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Abstract

We present the ��calculus� a computational calculus for higher�order concurrent
programming� The calculus can elegantly express higher�order functions �both eager
and lazy� and concurrent objects with encapsulated state and multiple inheritance�
The primitives of the ��calculus are logic variables� names� procedural abstraction�
and cells� Cells provide a notion of state that is fully compatible with concurrency
and constraints� Although it does not have a dedicated communication primitive� the
��calculus can elegantly express one�to�many and many�to�one communication�

There is an interesting relationship between the ��calculus and the ��calculus� The
��calculus is subsumed by a calculus obtained by extending the asynchronous and
polyadic ��calculus with logic variables�

The ��calculus can be extended with primitives providing for constraint�based prob�
lem solving in the style of logic programming� A such extended ��calculus has the
remarkable property that it combines �rst�order constraints with higher�order pro�
gramming�
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� Introduction

Concurrent constraint programming 
��� is a research direction aiming at a uni�ed frame	
work for high	level concurrent programming and constraint	based problem solving� Its
roots are concurrent logic programming 
��� and constraint logic programming 
� ����
Although concurrent programming and constraint	based problem solving have di�erent
structure and applications they do have signi�cant commonalities�

� both come in a relational and concurrent setting

� constraint propagation is a concurrent activity

� logic variables are the canonical form of reference for constraints and concurrent
computation�

This paper presents the �	calculus a computational calculus for higher	order concurrent
programming� As is the calculus can elegantly express higher	order functions �both ea	
ger and lazy� and concurrent objects with encapsulated state and multiple inheritance�
Constraint	based problem solving in the style of logic programming requires additional
primitives which can be chosen such that one obtains a combination of higher	order pro	
gramming with �rst	order constraints� This is in sharp contrast to approaches based on
higher	order logic 
��� where higher	order programming comes with the operational burden
of higher	order constraints�

An extension 
�� ��� of the �	calculus providing for constraint	based problem solving
serves as the foundation of Oz 
�� a full	�edged programming language and system under
development at the Programming Systems Lab of DFKI��

The primitives of the �	calculus are logic variables names procedural abstraction and
cells� Cells provide a notion of state that is fully compatible with concurrency and con	
straints� Although it does not have a dedicated communication primitive the �	calculus
can elegantly express one	to	many and many	to	one communication�

It is illuminating to compare the �	calculus with the �	calculus 
�� �� ���� Both are
concurrent systems with �rst	class names� While the �	calculus has logic variables the �	
calculus has formal input arguments only �as in functional programming�� As is well	known
from logic programming logic variables do not necessitate a static distinction between input
and output thus providing for a free data �ow combining smoothly with concurrent control�
While the �	calculus has communication as its principal primitive the �	calculus has logic
variables procedural abstraction and cells as its principal primitives� The primitives of
the �	calculus were chosen with the consideration that programming abstractions such
as higher	order functions and concurrent objects be easily expressible� If we extend the
�	calculus with logic variables it can express procedural abstraction and cells� Logic

�The Oz programming system and its documentation are available through anonymous ftp from
ps�ftp�dfki�uni�sb�de or through WWW from http���ps�www�dfki�uni�sb�de��
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variables increase the expressivity of the �	calculus in two crucial aspects� They allow to
equate communication links and they provide the possibility to express procedures with
input and output arguments �recall that a function is a procedure with input and output��

The paper is organized as follows� Section � gives the formal de�nition of the �	calculus�
Sections ��� provide important intuitions and examples for the expressivity of the �	
calculus� Sections � and � show how the eager and the lazy �	calculus can be embedded
into the �	calculus� Section � shows how the �	calculus can express records� Sections �
and �� show how the �	calculus can express concurrent objects with encapsulated state
and multiple inheritance� Section �� discusses communication issues� Section �� presents a
possible execution strategy for the �	calculus� Section �� shows how the �	calculus can be
extended with general �rst	order constraints� Section �� clari�es the relationship between
the �	calculus and the �	calculus�

� The Gamma Calculus

Figure � shows the syntax of the �	calculus� It assumes that an in�nite alphabet of variables
and a disjoint and in�nite alphabet of names are given� Variables and names are jointly
referred to as references� Variables are placeholders for names� There are no other values
but names�

The expressions of the �	calculus are relational as in logic programming or the �	calculus�
Seen from the perspective of predicate logic expressions play the role of formulas and
references play the role of terms� Composition is like conjunction in logic programming and
parallel composition in the �	calculus� A declaration �uE introduces a new reference u with
scope E� Declaration of variables is like existential quanti�cation in logic programming�
declaration of names is like restriction in the �	calculus� Equations are like equations in
logic� Names stand for themselves and thus are di�erent if they are syntactically di�erent
�so	called unique name assumption�� A �named� abstraction a� x�E consists of a name a
formal arguments x �x stands for a possibly empty sequence of variables� and a body E
�the expression being abstracted from�� There is the side condition that the sequence of
formal arguments x be linear �i�e� consist of pairwise distinct variables�� Abstractions can
be seen as procedure or predicate de�nitions� An application uv consists of a reference u
designating the abstraction to be applied and the actual arguments v� Applications can
be seen as procedure or predicate calls� A conditional if u � v then E else F reduces to
either E or F  depending on whether u and v turn out to be equal or di�erent� A cell a�u
has the name a and holds the reference u� reduction with an application avw will impose
the equation u � v and update the cell to hold w�

From the above it is clear that the �	calculus has one binder for names ��aE� and two
binders for variables ��xE and a� x�E�� Free and bound references of expressions are de�ned
accordingly�

The �	calculus is an expressive computational system� We will show that it can elegantly

�



Symbols

x� y� z � variables

a� b� c � names

u� v� w ��� x j a references

Expressions

E� F�G ��� � null

j E � F composition

j �uE declaration

j u � v equation

j a� x�E abstraction �x linear�

j uv application

j if u � v then E else F conditional

j a�u cell

Figure �� Syntax of the �	calculus

express higher	order functional programming data structures and concurrent objects with
encapsulated state and multiple inheritance�

A distinctive feature the �	calculus shares with logic programming is that variables can
be used without explicitly saying how their values are obtained �so	called logic variables��
Information about the values of variables can be stated through equations which can be
seen as constraints� Equations can express partial �e�g x � y� and total �e�g� x � a�
information� Recall that names are the only values variables can take in the �	calculus�

The computational intuitions expressed above are formalized by rules rewriting the ex	
pressions of the calculus� This is a common setup also found in the �	calculus �functional
computation� and SLD	resolution �relational computation�� For the �	calculus this setup
is re�ned in that the rules are applied modulo a structural congruence and in that the
rules can only be applied to speci�c positions��

Applying rewrite rules modulo a structural congruence is actually quite common although
it is often not made explicit� In the �	calculus it is common practise to �identify� expres	
sions that are equal up to �	conversion �consistent renaming of bound variables�� In logic
programming and uni�cation one typically rewrites multisets of atomic formulas where

�A similar setup is used in a recent presentation of the ��calculus devised by Milner ���� ��	�
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the multisets are obtained by making conjunction associative and commutative� First	
order rewriting modulo equations is an established topic 
�� serving as a foundation for
the speci�cation language OBJ 
�� and Meseguer�s rewriting logic 
����

The structural congruence of the �	calculus is the least congruence �E � F� on the set of
expressions satisfying the following laws�

� composition E�F of expressions is associative commutative and satis�es E�� � E

�thus we can see composition as multiset union and � as the empty multiset�

� declaration �uE of references allows for consistent renaming of the declared reference
u and satis�es

�uE � F � �u�E � F � if u not free in F

�u�vE � �v�uE

�u� � �

�thus declarations can always be moved above compositions and declarations of
references not being used can be deleted�

� abstractions a� x�E allow for consistent renaming of the formal arguments x

� equations u � v are symmetric�

Reduction in the �	calculus is de�ned in Figure � by a system of inference rules� Only
the structure rules have premises all other rules are axioms� The structure rules say
that reduction is modulo structural congruence and that reductions of subexpressions not
appearing beneath abstractions and conditionals can be taken as reductions of the entire
expression� A reduction E � F is possible if and only if it can be derived with the structure
rules from exactly one instance of an axiom� The Application Rule comes with the side
condition that the number juj of actual arguments in the application equals the number
jxj of formal arguments in the abstraction�

Proposition � Let contexts be de�ned as C ��� � j C�E j E�C j �uC� Then E � E� is

a reduction in the ��calculus if and only if there exists a context C and an instance G� G�

of an axiom in Figure � such that E � C
G�� and C
G�� � E ��

� The Chemical Metaphor

Reduction in the �	calculus can be seen as evolution of a computation space containing a
multiset of freely �oating molecules�� The molecules are equations abstractions applica	
tions conditionals and cells� The structural congruence of the �	calculus is de�ned such

�The metaphor of seeing concurrent computation as chemical reaction appeared with Berry and Boudol
s
chemical abstract machine ��	�
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Structure

E � E� E� � F � F � � F

E � F

E � E�

E � F � E� � F

E � E�

�uE � �uE�

Elimination

�x�x � u � E� � E
u�x� if x �� u and u free for x in E

Application

au � a� x�E � E
u�x� � a� x�E if u free for x in E and juj � jxj

Conditional

if u � u then E else F � E if a � b then E else F � F if a �� b

Exchange

a�u � avw � a�w � v � u

Figure �� Reduction in the �	calculus

that every expression can be seen as a computation space� After pushing all declarations
to the top �possibly involving �	conversion� we are left with a conjunction of molecules�
The expression � describes the empty computation space� Expressions appearing as the
constituents of abstractions and conditionals do not yet contribute to the computation
space�

A computation space evolves by reduction with the rules given in Figure �� The Application
and Exchange Rules describe reactions between two molecules sharing a name� The rules
for the conditional describe transformations of a single molecule� The Elimination Rule
deletes an equational molecule and eliminates a variable by replacing all its occurrences
with another reference�

When a conditional reduces it injects one of its constituent expressions into the computa	
tion space thus possibly contributing new molecules and new references �the operational
reading of a declaration �uE is� Create a new reference u�� Similarly when an applica	
tion reacts with an abstraction a copy of the body of the abstraction is injected into the
computation space where the actual arguments of the application replace the formal ar	
guments of the abstraction� The Application Rule is the only rule that copies expressions�
As the space evolves the number of molecules and the number of connecting references
can increase and decrease� Every in�nite reduction chain E� � E� � � � � must involve the
Application Rule�

The Elimination Rule provides all the constraint handling needed in the �	calculus� If a
computation space contains a molecule x � u then x can be eliminated by replacing it
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with u provided u is di�erent from x� We assume that a computation space does not
have free variables� Injecting an equation x � a into a computation space amounts to an
attempt to �x the value of the variable x to a� There might be competing such attempts
as in

�x�x � a � x � b � E��

Which value is taken for x is an indeterministic choice� The space can either reduce to
a � b � E
a�x� or to a � b � E
b�x� where the choice being made cannot be retracted�
Note that all occurrences of x will be replaced with only one of the two names� The fact
that there were con�icting attempts to �x the value of x remains partly visible since the
�inconsistent� equation a � b remains in the space�� There are three possibilities to handle
such a con�ict� consider it a regular event �the choice taken in the �	calculus� consider
it a run	time error or consider it a failure in the sense of logic programming �we will say
more about failure in Section ����

The expression �a is not free in E�

�a�if x � a then � else E�

has an interesting operational reading� inject the expression E in the computation space
once the variable x has been assigned a value �i�e� has been replaced by a name�� Put
more informally the above expression synchronizes E upon the event that the value of x
becomes known�

The Exchange Rule describes a reaction of a cell a�u with an application avw� The reaction
updates the reference hold by the cell to w and equates the references u and v �exploiting
logic variables�� Thus reading and writing of a cell are merged into one atomic operation�
Cells yield a notion of state that is fully compatible with concurrency and constraints�
Cells are essential for expressing objects�

The Application and the Exchange Rule have in common that they describe reactions
between two molecules that agree on the same name �i�e� a�� As computation proceeds
new abstractions and cells may be created� This necessitates the creation of fresh names
an operation elegantly expressible in the �	calculus�

� Creating Fresh Names

The operational reading of �a�x � a� is� Create a fresh name and make it the value of the
variable x� To see why this is so consider the expression

�x�y��a�x � a� � �a�y � a� � if x � y then E else F �

�Equations of the form u � u and a � b do not have a computational eect� Hence they can be deleted
in an implementation of the ��calculus�
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and suppose that x and y are distinct variables that do not occur free in E and F � Moreover
assume that a is a name not occurring free in E and F � We will show that the expression
reduces to F �

First we move the left declaration of a to the outside of the expression using the laws for
declarations and compositions and exploiting the assumption that a does not occur free in
E and F �

� �a�x�y�x � a � �a�y � a� � if x � y then E else F �

Next we exchange the declarations of x and y and eliminate x with the Elimination Rule�

� �a�y��a�y � a� � if a � y then E else F �

Next we rename the inner name a to b where b is assumed to be di�erent and to not occur
free in E and F �

� �a�y��b�y � b� � if a � y then E else F �

This brings us in a position where we can eliminate y in the same way we did it for x
before�

� �a�b�if a � b then E else F �

Now since a and b are di�erent we obtain

� �a�bF

using the appropriate rule for the conditional� It remains to get rid of the declarations of
the names a and b� This can be done using the congruence laws�

� �a�b�� � F � � ��a�b�� � F � � � F � F�

� Possible Indeterminisms

The �	calculus involves several indeterminisms�

�� if there are two applications for the same cell the order of their reduction is indeter	
ministic

�� if there are two equations x � a and x � b for the same variable the choice of the
name replacing x is indeterministic

�� if an application matches more than one abstraction or cell the choice of the abstrac	
tion or cell it reacts with is indeterministic�

The �rst indeterminism is essential for concurrent computation �see the section on objects��
The other indeterminisms should not occur with well	written programs�
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The third form of indeterminism can be excluded with a straightforward syntactic condi	
tion� extend the �	calculus with the syntactic variants

x� y�E �� �a�x � a � a� y�E�

x�u �� �a�x � a � a�u�

and admit only initial expressions not containing the primitive forms a� y�E and a�u� One
can show that reduction sequences issuing from such expressions cannot involve the third
form of indeterminism�

Provided one excludes cells there is a syntactic condition excluding all remaining indeter	
minisms� a thus restricted version of the �	calculus is the �	calculus studied and proven
con�uent in 
���� The �	calculus seems to be a promising alternative to the �	calculus for
the foundation of functional programming�

Remark� The syntactic extensions x� y�E and x�u de�ned above are static� that is they
must be expanded before a reduction rule is applied� This is since x� y�E changes its
meaning when the elimination rule replaces x with a name a�

� Embedding of the Eager Lambda Calculus

To embed the eager �	calculus �see 
���� into the �	calculus we extend the expressions of
the �	calculus such that one can write �	terms in equations�

E� F�G ��� � � � j x �M

M�N ��� x j �xM jMN�

The semantics of the new equations is given by the congruences

x � �yM �� x� yz�z �M

x �MN �� �y�z�y �M � z � N � yzx�

providing a translation from the extended syntax to the base syntax �the syntactic ex	
tension x� yz�E was de�ned in the previous section�� As one would expect functional
abstractions translate into relational abstractions with an input and an output argument�
It is instructive to consider the translation of the identity function�

x � �yy � �a�x � a � a� yz�z � y��

The translation of functional applications exploits that functional nesting can be expressed
by composition and declaration of auxiliary variables�

The soundness of the embedding is established by the following theorem 
����

Theorem � Let M be a closed ��term� Then M converges in the eager ��calculus if and
only if �x�x �M� converges in the ��calculus�
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In contrast to the �	calculus the �	calculus can express �mutual� recursion directly� For
instance �x�y �x � �uM � y � �vN � E� de�nes two possibly mutually recursive
functions x and y that can be used in E�

Eager functional programming with mutual recursion can in fact be expressed in a con�uent
subcalculus of the �	calculus called the �	calculus 
����

� Embedding of the Lazy Lambda Calculus

The embedding of the lazy �	calculus �see 
���� into the �	calculus is more subtle than
the embedding of the eager �	calculus� The basic idea is to represent a lazy function by
an abstraction with three arguments� one argument for the input of the function one
argument for the output of the function and one argument for requesting that the input
of the function be computed�

In the following we will use r and s to denote variables used to request subcomputations�
We extend the syntax of the �	calculus as follows�

E� F�G ��� � � � j x�r � K

K�L ��� x j �xK j KL j x�r�

An equation x�r � K equates x to the result of the �	term K where evaluation of K must
be requested explicitly through the variable r�

The semantics of the new expressions is given by the congruences

x�r � y �� x � y

x�r � y �s �� x � y � r � s

x�r � �yK �� x� ysz�z �r � K
y �s�y�

x�r � KL �� �y�y��z�s �y �r � K � ryy� � y�zsx � z �s � L�

providing a translation from the extended syntax to the base syntax of the �	calculus�
The translation of an equation x �r � K will admit no other rule but the Elimination
Rule eliminating unnecessary auxiliary variables �e�g� the translation of x �r � y�z �s�
will reduce to �y��ryy� � y�zsx��� Evaluation of x �r � K must be requested explicitly by
composing it with r � �xx �the �eager� equation r � �xx was de�ned in the previous
section�� Evaluation is made lazy by switching the connection between abstractions and
applications only when the result of the application is needed� The switch is realized by
an application ryy� which is �red by equating r to the identity function�

Concerning the correctness of the embedding of the lazy �	calculus we conjecture the
following theorem to hold�

Theorem � Let M be a closed ��term� Then M converges in the lazy ��calculus if and

only if �x�r�r � �yy � x�r �M� converges in the ��calculus�

��



Reduction in the lazy �	calculus is not a fully satisfactory model of reduction in lazy
functional programming languages 
���� The problem is that 		reduction possibly copies the
arguments of applications which will duplicate reductions to be done if the arguments are
reducible terms� For instance ��x�xx��M will reduce toMM containing two copies of the
possibly reducible term M � The �	calculus avoids this problem completely since it copies
the bodies of abstractions rather than the actual arguments of functional applications�
Launchbury 
��� carefully analyses sharing in lazy functional programming and provides
an operational semantics providing an accurate model for sharing�

The following facts provide evidence that the �	calculus is superior to the �	calculus as an
operational model of functional programming languages�

� The �	calculus can directly express �mutual� recursion�

� the �	calculus can express sharing�

� the �	calculus can mix lazy with eager functions�

� the �	calculus provides a uni�ed framework for functional and concurrent program	
ming�

	 Records

Records can be expressed in the �	calculus as functions mapping �eld names to their
associated values� For instance the record

�A�U B�V C�W�

can be expressed as the function

fun �F�

if F�C then W

elseif F�B then V

elseif F�A then U

else undefined fi

end

returning the name undefined in case the argument is not equal to one of the �eld names
A B C� We have now switched to a concrete syntax for the �	calculus� Variables are written
as identi�ers starting with capital letters and names are written as identi�ers starting with
lower case letters �e�g� undefined�� Functional notation translates as in the section on the
embedding of the eager �	calculus�

Note that the �eld names of the above record are given as variables� In case two or more
�eld names turn out to be equal the rightmost value speci�cation wins�

��



Record adjunction takes the union of two records where con�icts are resolved by giving
priority to the right record� for instance

