
Computing Cost Estimates for Proof Strategies

Knut Hinkelmann Helge Hintze
DFKI� Postfach ����� ����� Kaiserslautern� F�R� Germany

e	mail
 hinkelma�dfki�uni	kl�de

Abstract

In this paper we extend work of Treitel and Genesereth for calculating
cost estimates for alternative proof methods of logic programs� We consider
four methods� ��� forward chaining by semi�naive bottom�up evaluation� �	�
goal�directed forward chaining by semi�naive bottom�up evaluation after Gen�
eralized Magic�Sets rewriting� �
� backward chaining by OLD resolution� and
��� memoing backward chaining by OLDT resolution� The methods can in�
teract during a proof� After motivating the advantages of each of the proof
methods� we show how the e�ort for the proof can be estimated� The calcu�
lation is based on indirect domain knowledge like the number of initial facts
and the number of possible values for variables� From this information we can
estimate the probability that facts are derived multiple times� An important
valuation factor for a proof strategy is whether these duplicates are eliminated�
For systematic analysis we distinguish between in costs and out costs of a rule�
The out costs correspond to the number of calls of a rule� In costs are the
costs for proving the premises of a clause� Then we show how the selection
of a proof method for one rule inuences the e�ort of other rules� Finally we
discuss problems of estimating costs for recursive rules and propose a solution
for a restricted case�

�

Contents

� Introduction

� Proof Methods �

 Proof Strategies �

� Cost Estimates for a Proof Strategy �

� Computing Cost Estimates �
��� Number of Rule Instantiations �
��� Unique Rule Instantiations ��
�� Separating In	Costs and Out	Costs for a single Rule � � � � � � � � � � ��

� Propagating Cost Estimates ��

� Recursive Rules ��

� Conclusion ��

� Introduction

Besides the traditional depth	�rst backward	chaining �top	down� strategy for evalu	
ating logic programs there are a number of alternative proof methods� The motivation
for considering alternative approaches comes from the following two main drawbacks
of the depth	�rst search underlying most implementations� First� the operational
semantics does not correspond to the model	theoretic semantics� The proof of a
theorem may not terminate although the theorem is in the model of the program�
Second� a large portion of the problem space may be searched redundantly if there
are multiple ways in which a subgoal can be derived� A well	known example is the
standard speci�cation of Fibonacci numbers�

These disadvantages can be overcome bymemoing or caching queries and their so	
lutions for later use� This led to the development of extension tables �Dietrich� �����

and the tabulation extension of OLD resolution �Tamaki and Sato� ������ Deduc	
tive databases contribute another motivation for alternative approaches
 the tuple	
oriented execution performs a lot of database accesses with small granularity� For
the coupling with a database a set	oriented approach would be preferable� e�g� the
Query	Subquery approach �Vieille� ������

Forward	chaining �bottom	up� evaluation corresponds to a model	generation ap	
proach� It is both complete and e�cient because it avoids the derivation of du	
plicates� But if bindings for some argument positions are given in the query� it
derives a lot of redundant facts which do not contribute to the proof� Recent de	
velopments in bottom	up query evaluation� which are based on program transforma	
tions� retain the focusing properties of top	down evaluation ��Ramakrishnan� �����
Rohmer et al�� ����� Beeri and Ramakrishnan� ����� Sacca and Zaniolo� �������

Which of these proof methods should be used for a logic programming system�
In �Bancilhon and Ramakrishnan� ����� performance evaluations of several recursive
query evaluation algorithms are presented� They measure the computation cost of
each method individually over �ve examples�

Instead of deciding on a proof method once and for all� however� it might be
advantageous to have a collection of them in one system� Then the problem is
to decide when to use which proof method� We will discuss criteria on which the
selection of a proof strategy for one particular query depends� Thereby we will
concentrate on criteria that a�ect the e�cient execution� In �Treitel� ����� algorithms
for estimating the computation costs of forward and backward application of rules�

for LLNR resolution have been presented� For one query both forward and backward
chaining inference steps can be mixed� In the following sections of this paper we will
extend this approach� The main di�erence lies in the proof methods that we consider�
In our system we do not only have forward and backward reasoning but also goal	
directed forward reasoning �after Generalized	Magic	Sets rewriting� and backward
reasoning with tabulation� We will also clarify how the cost estimates for one rule
have to be propagated to other rules by distinguishing between in costs and out costs

�We use the term deduction rule or short rule synonymously for clause�

of a rule�

� Proof Methods

As pointed out by �Beeri and Ramakrishnan� ����� there are two modes of informa	
tion passing in evaluating a query to a logic program� The �rst is called sideway
information passing� By solving a premise predicate variable bindings are obtained
which can be passed to another premise in the same rule to restrict the computation
for that predicate� In the second mode information is passed to a rule from the query
by uni�cation with the head of the rule� it is called top�down propagation�

In principle� logic programs may be evaluated by forward or backward chaining�
Backward chaining supports both information passing modes but the declarative
meaning of a program is contradicted by the termination problem of many imple	
mentations�

Example � The simple left	recursive ancestor program

ancestor�X�Y� �� ancestor�X�Z�� parent�Z�Y��

ancestor�X�Y� �� parent�X�Y��

with query

�� ancestor�john�A��

will not terminate� when evaluated by a depth	�rst� left	to	right backward	chaining
proof method like OLD resolution� To avoid this problem� we have to change the
order of the clauses and of the premises in the �rst clause to get a right	recursive
program� It would be nice� however� if the programmer would not need to think
about it� Therefore we are looking for complete methods�

By memoizing �sub�goals and their solutions for further use� we can get a com	
plete version of backward	chaining evaluation �e�g� OLDT resolution �Tamaki and
Sato� ������ extension tables �Dietrich� ������ QSQR �Vieille� ������ RQA�FQI �Ne	
jdl� ������� The principle of memoing is similar for all methods� The backward
chaining system has an additional memory� the so	called solution table� At the �rst
occurrence of a query Q� a new entry into the solution table is created� The solution
list for Q is still empty� Then Q will be proved by ordinary backward chaining� Ev	
ery solution of Q will be added to the solution list of Q� If the same query Q occurs
multiple times � i�e� there already exists an entry for Q in the solution table � no new
proof will be started but the solutions already in the solution list are retrieved� By
this approach every query is proved only once� Additionally� some non	terminating
loops are avoided
 if a query Q occurs a second time but no solutions have been

�

derived the evaluation stops� For a more detailed description of this approach and a
proof of its completeness see for example �Tamaki and Sato� ������

Evaluating the above left	recursive program of Example � with a memoingmethod
will terminate� Since memoing is space	consuming� the incomplete� non	memoing
approach can still be useful but only for �safe�� e�g� non	recursive� programs� Besides
being complete the memoing methods can also dramatically increase e�ciency of
programs by reusing previously computed solutions

Example � A well	known example for redundant recomputation is the standard
speci�cation of Fibonacci numbers�

fib�	�
��

fib�
�
��

fib�N�F� �� N
 � N �
� fib�N
�F
��

N� � N � �� fib�N��F���

F � F
 F��

The complexity can be reduced from exponential to linear by memoizing instead of
recomputing the values of the �rst n	� �bonacci numbers�

Forward chaining by naive or semi	naive evaluation is a complete �xpoint proce	
dure �Bancilhon and Ramakrishnan� ������ Since pure forward chaining evaluation
does not take into account a query� sideway information passing is the only informa	
tion passing mode �see above�� To restrict model generation to those ground facts
relevant to answer a particular query� the Magic	Sets rewriting technique introduces
auxiliary �magic� predicates to simulate the second �top	down� information passing
mode �Bancilhon et al�� ������ An additional fact � called Magic Seed � carries
the bindings of the query� the arguments of the seed fact are exactly the variable
bindings of the query� All relevant rules will get an additional premise that can be
satis�ed by magic facts� Thus� the variable bindings of the query are passed to the
body of the applicable rules� The Generalized Magic Sets �GMS� transformation
�Beeri and Ramakrishnan� ����� extends the sideway information passing strategy
from base predicates to derived predicates� The rewriting strategy depends on the
particular strategy for sideway information passing� A detailed description of GMS
rewriting would require too much space� Therefore we will demonstrate it with an
example� For more information and an algorithm see �Beeri and Ramakrishnan� �����
Balbin et al�� ������

In addition to the introduction of Magic Sets an adorned version of the program
is created� The adornment of a predicate depends on the binding pattern of the goal
for which it can be called
 A predicate pbbf is assumed to be evaluated with the �rst
two arguments bound to a ground term and the third argument being a term with
free variables�

Example � The simple ancestor program

�

ancestor�X�Y� �� ancestor�X�Z�� parent�Z�Y��

ancestor�X�Y� �� parent�X�Y��

with query

�� ancestor�john�A��

will be rewritten to

magic�ancestor�bf�john��

magic�ancestor�bf�Y� �� magic�ancestor�bf�X�� parent�X�Y��

ancestor�bf�X�Y� �� magic�ancestor�bf�X��

ancestor�bf�X�Z��

parent�Z�Y��

ancestor�bf�X�Y� �� magic�ancestor�bf�X�� parent�X�Y��

The initial bindings of the query are given by the seed magic ancestor bf�john�

while the rule for magic ancestor bf is responsible for the simulation of the top	
down propagation of variable bindings� The adornment bf indicates that the argu	
ment of magic ancestor bf delivers the bindings for the �rst argument of ancestor�
This transformation is data independent� For every set of facts forward chain	
ing of the rewritten program derives all the facts necessary to answer the query
ancestor�john�A��

Model generation without rewriting may pay if the query does not restrict the
model generation so much� A trivial example would be that the program consists
only of facts containing John�s ancestors� But also for more realistic programs� if the
query does not heavily restrict the model generation� it might be better to renounce
rewriting� A preferable approach would be simply to select the relevant rules� execute
them by simple bottom	up evaluation� and select the matching facts�

As part of the CoLab knowledge representation system �Boley et al�� ���� we
have extended a logic programming language with various alternative proof meth	
ods� These are a modi�cation of OLDT resolution �Tamaki and Sato� ������ where
we can explicitly specify the tabulation predicates� and the semi	naive bottom	up
evaluation �Bancilhon� ����� with optional Generalized	Magic	Sets �Beeri and Ra	
makrishnan� ����� rewriting� Thus� we distinguish four kinds of proof methods in
our system

