
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-16

A Foundation for Higher-order
Concurrent Constraint Programming

Gert Smolka

June 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organiza-
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Friedrich J. Wendl
Director

A Foundation for Higher-order
Concurrent Constraint Programming

Gert Smolka

DFKI-RR-94-16

This work appears in the Proceedings of the �st International Conference on Con�
straints in Computational Logics, edited by Jean-Pierre Jouannaud, Springer LNCS,
September 7–9, 1994, München, Germany.

This work has been supported by the Bundesminister für Forschung und Technolo-
gie (contract ITW 9105), the Esprit Basic Research Project ACCLAIM (contract EP
7195), and the Esprit Working Group CCL (contract EP 6028).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1994

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

A Foundation for Higher�order

Concurrent Constraint Programming

Gert Smolka
Programming Systems Lab

German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �� ���	� Saarbr
ucken� Germany

email� smolka�dfki�uni�sb�de

July 	�� ��

Abstract

We present the ��calculus� a computational calculus for higher�order concurrent
programming� The calculus can elegantly express higher�order functions �both eager
and lazy� and concurrent objects with encapsulated state and multiple inheritance�
The primitives of the ��calculus are logic variables� names� procedural abstraction�
and cells� Cells provide a notion of state that is fully compatible with concurrency
and constraints� Although it does not have a dedicated communication primitive� the
��calculus can elegantly express one�to�many and many�to�one communication�

There is an interesting relationship between the ��calculus and the ��calculus� The
��calculus is subsumed by a calculus obtained by extending the asynchronous and
polyadic ��calculus with logic variables�

The ��calculus can be extended with primitives providing for constraint�based prob�
lem solving in the style of logic programming� A such extended ��calculus has the
remarkable property that it combines �rst�order constraints with higher�order pro�
gramming�

Contents

� Introduction �

� The Gamma Calculus �

� The Chemical Metaphor �

� Creating Fresh Names �

� Possible Indeterminisms �

� Embedding of the Eager Lambda Calculus �	

 Embedding of the Lazy Lambda Calculus ��

� Records ��

� Procedures with Encapsulated State ��

�	 Objects ��

�� Communication �

�� An Execution Strategy ��

�� First�order Constraints and Search ��

���� Constraints ��

���� Conditionals ��

���� Disjunctions ��

���� Failure ��

���� Search ��

���� Higher	order Programming and First	order Constraints � � � � � � � � � � � ��

�� Relationship with the ��calculus ��

�� Future Research ��

�

� Introduction

Concurrent constraint programming
��� is a research direction aiming at a uni�ed frame	
work for high	level concurrent programming and constraint	based problem solving� Its
roots are concurrent logic programming
��� and constraint logic programming
� ����
Although concurrent programming and constraint	based problem solving have di�erent
structure and applications they do have signi�cant commonalities�

� both come in a relational and concurrent setting

� constraint propagation is a concurrent activity

� logic variables are the canonical form of reference for constraints and concurrent
computation�

This paper presents the �	calculus a computational calculus for higher	order concurrent
programming� As is the calculus can elegantly express higher	order functions �both ea	
ger and lazy� and concurrent objects with encapsulated state and multiple inheritance�
Constraint	based problem solving in the style of logic programming requires additional
primitives which can be chosen such that one obtains a combination of higher	order pro	
gramming with �rst	order constraints� This is in sharp contrast to approaches based on
higher	order logic
��� where higher	order programming comes with the operational burden
of higher	order constraints�

An extension
�� ��� of the �	calculus providing for constraint	based problem solving
serves as the foundation of Oz
�� a full	�edged programming language and system under
development at the Programming Systems Lab of DFKI��

The primitives of the �	calculus are logic variables names procedural abstraction and
cells� Cells provide a notion of state that is fully compatible with concurrency and con	
straints� Although it does not have a dedicated communication primitive the �	calculus
can elegantly express one	to	many and many	to	one communication�

It is illuminating to compare the �	calculus with the �	calculus
�� �� ���� Both are
concurrent systems with �rst	class names� While the �	calculus has logic variables the �	
calculus has formal input arguments only �as in functional programming�� As is well	known
from logic programming logic variables do not necessitate a static distinction between input
and output thus providing for a free data �ow combining smoothly with concurrent control�
While the �	calculus has communication as its principal primitive the �	calculus has logic
variables procedural abstraction and cells as its principal primitives� The primitives of
the �	calculus were chosen with the consideration that programming abstractions such
as higher	order functions and concurrent objects be easily expressible� If we extend the
�	calculus with logic variables it can express procedural abstraction and cells� Logic

�The Oz programming system and its documentation are available through anonymous ftp from
ps�ftp�dfki�uni�sb�de or through WWW from http���ps�www�dfki�uni�sb�de��

�

variables increase the expressivity of the �	calculus in two crucial aspects� They allow to
equate communication links and they provide the possibility to express procedures with
input and output arguments �recall that a function is a procedure with input and output��

The paper is organized as follows� Section � gives the formal de�nition of the �	calculus�
Sections ��� provide important intuitions and examples for the expressivity of the �	
calculus� Sections � and � show how the eager and the lazy �	calculus can be embedded
into the �	calculus� Section � shows how the �	calculus can express records� Sections �
and �� show how the �	calculus can express concurrent objects with encapsulated state
and multiple inheritance� Section �� discusses communication issues� Section �� presents a
possible execution strategy for the �	calculus� Section �� shows how the �	calculus can be
extended with general �rst	order constraints� Section �� clari�es the relationship between
the �	calculus and the �	calculus�

� The Gamma Calculus

Figure � shows the syntax of the �	calculus� It assumes that an in�nite alphabet of variables
and a disjoint and in�nite alphabet of names are given� Variables and names are jointly
referred to as references� Variables are placeholders for names� There are no other values
but names�

The expressions of the �	calculus are relational as in logic programming or the �	calculus�
Seen from the perspective of predicate logic expressions play the role of formulas and
references play the role of terms� Composition is like conjunction in logic programming and
parallel composition in the �	calculus� A declaration �uE introduces a new reference u with
scope E� Declaration of variables is like existential quanti�cation in logic programming�
declaration of names is like restriction in the �	calculus� Equations are like equations in
logic� Names stand for themselves and thus are di�erent if they are syntactically di�erent
�so	called unique name assumption�� A �named� abstraction a� x�E consists of a name a
formal arguments x �x stands for a possibly empty sequence of variables� and a body E
�the expression being abstracted from�� There is the side condition that the sequence of
formal arguments x be linear �i�e� consist of pairwise distinct variables�� Abstractions can
be seen as procedure or predicate de�nitions� An application uv consists of a reference u
designating the abstraction to be applied and the actual arguments v� Applications can
be seen as procedure or predicate calls� A conditional if u � v then E else F reduces to
either E or F depending on whether u and v turn out to be equal or di�erent� A cell a�u
has the name a and holds the reference u� reduction with an application avw will impose
the equation u � v and update the cell to hold w�

From the above it is clear that the �	calculus has one binder for names ��aE� and two
binders for variables ��xE and a� x�E�� Free and bound references of expressions are de�ned
accordingly�

The �	calculus is an expressive computational system� We will show that it can elegantly

�

Symbols

x� y� z � variables

a� b� c � names

u� v� w ��� x j a references

Expressions

E� F�G ��� � null

j E � F composition

j �uE declaration

j u � v equation

j a� x�E abstraction �x linear�

j uv application

j if u � v then E else F conditional

j a�u cell

Figure �� Syntax of the �	calculus

express higher	order functional programming data structures and concurrent objects with
encapsulated state and multiple inheritance�

A distinctive feature the �	calculus shares with logic programming is that variables can
be used without explicitly saying how their values are obtained �so	called logic variables��
Information about the values of variables can be stated through equations which can be
seen as constraints� Equations can express partial �e�g x � y� and total �e�g� x � a�
information� Recall that names are the only values variables can take in the �	calculus�

The computational intuitions expressed above are formalized by rules rewriting the ex	
pressions of the calculus� This is a common setup also found in the �	calculus �functional
computation� and SLD	resolution �relational computation�� For the �	calculus this setup
is re�ned in that the rules are applied modulo a structural congruence and in that the
rules can only be applied to speci�c positions��

Applying rewrite rules modulo a structural congruence is actually quite common although
it is often not made explicit� In the �	calculus it is common practise to �identify� expres	
sions that are equal up to �	conversion �consistent renaming of bound variables�� In logic
programming and uni�cation one typically rewrites multisets of atomic formulas where

�A similar setup is used in a recent presentation of the ��calculus devised by Milner ���� ��	�

�

the multisets are obtained by making conjunction associative and commutative� First	
order rewriting modulo equations is an established topic
�� serving as a foundation for
the speci�cation language OBJ
�� and Meseguer�s rewriting logic
����

The structural congruence of the �	calculus is the least congruence �E � F� on the set of
expressions satisfying the following laws�

� composition E�F of expressions is associative commutative and satis�es E�� � E

�thus we can see composition as multiset union and � as the empty multiset�

� declaration �uE of references allows for consistent renaming of the declared reference
u and satis�es

�uE � F � �u�E � F � if u not free in F

�u�vE � �v�uE

�u� � �

�thus declarations can always be moved above compositions and declarations of
references not being used can be deleted�

� abstractions a� x�E allow for consistent renaming of the formal arguments x

� equations u � v are symmetric�

Reduction in the �	calculus is de�ned in Figure � by a system of inference rules� Only
the structure rules have premises all other rules are axioms� The structure rules say
that reduction is modulo structural congruence and that reductions of subexpressions not
appearing beneath abstractions and conditionals can be taken as reductions of the entire
expression� A reduction E � F is possible if and only if it can be derived with the structure
rules from exactly one instance of an axiom� The Application Rule comes with the side
condition that the number juj of actual arguments in the application equals the number
jxj of formal arguments in the abstraction�

Proposition � Let contexts be de�ned as C ��� � j C�E j E�C j �uC� Then E � E� is

a reduction in the ��calculus if and only if there exists a context C and an instance G� G�

of an axiom in Figure � such that E � C
G�� and C
G�� � E ��

� The Chemical Metaphor

Reduction in the �	calculus can be seen as evolution of a computation space containing a
multiset of freely �oating molecules�� The molecules are equations abstractions applica	
tions conditionals and cells� The structural congruence of the �	calculus is de�ned such

�The metaphor of seeing concurrent computation as chemical reaction appeared with Berry and Boudol
s
chemical abstract machine ��	�

�

Structure

E � E� E� � F � F � � F

E � F

E � E�

E � F � E� � F

E � E�

�uE � �uE�

Elimination

�x�x � u � E� � E
u�x� if x �� u and u free for x in E

Application

au � a� x�E � E
u�x� � a� x�E if u free for x in E and juj � jxj

Conditional

if u � u then E else F � E if a � b then E else F � F if a �� b

Exchange

a�u � avw � a�w � v � u

Figure �� Reduction in the �	calculus

that every expression can be seen as a computation space� After pushing all declarations
to the top �possibly involving �	conversion� we are left with a conjunction of molecules�
The expression � describes the empty computation space� Expressions appearing as the
constituents of abstractions and conditionals do not yet contribute to the computation
space�

A computation space evolves by reduction with the rules given in Figure �� The Application
and Exchange Rules describe reactions between two molecules sharing a name� The rules
for the conditional describe transformations of a single molecule� The Elimination Rule
deletes an equational molecule and eliminates a variable by replacing all its occurrences
with another reference�

When a conditional reduces it injects one of its constituent expressions into the computa	
tion space thus possibly contributing new molecules and new references �the operational
reading of a declaration �uE is� Create a new reference u�� Similarly when an applica	
tion reacts with an abstraction a copy of the body of the abstraction is injected into the
computation space where the actual arguments of the application replace the formal ar	
guments of the abstraction� The Application Rule is the only rule that copies expressions�
As the space evolves the number of molecules and the number of connecting references
can increase and decrease� Every in�nite reduction chain E� � E� � � � � must involve the
Application Rule�

The Elimination Rule provides all the constraint handling needed in the �	calculus� If a
computation space contains a molecule x � u then x can be eliminated by replacing it

�

with u provided u is di�erent from x� We assume that a computation space does not
have free variables� Injecting an equation x � a into a computation space amounts to an
attempt to �x the value of the variable x to a� There might be competing such attempts
as in

�x�x � a � x � b � E��

Which value is taken for x is an indeterministic choice� The space can either reduce to
a � b � E
a�x� or to a � b � E
b�x� where the choice being made cannot be retracted�
Note that all occurrences of x will be replaced with only one of the two names� The fact
that there were con�icting attempts to �x the value of x remains partly visible since the
�inconsistent� equation a � b remains in the space�� There are three possibilities to handle
such a con�ict� consider it a regular event �the choice taken in the �	calculus� consider
it a run	time error or consider it a failure in the sense of logic programming �we will say
more about failure in Section ����

The expression �a is not free in E�

�a�if x � a then � else E�

has an interesting operational reading� inject the expression E in the computation space
once the variable x has been assigned a value �i�e� has been replaced by a name�� Put
more informally the above expression synchronizes E upon the event that the value of x
becomes known�

The Exchange Rule describes a reaction of a cell a�u with an application avw� The reaction
updates the reference hold by the cell to w and equates the references u and v �exploiting
logic variables�� Thus reading and writing of a cell are merged into one atomic operation�
Cells yield a notion of state that is fully compatible with concurrency and constraints�
Cells are essential for expressing objects�

The Application and the Exchange Rule have in common that they describe reactions
between two molecules that agree on the same name �i�e� a�� As computation proceeds
new abstractions and cells may be created� This necessitates the creation of fresh names
an operation elegantly expressible in the �	calculus�

� Creating Fresh Names

The operational reading of �a�x � a� is� Create a fresh name and make it the value of the
variable x� To see why this is so consider the expression

�x�y��a�x � a� � �a�y � a� � if x � y then E else F �

�Equations of the form u � u and a � b do not have a computational eect� Hence they can be deleted
in an implementation of the ��calculus�

�

and suppose that x and y are distinct variables that do not occur free in E and F � Moreover
assume that a is a name not occurring free in E and F � We will show that the expression
reduces to F �

First we move the left declaration of a to the outside of the expression using the laws for
declarations and compositions and exploiting the assumption that a does not occur free in
E and F �

� �a�x�y�x � a � �a�y � a� � if x � y then E else F �

Next we exchange the declarations of x and y and eliminate x with the Elimination Rule�

� �a�y��a�y � a� � if a � y then E else F �

Next we rename the inner name a to b where b is assumed to be di�erent and to not occur
free in E and F �

� �a�y��b�y � b� � if a � y then E else F �

This brings us in a position where we can eliminate y in the same way we did it for x
before�

� �a�b�if a � b then E else F �

Now since a and b are di�erent we obtain

� �a�bF

using the appropriate rule for the conditional� It remains to get rid of the declarations of
the names a and b� This can be done using the congruence laws�

� �a�b�� � F � � ��a�b�� � F � � � F � F�

� Possible Indeterminisms

The �	calculus involves several indeterminisms�

�� if there are two applications for the same cell the order of their reduction is indeter	
ministic

�� if there are two equations x � a and x � b for the same variable the choice of the
name replacing x is indeterministic

�� if an application matches more than one abstraction or cell the choice of the abstrac	
tion or cell it reacts with is indeterministic�

The �rst indeterminism is essential for concurrent computation �see the section on objects��
The other indeterminisms should not occur with well	written programs�

�

The third form of indeterminism can be excluded with a straightforward syntactic condi	
tion� extend the �	calculus with the syntactic variants

x� y�E �� �a�x � a � a� y�E�

x�u �� �a�x � a � a�u�

and admit only initial expressions not containing the primitive forms a� y�E and a�u� One
can show that reduction sequences issuing from such expressions cannot involve the third
form of indeterminism�

Provided one excludes cells there is a syntactic condition excluding all remaining indeter	
minisms� a thus restricted version of the �	calculus is the �	calculus studied and proven
con�uent in
���� The �	calculus seems to be a promising alternative to the �	calculus for
the foundation of functional programming�

Remark� The syntactic extensions x� y�E and x�u de�ned above are static� that is they
must be expanded before a reduction rule is applied� This is since x� y�E changes its
meaning when the elimination rule replaces x with a name a�

� Embedding of the Eager Lambda Calculus

To embed the eager �	calculus �see
���� into the �	calculus we extend the expressions of
the �	calculus such that one can write �	terms in equations�

E� F�G ��� � � � j x �M

M�N ��� x j �xM jMN�

The semantics of the new equations is given by the congruences

x � �yM �� x� yz�z �M

x �MN �� �y�z�y �M � z � N � yzx�

providing a translation from the extended syntax to the base syntax �the syntactic ex	
tension x� yz�E was de�ned in the previous section�� As one would expect functional
abstractions translate into relational abstractions with an input and an output argument�
It is instructive to consider the translation of the identity function�

x � �yy � �a�x � a � a� yz�z � y��

The translation of functional applications exploits that functional nesting can be expressed
by composition and declaration of auxiliary variables�

The soundness of the embedding is established by the following theorem
����

Theorem � Let M be a closed ��term� Then M converges in the eager ��calculus if and
only if �x�x �M� converges in the ��calculus�

��

In contrast to the �	calculus the �	calculus can express �mutual� recursion directly� For
instance �x�y �x � �uM � y � �vN � E� de�nes two possibly mutually recursive
functions x and y that can be used in E�

Eager functional programming with mutual recursion can in fact be expressed in a con�uent
subcalculus of the �	calculus called the �	calculus
����

� Embedding of the Lazy Lambda Calculus

The embedding of the lazy �	calculus �see
���� into the �	calculus is more subtle than
the embedding of the eager �	calculus� The basic idea is to represent a lazy function by
an abstraction with three arguments� one argument for the input of the function one
argument for the output of the function and one argument for requesting that the input
of the function be computed�

In the following we will use r and s to denote variables used to request subcomputations�
We extend the syntax of the �	calculus as follows�

E� F�G ��� � � � j x�r � K

K�L ��� x j �xK j KL j x�r�

An equation x�r � K equates x to the result of the �	term K where evaluation of K must
be requested explicitly through the variable r�

The semantics of the new expressions is given by the congruences

x�r � y �� x � y

x�r � y �s �� x � y � r � s

x�r � �yK �� x� ysz�z �r � K
y �s�y�

x�r � KL �� �y�y��z�s �y �r � K � ryy� � y�zsx � z �s � L�

providing a translation from the extended syntax to the base syntax of the �	calculus�
The translation of an equation x �r � K will admit no other rule but the Elimination
Rule eliminating unnecessary auxiliary variables �e�g� the translation of x �r � y�z �s�
will reduce to �y��ryy� � y�zsx��� Evaluation of x �r � K must be requested explicitly by
composing it with r � �xx �the �eager� equation r � �xx was de�ned in the previous
section�� Evaluation is made lazy by switching the connection between abstractions and
applications only when the result of the application is needed� The switch is realized by
an application ryy� which is �red by equating r to the identity function�

Concerning the correctness of the embedding of the lazy �	calculus we conjecture the
following theorem to hold�

Theorem � Let M be a closed ��term� Then M converges in the lazy ��calculus if and

only if �x�r�r � �yy � x�r �M� converges in the ��calculus�

��

Reduction in the lazy �	calculus is not a fully satisfactory model of reduction in lazy
functional programming languages
���� The problem is that 		reduction possibly copies the
arguments of applications which will duplicate reductions to be done if the arguments are
reducible terms� For instance ��x�xx��M will reduce toMM containing two copies of the
possibly reducible term M � The �	calculus avoids this problem completely since it copies
the bodies of abstractions rather than the actual arguments of functional applications�
Launchbury
��� carefully analyses sharing in lazy functional programming and provides
an operational semantics providing an accurate model for sharing�

The following facts provide evidence that the �	calculus is superior to the �	calculus as an
operational model of functional programming languages�

� The �	calculus can directly express �mutual� recursion�

� the �	calculus can express sharing�

� the �	calculus can mix lazy with eager functions�

� the �	calculus provides a uni�ed framework for functional and concurrent program	
ming�

	 Records

Records can be expressed in the �	calculus as functions mapping �eld names to their
associated values� For instance the record

�A�U B�V C�W�

can be expressed as the function

fun �F�

if F�C then W

elseif F�B then V

elseif F�A then U

else undefined fi

end

returning the name undefined in case the argument is not equal to one of the �eld names
A B C� We have now switched to a concrete syntax for the �	calculus� Variables are written
as identi�ers starting with capital letters and names are written as identi�ers starting with
lower case letters �e�g� undefined�� Functional notation translates as in the section on the
embedding of the eager �	calculus�

Note that the �eld names of the above record are given as variables� In case two or more
�eld names turn out to be equal the rightmost value speci�cation wins�

��

Record adjunction takes the union of two records where con�icts are resolved by giving
priority to the right record� for instance

�a�� b�� c�	�
 �b�� d��� � �a�� b�� c�	 d���

In the �	calculus record adjunction can be expressed as the higher	order function

Adjoin � fun �R S�

fun �F�

local V � �S F� in

if V�undefined then �R F� else V fi

end

end

end

 Procedures with Encapsulated State

The following de�nes a procedure �Num X� maintaining an internal counter initialized with
�

local C � �NewCell � in

proc �Num X�

local Y in �C X Y� �Plus X � Y� end

end

end

An application �Num X� will equate X with the current value of the counter and then
increment the counter� It is straightforward to represent numbers in the �	calculus� The
procedure NewCell is de�ned as

�a�NewCell � a � a� xy��c�x � c � c�y���

Now suppose the computation space contains the applications

�Num X� �Num Y� �Num Z�

Then the variables X Y and Z will be equated to di�erent numbers and the internal counter
of Num will be incremented three times� One possible outcome is X� Y�� Z��� Another
possible outcome is X�� Y� Z��� However X�	 Y� Z�� is impossible provided there
are no other applications of Num but the ones above�

The procedure Num builds a state sequence

u�� u�� u�� � � � � uk

��

whose members are linked by constraints �Plus ui � ui��� and whose respective last mem	
ber is hold in the cell C� Concurrent applications of Num create concurrent exchange requests
for the cell C which are serialized indeterministically� Reduction of an application �C X Y�

will equate X to the current end of the sequence and make Y the new end of the sequence�
Note that this construction makes crucial use of logic variables and that mutual exclusion
of the competing state accesses is obtained for free�

The procedure Num is unsafe in so far that an application �Num ���� say may set the
counter to ��� due to the indeterministic choice of the equation to be used with the
Elimination Rule� A safe version of Num is

local C � �NewCell � in

proc �Num A�

local X Y in �C X Y� �Plus X � Y� �Wait X A� end

end

end

where �Wait X A� is de�ned as �a�if X � a then � else X � A��

�� Objects

Objects are procedures with encapsulated state� They are speci�ed by a collection of
methods possibly obtained by inheritance from other objects� Objects are applied to
messages� A message is a record �methodName�M ��� � specifying the name M of the
method to be applied possibly together with input and output arguments� A method is a
possibly indeterministic function

method� state 	message 	 object � state

evolving the state of the object according to the message and the object itself �the so	called
self reference��

When an object is applied to a message the method requested by the message

Method � �MethodTable �Message methodName��

is obtained from the method table of the object �represented as a record�� Next a request

�C State NewState�

to extend the state sequence of the object is issued �C is the encapsulated cell holding the
end of the state sequence� and the selected method is applied

�Method State Message O NewState�

��

proc �Create MethodTable O�

local C � �NewCell EmptyRecord� in

proc �O Message�

local Method State NewState in

Method � �MethodTable �Message methodName��

�C State NewState�

�Method State Message O NewState�

end

end

end

end

Figure �� Object creation

to link the new state with the old state�

Figure � shows a procedure �Create MethodTable O� creating a new object O from a
method table given as argument� States are represented as records and the initial state is
the empty record represented as follows�

EmptyRecord � fun �F� undefined end

The procedure Create is oversimpli�ed in that it does not

� handle the case where the requested method is unde�ned

� provide a possibility to initialize the state of the newly created object �which is a
must in a concurrent setting�

� provide more sophisticated synchronization for instance state access only after the
method to be applied is known

� provide a possibility to close an object�

All these features can be incorporated easily
��� Initialization can be taken care of by
giving Create an initial message as extra argument�

Using the syntax of Oz
�� a simple counter object C can be created as follows�

create C

meth init�X� val �� X end

meth inc�X� val �� �val�X end

meth read�X� X��val end

end

��

�init� proc �InState Message Self OutState�

OutState � �Adjoin InState �val� �Message arg���

end

inc� proc �InState Message Self OutState�

OutState � �Adjoin InState

�val� �Plus �InState val� �Message arg����

end

read� proc �InState Message Self OutState�

OutState � InState

�Message arg� � �InState val�

end

�

Figure �� Method table of a simple counter object

This translates in an application of the procedure Create in Figure � to the method
table shown in Figure �� The state of the counter is represented as a one �eld record
�val���� The methods init and inc �update� the attribute val by means of record
adjunction�� A message requesting that the counter be incremented by �� say takes
the form �methodName�inc arg����� The generality obtained by representing states as
records and attribute updates as adjunctions is needed when the methods of the counter
are inherited to objects with additional attributes�

Creating an object O by inheritance from objects O�� � � � � On means to obtain the method
table of O by combining the method tables of O�� � � � � On possibly by record adjunction� To
enable inheritance the method table of an object must be made accessible� One straight	
forward way to do this is to equip an object with a pseudo	method returning its method
table�

From our discussion it should be clear that there is more than one style of object	orientation
the �	calculus can express� A fully developed style of object	orientation based on the ideas
outlined here is realized in Oz
���

The observation that objects are procedures with encapsulated state is well	known in the
Lisp community
��� Our contribution here is to show that this idea carries over smoothly
to the concurrent setting of the �	calculus�

Our object model can express private methods and private attributes by restricting the
visibility of method and attribute names exploiting the statically scoped setting of the
�	calculus� Although attributes are not directly accessible they may be visible to methods
added by inheritance�

�Attributes are the �eld names of states and represent what is called an instance variable in Smalltalk�

��

proc �NewPort Port Stream�

local C � �NewCell Stream� in

proc �Port Message�

local S in �C �token�Message next�S� S� end

end

end

end

Figure �� Creating ports

�� Communication

We have seen that we can express communicating concurrent objects as procedures with
encapsulated state� This model is di�erent from the established model where a concurrent
object is an agent reading messages from a communication medium �e�g� streams in con	
current logic programming
��� mail boxes in the actor model
�� and ports
��� in AKL��
Moreover the principal notion of process algebras and the �	calculus is communication
through channels� So how is it that the �	calculus can express communicating concurrent
objects without a dedicated communication prmitive�

The answer is simple� Explicit communication is unnecessary if procedures can be applied
concurrently and can have encapsulated state� State is obtained from cells which can be
seen as a primitive and standardized form of procedures with state� Thus communication
and state turn out to be di�erent sides of the same coin� This observation is fundamental
but certainly not new�

Our object model provides for straightforward many	to	one communication� In contrast
streams in concurrent logic programming
��� provide for easy one	to	many communication
but have severe problems with many	to	one communication �see
��� for a discussion of this
issue��

Ports
��� are a communication structure well	suited for both many	to	one and one	to	
many communication� Ports can be easily expressed in the �	calculus� The procedure
�NewPort Port Stream� in Figure � creates a new port �a procedure� and connects it
to a stream �a logic variable to be constrained incrementally to a list�� An application
�Port Message� extends the stream associated with the port with the reference Message�
One easily obtains many	to	many communication since the port can be shared by many
message senders and the stream can be shared by many message receivers�

��

�� An Execution Strategy

A programming language based on the �	calculus must make some assumptions about the
order in which possible reduction steps are to be carried out� Such assumptions are needed
so that the programmer can write fair� and e�cient programs� We will outline one possible
execution strategy below�

Our execution strategy organizes a computation space into a blackboard and a collection
of threads�

Blackboard

Thread � � � Thread
�� ��

The blackboard is a composition of abstractions cells and redundant equations of the form
u � u or a � b�� A thread is a nonempty stack of expressions� The execution strategy
considers the threads of a computation space in a round	robin fashion making sure that
every reducible thread will make progress� As computation proceeds existing threads may
terminate and new threads may be created�

A thread is reduced by considering its topmost expression� The reduction rules for threads
are derived from the rules of the �	calculus� A thread is not reducible if it consists of a
single expression E and E is either a conditional whose guard does not have the form u � u

or a � b or an application that does not match an abstraction or a cell on the blackboard�
In all other cases a thread is reduced by popping its topmost expression and if it is

�� E � F � push �rst F and then E

�� �xE� create a fresh variable y and push E
y�x�

�� �aE� create a fresh name b and push E
b�a�

�� x � u or u � x where x �� u� replace all occurrences of x with u

�� u � u a � b a� x�E or a�x� write it on the blackboard

�� au and the blackboard contains a matching abstraction a� x�E� push E
u�x�

�� if u � u then E else F � push E

�� if a � b then E else F where a �� b� push F

�� avw and the blackboard contains a matching cell a�u� push v � u and replace a�u
with a�w on the blackboard

�Fairness roughly means that reduction steps that could be done will be done eventually�
�Equations of the form u � u or a � b have no computational signi�cance and can be dropped in an

implementation�

��

��� an application or conditional that cannot reduce yet with one of the above rules�
make it the single expression of a new thread �Suspension Rule��

The congruence laws must not be applied� We assume that computation starts with a com	
putation space where no variable is free and no free name is declared� These assumptions
ensure that capturing of references cannot occur� The rules have the remarkable property
that a reducible thread stays reducible if other threads are reduced before it�

The idea is to start with a computation space with an empty blackboard and a single thread
containing a single expression� If the top of a nonsingleton thread is not yet reducible it is
suspended by moving it to a newly created thread� This way the thread is not blocked and
the next expression can be reduced� One can force the creation of a new thread executing
E by writing

�x �if x � a then E else � � x � a��

An expression is called sequential if it will execute with a single thread� that is if we start
with a computation space consisting just of one singleton thread containing the expression
it cannot evolve into a space with more than one thread� An expression is called quasi�

sequential if it is congruent to a sequential expression� If E� and E� are sequential then

�x �if x � a then E� else � � if x � a then E� else � � x � a�

is quasi	sequential but not sequential�

A implementation may execute several threads in parallel� Our execution strategy has
the interesting property that a sequential expression may be easily rewritten such that it
executes with several possibly parallel threads�

Let M be a closed �	term� Then the expression �x�x �M� obtained with the translation
embedding the eager �	calculus into the �	calculus is sequential� Expressions obtained with
the translation embedding the lazy �	calculus are in general not even quasi	sequential�

�� First�order Constraints and Search

We will now extend the �	calculus with general �rst	order constraints� The extension to
general constraints will confront us with the problem of failure which we could circumvent
nicely for the simple constraints of the �	calculus�

In the following we can only present some basic ideas concerning the extension of the �	
calculus to general constraints and search� For a deeper investigation of these issues we
refer the reader to
�� �� ����

We base our notion of constraint system on �rst	order predicate logic with equality� A
constraint system consists of

�� a signature � �a set of constant function and predicate symbols�

��

�� a consistent theory � �a set of sentences over � having a model�

�� an in�nite set of constants in � called names satisfying two conditions�

�a� � j�
�a
�
� b� for every two distinct names a b

�b� � j�
 � � for every two sentences
 � over � such that � can be obtained
from
 by permutation of names�

Given a constraint system we will call every �rst	order formula over its signature a con�
straint� We use � for the constraint that is always false and � for the constraint that is
always true�

The minimal constraint system has no other symbols but names in its signature� The usual
tree constraint systems ��nite or rational constructor trees� can be made into constraint
systems in our sense by simply distinguishing in�nitely many constants as names�

We now extend the �	calculus with three new forms

E� F�G ��� � � � j
 j if
 then E else F j ErF

� � � constraints

called constraints conditionals and disjunctions respectively� We assume that all con	
straints are taken from some �xed constraint system� Recall that a constraint is sim	
ply a �rst	order formula over the constraint signature� A real programming language
will of course carefully restrict the constraints a programmer can actually write �see
for instance Oz
���� The new expressions subsume the expressions � u � v and
if u � v then E else F of the �	calculus�

���� Constraints

The semantics of constraints in the extended �	calculus is given by four congruence laws�

�� conjunction of constraints is congruent to composition of constraints

�� existential quanti�cation �x
 of constraints is congruent to variable declaration �x

over constraints

��
 � � if � j�
� �

�� x � u �E � x � u � E
u�x� if u free for x in E�

The �rst three laws provide for constraint simpli�cation� Law ��� extends the equality im	
posed by constraints to all expressions� The Elimination Rule of the �	calculus is subsumed
by the new congruence laws and is thus not present in the extended calculus�

Proposition � If � j�
 � � � ��� then
 � � � E � �� � E� If � j�
 � �� then

 �E � � �
 �E�

��

���� Conditionals

The semantics of the conditional is given by the congruence law

 � if � then E else F �
 � if
 � � then E else F

providing for relative simpli�cation of conditional guards �see
� ���� and two reduction
rules

if � then E else F � E if � then E else F � F

subsuming the corresponding rules of the �	calculus�

Proposition � If � j�
� �� then
 � if � then E else F �
 � E� If � j�
�
��
then
 � if � then E else F �
 � F �

A useful generalization of the conditional is obtained by allowing for multiple clauses

if
� then E�
� � � �
�
n then En else F

where the conditional can reduce with any clause whose guard is entailed� This introduces
a new form of indeterminism known as committed choice� If the guards of all clauses are
disentailed then the generalized conditional can reduce to the else constituent�

���� Disjunctions

The semantics of disjunctions is given by the congruence laws

ErF � FrE
 � �ErF � � �
� E�r�
� F �

and the reduction rules

�� �E�rF � F �rF � ��

Note that disjunctions do not introduce any form of backtracking� Read from right to left
the second congruence law allows to lift shared constraints �an idea also realized in the
constructive disjunction of
���� For instance

�x � �� y � ��r �x � � � y � �� � x � � � �y � �r y � ���

���� Failure

A expression E is called failed if E � E � �� In a failed expression all conditionals and
disjunctions become trivially reducible� Thus computation must be stopped as soon as
failure occurs� Note that this is in contrast to the situation in the pure �	calculus where
computation can proceed orderly in the presence of inconsistent equations a � b�

��

���� Search

The extension of the �	calculus to �rst	order constraints is of practical use only in con	
junction with a facility for search�

Search in the style of Prolog can be provided as follows� Computation proceeds as long
as reduction rules are applicable and failure does not occur� If computation arrives at an
unfailed and irreducible expression a disjunctive molecule ErF is selected �if there is any�
and two don�t know alternatives are created by replacing ErF with E and F respectively�
The alternatives are reduced as before and may be explored following a backtracking strat	
egy� Unfailed and irreducible expressions not containing disjunctive molecules are taken as
solutions�

Prolog	style search su�ers from many problems� For one thing it is not obtained with	
in the computational calculus but formulated at the meta	level� Moreover the idea of
backtracking is incompatible with the idea of concurrent and reactive computation�

Combining reactive computation with search has been one of the �unsolved� challenges
of the Japanese Fifth Generation Project� A computational calculus solving the problem
through encapsulation of search into deep guard combinators has been devised with the
concurrent constraint language AKL
���� Oz realizes a more �exible scheme based on the
�	calculus and a higher	order search combinator spawning a local computation space
����

���� Higher�order Programming and First�order Constraints

The extended �	calculus has the remarkable property that it combines �rst	order con	
straints with higher	order programming� The only requirement on constraints imposed by
higher	order programming is the accommodation of names� This is in sharp contrast to
approaches based on higher	order logic
��� where higher	order programming comes with
the operational burden of higher	order constraints� Although we do not doubt the useful	
ness of higher	order constraints for some applications �e�g� reasoning about programs� we
feel that higher	order programming and higher	order constraints are two separate issues
that should be decoupled as much as possible�

The �	calculus
��� is a con�uent subcalculus of the �	calculus with constraints which
provides for deterministic higher	order programming with �rst	order constraints�

�� Relationship with the ��calculus

It is illuminating to compare the �	calculus with the �	calculus
�� �� ��� a calculus of
concurrent computation that evolved from research on algebraic process calculi� Although
the �	calculus and the �	calculus were conceived with very di�erent goals and intuitions a
uni�ed model of computation in the case of the �	calculus and a model of communicating
processes in the case of the �	calculus they are strikingly close technically� In fact both

��

calculi can be obtained as specializations of a slightly more general calculus which is
obtained from the polyadic �	calculus
��� by distinguishing between names and variables
and making variables logical� Logic variables increase the expressivity of the �	calculus
in two crucial aspects� They allow to equate communication links and they provide the
possibility to express procedures with input and output arguments �recall that a function
is a procedure with input and output��

While the �	calculus has logic variables the �	calculus has formal arguments only �as
in functional programming�� While the �	calculus has communication as its principal
primitive the �	calculus has logic variables abstraction and cells as principal primitives�
We shall show below that the �	calculus can be extended with logic variables and that the
thus extended asynchronous �	calculus can express abstractions and cells�

To put the comparison of the two calculi on solid ground we introduce yet another calculus
called the �calculus� The 	calculus is an asynchronous and polyadic version of the �	
calculus in
��� extended with equations� Its abstract syntax is given by

A�B ��� � j A �B j �xA j x �� y�A j xy j x� y�A j x � y

where � is null A �B is composition �xA is restriction x �� y�A is an input agent xy is
an asynchronous output agent and x� y�A is a replicating input agent �i�e ! x �� y�A�� The
only form not present in the �	calculus are equations x � y� In contrast to the �	calculus
where x and y would be called names they are called variables in the 	calculus�

Seen from the perspective of the �	calculus we have dropped conditionals and the distinc	
tion between names and variables and we have added the form x �� y�A which will turn
out to be a once	only abstraction�

The structural congruence of the 	calculus is given by the usual laws for composition and
restriction �	conversion for both input agents symmetry for equations and replication
for replicating input agents�

x� y�A � x �� y�A � x� y�A�

The reduction axioms are the Communication Rule

xy � x �� z�A � A
y�z� if y free for z in A

and the Elimination Rule

�x�x � y � A� � A
y�x� if x �� y and y free for x in E�

The structural reduction rules are the usual ones�

Seen from the perspective of the �	calculus an output agent is an application and a repli	
cating input agent is an abstraction� Ordinary input agents are once	only abstractions
providing extra expressivity� In fact cells can be expressed using once	only abstractions�

x�y �� �z �x �� uv��u� y � zv� � z�w�x �� uv��u� w � zv���

��

The 	calculus does not make a distinction between variables and names� Without this
distinction there is nothing that can make two variables di�erent� Hence the symmetric
conditional of the �	calculus does not carry over to the 	calculus� However we could still
have an asymmetric conditional just testing for equality�

One easily veri�es that our embeddings of the eager and lazy �	calculus into the �	calculus
carry over to the 	calculus� Due to the presence of logic variables they are simpler than
the ones for the �	calculus given by Milner
���� In contrast to Milner�s encoding our
embedding of the lazy �	calculus shares reductions of arguments �as in implementations of
lazy functional programming��

It seems that the 	calculus cannot express record adjunction and consequently inheri	
tance with method overwriting� The problem is that two variables cannot be established
as di�erent� Thus names and a corresponding symmetric conditional seem to be crucial
for modeling inheritance�

�� Future Research

Our investigations of the �	calculus are at an early stage� So far they have mainly been
driven by considerations concerning the design and implementation of the programming
language Oz of which it formalizes important aspects� Directions for future research are
type disciplines and reasoning about programs� In particular a declarative characterization
of program equivalence is desirable the investigation of which may start from the techniques
developed for the �	calculus� Another interesting topic are extensions of the �	calculus so
that it can model distributed computation and mobility�

Acknowledgements

I�m thankful to Martin M"uller and Joachim Niehren for continued discussions accompany	
ing the development of the �	calculus� Martin Henz Andreas Podelski Ralf Treinen and
J"org W"urtz helped by commenting on a draft version of this paper�

References

�� H� Abelson G� J� Sussman and J� Sussman� Structure and Interpretation of Computer

Programs� The MIT Press Cambridge Mass� �����

�� H� A"#t	Kaci A� Podelski and G� Smolka� A feature	based constraint system for
logic programming with entailment� Theoretical Computer Science ����������������
January �����

��

�� F� Benhamou and A� Colmerauer editors� Constraint Logic Programming� Selected

Research� The MIT Press Cambridge Mass� �����

�� G� Berry and G� Boudol� The chemical abstract machine� In Proceedings of the ��th

ACM Conference on Principles of Programming Languages pages ����� �����

�� N� Dershowitz and J�	P� Jouannaud� Rewrite systems� In Handbook of Theoretical

Computer Science volume B chapter ��� North�Holland Amsterdam Holland �����

�� K� Futatsugi J� Goguen J�	P� Jouannaud and J� Meseguer� Principles of OBJ�� In
Proceedings of the ��th ACM Conference on Principles of Programming Languages
pages ����� �����

�� P� v� Hentenryck V� Saraswat and Y� Deville� Design implementations and evalua	
tion of the constraint language cc�FD�� Technical Report CS	��	�� Brown University
Box ���� Providence RI ����� �����

�� M� Henz M� Mehl M� M"uller T� M"uller J� Niehren R� Scheidhauer C� Schulte
G� Smolka R� Treinen and J� W"urtz� The Oz Handbook� Research Report RR	��	
�� Deutsches Forschungszentrum f"ur K"unstliche Intelligenz Stuhlsatzenhausweg �
D	����� Saarbr"ucken Germany �����

�� C� Hewitt P� Bishop and R�Steiger� A universal modular ACTOR formalism for
arti�cial intelligence� In Proceedings of the International Joint Conference on Arti�cial

Intelligence pages ������� �����

��� J� Ja�ar and M� J� Maher� Constraint Logic Programming� A Survey� The Journal

of Logic Programming to appear �����

��� S� Janson and S� Haridi� Programming paradigms of the Andorra kernel language�
In V� Saraswat and K� Ueda editors Logic Programming� Proceedings of the �		�

International Symposium pages ������� San Diego USA ����� The MIT Press�

��� S� Janson J� Montelius and S� Haridi� Ports for objects� In Research Directions in

Concurrent Object�Oriented Programming� The MIT Press Cambridge Mass� �����

��� J� Launchbury� A natural semantics for lazy evaluation� In Proceedings of the �
th

ACM Conference on Principles of Programming Languages pages ������� �����

��� J� Meseguer� Conditional rewriting logic as a uni�ed model of concurrency� Theoretical
Computer Science ��������� �����

��� R� Milner� The polyadic �	calculus� A tutorial� ECS	LFCS Report Series ��	���
Laboratory for Foundations of Computer Science University of Edinburgh Edinburgh
EH� �JZ October �����

��� R� Milner� Functions as processes� Journal of Mathematical Structures in Computer

Science ������������ �����

��

��� R� Milner J� Parrow and D� Walker� A calculus of mobile processes I� Information

and Computation ����������� September �����

��� G� Nadathur and D� Miller� An overview of �Prolog� In R� A� Kowalski and K� A�
Bowen editors Proceedings of the Fifth International Conference and Symposium on

Logic Programming pages ������� Seattle Wash� ����� The MIT Press�

��� J� Niehren� Embedding the eager lambda calculus into the delta calculus� Research
report DFKI Stuhlsatzenhausweg � D	����� Saarbr"ucken Germany ����� Forth	
coming�

��� J� Niehren and G� Smolka� A con�uent calculus for higher	order relational program	
ming� In Proceedings of the �st International Conference on Constraints in Computa�

tional Logics Munich Germany September ����� LNCS Springer	Verlag�

��� J� Niehren and G� Smolka� Functional computation in a calculus of relational ab	
straction and application� Research Report RR	��	�� DFKI Stuhlsatzenhausweg �
D	����� Saarbr"ucken Germany March �����

��� V� A� Saraswat� Concurrent Constraint Programming� The MIT Press Cambridge
Mass� �����

��� C� Schulte and G� Smolka� Encapsulated search in higher	order concurrent constraint
programming� Technical report DFKI Stuhlsatzenhausweg � D	����� Saarbr"ucken
Germany April �����

��� E� Shapiro� The family of concurrent logic programming languages� ACM Computing

Surveys ������������� September �����

��� G� Smolka� A calculus for higher	order concurrent constraint programming with deep
guards� Research Report RR	��	�� Deutsches Forschungszentrum f"ur K"unstliche In	
telligenz Stuhlsatzenhausweg � D	����� Saarbr"ucken Germany February �����

��� G� Smolka and R� Treinen� Records for logic programming� The Journal of Logic

Programming ������������� April �����

��� G� Winskel� The Formal Semantics of Programming Languages� The MIT Press
Cambridge Mass� �����

Remark� Papers of authors from the Programming Systems Lab of DFKI are avail	
able through anonymous ftp from ps�ftp�dfki�uni�sb�de or through WWW from
http���ps�www�dfki�uni�sb�de��

��

