment
 ��

� New is unify	�variNamel��Y�Environment
 �

conjn	New�unify�bnd�env	�variNamel��Xvar�Yvar�New

�

unify�bnd	X�Y�Xvar�Yvar�Environment
 ��

� New is unify	X�Y�Environment
 �

conjn	New�unify�bnd�env	Y�Xvar�Yvar�New

�

unify�bnd�env	Val��variXvarnamel���variYvarnamel��Environment
 ��

�� appfun	conjn	negn	equal	�variXvarnamel���variYvarnamel�

�

���variXvarnamel���variYvarnamel���
�

���variYvarnamel��Val�Environment�
�

unify�bnd�env	Val�Xvar�Yvar�Environment
 ��

�� appfun	appfun	conjn	Xvar���Xvar�Val��
�

conjn	Yvar���Yvar�Val��

�

Environment
�

��



dom�intersection	�domXdelem���domYdelem�
 ���

mk�dom	intersection	Xdelem�Ydelem

�

exc�union	�excXeelem���excYeelem�
 ��� mk�exc	union	Xeelem�Yeelem

�

dom�exc	�domDelem���excEelem�
 ��� mk�dom	set�difference	Delem�Eelem

�

ultimate�assoc	�variNamel��Environment
 ��

�� ultimate�assoc�binding	�variNamel��

assoc	�variNamel��Environment
�

Environment
�

ultimate�assoc	X�Environment
 �� �� X�

ultimate�assoc�binding	�variNamel�����Environment
 �� �� �variNamel��

ultimate�assoc�binding	�variNamel��

��variNamel���domDelem���

Environment


�� �� �bnd��variNamel���domDelem���

ultimate�assoc�binding	�variNamel��

��variNamel���excEelem���

Environment


�� �� �bnd��variNamel���excEelem���

ultimate�assoc�binding	�variNamel����variNamel��Y��Environment
 ��

�� ultimate�assoc	Y�Environment
�

mk�dom	��
 �� �� ���

mk�dom	�D�
 �� �� D�

mk�dom	�DDs�
 ��� �dom�DDs��

mk�exc	��
 �� �� ��

mk�exc	Eelem
 ��� �excEelem��

neq	X�X
 �� �� false�

neq	X�Y
�

negn	��
 �� ��

negn	X
 ��� ���

membern	E���
 �� �� ���

membern	E��ERest�
 �� �� �ERest��

membern	X��YRest�
 ��� membern	X�Rest
�

assoc	N���
 �� �� ���

assoc	N���N�V�Ar�
 �� �� �N�V��

assoc	N��AfAr�
 ��� assoc	N�Ar
�

� conjn	X�Y
 acts like if neq	���X
 then Y else ��

� appfun is the normal functional append

� equal� intersection� union� set�difference are built�ins� ground args
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