Forward Chaining� semi	naive bottom	up evaluation

Goal�Directed Forward Chaining� semi	naive bottom	up evaluation
after Generalized	Magic	Sets rewriting

Backward Chaining� top	down proof by OLD resolution

�

Memoing Backward Chaining� top	down proof by OLD resolution
with tabulation �OLDT resolution�

There are interfaces between the forward	chaining and the backward	chaining
implementation� such that for proving a theorem any combination of the four proof
methods can be applied� The programmer may prejudice �part of� the strategy by
explicitly determining the proof methods for individual rules� The control of the
combined forward�backward	chaining system is rather complex
 Evaluation starts
with the bottom	up execution of the �potentially GMS	rewritten� rules that can
be triggered by the facts of the program� The top	down reasoner is called for the
remaining backward	provable premises of an applied rule �if any�� The derived facts
of this phase are added to the program� If the query has already been derived in
this phase� execution stops� Otherwise� the backward	chaining component is applied
reusing forward	derived facts without recomputing them� A detailed description of
the system can be found in �Labisch� �����

As already mentioned above� the choice of the proof method depends on complete	
ness and e�ciency criteria� In the following sections we will present an approach for
estimating the e�ciency of a proof based on cost estimates� It extends the compu	
tation of cost estimates as described in �Treitel� ����� and �Treitel and Genesereth�
������ where only the �rst two types of evaluation �forward and backward chaining�
were considered� The cost estimates can then be used to choose a proof method for
every rule�

� Proof Strategies

Since there are a number of proof methods available for logic programs� we have to
decide when to apply which method� We will �rst de�ne what a proof strategy is

De�nition � 	Proof Strategy
 A proof strategy is an assignment of a proof method
to each clause of a logic program P�

Now we will consider at which level and time a decision for a proof method can
be made� Possible levels on which a strategy can be determined are �in order of
decreasing speci�city�

Rule� Each rule is associated with one of the four proof methods� This
could mean that two clauses de�ning the same relation are evaluated
by di�erent proof methods�

De�nition� All clauses de�ning one predicate must be evaluated by the
same proof method�

Module� Procedures can be collected to modules� for which a uniform
proof method is seeked�

�

Program� There is no collaboration between proof methods� A goal is
proved by selecting one of the available proof methods in advance�
which is used for the whole program�

System� Only one proof strategy is available in the system and conse	
quently there is no choice� This is the case for most of the logic
programming languages� Prolog� for instance� only supports a kind
of SLD	resolution�

In principle� control decisions can be made either at run time or at compile
time� Decisions made at run time can bene�t from up	to	date information �e�g�
actual variable bindings� and therefore are more precise� Their overhead� however�
may counteract their improvement� Decisions made at compile time might be less
accurate� but they can be made once and used several times� Also they can be more
complex because the time they consume themselves does not increase the waiting
time for an answer� Our approach is a compile�time approach making a decision at
de�nition level and taking into account information from the query� The decision
for a rule�s strategy depends on cost estimates for its application� Then an overall
strategy is an assignment of one of the four proof methods to every clause of the
program such that all rules de�ning a particular predicate are evaluated by the same
method�

It should be noted that it can be advantageous to apply di�erent proof methods
to a single rule depending on the variable bindings of the query� This will not
be considered by our approach� but can be achieved in combination with program
specialization techniques like partial evaluation �Komorowski� ������ In this case�
the rules de�ning a predicate p are duplicated and specialized for a particular query
p�a�X�� After renaming the predicate we have a new predicate p�� which will be
applied if p is called with �rst argument bound to a� The rules de�ning p� can be
assigned a proof method di�erent from that of p�

� Cost Estimates for a Proof Strategy

For each clause the cost estimates for evaluating them by any of the available proof
methods are calculated� The total cost of a strategy S for a program P is computed
by the following equation

cost�S� � ���X
r�P

vf�r� S� � ef�r� � vb�r� S� � eb�r� � vgf�r� S� � egf�r� � vmb�r� S� � emb�r�

where ef�r� is the estimated cost for applying rule r in forward direction by semi	
naive evaluation� eb�r� is the estimated cost for applying r in backward direction�
egf�r� is the estimated cost for using a goal	directed forward	chaining approach �after

�

rewriting�� and emb�r� is the estimated cost for applying memoing backward chaining
by OLDT resolution� The parameters vx play the role of selectors

vf�r� S� �

�
� if r is executed as a forward rule according to strategy S
� else

vb�r� S� �

�
� if r is executed as a backward rule in strategy S
� else

vgf�r� S� �

�
� if r is executed as a goal	directed forward rule in S
� else

vmb�r� S� �

�
� if r is executed as a backward rule with memoing in S
� else

The task is to choose values for vf �r� S�� vb�r� S�� vgf�r� S�� and vmb�r� S� such
that cost�S� is minimal�

� Computing Cost Estimates

The decision is made on indirectly domain�dependent information� It is more informa	
tive than purely syntactic approaches which are applicable to any program without
any advice concerning their content� On the other hand� they abstract from deep
knowledge about the domain and the concrete data of the program� In particular�
we consider

� estimates on the number of facts for each predicate�

� the probability of deriving duplicates�

� the distribution of possible variable instantiations� and

� the number of answers that are needed �one answer or all answers��

� Additionally� we take into account the degree of restrictions given by the query�

In this section we will �rst repeat some equations from �Treitel and Genesereth�
����� for calculating the basic values� i�e� the number of �unique� rule instantiations�
Then we will present a systematic way for computing the costs of rule execution with
any of the available proof methods�

��� Number of Rule Instantiations

An important value for the computation of cost estimates is the number of facts�
which can be computed by a rule� i�e� the number of consistent instantiations of the
body of a rule� The instantiation of two literals is consistent if common variables

�

have identical bindings� The probability of consistent instantiations depends on the
number of possible values for common variables� Consider two literals p�X�Y� and
q�X�Y�Z�� Let n�Q� be the number of possible instantiations for a literal Q and let
d�X� be the number of possible values for a variable X� Then the probability that
their instantiation is consistent is equal to d�X��� � d�Y��� and thus the number of
consistent instantiations is

n�p�X� Y�� � n�q�X� Y� Z�� � d�X��� � d�Y��� �

The number of consistent instantiations of a rule is calculated iteratively simulat	
ing a left	to	right information passing strategy
 Let r be a rule P � Q�� Q�� � � � � Qn�
let �i be the set of variables of premise Qi�� that have already been bound by the
premises Q�� Q�� � � � � Qi� Let A�r� i� be the number of consistent instantiations of the
�rst i premises� Then

A�r� �� � n�Q��

A�r� i� �� � A�r� i� � n�Qi��� �
Y
V��i

d�V ��� ���

and the number n�P � of derivable facts is equal to A�r� n��

Example � If the premises of a rule do not share any variable� the number of possible
facts derived by a rule is computed by the product of the possible instantiations for
each premise� Consider the following rule

p�X�Y� �� s�X�� t�Y��

If there are ��� possible instantiations for s and �� possible instantiations for t� the
rule can compute ���� facts� If the premises share variables� these must have the
same value at each occurrence� which reduces the number of possible derivations�
Then the number of consistent instantiations is equal to the number of possible
instantiations divided by the number of possible values for each multiple occurrence
of a variable� Consider the rule

p�X�Y� �� s�X�Z�� t�Z�Y��

If the number d�Z� of possible values for variable Z is � and there are again ���
possible instantiations for s and �� possible instantiations for t� then the number of
derivable facts is computed by ��� � ����� i�e� there are ��� possible derivations�

��� Unique Rule Instantiations

Di�erent instantiations of the variables in a rule may lead to identical instantiations
of the conclusion� This may be the case� for example� if rule instantiations di�er

��

only for variables� which do only occur in the premises� These multiple derivations of
identical facts are called duplicates� A substantial factor for the selection of a method
is whether duplicates are eliminated or proved redundantly� Therefore this has to be
considered by the cost estimation� This means that we need to know not only how
many consistent instantations of a rule can be found but also how many of them are
unique�

Consider a rule p�X�� Q�� Q�� � � � � Qn� Let again d�X� be the number of possible
values for a variable X� We �rst assume that every possible value for a variable
occurs with equal probability� Then the number EX�m� of unique derivations after
m derivation steps is computed by the following recursive formula

EX��� � �
EX�m� �� � EX�m� � Pu�m� �

with Pu�m� being the probability that the m	th fact has not already been derived

Pu�m� � ��
EX�m�

d�X�

The recursive de�nition for EX�m� can be approximated by the following formula

EX�m� �
�� �� � d�X����m

d�X���
�

Now we generalize this formula for conclusions with multiple variables
 Let P �

Q�� Q�� � � � � Qn be a rule� let X�� � � � �Xk be the variables of P and let m � n�P � �
A�r� n� be the number of consistent instantiations for P computed by formula ����
Then the number of unique instantiations nunique�P � is approximated by the formula

nunique�P � � EX������Xk
�m� �

� � �� � p�m

p
with p �

kY
i��

d�Xi�
�� ��

Example � Assume that the rule

p�X� �� s�X�Z�� t�Z�Y��

has ��� consistent instantiations� i�e� n�p�X�� � ���� and the domain of X has cardi	
nality ���� i�e� d�X� � ���� Using formula �� above we get

�� � EX����� �
�� ����������

�����
� ���� � ��

Thus� from ��� derived facts we get probably ����� duplicates if they are not elimi	
nated�

��

For these approximations it has been assumed that every possible value for a
variable occurs with equal probability� If it is known that some values occur more or
less often� we can use weight factors� The formula

EX�n� a� � �� ��� �g�a� � d�X�����n

computes the probability that variable X is instantiated with value a after n deriva	
tion steps� The weight g�a� is a measure for the frequency of the value a being an
instantiation for X�

��� Separating In�Costs and Out�Costs for a single Rule

With these basic values we can now compute the costs for evaluating a rule with any
of the available proof methods� For systematic analysis we distinguish between in
costs and out costs of a rule� The out costs correspond to the number of calls of a
rule� In costs are the costs for proving the premises of a clause� Then the total costs
of a rule are equal to the product of in costs and out costs because for each call the
premises have to be tested�

The main value for in costs of a rule is the number of consistent instantiations
for its premises� Here the elimination of duplicates has to be taken into account�
However� premises are not proved by the rule itself� but by other rules� Thus� we see
how the costs of one rule are in uenced by the proof method of other rules� Let I�r�i�
be the number of instantiations for the ith premise of rule r� Depending on the proof
method of the rule that derives these instantiations� its value is calculated either by
formula ��� or ��

I�r� i� �

���
��

EX� �����Xk
�A�r� i�� if the ith premise is proved by a

duplicate	eliminating method
A�r� i� if duplicates are not elimated�

For goal	directed reasoning �i�e� goal	directed forward chaining� backward chain	
ing and memoing backward chaining� we have to consider that a rule is called with
a query� such that not all instantiations are computed� Therefore we compute their
costs with respect to a binding pattern�

Forward Chaining

The in costs of a forward rule are equal to the number of instantiations of the
premises� To these costs we have to add the costs S for storing each of the unique
derived facts�

InCostsf�r� �
nX
i��

I�r� i� � EX������Xk
�A�r� n�� � S

��

The out costs for forward chaining are equal to � because each instantiation is com	
puted exactly once and can be used multiple times� This means that the forward
costs for a rule r are simply the in costs

ef�r� � InCostsf�r� �OutCostsf�r�

�
nX
i��

I�r� i� � EX������Xk
�A�r� n�� � S

���

Goal�directed Forward Chaining

Goal	directed forward chaining is based on a rewriting of the rules to restrict the
derivation of facts� The cost estimates must re ect the e�ort of evaluating the rewrit	
ten rules
 the rewriting algorithm adds an additional premise with a magic predicate
to the original rule and introduces new rules to derive instantiations for this new
predicate� Thus� for goal	directed forward chaining the number of premises is in	
creased because of the magic predicates� but the number of instantiations is reduced�
The Magic	Sets rewriting depends on the binding pattern of the query� Consequently�
the cost estimates are also computed with respect to a binding pattern�

Given a rule p� !X�� Q�� Q�� � � � � Qn and a query �� p� !Xb� with binding pattern
�adornment� ad� !X stands for a vector of terms involving variables and constants
and !Xb stands for the ground terms of !X� The rewriting algorithm generates a new
rule rad with additional premise magic pad� !Xb�

rad
 pad� !X�� magic pad� !Xb�� Q�� Q�� � � � � Qn

and k rules m�rad
�
� � � � �m�radk de�ning magic pad� one for each rule de�ning p�

Rewriting does not e�ect the calculation of a rule�s out costs� Because the out
costs for forward	chaining rules are always equal to �� this is also true for each of the
rules that result from rewriting� The in costs� however� must be calculated di�erently�
They are calculated by adding to the in costs of the original rules the costs of deriving
the magic facts� which are equal to the costs for the rules m padi

egf�r� � InCostsgf�r� ad�

� InCostsf�r� �
kX

i��

ef�m�radi �

� InCostsf�r� �
kX

i��

InCosts�m�radi � �

���

Backward Chaining

Similar to forward chaining the in costs for backward chaining depend on the num	
ber of rule instantiations� The number of instantiations is less� however� because

�

some of the variables are assumed to be already instantiated by the query� Multiple
instantiations in backward chaining mode are computed by backtracking steps� But
for backtracking an additional price has to be paid for restoring the environment�
We assume that these additional costs B are constant� If we assume that a rule
p�X�Y � � Q�� Q�� � � � � Qn is called with unbound arguments in the query �i�e� the
adornment ad is 	�� the in costs are

InCostsb�r�	� �
nX
i��

I�r� i� �B �

For ordinary backward chaining a rule can be called from many places with iden	
tical binding pattern� Each time a rule is called all the instantiations are derived
again� This is taken into consideration by the out costs� The out costs are equal to
the number of calls for the rule with repect to a binding pattern for the query� If only
one solution is needed� the out costs are �� Most frequently� even if for the topmost
goal one solution is su�cient� identical subgoals may be proved multiple times �cp�
the Fibonacci numbers of Example ���

Let the rule r be called by premise i � � in the body of another rule r�� The
number of valid partial instantiations of premises �� � � � � i �as given by the interme	
diate solutions A�r�� i�� corresponds to the calls of the backward chaining rule r� To
calculate the number of calls for rule r we can use formula ���� The �nal out costs
are computed by adding up the number of partial instantiations of every calling rule�
There is no upper bound for the out costs�

To compute the cost estimates of a rule for backward chaining we have to sum
up the product of in and out costs for each binding pattern ad

eb�r� �
X
ad

�InCostsb�r� ad� �OutCostsb�r� ad�� � ���

Memoing Backward Chaining

While for ordinary backward rules the out costs are equal to the number of calls for
the rule� for the memoing method from these costs the probability for duplicates has
to be subtracted� This means that the out costs are less than or equal to the number
of the unique instantiations of the query Q with adornment ad� On the other hand�
we have to add the costs S for storing the derived facts�

OutCostsmb�r� ad� � nunique�Q� � S � A�r� n� � S �

The costs of looking up the tables� however� are much smaller than for redoing
the proof and are therefore neglected� Thus� the in costs for backward chaining with
memoing are the same as without memoing and we get

emb�r� �
X
ad

�InCostsmb�r� ad� �OutCostsmb�r� ad�� � ���

��

p(X) <- r(X), t(b,X)

p(X) <- r(X), s(a,X)

q(X) <- p(X), r(X)

