
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-07

Finite Domains and Exclusions
as First-Class Citizens

Harold Boley

February 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches
Forschungszentrum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern
and Saarbrücken is a non-profit organization which was founded in 1988.
The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, and
Siemens. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by
other industrial contracts.
The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal
is to construct systems with technical knowledge and common sense which -
by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Computer Linguistics
Programming Systems
Deduction and Multiagent Systems
Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops
for shareholders and other interested groups in order to inform about the current
state of research.
From its beginning, the DFKI has provided an attractive working environment for
AI researchers from Germany and from all over the world. The goal is to have a
staff of about 100 researchers at the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Finite Domains and Exclusions
as First-Class Citizens

Harold Boley

DFKI-RR-94-07

To appear in:
Roy Dyckhoff (ed.):
Fourth International Workshop on Extensions of Logic Program-
ming. ELP ‘93,
St. Andrews, Scotland, March 1993, Proceedings, LNAI
Springer, 1994
This work has been supported by a grant from The Federal Ministry
for Research and Technology (FKZ ITWM-8902 C4 and 413-5839-
Itw9304/3).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1994
This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit educa-
tional and research purposes provided that all such whole or partial copies include the fol-
lowing: a notice that such copying is by permission of the Deutsche Forschungszentrum
für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowl-
edgement of the authors and individual contributors to the work; all applicable portions
of this copyright notice. Copying, reproducing, or republishing for any other purpose shall
require a licence with payment of fee to Deutsches Forschungszentrum für Künstliche
Intelligenz.

Finite Domains and Exclusions

as First�Class Citizens

Harold Boley

July ��� ����

Abstract� Languages based on logical variables can regard �nite do�
mains� �nite exclusions� and� generally� types as values� Like a variable
can be bound to a non�ground structure which can be later specialized
through in�place assignment of some inner variables� it can also be bound
to� say� a domain structure which can be specialized later through �in�
place deletion� of some of its elements �e�g� by intersection with other
domain structures	� While �nite domains prescribe the elements of a
disjunctive structure� the complementary �nite exclusions forbid the ele�
ments of a conjunctive structure� Domains and exclusions can be values
of variables or occur inside clauses as
in terms or within an occurrence�
binding construct �useful to name arbitrary terms	� In a relational�
functional language �e�g�� RELFUN	 they can also be returned as values
of functions� Altogether� domains and exclusions become �rst�class cit�
izens� Because they are completely handled by an extended uni�cation
routine� they do not require delay techniques needed in �more expres�
sive	 constraint systems� Still� their backtracking�superseding �closed�
representation leads to smaller proof trees �e�ciency	� and abstracted�
intensional answers �readability	� Anti�uni�cation �for generalization	 ex�
changes the roles of domains and exclusions� The operational semantics
of domains� exclusions� and occurrence bindings is speci�ed by a REL�
FUN meta�unify function �and implemented in pure LISP	��

� Introduction

Characteristic for logic programming �LP� is its uniform variable concept� the
single construct of logical variables is usable in di�erent modes �input� output�
or mixed�� However� mainly for e�ciency �control� reasons� committed�choice

languages have compromised this uniformity� they distinguish modes at the user
level �e�g�� 	read
only� annotations�� Similarly� �nite domains� which turned out
to be most useful in constraint systems ��� can entail a compromised variable
concept� they introduce 	domain� variables separately from logical variables� limi

ting which variables may be uni�ed with which kind of term �e�g�� domain vari

ables must not be bound to logical variables��

The latter problem leads us to the issue of extending LP languages by a clean
construct for �nite domains �generally� types�� deeply integrated with existing
LP constructs� In other words� we come to this basic question� Is there a method
of optional� predeclaration
free� variable domain restriction �generally� variable
typing� fully in the spirit of logical variables� This can be answered a�rmatively
by applying the following principle� Instead of introducing a new kind of variable
with an associated domain �type� and a possible value� regard the domain �type�
as an initial value� A domain value can then be successively constrained or
specialized �e�g� by intersecting it with other domain terms� until it ultimately
fails or becomes an ordinary value� �The empty domain is identi�ed with failure�
the singleton domain with its single element��

� This research was supported by the BMFT under Grants ITW ��� C� and ����
����ITW���
��

The 	type
as
value� principle will also be applied to a new type
like construct�
namely �nite exclusions� complementary to �nite domains� � An exclusion term
speci�es the values that cannot be assigned to a variable� It becomes specialized
on uni�cation with other exclusions �here performing union��� fails when uni�ed
with one of its argument values� and transmutes to an ordinary value unequal
to any of its arguments� �The empty exclusion is identi�ed with success��

On domain
exclusion uni�cation the exclusion values are set
theoretically
subtracted from the domain values� Thus� while a domain corresponds to a dis�

junction of solved equalities� an exclusion corresponds to a conjunction of solved

disequalities� where 	solved� stands for single
variable constraints� General dis

equality constraints were introduced to LP by PROLOG II�III ��� By consid

ering only the special case of solved �dis�equalities we can regard constraints
as typed logical variables� all their value specializations can be handled as part
of the uni�cation routine of LP languages� without need for the goal
delaying
mechanisms on which constraint languages are often based�

After having established �nite domains and exclusions as values of variables�
we will show that they may also be used 	anonymously� anywhere a term can oc

cur �e�g� as top
level arguments of clauses�� The �nal step then is to allow domain
and exclusion terms also as values returned by functions of functional LP ex

tensions such as RELFUN ��� Altogether� domains and exclusions become �rst

class citizens of cleanly extended relational� functional� and relational
functional
languages�

� Domain Terms

As the prede�ned term for �nite domains we will use variable
length dom struc

tures� They are built from an arbitrary �nite number� n� of unordered� repetition

free� constants� ci�

�

dom�c�� � � � � cn�

� We will not expand much on further type�like constructs as values� but should note
here that certain unary predicates p �e�g� woman	 could be marked �with a ����
pre�x	 as user�de�ned sorts �p �here �woman	 that may be assigned to variables�
where uni�cation applies p to an ordinary value �e�g� mary	 or looks up �p�s glb �e�g�
�mother	 with another marked predicate �e�g� �parent	 in a �nite sort lattice�

� In accordance with RELFUN�s call�by�value semantics� we also permit active dom

�and exc	 calls� using round parentheses� which remove repetitions before construct�
ing passive dom �and exc	 structures� using square brackets�

� Unlike many �nite�domain systems� we introduce no special treatment for inte�
ger domains here� Conversely� generalizing domain elements beyond arbitrary con�
stants would entail complications in using �nite domains� even ground structures
as in dom�f�a��f�b�� would suggest that uni�cation with f�X� be successful� non�
deterministically binding X to a or b� where in fact the advantage of �nite domains
is their deterministic behavior� as in dom�a�b� uni�ed with X� just binding X to the
entire domain term� Rules for reducing a uni�cation like f�X� is dom�f�a��f�b��

to the deterministic X is dom�a�b�� perhaps via f�X� is f�dom�a�b��� would be a
challenge for non�constant�element extensions of �nite domains�

�

In general� dom structures can be used like ordinary terms�
The empty and singleton domains reduce as follows �unknown indicates fail

ure��

dom�� �� unknown

dom�c� �� c

In our RELFUN implementation� the behavior of dom structures is handled
by an extension of the uni�cation routine �cf� appendix A�� This behavior will
be described by employing RELFUN�s generalized is
primitive for uni�cation�

term is expression

uni�es term �e�g� a variable� with the value of expression �e�g� another term��
For instance� the �left
to
right
ordered� conjunction

X is dom�������� X is dom�������	�

initializes X with the three
element domain containing the integers �� �� and ��
and then intersects it with the four
element domain containing �� �� �� and 	�
thus specializing the X value to the two
element domain dom������ Similarly� the
conjunction

X is dom�������� X is dom�������	�� X is dom�����	�

specializes X to a singleton domain� i�e� is equivalent to

X is �

However�

X is dom�������� X is dom�������	�� X is dom�����	��

X is dom�������
�

fails since X now degenerates to the empty domain�
Note that all orders of successive domain constraining are �result
�equivalent�

including the usual left
to
right order of PROLOG�s implementation of SLD
resolution� which we could thus keep for our domain implementation� information
about the current domain specialization can always immediately be stored as
variable values� and goals need never be delayed�

There is an analogy between our �nite
domain structures and the well
known
non
ground structures of LP� binding a variable to a �nite
domain structure
corresponds to binding a variable to a non
ground structure� In both cases�
when uni�ed with another such variable� its value may become specialized�

�� Some elements of the domain structure may become deleted� �The domain
structure can thus transmute to a single element��

�� Some inner variables of the non
ground structure may become bound� �The
non
ground structure can thus become a ground structure��

�

This extension thus preserves the 	specializing
assignment� property of logic
programming �a given value can be subsequently specialized� while arbitrary
reassignment of a variable leads to failure�� �

Two conjunctions exhibit the analogy�

X is dom�������� Y is dom�������	�� X is Y

deletes � from X� � and 	 from Y� assigning dom����� to X and Y�

X is f�A�B�����	�� Y is f���B���D�E�� X is Y

binds A to �� D and E to � and 	� respectively� assigning f���B�����	� to X and
Y�

Note that the �nal �right
most� result of domain specializations need not
be a single value such as � but can still be a domain value such as dom������
because such an 	intensional answer� is perfectly legitmate in our language� lack
of further specialization possibilities does not lead to 	�oundering� goals�

We can carry the analogy one step further� Instead of being assigned to a
variable� a non
ground structure can occur directly everywhere a term can occur
in a formula �e�g�� within another structure�� Such 	anonymous use� can also
be permitted for �nite
domain structures� An anonymous non
ground structure
or domain structure has the same advantages as an anonymous variable� by
eliminating variable names� 	single
occurrence� and 	back
substitutable� variables
�non
ground structures� domain structures� can be immediately identi�ed as
such� programs become more concise� and no spurious bindings will be created�

For instance� since the variables X and Y are only used as intermediate stores�
the above conjunctions via back
substitution become single expressions�

dom������� is dom�������	�

succeeds� bindingless� with the intersection domain dom������

f�A�B�����	� is f���B���D�E�

succeeds� not creating spurious bindings �just A � �� D � �� and E � 	�� with
the most general common non
ground structure f���B�����	��

� Exclusion Terms

While �nite domains prescribe some constant of a disjunction� �nite exclusions
forbid every constant of a conjunction� Thus the constants in an exclusion struc

ture are implicitly 	negative�� If a variable is constrained by an exclusion and

� Of course� assigning type�like �e�g� domain or non�ground	 structures to variables as
initial �non�terminal� values and specializing them to �terminal� values after success�
ful �unifying	 type checks is only possible for specializing�assignment �LP	 languages�
in reassignment �imperative	 languages� a variable has to preserve its original type
�value� � in a separate �slot� � when assigning a terminal value to it because the
type will be needed unchanged on reassigning further terminal values� This preven�
tion of the type�as�value principle� and consequently of type ��rst�classness�� can be
construed as one more disadvantage of imperative languages�

�

a domain assignment �in any order�� both possibly singleton� the constants of
the exclusion delete equal constants of the domain �set di�erence�� If a variable
is constrained by two exclusion assignments� their constants are taken together
�set union�� which specializes the original values�

Our prede�ned term for �nite exclusions will be variable
length exc struc

tures� They are again built from an arbitrary �nite number� n� of unordered�
repetition
free constants� ci�

exc�c�� � � � � cn�

In general� also exc structures can be used like ordinary terms�
The empty exclusion reduces as follows �the anonymous variable� � �� indi

cates success��

exc�� ��

A singleton exclusion cannot be reduced context
freely since its element repre

sents a single 	negative� constant� which has to await a uni�cation partner�

In RELFUN� exc structures are again handled by an extension of the uni�

cation routine �cf� appendix A��

For instance� these conjunctions show three principal uni�cations of exc

structures�

X is exc�������� Y is dom�������	�� X is Y

X is dom�������� Y is exc�������	�� X is Y

X is exc�������� Y is exc�������	�� X is Y

The �rst binds X to an exclusion of �� �� and �� Y to dom�������	�� and then
subtracts the former from the latter� specializing both X and Y to dom���	��
The second symmetrically 	excludes� � through 	 from dom�������� ultimately
binding X and Y to dom��� or �� The third leads to X and Y being bound to the
united exclusion exc���������	��

Note that an exclusion can result from uni�cation only if both respective
uni�cation partners are exc structures� If one partner is a dom structure or a
constant� either of these kinds of terms also appears in successful results� exc
structures �subtract and disappear�� Thus� the �rst result� dom���	�� is a �
su�ciently specialized � �nite domain ��Only constants � or 	 are allowed���
while� say� exc������������� would not be a � su�ciently specialized � �nite
exclusion ��All constants but � and � and � and � and ��� are allowed���

Like for domains� we can choose any order of exclusion constraining� and
thus keep the left
to
right order� the negative information of exclusions is also
stored as part of the variable substitution� not with goals� which� again� need
never be delayed� Also� if only exclusions are involved� the right
most result of
exclusion specializations still is a 	negative answer� such as exc���������	�� if
all intermediate values are identical singleton exclusions� a 	negative singleton
answer� such as exc��� arises�

Exclusions can also be used anonymously� with the same advantages as men

tioned for anonymous domains �see end of section ��� For instance� shortening
the above conjunctions� the expressions

�

exc������� is dom�������	�

dom������� is exc�������	�

exc������� is exc�������	�

succeed bindingless with� respectively� the di�erence domain dom���	�� the dif

ference constant �� and the united exclusion exc���������	��

Summarizing the domain and exclusion constructs� a 	domain assignment�

X � dom�c�� � � � � cn�

corresponds to the disjunction of X
solved equalities

X � c� � � � ��X � cn ���

with ��� being used like RELFUN�s �is�� while an 	exclusion assignment�

X � exc�c�� � � � � cn�

corresponds to the conjunction ofX
solved disequalities �where ��� � ���� shows
that exclusions are negated domains�

X �� c� � � � ��X �� cn ���

with � ��� having no direct analogue in RELFUN� However� since in such con

junctions �in RELFUN written with ��� instead of ���� exclusion values become
united� the equivalent n
ary exclusion assignment

X is exc�c�� � � � � cn�

naturally corresponds to the following conjunction of n unary ones�

X is exc�c��� � � �� X is exc�cn�

Thus� �nite exclusions express negative information as values �	object
centered��
that can be simply passed around and uni�ed like positive information� while LP
extensions via a � ��� connective �symmetric� suggest two
variable constraints
like X �� Y � normally entailing another layer of complexity such as the need
to delay a disequality until a variable becomes bound� �A possible non
ground
extension of exclusions for representing two
variable constraints will be discussed
in section ���

� Occurrence Bindings

Let us further introduce a generally useful construct for binding a variable to
some �initial� value�s� at one or more of its occurrences in arbitrary formulas� If
this is a type
like value� e�g� a non
ground structure or a domain or an exclusion�
it can become specialized by subsequent uni�cation�

�

Occurrence bindings are written as binary bnd structures built from a vari

able� v� and a term� t� �

bnd�v� t�

In general� bnd structures can be used as terms�
Taking a non
ground
structure example�

bnd�X�f�A�B�����	�� is f���B���D�E�

binds X to f�A�B�����	�� which is then uni�ed with f���B���D�E�� binding A to
�� D and E to � and 	� respectively� thus specializing the X value to f���B�����	��

An analogous �nite
domain example�

bnd�X�dom�������� is dom�������	�

binds X to dom�������� which is then uni�ed with dom�������	�� thus special

izing the X value to dom������

A complementary �nite
exclusion example�

bnd�X�exc�������� is dom�������	�

binds X to exc�������� which is then uni�ed with dom�������	�� thus special

izing the X value to dom���	��

If the uni�cation partner of an occurrence binding is directly given� here
as the is
rhs �right
hand side�� the bnd structure can always be equivalently
replaced by an initializing �	pre
typing�� is call�

X is f�A�B�����	�� X is f���B���D�E�

X is dom�������� X is dom�������	�

X is exc�������� X is dom�������	�

For bnds in clause heads� however� the uni�cation partner is not directly given�
as will be illustrated by the relational examples in section ����

The binding construct� pairing a variable with a value� can again be assigned
to a variable� Actually� in our implementation it is generated from dom�exc

bound variables at the end of reference chains to keep track of domain�exclusion
specializations �while non
ground structures can be specialized via direct in
place
assignments��

� Domains�Exclusions in Relation De�nitions

��� Facts and dom�exc Reductions

Starting with domains� the fact with a single
occurrence variable X�

� One could also use an in�x notation like v � t for increased conciseness� If t was
the sort�marked predicate �p� bnd�v� �p� would then shorten to v � �p� The current
implementation still has restrictions wrt the t�s allowed in bnds� Section ��� will detail
on the elimination of occurrence bindings�

�

likesjohn�bnd�X�dom�ann�mary�susan����

is equivalent to the fact using the domain anonymously �regard �X� as � ���

likesjohn�dom�ann�mary�susan���

Both can be equivalently queried by ���� precedes comments�

likesjohn�mary� � success

likesjohn�peggy� � failure

likesjohn�Whom� � success� Whom � dom�ann�mary�susan�

likesjohn�dom�mary�peggy�susan�� � success

likesjohn�bnd�Whom�dom�mary�peggy�susan���

� success� Whom � dom�mary�susan�

likesjohn�exc�mary�peggy�� � success

likesjohn�bnd�Whom�exc�mary�peggy���

� success� Whom � dom�ann�susan�

We can reduce the dom fact� obtaining the three 	multiplied out� facts

likesjohn�ann��

likesjohn�mary��

likesjohn�susan��

Note that the queries would be answered equivalently� However� 	intensional�
answers �delivering one closed dom structure� would become 	extensional� answers
�enumerating several constants�� so the bnd�dom query� instead of binding Whom

to dom�mary�susan�� would �rst bind Whom to mary� and then� via backtracking�
to susan�

If we let clsi������ik�x� denote a clause with term x at some position i�� � � � � ik
�i� � being the head� i� � � the �rst premise� ����� i� � being i��s oper

ator�constructor� i� � � its �rst argument� ���� etc�� and cls��x� a clause not
having the term x at any position� then a general multout algorithm can be de

�ned recursively via an equation schema �treating queries as answer
head rules��

multout�cls��dom�c�� � � � � cn��� � cls��dom�c�� � � � � cn��

multout�clsi������ik�dom�c�� � � � � cn��� �

��
�
multout�clsi� �����ik�c���
� � �

multout�clsi� �����ik�cn��

For example� multout�likes�john� dom�ann�mary� susan�� matches the second
equation via the instantiation multout�cls����dom�ann�mary� susan��� whose
rhs�s through the �rst equation lead to the three domless facts shown above�

Continuing with exclusions� the fact with a single
occurrence variable X�

likesjohn�bnd�X�exc�mary�claire�linda����

� Since the last premise may constitute the value of a functional clause� the multout

algorithm below will also work for function de�nitions�

!

is equivalent to the fact using the exclusion anonymously �since �X� is � ���

likesjohn�exc�mary�claire�linda���

Both can be interchangeably queried by

likesjohn�mary� � failure

likesjohn�peggy� � success

likesjohn�Whom� � success� Whom � exc�mary�claire�linda�

likesjohn�dom�mary�peggy�susan�� � success

likesjohn�bnd�Whom�dom�mary�peggy�susan���

� success� Whom � dom�peggy�susan�

likesjohn�exc�mary�peggy�� � success

likesjohn�bnd�Whom�exc�mary�peggy���

� success� Whom � exc�peggy�mary�claire�linda�

If we have a 	closed universe� of a �nite number� say !� of individuals�
e�g� fann� claire� john� linda�mary� peggy� susan� tinag� we could reduce the exc
fact� obtaining the �ve 	complemented out� facts

likesjohn�ann��

likesjohn�john��

likesjohn�peggy��

likesjohn�susan��

likesjohn�tina��

where the bnd�dom query would now �rst bind Whom to peggy� then� via back

tracking� to susan� �These facts are also the multiplied out form of a dom fact��

If the 	non
Horn� extension of a �classic� strong� negation construct is avail

able for facts� e�g� via false
valued functions in RELFUN� one could also ap

proximate the exc fact in an 	open universe�� with in�nite complements� by

likesjohn�dom�mary�claire�linda�� �� � � false�

likesjohn�X��

Queries as shown above could now bind a second argument Whom to the dom by
�successfully�� returning false� but would� e�g�� also return a bindingless false
for mary �rather than yielding unknown due to uni�cation failure�� The impurity
of the cut
protected 	catch
all� fact seems to favor our proposal to express such
special cases of negation by the special
purpose construct exc directly in clause
heads� permitting non
Horn clauses as �Horn clauses " exclusions��

��� Clauses and bnd�to�is Reductions

A typed version of a well
known PROLOG program contains a rule with a non

single
occurrence variable X� whose head occurrence is domain
bound�

likesjohn�bnd�X�dom�ann�mary�susan��� �� likesX�wine��

likesdom�mary�peggy�susan��wine��

�

The query

likesjohn�Whom�

here binds Whom to dom�mary�susan�� The query �inde�nite even wrt john�

likesdom�fred�john��bnd�Whom�dom�ann�susan�tina���

binds Whom to susan �not selecting fred or john from the anonymous dom��
A 	negatively� typed version of the program again contains a rule with a

non
single
occurrence variable X� whose head occurrence is exclusion
bound�

likesjohn�bnd�X�exc�mary�claire�linda��� �� likesX�wine��

likesexc�mary�peggy�susan��wine��

The query

likesjohn�Whom�

now binds Whom to exc�peggy�susan�mary�claire�linda�� The query

likesdom�fred�john��bnd�Whom�dom�ann�susan�tina���

binds Whom to dom�ann�tina� �again leaving �fred or john� anonymous��
A binding construct bnd�v� t in a clause head can always be replaced by v

by introducing a new premise v is t� If v is t is further transformed to t��v��
applying a unary predicate t� corresponding to t� the entire reduction is similar
to the reduction of a sorted logic to an unsorted one�

Thus� the bnd�dom rule is equivalent to

likesjohn�X� �� X is dom�ann�mary�susan�� likesX�wine��

and� with t� � ann�mary�or�susan� to

likesjohn�X� �� ann�mary�or�susanX�� likesX�wine��

ann�mary�or�susandom�ann�mary�susan���

Also� the bnd�exc rule is equivalent to

likesjohn�X� �� X is exc�mary�claire�linda�� likesX�wine��

and� with t� � not�mary�claire�and�linda� to

likesjohn�X� �� not�mary�claire�and�lindaX�� likesX�wine��

not�mary�claire�and�lindaexc�mary�claire�linda���

The reduced form can perform 	type� checking only after uni�cation� once
the former bnd variable is bound� Unlike the transformation �in section �� of

bnd�X�dom�������� is dom�������	� � fact pbnd�X�dom����������

bnd�X�exc�������� is dom�������	� � fact pbnd�X�exc����������

to the 	pre
typing� �domain�exclusion
initializing� not possible for clause heads
as indicated by the ���
comments�

�

X is dom�������� X is dom�������	� � X is dom������� not in pX��

X is exc�������� X is dom�������	� � X is exc������� not in pX��

the above bnd
to
is reduction thus performs 	post
typing� �domain�exclusion

specializing� generally applicable�� as in

X is dom�������	�� X is dom������� � rule pX� �� X is dom��������

X is dom�������	�� X is exc������� � rule pX� �� X is exc��������

Unfortunately� post
typed clauses no longer permit the selectivity of typed
�e�g� domain
constrained or sorted� uni�cation and WAM
indexing and of typed
anti
uni�cation �for generalization� see section ��� Also� at least if compared with
the ���
in�x syntax of bnd as usable for our versions of the PROLOG example�

likesjohn�X�dom�ann�mary�susan�� �� likesX�wine��

likesjohn�X�exc�mary�claire�linda�� �� likesX�wine��

the is
reduced formulations are less readable�
Combining post
typing with the reformulation of an is
assigned exclusion

as a conjunction of solved disequalities �cf� ��� in section ��� we can repeatedly
transform any n
ary
exc
head clause

p����� X �exc�c�� � � � � cn�� ���� �� q������� � � �� qz������

to an equivalent unary
exc
body clause

p����� X� ���� �� X is exc�c��� � � �� X is exc�cn�� q������� � � �� qz������

�for anonymous exclusions we choose a new variable for �X��� 	 representing

p����� X� ���� �� X �� c�� � � �� X �� cn� q������� � � �� qz������

where the non
Horn
clause character engendered by the exc terms is revealed
by the � ��� constraints preceding the ordinary premises�

� Finite	Domain�Exclusion Functional Programming

Having introduced �nite domains and exclusions into relational programming as
terms that can be values of logical variables� we now transfer them to functional
programming as terms that can be arguments and values of functions� �Similarly�
the binding construct can be employed in function arguments and values��

Domains and exclusions thus become �rst
class citizens of relational

functional languages such as RELFUN�

� While we may also combine post�typing with the reformulation of an is�domain as
a disjunction of solved equalities �cf� ��	 in section �	� we can directly apply the
multout algorithm �cf� section ���	 to any n�ary�dom�head clause

p�����X �dom�c�� � � � � cn�� ���	 �� q�����	� � � � � qz����	�

to obtain n equivalent domless clauses

p�����X �c�� ���	 �� q�����	� � � �� qz����	� � � � p�����X �cn� ���	 �� q�����	� � � �� qz����	�

�for anonymous domains we just omit �X ��	�

��

��� Domains�Exclusions as Function Arguments

The use of �nite domains as arguments of functions works like their use in rela

tions� For instance� the two directed equations ������ is a left
to
right directed
����

separatesdom�canada�mexico�usa��japan� ��� pacific�

separatesdom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk�� ��� atlantic�

use 	anonymous� dom arguments for compactly de�ning a separates function�
�They could be multiplied out to �� domless equations� analogous to the �� facts
in section ���

The query

separatesbnd�Source�dom�canada�usa�panama���

Destination�

binds Source to dom�canada�usa�� Destination to japan� and returns
pacific� on backtracking it rebinds Destination to the European subdomain
and returns atlantic�

Analogously� �nite exclusions act as function arguments as was shown for
relation arguments� For instance� the safe�divide function

safe�divideNominator�bnd�Denominator�exc����� ���

�Nominator�Denominator��

or� using a post
typing function de�nition ����� and ��� permit intervening
relational premises��

safe�divideNominator�Denominator� �� Denominator is exc��� �

�Nominator�Denominator��

	excludes� Denominator
named arguments which would lead to division by zero�
Thus� the query

safe�divide
���

returns � because � �� � is true� On the other hand� the query

safe�divide
���

yields unknown �rather than an error from the ���
built
in� because � �� � is
false�

Many function de�nitions� e�g� factorial and fibonacci �below� over the nat

urals� become more declarative than in PROLOG by excluding� in a de�ning
clause� arguments of earlier clauses� the de�nition thus needs no cut and in fact
has disjoint� order
independent �	OR
parallel�� clauses� The fib de�nition can
even be shortened to two clauses via complementary dom and exc arguments�

fibdom������ ��� ��

fibbnd�N�exc������� ��� �fib�N�����fib�N������

��

��� Functions with Domain�Exclusion Values

The use of �nite domains as values of functions works as follows� Like any other
term� a domain term can be speci�ed as �part of� the returned value in a function
de�nition� Such a function then returns the �nite domain to its caller as a 	closed�
term representing a �nite number of non
deterministic values� which without
domain terms available would typically be enumerated via backtracking�

For instance� the directed equations

directionold� ��� dom�east�west��

directionnew� ��� dom�north�south��

directionall� ��� dom�north�west�south�east��

use dom values for compactly de�ning a direction function� The �rst clause� e�g��
can be regarded as a 	closed� form of the non
deterministic� two
clause function
de�nition produced by multout �section �����

directionold� ��� east�

directionold� ��� west�

A main call uni�es returned domain terms just like for anonymously speci�ed
domains� For instance� using the variable
length tup function for list building�

tupdirectionold��directionnew��

just like

tupdom�east�west��dom�north�south��

returns �dom�east�west��dom�north�south���
In particular� a domain functionally returned to the top
level gives the user

a more compact representation of results than their enumeration� much like a
domain assigned to a relational request variable�

We may also call domain
valued functions within is
calls� For example� while
the query

D is directionold�� D is directionnew�

fails �the domains are disjoint�� the query

D is directionall�� D is directionnew�

succeeds� temporally binding D to dom�north�west�south�east�� but then spe

cializing it to dom�north�south��

The is
embedded non
ground functional query

�new�dom�west�north�� is tupWhich�directionWhich��

succeeds by binding� as its second attempt� Which to new and building the list
�new�dom�north�south��� whose most general 	instantiation� in common with
the is
lhs �left
hand side� is the domless ground list �new�north��

Analogously� an exclusion term can be �part of� the returned value of a
function� For instance� the de�nition

��

permittedbutcher�shop� ��� exc�dog��

permittedpet�shop� ��� exc�cat�dog��

prohibits certain entries to butcher and pet shops� the non
ground call

permittedWhere�

enumerates the exclusion values exc�dog�� binding Where to butcher�shop� and
exc�cat�dog�� binding Where to pet�shop�

Two such permitted calls may be embedded into an is
call�

�cat�dom�kid�dog�� is tuppermittedWhere��permittedWhere��

This succeeds by specializing the is
lhs to �cat�kid�� consistently binding
Where to butcher�shop�

Finally� a function can also return a mix of domains and exclusions� For
example� the dishes �dis�liked by several people may be de�ned thus�

dishjohn� ��� dom�chilli�pizza�sushi�chop�suey��

dishmary� ��� exc�sushi��

dishfred� ��� exc�spaghetti�pizza��

dishtina� ��� dom�sushi�chop�suey�hamburger��

For constraining the set of candidate restaurants� they could perform
intersection
di�erence operations equivalent to

�D�D�D�D� is tupdishjohn��dishmary��dishfred��dishtina��

binding D to the �fortunately unique� solution chop�suey�

 Domain and Exclusion Anti	Uni�cation

In section ��� we have de�ned the multout algorithm for 	multiplying out� �

nite domains from clauses into an extensional form� and noted that the general
reduction of �nite exclusions would involve a strong form of negation�

Conversely� the automatic generation of intensional� domain�exclusion
using
clauses from ordinary ones constitutes an interesting generalization task� In par

ticular� a set of 	similar� clauses can often be generalized by individually generat

ing a �nite domain in each distinguishing argument position� thus 	compressing�
the clauses� information�Generalizing more than one argument position at a time
�giving rise to new combinations when multiplying out� amounts to 	inducing�
new information from the clauses�

For instance� inverting two multout transformations� the �� relational�ized�
separates facts

��

separatespacific�canada�japan��

separatespacific�mexico�japan��

separatespacific�usa�japan��

separatesatlantic�canada�denmark��

separatesatlantic�canada�france��

separatesatlantic�canada�germany��

separatesatlantic�canada�italy��

separatesatlantic�canada�spain��

separatesatlantic�canada�sweden��

separatesatlantic�canada�uk��

separatesatlantic�mexico�denmark��

separatesatlantic�mexico�france��

separatesatlantic�mexico�germany��

separatesatlantic�mexico�italy��

separatesatlantic�mexico�spain��

separatesatlantic�mexico�sweden��

separatesatlantic�mexico�uk��

separatesatlantic�usa�denmark��

separatesatlantic�usa�france��

separatesatlantic�usa�germany��

separatesatlantic�usa�italy��

separatesatlantic�usa�spain��

separatesatlantic�usa�sweden��

separatesatlantic�usa�uk��

can be generalized �compressed� to the two facts

separatespacific�dom�canada�mexico�usa��japan��

separatesatlantic�dom�canada�mexico�usa��

dom�denmark�france�germany�italy�spain�sweden�uk���

which are relationalized versions of the separates function in section ���� ��

	 If some �interactive
automatic	 analyzer notices that a certain domain such as
dom�canada�mexico�usa� occurs repeatedly in a program� it may be useful to
have it de�ned more globally as a predicate �with a user�provided name	 such as
america	dom�canada�mexico�usa�
 and replace the domain by the predicate name
used as a ����marked sort� e�g� in the clause separates	pacific��america�japan
�
A comparison of the equivalent notations �dom�� � ��� and ������ reveals our con�
vention that domains
exclusions do not carry a �typing symbol� such as the ���
for sorts� their dom
exc�constructor marks them as types with �built�in� uni�cation
behavior� on the other hand� ����less predicate names are just constants unifying
with themselves� Domains
exclusions exhibit their built�in properties in all places
they are permitted as �rst�class citizens� Making them passively passable data struc�
tures �without list�coding as in appendix A	� e�g� for amalgamated object
meta�level
programming� is as hard as for logical variables� requiring a kind of quote operator�

�
 In RELFUN the relationalize algorithm can be used to make relational
functional
knowledge more accessible to such inductive�LP methods� which we study wrt e�orts
in knowledge Validation and Exploration by Global Analysis �VEGA	�

��

A simple method for this �least general� generalization is pairwise domain

anti�uni�cation of the input facts� For ease of presentation we will assume that
clauses are represented as structures� e�g� regarding an atom �fact� as a structure
whose constructor stands for the predicate� Domain anti
uni�cation of two struc

tures works like classic anti
uni�cation �� �in our implementation� ��� �nested�
structures having di�erent constructors or arities yield a new variable� with the
following modi�cations� For a �named or anonymous� variable and a domain it
yields a variable in the manner classic anti
uni�cation handles variable�constant
pairings� For di�erent constants it yields a dom term containing these constants�
not a �sometimes overly general� new variable� �For a constant and a struc

ture it has to yield a new variable since currrent dom terms cannot contain
structures�� Generally �constants can be treated as singleton domains�� domain
anti
uni�cation of two dom terms yields their union �uni�cation� intersection��
Identical dom �later� exc� terms can directly yield one copy unchanged� short

cutting spurious unions �later� intersections��

The complementary exclusion anti�uni�cation for a �named or anonymous�
variable and an exclusion yields a variable in the manner classic anti
uni�cation
handles variable�constant pairings� It yields the intersection �uni�cation� union�
of two exc terms� For an exclusion and a constant �singleton domain� it yields the
exc term minus the constant� Generally� the domain�exclusion anti�uni�cation

of a dom and an exc term� in any order� yields the exc term with the elements
of the dom term set
theoretically subtracted �uni�cation� domain with exclusion
subtracted�� An empty
exclusion outcome� as usual� represents the always suc

cessful anonymous variable� Altogether� the domain�exclusion complementarity
commutes nicely with the uni�cation�anti
uni�cation duality�

Let us start an example for domain anti
uni�cation with� say� the �rst two
input facts�

separatespacific�canada�japan��

separatespacific�mexico�japan��

Anti
uni�cation generalizes them via a domain in the second argument�

separatespacific�dom�canada�mexico��japan��

This intermediate result domain
anti
uni�ed with the third input fact�

separatespacific�usa�japan�� � usa � dom�usa�

leads to the completely generalized pacific fact above� Similarly� the remaining
input facts� via three groups of textually ordered domain
anti
uni�cation steps�
generalize their third argument to a common domain�

separatesatlantic�canada�

dom�denmark�france�germany�italy�spain�sweden�uk���

separatesatlantic�mexico�

dom�denmark�france�germany�italy�spain�sweden�uk���

separatesatlantic�usa�

dom�denmark�france�germany�italy�spain�sweden�uk���

��

The completely generalized atlantic fact above is then obtained as for the
pacific side� �Equivalently� the second argument could be generalized �rst��

Suppose we have one additional input fact���

separatesatlantic�panama�denmark��

For group formation on the third argument� domain anti
uni�cation would leave
this fact as a singleton group since denmark is the only European partner speci

�ed for panama� Now� the four resulting groups di�er in two arguments� not just
in one� Still domain
anti
unifying them would generalize the second argument
and 	absorb� denmark into the domain of the third argument�

separatesatlantic�dom�canada�mexico�usa�panama��

dom�denmark�france�germany�italy�spain�sweden�uk���

This generalized atlantic fact expresses more information than the input facts�
namely an induction from Denmark to the other European countries �which
happens to be empirically true�� again multiplying out the result makes these
induced facts explicit�

separatesatlantic�panama�france��

� � �

separatesatlantic�panama�uk��

However� since �domain� anti
uni�cation can �nd a generalization for each pair
of structures� its use most be controlled� An example of overgeneralization would
result from further domain
anti
unifying the completely generalized pacific and
atlantic facts above� generating a single fact expressing much more than the ��
inputs via geographically vacuous Paci�c�Atlantic and Japan�Europe domains�

An example for exclusion anti
uni�cation can take two versions of a fact from
section ��� as input�

likesX�exc�mary�claire�linda��� � Everybody likes all except MCL

likesjohn�exc�mary�tina��� � John likes all except Mary � Tina

Anti
uni�cation generalizes them via an intersection of the exclusions in the
second argument�

likesX�exc�mary��� � Everybody likes all except Mary

This is the least general generalization of the input facts since exactly the subex

clusion common to both facts is kept� In cases where we have a closed universe�
say fann� claire� john� linda�mary� peggy� susan� tinag of section ���� the inputs
can be rewritten as complementary domain facts�

likesX�dom�ann�john�peggy�susan�tina��� � ��

likesjohn�dom�ann�claire�john�linda�peggy�susan���

�� Such a separates enrichment was proposed by Manfred Meyer and Knut Hinkel�
mann� Thanks also to Otto K�uhn� Michael Sintek� and Panagiotis Tsarchopoulos�

��

Domain anti
uni�cation via union generalizes them to

likesX�dom�ann�claire�john�linda�peggy�susan�tina���

which is the complement of the exclusion
anti
uni�cation result above�
Finally� domain
exclusion anti
uni�cation of the input facts

likesX�exc�mary�claire�linda���

likesjohn�dom�mary�tina��� � ���

via subtraction generalizes them to

likesX�exc�claire�linda���

Here� the exclusion is minimally weakened �its extension being minimally en

larged� to accomodate what is speci�ed by the domain� This can again be il

lustrated for the case of a closed universe� anti
unify �� with ��� and re

complement the result� Such least general generalizations by domain
exclusion
anti
uni�cation thus remove dom
exc contradictions in a set of clauses� e�g�
about John�s liking of Mary in the above input facts� similarly� exclusion anti

uni�cation removes the less obvious exc
exc contradictions concerning constants
that occur in only one of the exclusions� e�g� about John�s liking of� say Claire�
in the previous input facts� This may be exploited for 	theory revision� �� of
knowledge bases containing exclusion terms�

� Operational Semantics

Since all user
de�ned relations and functions are invoked through uni�cation�
we were able to handle the relational
functional domain extensions in a uniform�
e�cient manner by building our �rst
class domain and exclusion notions� as
well as the larger part of our bnds� into the �pure LISP� uni�cation routine
unify of the de�nitional interpreter of RELFUN� �A smaller� less interesting part
of occurrence bindings is built into the term
instantiation routine� not treated
here�� In appendix A we use a meta
interpreter approach for specifying the
operational semantics of the extended unify via RELFUN clauses only relying on
non
extended uni�cation� This will contain enough detail both to document the
actual RELFUN implementation and to permit transfers to other LP languages�

While constants will stand for themselves� non
constant terms will be coded
as ground lists as shown by the table below� where ��� indicates recursive coding�

constant constant

Identifier �vari� identifier�

Identifier�level �vari� identifier� level�

�a�� � � � � an� �tup� a��� � � � � a
�

n�

constructor�a�� � � � � an� �constructor�� a��� � � � � a
�

n�

dom�c�� � � � � cn� �dom� c�� � � � � cn�

exc�c�� � � � � cn� �exc� c�� � � � � cn�

bnd�v� t� �bnd� v�� t��

�!

Substitutions will be represented as lists of pair lists of variables and their val

ues of the form ��v��� t

�

�
�� � � � � �v�n� t

�

n�� �bottom��� i�e� the empty substitution
becomes ��bottom�� �not ��� see below��

For instance� the call

unify �bnd��vari�x���exc�a�b�c��� �dom�b�c�d�e�� � �bottom� � �

successfully returns the substitution � ��vari�x���dom�d�e��� �bottom� ��
In appendix A� the unify function takes two terms X and Y and a substitu

tion Environment �initially often empty�� and returns the substitution extended
by the mgu of X and Y in Environment �on success� or �� �on failure�� It calls
unify�ua with ultimate�assoc
dereferenced X�Y arguments for case analysis�
This workhorse decomposes one or two bnds into their variable and expression
parts for unify�bnd� where a missing bnd �variable� is indicated by ��� Mixed
dom�exc arguments are handed to dom�exc� performing �set
as
list� subtraction�
Homogeneous doms are handed to dom�intersection for �set
as
list� intersec

tion� In both cases �only� the non
emptiness of the result list is checked �so this
can be optimized�� Homogeneous excs are successful in any case� Plain partner
arguments to doms and excs are checked via member calls simplifying earlier cases
with singleton doms reduced to the plain argument� The last unify�ua clause
does unify on constructors �incl� tup� and calls unify�args �not expanded here�
for corecursive processing of their arguments� The unify�bnd function essentially
parallels the dom and exc cases of unify�ua� but hands subtraction� intersec

tion� and union results to unify�bnd�env for extension of the Environment

argument� using the variable�s� of the bnd�s���� Such bnds for dom�exc
variable
updates may be generated by the function ultimate�assoc� it returns the deref

erenced value of a variable in Environment� except if the value is a dom or an
exc� in which case it creates a bnd pair of the variable immediately preceding in
the reference chain and of the dom or exc expression�

While RELFUN�s generalized is
primitive also automatically pro�ts from
the dom�exc
enhanced uni�cation� for ordinary built
in relations and functions
the actual arguments that are �nite domains have to be 	multiplied out� �built
in
calls cannot have exclusion arguments�� for built
in �constant
valued� functions
the values then have to be recollected into a new domain structure�

As we have seen in section ���� the multout transformation could be per

formed statically for user
de�ned operations� too� thus eliminating the domain
extension for a non
enhanced LP implementation� However� this would lose the
combinatorial e�ciency advantage of �nite domains� Also� their complementarity
with �nite exclusions� not allowing this treatment� would become occluded�

For a model
theoretic characterization �� of programs containing �rst
class
�nite domains� the multout transformation could also be exploited semantically�

�� Thus� while the update of non�ground structures in relational languages leads to
bindings of free inner variables� the update of dom and exc structures leads to bindings
shadowing previous ones� as known from function calls and let blocks in interpreters
for functional languages� In a �WAM	 compiler implementation we could get the
e�ciency of in�place assignment via real in�place deletion
addition of elements of
dom
exc structures allocated on the heap�

��

Of course� a characterization via a domain
extended Herbrand base would be
more 	direct�� And again� leaving domains in the semantic kernel would allow to
exploit the domain�exclusion complementarity�

� Conclusions

Let us brie�y summarize our notion of �nite domains and exclusions�

	 They are useful even without constraint �delay�� techniques because their
backtracking
superseding 	closed� representation leads to
� smaller proof trees �e�ciency��
� abstracted� intensional answers �readability��

	 We have generalized them to �rst
class citizens �values of logical variables
and of functions� usable anonymously as arguments and inside structures�
no 	�oundering� for non
singleton domain results��

	 Their complementarity wrt uni�cation �most general specialization� 	changes
signs� wrt anti
uni�cation �least general generalization��

	 Their operational semantics and interpreter implemention is given by ex

tensions of the uni�cation routine of LP languages �speci�ed here via meta

uni�cation��

The examples of this paper have indicated ways of employing our �nite do

main�exclusion concept for the compact representation of �rst
order knowledge�
In RELFUN� domain�exclusion terms can also be used in the operator position�
thus permitting a higher
order notation for knowledge like �Functions factorial�
fibonacci� or exponential applied to return �� �domain anti
uni�cation also
generalizing operators�constructors could extract this from three multiplied out
functional clauses��

dom�fac�fib�exp��� ��� �� � F�dom�exp�sin��� gives �� F�exp

It will be instructive to observe which particular use of our domain�exclusion
extension of LP is most pro�table for a real
world representation task� e�g� in the
areas of materials engineering �� or calendar management �e�g� just unify two
agents� restrictions� �All dates except May �� and ��� and �Only May �
����
exc����may����may� is dom���may��������may���

An area for further theoretical work would be the extension of Herbrand
models for �nite domains and� more demanding �perhaps via TP 	� ���� �

nite exclusions� Concerning domain�exclusion anti
uni�cation� it will be inter

esting to see how further inductive
LP or machine
learning methods based on
classic anti
uni�cation may pro�t from the domain�exclusion extension� us

ing our recent LISP implementation �� of the rules introduced in section ��
On the uni�cation side� an e�cient WAM compiler�emulator extension for
our �variable
length�� �nite domains and exclusions should be written� build

ing on the RELational�FUNctional machine ��� FIDO III ��� �� and FLIP
��� all in COMMON LISP� WAM instructions for unifying constants such as

�

get constant would need a membership�non
membership test case for dom�exc
structures� new instructions get dom�get exc could unify dom�exc structures�
performing� e�g�� intersection�union for other dom�exc structures �perhaps main

taining canonically ordered elements�� etc� Also� it could be studied how our
specialized �nite domains�exclusions could be fruitfully characterized as a
CLP�FD�
like instance of the constraint
logic programming scheme ��� and if
they could be usefully combinedwith our RELFUN
implemented �nite
domain
constraints FINDOM �� or those in FIDO ��� or with concrete domains ��� or
other� more general constraint formalisms�

Finally� let us explore a possible non
ground extension of the treatment of
solved disequations� e�g� X �� �� as exclusion bindings� e�g� X is exc���� if only
to con�rm that ground exclusions in fact constitute the 	local optimum� sug

gested by section �� Can we treat unsolved disequations� e�g� X �� Y� as exclu

sion bindings with non
ground rhs�s� e�g� X is exc�Y� and�or Y is exc�X��
Well� we could store both binding directions� but let us choose one direction� say
X is exc�Y�� and put this into the substitution� If further computation instan

tiates Y to a constant� say �� perhaps via a binding chain� the disequation reduces
to a solved form� X is exc���� treated as usual� If X thus specializes to a con

stant� �� we can 	swap� the disequation to a solved form� Y is exc���� within the
substitution� For an added disequation� say the unsolved X is exc�Z�� the two
bindings may be simpli�ed to one� here X is exc�Y�Z�� For Y is exc�Z�� after
swapping� they can be joined to Y is exc�X�Z�� this avoids �possibly circular�
instantiations like X is exc�exc�Z��� non
equivalent to X is exc�Z� because
���� is not transitive� If any variable of such a �generated� non
singleton� non

ground exclusion becomes instantiated� this exclusion becomes partially solved�
now constraining uni�able values �e�g� is
lhs�s�� For example� X is exc�Y�Z��

Z is � or X is exc�Y��� excludes the binding X is �� If such non
ground
exclusions �generally� types� can treat a larger class of constraints as bindings
directly put into the substitution� unlike constraints as delayed goals� they will
thus require very careful substitution updates and uses�

��

A The RELFUN Meta	unify

Since this RELFUN uni�cation meta
speci�cation in RELFUN is deterministic
�fortunately�� there are many cuts �unfortunately� ��� which are� however� not
needed for obtaining the �rst �and only� solution� just for preventing �meaning

less� attempts to search for more solutions� Using RELFUN�s relationalize
command� this unify function would become a relation� also runnable in PRO

LOG� binding an additional �rst argument to the result substitution�

unify	X�Y�Environment
 ���

unify�ua	ultimate�assoc	X�Environment
�

ultimate�assoc	Y�Environment
�

Environment
�

unify�ua	�bnd�Xvar�Xexpr���bnd�Yvar�Yexpr��Environment
 ��

�� unify�bnd	Xexpr�Yexpr�Xvar�Yvar�Environment
�

unify�ua	�bnd�Xvar�Xexpr��Y�Environment
 ��

�� unify�bnd	Xexpr�Y�Xvar����Environment
�

unify�ua	X��bnd�Yvar�Yexpr��Environment
 ��

�� unify�bnd	X�Yexpr����Yvar�Environment
�

unify�ua	X�Y�Environment
 �� equal	X�Y
 �� Environment�

unify�ua	�variNamel��Y�Environment
 ��

�� ���variNamel��Y�Environment��

unify�ua	X��variNamel��Environment
 ��

�� ���variNamel��X�Environment��

unify�ua	�domDelem���excEelem��Environment
 ��

�� conjn	dom�exc	�domDelem���excEelem�
�Environment
�

unify�ua	�excEelem���domDelem��Environment
 ��

�� conjn	dom�exc	�domDelem���excEelem�
�Environment
�

unify�ua	�domXdelem���domYdelem��Environment
 ��

�� conjn	dom�intersection	�domXdelem���domYdelem�
�

Environment
�

unify�ua	�excXeelem���excYeelem��Environment
 �� �� Environment�

unify�ua	�domDelem��Y�Environment
 ��

�� conjn	membern	Y�Delem
�Environment
�

unify�ua	X��domDelem��Environment
 ��

�� conjn	membern	X�Delem
�Environment
�

unify�ua	�excEelem��Y�Environment
 ��

�� conjn	negn	membern	Y�Eelem

�Environment
�

unify�ua	X��excEelem��Environment
 ��

�� conjn	negn	membern	X�Eelem

�Environment
�

unify�ua	X�Y�Environment
 �� atom	X
 �� ���

unify�ua	X�Y�Environment
 �� atom	Y
 �� ���

unify�ua	�XfirstXrest���YfirstYrest��Environment
 ��

� New�environment is unify	Xfirst�Yfirst�Environment
 �

conjn	New�environment�unify�args	Xrest�Yrest�New�environment

�

unify�args	������Environment
 �� �� Environment�

unify�args	���Y�Environment
 �� �� ���

unify�args	X����Environment
 �� �� ���

��

� vertical�bar treatment omitted� generate list from ���rest

unify�args	�XfirstXrest���YfirstYrest��Environment
 ��

� New�environment is unify	Xfirst�Yfirst�Environment
 �

conjn	New�environment�unify�args	Xrest�Yrest�New�environment

�

unify�bnd	�domDelem���excEelem��Xvar�Yvar�Environment
 ��

� Differ is dom�exc	�domDelem���excEelem�
 �

conjn	Differ�unify�bnd�env	Differ�Xvar�Yvar�Environment

�

unify�bnd	�excEelem���domDelem��Xvar�Yvar�Environment
 ��

� Differ is dom�exc	�domDelem���excEelem�
 �

conjn	Differ�unify�bnd�env	Differ�Xvar�Yvar�Environment

�

unify�bnd	�domXdelem���domYdelem��Xvar�Yvar�Environment
 ��

� Inter is dom�intersection	�domXdelem���domYdelem�
 �

conjn	Inter�unify�bnd�env	Inter�Xvar�Yvar�Environment

�

unify�bnd	�excXeelem���excYeelem��Xvar�Yvar�Environment
 ��

�� unify�bnd�env	exc�union	�excXeelem���excYeelem�
�

Xvar�

Yvar�

Environment
�

unify�bnd	�domDelem��Y�Xvar�Yvar�Environment
 ��

neq	�variNamel��Y
 ��

conjn	membern	Y�Delem
�unify�bnd�env	Y�Xvar�Yvar�Environment

�

unify�bnd	X��domDelem��Xvar�Yvar�Environment
 ��

neq	�variNamel��X
 ��

conjn	membern	X�Delem
�unify�bnd�env	X�Xvar�Yvar�Environment

�

unify�bnd	�excEelem��Y�Xvar�Yvar�Environment
 ��

neq	�variNamel��Y
 ��

conjn	negn	membern	Y�Eelem

�

unify�bnd�env	Y�Xvar�Yvar�Environment

�

unify�bnd	X��excEelem��Xvar�Yvar�Environment
 ��

neq	�variNamel��X
 ��

conjn	negn	membern	X�Eelem

�

unify�bnd�env	X�Xvar�Yvar�Environment

�

unify�bnd	�variNamel��Y�Xvar�Yvar�Environment
 ��

� New is unify	�variNamel��Y�Environment
 �

conjn	New�unify�bnd�env	�variNamel��Xvar�Yvar�New

�

unify�bnd	X�Y�Xvar�Yvar�Environment
 ��

� New is unify	X�Y�Environment
 �

conjn	New�unify�bnd�env	Y�Xvar�Yvar�New

�

unify�bnd�env	Val��variXvarnamel���variYvarnamel��Environment
 ��

�� appfun	conjn	negn	equal	�variXvarnamel���variYvarnamel�

�

���variXvarnamel���variYvarnamel���
�

���variYvarnamel��Val�Environment�
�

unify�bnd�env	Val�Xvar�Yvar�Environment
 ��

�� appfun	appfun	conjn	Xvar���Xvar�Val��
�

conjn	Yvar���Yvar�Val��

�

Environment
�

��

dom�intersection	�domXdelem���domYdelem�
 ���

mk�dom	intersection	Xdelem�Ydelem

�

exc�union	�excXeelem���excYeelem�
 ��� mk�exc	union	Xeelem�Yeelem

�

dom�exc	�domDelem���excEelem�
 ��� mk�dom	set�difference	Delem�Eelem

�

ultimate�assoc	�variNamel��Environment
 ��

�� ultimate�assoc�binding	�variNamel��

assoc	�variNamel��Environment
�

Environment
�

ultimate�assoc	X�Environment
 �� �� X�

ultimate�assoc�binding	�variNamel�����Environment
 �� �� �variNamel��

ultimate�assoc�binding	�variNamel��

��variNamel���domDelem���

Environment

�� �� �bnd��variNamel���domDelem���

ultimate�assoc�binding	�variNamel��

��variNamel���excEelem���

Environment

�� �� �bnd��variNamel���excEelem���

ultimate�assoc�binding	�variNamel����variNamel��Y��Environment
 ��

�� ultimate�assoc	Y�Environment
�

mk�dom	��
 �� �� ���

mk�dom	�D�
 �� �� D�

mk�dom	�DDs�
 ��� �dom�DDs��

mk�exc	��
 �� �� ��

mk�exc	Eelem
 ��� �excEelem��

neq	X�X
 �� �� false�

neq	X�Y
�

negn	��
 �� ��

negn	X
 ��� ���

membern	E���
 �� �� ���

membern	E��ERest�
 �� �� �ERest��

membern	X��YRest�
 ��� membern	X�Rest
�

assoc	N���
 �� �� ���

assoc	N���N�V�Ar�
 �� �� �N�V��

assoc	N��AfAr�
 ��� assoc	N�Ar
�

� conjn	X�Y
 acts like if neq	���X
 then Y else ��

� appfun is the normal functional append

� equal� intersection� union� set�difference are built�ins� ground args

��

Table of Contents

� Introduction �

� Domain Terms �

 Exclusion Terms �

� Occurrence Bindings �

� Domains�Exclusions in Relation De�nitions � � � � � � � � � � � !
��� Facts and dom�exc Reductions � � � � � � � � � � � � � � � � � � � !
��� Clauses and bnd
to
is Reductions � � � � � � � � � � � � � � � � � �

� Finite�Domain�Exclusion Functional Programming � � � � � � ��
��� Domains�Exclusions as Function Arguments � � � � � � � � � � � ��
��� Functions with Domain�Exclusion Values � � � � � � � � � � � � � ��

 Domain and Exclusion Anti�Uni�cation � � � � � � � � � � � � � � ��

� Operational Semantics ��

� Conclusions ��

A The RELFUN Meta�unify ��

This article was processed using the LATEX macro package with LLNCS style