�a�� b�� c�	� 
 �b�� d��� � �a�� b�� c�	 d���

In the �	calculus record adjunction can be expressed as the higher	order function

Adjoin � fun �R S�

fun �F�

local V � �S F� in

if V�undefined then �R F� else V fi

end

end

end


 Procedures with Encapsulated State

The following de�nes a procedure �Num X� maintaining an internal counter initialized with
�

local C � �NewCell � in

proc �Num X�

local Y in �C X Y� �Plus X � Y� end

end

end

An application �Num X� will equate X with the current value of the counter and then
increment the counter� It is straightforward to represent numbers in the �	calculus� The
procedure NewCell is de�ned as

�a�NewCell � a � a� xy��c�x � c � c�y���

Now suppose the computation space contains the applications

�Num X� �Num Y� �Num Z�

Then the variables X Y and Z will be equated to di�erent numbers and the internal counter
of Num will be incremented three times� One possible outcome is X� Y�� Z��� Another
possible outcome is X�� Y� Z��� However X�	 Y� Z�� is impossible provided there
are no other applications of Num but the ones above�

The procedure Num builds a state sequence

u�� u�� u�� � � � � uk
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whose members are linked by constraints �Plus ui � ui��� and whose respective last mem	
ber is hold in the cell C� Concurrent applications of Num create concurrent exchange requests
for the cell C which are serialized indeterministically� Reduction of an application �C X Y�

will equate X to the current end of the sequence and make Y the new end of the sequence�
Note that this construction makes crucial use of logic variables and that mutual exclusion
of the competing state accesses is obtained for free�

The procedure Num is unsafe in so far that an application �Num ���� say may set the
counter to ��� due to the indeterministic choice of the equation to be used with the
Elimination Rule� A safe version of Num is

local C � �NewCell � in

proc �Num A�

local X Y in �C X Y� �Plus X � Y� �Wait X A� end

end

end

where �Wait X A� is de�ned as �a�if X � a then � else X � A��

�� Objects

Objects are procedures with encapsulated state� They are speci�ed by a collection of
methods possibly obtained by inheritance from other objects� Objects are applied to
messages� A message is a record �methodName�M ��� � specifying the name M of the
method to be applied possibly together with input and output arguments� A method is a
possibly indeterministic function

method� state 	message 	 object � state

evolving the state of the object according to the message and the object itself �the so	called
self reference��

When an object is applied to a message the method requested by the message

Method � �MethodTable �Message methodName��

is obtained from the method table of the object �represented as a record�� Next a request

�C State NewState�

to extend the state sequence of the object is issued �C is the encapsulated cell holding the
end of the state sequence� and the selected method is applied

�Method State Message O NewState�
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proc �Create MethodTable O�

local C � �NewCell EmptyRecord� in

proc �O Message�

local Method State NewState in

Method � �MethodTable �Message methodName��

�C State NewState�

�Method State Message O NewState�

end

end

end

end

Figure �� Object creation

to link the new state with the old state�

Figure � shows a procedure �Create MethodTable O� creating a new object O from a
method table given as argument� States are represented as records and the initial state is
the empty record represented as follows�

EmptyRecord � fun �F� undefined end

The procedure Create is oversimpli�ed in that it does not

� handle the case where the requested method is unde�ned

� provide a possibility to initialize the state of the newly created object �which is a
must in a concurrent setting�

� provide more sophisticated synchronization for instance state access only after the
method to be applied is known

� provide a possibility to close an object�

All these features can be incorporated easily 
��� Initialization can be taken care of by
giving Create an initial message as extra argument�

Using the syntax of Oz 
�� a simple counter object C can be created as follows�

create C

meth init�X� val �� X end

meth inc�X� val �� �val�X end

meth read�X� X��val end

end
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�init� proc �InState Message Self OutState�

OutState � �Adjoin InState �val� �Message arg���

end

inc� proc �InState Message Self OutState�

OutState � �Adjoin InState

�val� �Plus �InState val� �Message arg����

end

read� proc �InState Message Self OutState�

OutState � InState

�Message arg� � �InState val�

end

�

Figure �� Method table of a simple counter object

This translates in an application of the procedure Create in Figure � to the method
table shown in Figure �� The state of the counter is represented as a one �eld record
�val���� The methods init and inc �update� the attribute val by means of record
adjunction�� A message requesting that the counter be incremented by �� say takes
the form �methodName�inc arg����� The generality obtained by representing states as
records and attribute updates as adjunctions is needed when the methods of the counter
are inherited to objects with additional attributes�

Creating an object O by inheritance from objects O�� � � � � On means to obtain the method
table of O by combining the method tables of O�� � � � � On possibly by record adjunction� To
enable inheritance the method table of an object must be made accessible� One straight	
forward way to do this is to equip an object with a pseudo	method returning its method
table�

From our discussion it should be clear that there is more than one style of object	orientation
the �	calculus can express� A fully developed style of object	orientation based on the ideas
outlined here is realized in Oz 
���

The observation that objects are procedures with encapsulated state is well	known in the
Lisp community 
��� Our contribution here is to show that this idea carries over smoothly
to the concurrent setting of the �	calculus�

Our object model can express private methods and private attributes by restricting the
visibility of method and attribute names exploiting the statically scoped setting of the
�	calculus� Although attributes are not directly accessible they may be visible to methods
added by inheritance�

�Attributes are the �eld names of states and represent what is called an instance variable in Smalltalk�
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proc �NewPort Port Stream�

local C � �NewCell Stream� in

proc �Port Message�

local S in �C �token�Message next�S� S� end

end

end

end

Figure �� Creating ports

�� Communication

We have seen that we can express communicating concurrent objects as procedures with
encapsulated state� This model is di�erent from the established model where a concurrent
object is an agent reading messages from a communication medium �e�g� streams in con	
current logic programming 
��� mail boxes in the actor model 
�� and ports 
��� in AKL��
Moreover the principal notion of process algebras and the �	calculus is communication
through channels� So how is it that the �	calculus can express communicating concurrent
objects without a dedicated communication prmitive�

The answer is simple� Explicit communication is unnecessary if procedures can be applied
concurrently and can have encapsulated state� State is obtained from cells which can be
seen as a primitive and standardized form of procedures with state� Thus communication
and state turn out to be di�erent sides of the same coin� This observation is fundamental
but certainly not new�

Our object model provides for straightforward many	to	one communication� In contrast
streams in concurrent logic programming 
��� provide for easy one	to	many communication
but have severe problems with many	to	one communication �see 
��� for a discussion of this
issue��

Ports 
��� are a communication structure well	suited for both many	to	one and one	to	
many communication� Ports can be easily expressed in the �	calculus� The procedure
�NewPort Port Stream� in Figure � creates a new port �a procedure� and connects it
to a stream �a logic variable to be constrained incrementally to a list�� An application
�Port Message� extends the stream associated with the port with the reference Message�
One easily obtains many	to	many communication since the port can be shared by many
message senders and the stream can be shared by many message receivers�
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�� An Execution Strategy

A programming language based on the �	calculus must make some assumptions about the
order in which possible reduction steps are to be carried out� Such assumptions are needed
so that the programmer can write fair� and e�cient programs� We will outline one possible
execution strategy below�

Our execution strategy organizes a computation space into a blackboard and a collection
of threads�

Blackboard

Thread � � � Thread
�� ��

The blackboard is a composition of abstractions cells and redundant equations of the form
u � u or a � b�� A thread is a nonempty stack of expressions� The execution strategy
considers the threads of a computation space in a round	robin fashion making sure that
every reducible thread will make progress� As computation proceeds existing threads may
terminate and new threads may be created�

A thread is reduced by considering its topmost expression� The reduction rules for threads
are derived from the rules of the �	calculus� A thread is not reducible if it consists of a
single expression E and E is either a conditional whose guard does not have the form u � u

or a � b or an application that does not match an abstraction or a cell on the blackboard�
In all other cases a thread is reduced by popping its topmost expression and if it is

�� E � F � push �rst F and then E

�� �xE� create a fresh variable y and push E
y�x�

�� �aE� create a fresh name b and push E
b�a�

�� x � u or u � x where x �� u� replace all occurrences of x with u

�� u � u a � b a� x�E or a�x� write it on the blackboard

�� au and the blackboard contains a matching abstraction a� x�E� push E
u�x�

�� if u � u then E else F � push E

�� if a � b then E else F  where a �� b� push F

�� avw and the blackboard contains a matching cell a�u� push v � u and replace a�u
with a�w on the blackboard

�Fairness roughly means that reduction steps that could be done will be done eventually�
�Equations of the form u � u or a � b have no computational signi�cance and can be dropped in an

implementation�
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��� an application or conditional that cannot reduce yet with one of the above rules�
make it the single expression of a new thread �Suspension Rule��

The congruence laws must not be applied� We assume that computation starts with a com	
putation space where no variable is free and no free name is declared� These assumptions
ensure that capturing of references cannot occur� The rules have the remarkable property
that a reducible thread stays reducible if other threads are reduced before it�

The idea is to start with a computation space with an empty blackboard and a single thread
containing a single expression� If the top of a nonsingleton thread is not yet reducible it is
suspended by moving it to a newly created thread� This way the thread is not blocked and
the next expression can be reduced� One can force the creation of a new thread executing
E by writing

�x �if x � a then E else � � x � a��

An expression is called sequential if it will execute with a single thread� that is if we start
with a computation space consisting just of one singleton thread containing the expression
it cannot evolve into a space with more than one thread� An expression is called quasi�

sequential if it is congruent to a sequential expression� If E� and E� are sequential then

�x �if x � a then E� else � � if x � a then E� else � � x � a�

is quasi	sequential but not sequential�

A implementation may execute several threads in parallel� Our execution strategy has
the interesting property that a sequential expression may be easily rewritten such that it
executes with several possibly parallel threads�

Let M be a closed �	term� Then the expression �x�x �M� obtained with the translation
embedding the eager �	calculus into the �	calculus is sequential� Expressions obtained with
the translation embedding the lazy �	calculus are in general not even quasi	sequential�

�� First�order Constraints and Search

We will now extend the �	calculus with general �rst	order constraints� The extension to
general constraints will confront us with the problem of failure which we could circumvent
nicely for the simple constraints of the �	calculus�

In the following we can only present some basic ideas concerning the extension of the �	
calculus to general constraints and search� For a deeper investigation of these issues we
refer the reader to 
�� �� ����

We base our notion of constraint system on �rst	order predicate logic with equality� A
constraint system consists of

�� a signature � �a set of constant function and predicate symbols�
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�� a consistent theory � �a set of sentences over � having a model�

�� an in�nite set of constants in � called names satisfying two conditions�

�a� � j� 
�a
�
� b� for every two distinct names a b

�b� � j� 
 � � for every two sentences 
 � over � such that � can be obtained
from 
 by permutation of names�

Given a constraint system we will call every �rst	order formula over its signature a con�
straint� We use � for the constraint that is always false and � for the constraint that is
always true�

The minimal constraint system has no other symbols but names in its signature� The usual
tree constraint systems ��nite or rational constructor trees� can be made into constraint
systems in our sense by simply distinguishing in�nitely many constants as names�

We now extend the �	calculus with three new forms

E� F�G ��� � � � j 
 j if 
 then E else F j ErF


� � � constraints

called constraints conditionals and disjunctions respectively� We assume that all con	
straints are taken from some �xed constraint system� Recall that a constraint is sim	
ply a �rst	order formula over the constraint signature� A real programming language
will of course carefully restrict the constraints a programmer can actually write �see
for instance Oz 
���� The new expressions subsume the expressions � u � v and
if u � v then E else F of the �	calculus�

���� Constraints

The semantics of constraints in the extended �	calculus is given by four congruence laws�

�� conjunction of constraints is congruent to composition of constraints

�� existential quanti�cation �x
 of constraints is congruent to variable declaration �x

over constraints

�� 
 � � if � j� 
� �

�� x � u �E � x � u � E
u�x� if u free for x in E�

The �rst three laws provide for constraint simpli�cation� Law ��� extends the equality im	
posed by constraints to all expressions� The Elimination Rule of the �	calculus is subsumed
by the new congruence laws and is thus not present in the extended calculus�

Proposition � If � j� 
 � � � ��� then 
 � � � E � �� � E� If � j� 
 � �� then

 �E � � � 
 �E�

��



���� Conditionals

The semantics of the conditional is given by the congruence law


 � if � then E else F � 
 � if 
 � � then E else F

providing for relative simpli�cation of conditional guards �see 
� ���� and two reduction
rules

if � then E else F � E if � then E else F � F

subsuming the corresponding rules of the �	calculus�

Proposition � If � j� 
� �� then 
 � if � then E else F � 
 � E� If � j� 
� 
��
then 
 � if � then E else F � 
 � F �

A useful generalization of the conditional is obtained by allowing for multiple clauses

if 
� then E� 
� � � � 
� 
n then En else F

where the conditional can reduce with any clause whose guard is entailed� This introduces
a new form of indeterminism known as committed choice� If the guards of all clauses are
disentailed then the generalized conditional can reduce to the else constituent�

���� Disjunctions

The semantics of disjunctions is given by the congruence laws

ErF � FrE 
 � �ErF � � �
� E�r�
� F �

and the reduction rules

�� �E�rF � F �rF � ��

Note that disjunctions do not introduce any form of backtracking� Read from right to left
the second congruence law allows to lift shared constraints �an idea also realized in the
constructive disjunction of 
���� For instance

�x � �� y � ��r �x � � � y � �� � x � � � �y � �r y � ���

���� Failure

A expression E is called failed if E � E � �� In a failed expression all conditionals and
disjunctions become trivially reducible� Thus computation must be stopped as soon as
failure occurs� Note that this is in contrast to the situation in the pure �	calculus where
computation can proceed orderly in the presence of inconsistent equations a � b�
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���� Search

The extension of the �	calculus to �rst	order constraints is of practical use only in con	
junction with a facility for search�

Search in the style of Prolog can be provided as follows� Computation proceeds as long
as reduction rules are applicable and failure does not occur� If computation arrives at an
unfailed and irreducible expression a disjunctive molecule ErF is selected �if there is any�
and two don�t know alternatives are created by replacing ErF with E and F  respectively�
The alternatives are reduced as before and may be explored following a backtracking strat	
egy� Unfailed and irreducible expressions not containing disjunctive molecules are taken as
solutions�

Prolog	style search su�ers from many problems� For one thing it is not obtained with	
in the computational calculus but formulated at the meta	level� Moreover the idea of
backtracking is incompatible with the idea of concurrent and reactive computation�

Combining reactive computation with search has been one of the �unsolved� challenges
of the Japanese Fifth Generation Project� A computational calculus solving the problem
through encapsulation of search into deep guard combinators has been devised with the
concurrent constraint language AKL 
���� Oz realizes a more �exible scheme based on the
�	calculus and a higher	order search combinator spawning a local computation space 
����

���� Higher�order Programming and First�order Constraints

The extended �	calculus has the remarkable property that it combines �rst	order con	
straints with higher	order programming� The only requirement on constraints imposed by
higher	order programming is the accommodation of names� This is in sharp contrast to
approaches based on higher	order logic 
��� where higher	order programming comes with
the operational burden of higher	order constraints� Although we do not doubt the useful	
ness of higher	order constraints for some applications �e�g� reasoning about programs� we
feel that higher	order programming and higher	order constraints are two separate issues
that should be decoupled as much as possible�

The �	calculus 
��� is a con�uent subcalculus of the �	calculus with constraints which
provides for deterministic higher	order programming with �rst	order constraints�

�� Relationship with the ��calculus

It is illuminating to compare the �	calculus with the �	calculus 
�� �� ��� a calculus of
concurrent computation that evolved from research on algebraic process calculi� Although
the �	calculus and the �	calculus were conceived with very di�erent goals and intuitions a
uni�ed model of computation in the case of the �	calculus and a model of communicating
processes in the case of the �	calculus they are strikingly close technically� In fact both
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calculi can be obtained as specializations of a slightly more general calculus which is
obtained from the polyadic �	calculus 
��� by distinguishing between names and variables
and making variables logical� Logic variables increase the expressivity of the �	calculus
in two crucial aspects� They allow to equate communication links and they provide the
possibility to express procedures with input and output arguments �recall that a function
is a procedure with input and output��

While the �	calculus has logic variables the �	calculus has formal arguments only �as
in functional programming�� While the �	calculus has communication as its principal
primitive the �	calculus has logic variables abstraction and cells as principal primitives�
We shall show below that the �	calculus can be extended with logic variables and that the
thus extended asynchronous �	calculus can express abstractions and cells�

To put the comparison of the two calculi on solid ground we introduce yet another calculus
called the �calculus� The 	calculus is an asynchronous and polyadic version of the �	
calculus in 
��� extended with equations� Its abstract syntax is given by

A�B ��� � j A �B j �xA j x �� y�A j xy j x� y�A j x � y

where � is null A �B is composition �xA is restriction x �� y�A is an input agent xy is
an asynchronous output agent and x� y�A is a replicating input agent �i�e ! x �� y�A�� The
only form not present in the �	calculus are equations x � y� In contrast to the �	calculus
where x and y would be called names they are called variables in the 	calculus�

Seen from the perspective of the �	calculus we have dropped conditionals and the distinc	
tion between names and variables and we have added the form x �� y�A which will turn
out to be a once	only abstraction�

The structural congruence of the 	calculus is given by the usual laws for composition and
restriction �	conversion for both input agents symmetry for equations and replication
for replicating input agents�

x� y�A � x �� y�A � x� y�A�

The reduction axioms are the Communication Rule

xy � x �� z�A � A
y�z� if y free for z in A

and the Elimination Rule

�x�x � y � A� � A
y�x� if x �� y and y free for x in E�

The structural reduction rules are the usual ones�

Seen from the perspective of the �	calculus an output agent is an application and a repli	
cating input agent is an abstraction� Ordinary input agents are once	only abstractions
providing extra expressivity� In fact cells can be expressed using once	only abstractions�

x�y �� �z �x �� uv��u� y � zv� � z�w�x �� uv��u� w � zv���
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The 	calculus does not make a distinction between variables and names� Without this
distinction there is nothing that can make two variables di�erent� Hence the symmetric
conditional of the �	calculus does not carry over to the 	calculus� However we could still
have an asymmetric conditional just testing for equality�

One easily veri�es that our embeddings of the eager and lazy �	calculus into the �	calculus
carry over to the 	calculus� Due to the presence of logic variables they are simpler than
the ones for the �	calculus given by Milner 
���� In contrast to Milner�s encoding our
embedding of the lazy �	calculus shares reductions of arguments �as in implementations of
lazy functional programming��

It seems that the 	calculus cannot express record adjunction and consequently inheri	
tance with method overwriting� The problem is that two variables cannot be established
as di�erent� Thus names and a corresponding symmetric conditional seem to be crucial
for modeling inheritance�

�� Future Research

Our investigations of the �	calculus are at an early stage� So far they have mainly been
driven by considerations concerning the design and implementation of the programming
language Oz of which it formalizes important aspects� Directions for future research are
type disciplines and reasoning about programs� In particular a declarative characterization
of program equivalence is desirable the investigation of which may start from the techniques
developed for the �	calculus� Another interesting topic are extensions of the �	calculus so
that it can model distributed computation and mobility�
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