Goals

Facts
t r s

FIGURE �� A rule graph

� Propagating Cost Estimates

Now that we can compute cost estimates of individual rules we must �nd a strategy
with optimal cost value� i�e� we have to minimize cost�S� as de�ned by formula ���
in Section �� To illustrate the types of proof strategies we will extend the de�nition
of a rule graph introduced in �Treitel� �����

De�nition 	Rule Graph �Treitel� �����
 A rule graph is a directed graph� The
nodes in the graph are labeled by rules� There is an arc from rule r to rule s i	 r�s
output literal �the head of the clause� is uni�able with one of s�s input �body� literals�
The rule r is said to be a predecessor of s and s a successor of r�

Fig� � shows a rule graph with sample rules� At the bottom we see the facts and
at the top we see the goal for the proof� The direction of an arc is from bottom to
top� A proof strategy is drawn in the rule graph by using di�erent kinds of arrows
for the di�erent evaluation methods of rules� Downward arrows starting from a node
denote a backward rule and upward arrows ending in a node denote a forward rule
�see Fig� ��� No rule can have both downward arrows starting from its corresponding
nodes and upward arrows ending in its node�

An important aspect is the sequence of calculation� On the one hand� we sepa	
rated in costs and out costs to determine the in uences of the evaluation� In Sec	
tion �� we saw that the in costs of a rule depend on the number of consistent
instantiations of its premises� where we have to take into account� whether dupli	
cates are eliminated� On the other hand� the distinction between in and out costs

��

Goals

Facts

FIGURE �� A coherent rule graph

Goals

Facts

r4

r1

r3
r2

FIGURE �� The rule graph for example �

shows that the direction of one rule can only have a restricted in uence on the costs
of other rules�

Example � The simple rule system

r�
 p
�Y� �� p��Y�� p��Y��

r�
 p��Y� �� b
�Y�W��

r�
 p��Y� �� p��X�Y��

r�
 p��X�Y� �� b��X�Y�Z��

is represented by the rule graph of Fig� � From the arrows we see that r�� r� are
forward rules and r�� r� are backward rules� The number of derived facts can be
calculated bottom	up in the graph rule by rule� For example� we have to consider
r� and r� before r�� The number of instantiations for p��X�Y� and for p��Y� can
be calculated from the base facts for b
 and b�� The number of instantiations for

��

p��X�Y� again is used to compute the number of instantiations for p
�Y�� The in
costs for each rule are computed in the same order as the facts because they require
the number of instantiations� while the out costs are computed top	down using the
values of the in costs and the number of derived facts� The out costs mainly depend
on the number of times the rules are evaluated�

In general� the problem of �nding an optimal strategy is NP	complete if only
forward and backward chaining of rules are available �Treitel and Genesereth� ������
We have considered memoing backward chaining and goal	directed forward chaining
as additional proof methods� Thus� the search space for the optimal strategy is
increased by giving more alterntives to evaluate a rule� Restrictions on allowed
strategies can reduce the e�ort� Coherence is an important property of strategies

De�nition � 	Coherence
 A strategy is called coherent� if all successors of a back�
ward rule are also backward rules and all predecessors of a forward rule are also
forward rules� Otherwise the strategy is called incoherent�

In the rule graph a coherent strategy can be identi�ed� if it is possible to make a
cut through the arcs� such that all rules below the cut are forward rules and all rules
above are backward rules �Fig� ���

The algorithm for computing an optimal strategy depends on the A� algorithm
�Nilsson� ����� and a lower bound of the estimates for the in costs and the number of
derived facts of the rules� If only coherent strategies are allowed� the cost estimates
for a rule do not depend on the direction of other rules� An important reason for
this is that in a coherent strategy only rules at the cutting edge can change their
direction for the strategy to remain coherent� This means that changing the direction
of one rule cannot require changing the direction of any other rule� As �Treitel and
Genesereth� ����� and �Treitel� ����� showed� for coherent strategies where no rules
can generate duplicates an optimal strategy can be computed with e�ort O�N���
where N is the number of rules�

For incoherent strategies� changing the proof method of one clause can in uence
the costs for neighboring rules in the rule graph� This can lead to the consequence
that the proof method for other rules should be changed� In our system a strategy
is not required to be coherent� Any combination of proof methods is allowed� But
also for incoherent strategies the propagation of costs �and consequently changing
the direction of rules� is restricted� Considering these restrictions can improve the
propagation algorithm� Most important� forward rules have the function of a wall
for propagation� because their out costs are always equal to �� This means that any
changes of their in costs does not a�ect the out costs� Additionally� it does not matter
how often their derived facts are used� This means that changing the direction of
any rule that uses the result of a forward rule does not a�ect its costs�

��

� Recursive Rules

The calculation of cost estimates works �ne for nonrecursive rules� If we allow recur	
sion we need� besides the indirect domain knowledge �Section ��� additional direct
knowledge about the application domain� For example� it is hard to cope with tran	
sitivity and with equivalence relations�

Example �� Consider the rules

t�X�Y� �� g�X�Y��

t�X�Y� �� g�X�Z� t�Z�Y��

t�X�Y� �� t�Y�X��

and the two fact bases

DB
� g�
���� g������ g������ g������ g������

g������ g������ g������ g���
	��

DB�� g�
���� g������ g������ g�
���� g���
��

g������ g���
	�� g�
	���� g������

The rule system derives ��� tuples for t if using the facts from DB
 and only
�� tuples for t if using the facts from DB�� This di�erence cannot be detected by
our approach for calculating cost estimates� because it uses only indirect domain
knowledge �number of facts and possible values for the variables� which is identical
for both databases�

But for a restricted form of recursion �e�g� without transitivity and equivalence
relations� we can calculate cost estimates�� In a �rst step we identify clusters of
mutually recursive rules� For propagating costs we collaps the rule graph treating all
the mutually recursive rules of one cluster as a single node �Fig� ��� All the rules of a
cluster are required to be evaluated in the same direction� To calculate the number of
facts derived by the rules of one cluster we use an iterative approach� This iterative
approach corresponds to the semi	naive strategy for evaluating recursive rules� A
problem with this approach� however� is that � as for the corresponding evaluation
� the iterative computation of possible facts is not guaranteed to terminate if the
number of possible facts is in�nite�

Consider for instance the clauses de�ning ancestor in Section �� These two rules
are collected into one cluster and the number of possible facts is estimated
 Let�s
assume that our program contains parent	relations of at least four generations� To
calculate the cost estimates we use the additional domain knowledge that every

�For the remaining cases the user can �x the proof method and give a constant cost estimation

value�

��

FIGURE �� Collapsing nodes in recursive rule graphs

person has at least two parents� By iteration of four steps we can see that there are
at least � solutions for every query of ancestor with the �rst argument bound� e�g�
�� ancestor�john�X�� This estimated number of possible facts can then be used to
compute the in costs of the rules calling ancestor�

The problems of calculating cost estimates for recursive rules must not be confused
with the termination and completeness problems of the proof method� One problem is
that there may be an in�nite number of solutions� Then a complete system will derive
all these solutions and thus will not terminate� However� this must not be the case
for the calculation of cost estimates which must be �nite� Completeness is a problem
only for recursive programs� In Section � we saw that incompleteness occurs only
if we execute recursive rules by ordinary backward chaining� To reduce termination
problems we do not allow this method� If backward chaining is appropriate� the
memoing version must be used�

	 Conclusion

We have presented an approach for selecting an e�cient proof strategy for logic
programs� which is based on cost estimates for evaluating each rule with any of the
available proof methods� The basic information for calculation is the number of
facts for each base predicate and the cardinality of the domain for each variable�
From these values we can estimate the probability that an actually derived fact
has been derived already in a previous step� An important valuation factor for a
proof strategy is� whether these duplicates are eliminated or whether they lead to
further redundant derivations by evaluating other rules� Additionally� we consider
storage costs for derived facts and the expense for backtracking� To systematically

��

analyze the in uence that the evaluation of one rule has for other rules� we distinguish
between in costs and out costs of a rule� In general� the in costs for forward reasoning
are higher than for backward reasoning because either the number of instantiations
is not restricted by a query or the e�ort of evaluating magic rules has to be added�
For out costs the opposite is true because forward rules are evaluated exactly once
and their results can be used several times�

The calculation of cost estimates for a strategy may vary with the particular
implementations of the proof methods and with the intended application of the pro	
gram
 For instance� an enormous e�ciency gain would be reached if we can use
matching instead of uni�cation� This is possible if the rules are required to be range	
restricted� i�e� every variable in the head of a clause has to be bound by a literal in
the body� This decreases the in costs for a forward chaining rule because the premises
have to be tested against ground facts only requiring just matching instead of uni�	
cation� This means that instead of simply counting the number of instantiations and
backtracking steps they have to be multiplied by di�erent factors for forward and
backward chaining� respectively�

The memoing version of backward chaining can dramatically reduce the com	
plexity of a proof compared to backward chaining without memoing� Since it also
forces termination in many cases� memoing backward chaining should be preferred
for safety reasons� On the other hand� the tabulation of solutions may be very space
consuming� Since it cannot be determined automatically whether rules are safe� it
should be in the responsiblity of the programmer to annotate rules as �safe�� Only
for safe rules backward chaining without tabulation of solutions should be selected
as an allowed proof method�

Bry showed by partial evaluation of an upside	down meta	interpreter that � with
respect to the proved subgoals � bottom	up reasoning of a Magic Set	rewritten pro	
gram is equivalent to top	down reasoning of the original program �Bry� ������ Since
bottom	up evaluation avoids multiple derivations of lemmas� the cost estimates for a
top	down proof with tabulation and goal	directed bottom	up reasoning are compara	
ble� But for real implementations the e�ort for accessing previous solutions and for
satisfying premises may di�er� For example� having matching instead of uni�cation
for forward chaining reduces the costs compared to backward chaining� Also� while
bottom	up evaluation and the QSQR top	down evaluation are set	oriented� OLDT
resolution is tuple	oriented� Therefore we have separated the computation of their
cost estimates�

Goal	directed forward chaining requires additional e�ort for program rewriting�
in particular if there is a large number of rules� This e�ort has not been considered
by the cost calculation� It is assumed that the program will be rewritten at compile	
time� This is usually the case for deductive databases and many applications of
logic programs� where queries are embedded into �xed application scenarios� On
the other hand� there may be applications of information systems� where not every
possible query can be anticipated at compile time� Then the system has to react on
various kinds of unpredicted queries� such that program rewriting would considerably

��

increase the answer time and must not be ignored for cost estimation�
Access to external data has not been taken into account in any way� although it

may considerably in uence the selection of a proof method� If some facts reside in
a database instead of main memory� the number of accesses is a considerable value�
For this reason� deductive databases heavily prefer set	oriented evaluation instead of
tuple	oriented approaches�

In summary� the decision for a proof strategy can depend on general as well as
query	speci�c factors� Many of these in uences are considered by the cost estimates
presented in this paper�

References
�Balbin et al�� ����� I� Balbin� G� S� Port� K� Ramamohanarao� and K� Meenakshi� E�cient
bottom�up computation of queries on strati�ed databases� Journal of Logic Program�
ming� ���	���
��� �����

�Bancilhon and Ramakrishnan� ����� Francois Bancilhon and Raghu Ramakrishnan� An
amateur�s introduction to recursive query processing strategies� In Proceedings of the
ACM SIGMOD Conference� pages ����	� ACM� �����

�Bancilhon and Ramakrishnan� ����� Francois Bancilhon and Raghu Ramakrishnan� Per�
formance evaluation of data intensive logic programs� In Jack Minker� editor� Founda�
tions of Deductive Databases and Logic Programming� pages �������� Morgan Kaufmann
Publishers� Inc�� Los Altos� CA� �����

�Bancilhon et al�� ����� F� Bancilhon� D� Maier� Y� Sagiv� and J� D� Ullman� Magic sets
and other strange ways to implement logic programs� In Proceedings �th ACM SIGMOD�
SIGACT Symposium on Principles of Database Systems� pages ����� ACM� �����

�Bancilhon� ����� F� Bancilhon� A note on the performance on rule�based systems� Tech�
nical Report DB��		���� MCC� �����

�Beeri and Ramakrishnan� ����� Catriel Beeri and Raghu Ramakrishnan� On the power of
magic� Journal of Logic Programming� ���	���	��� October �����

�Boley et al�� ���
� Harold Boley� Philipp Hanschke� Knut Hinkelmann� and Manfred
Meyer� COLAB� A hybrid knowledge compilation laboratory� Research Report RR�
�
���� DFKI� Kaiserslautern� Germany� January ���
� Also to appear in Annals of
Operations Research�

�Bry� ����� Francois Bry� Query evaluation in recursive databases� bottom�up and top�
down reconciled� Data and Knowledge Engineering� ��	���
�	� �����

�Dietrich� ����� S� W� Dietrich� Extension tables� Memo relations in logic programming�
In SLP���� �����

�Komorowski� ���	� J� Komorowski� An introduction to partial deduction� In A� Pet�
torossi� editor� Meta�Programming in Logic� Uppsala� Sweden� June �		
 �Lecture Notes
in Computer Science� vol� �	�� pages ������ Berlin� Springer�Verlag� ���	�

��

�Labisch� ���
� Thomas Labisch� Developing a combined forward�backward�chaining sys�
tem for logic programs in a hybrid expertsystem shell� Master�s thesis� Universit�at
Kaiserslautern� June ���
� In German�

�Nejdl� ����� Wolfgang Nejdl� Recursive strategies for answering recursive queries � the
RQA�FQI strategy� In Proceedings of the ��th International Conference on Very Large
Databases �VLDB�� pages �
���� Brighton� �����

�Nilsson� ����� Nils J Nilsson� Principles of Arti�cial Intelligence� Tioga� Palo Alto� CA�
�����

�Ramakrishnan� ����� Raghu Ramakrishnan� Magic templates� A spellbinding approach
to logic programms� In R�A� Kowalski and K�B� Bowen� editors� Proceedings of the �th
International Conference and Symposium on Logic Programming� �����

�Rohmer et al�� ����� J� Rohmer� R� Lescoeur� and J� M� Kerisit� The alexander method � a
technique for the processing of recursive axioms in deductive databases� New Generation
Computing� pages 	�
�	��� �����

�Sacca and Zaniolo� ����� D� Sacca and C� Zaniolo� The generalized counting method for
recursive logic queries� In First International Conference on Database Theory� �����

�Tamaki and Sato� ����� Hisso Tamaki and Taisuke Sato� OLD resolution with tabulation�
In E� Shapiro� editor� Third International Conference on Logic Programming �ICLP��
LNCS 		�� pages ������	� London� July ����� Springer Verlag�

�Treitel and Genesereth� ����� Richard Treitel and Michael R� Genesereth� Choosing di�
rections for rules� Journal of Automated Reasoning�
�
����
�� �����

�Treitel� ����� Richard Treitel� Sequentialization of logic programs� Technical Report
STAN�CS������
�� Stanford University� Department of Computer Science� November
�����

�Vieille� ����� Laurent Vieille� Recursive axioms in deductive databases� The
query�subquery approach� In L� Kerschberg� editor� Proceedings of the First Interna�
tional Conference on Expert Database Systems� April �����

��

