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Abstract

Terminological knowledge representation formalisms can be used to represent

objective� time�independent facts about an application domain� Notions like

belief� intentions� time�which are essential for the representation of multi�agent

environments�can only be expressed in a very limited way� For such notions�

modal logics with possible worlds semantics provides a formally well�founded and

well�investigated basis�

This paper presents a framework for integrating modal operators into ter�

minological knowledge representation languages� These operators can be used

both inside of concept expressions and in front of terminological and assertional

axioms� The main restrictions are that all modal operators are interpreted in the

basic logic K� and that we consider increasing domains instead of constant do�

mains� We introduce syntax and semantics of the extended language� and show

that satis�ability of �nite sets of formulas is decidable�
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� Introduction

Terminological knowledge representation languages in the style of kl�one ��� have been
developed as a structured formalism to describe the relevant concepts of a problem
domain and the interactions between these concepts� Starting with concept names
�unary predicates� and roles �binary predicates�	 one constructs more complex concepts
with the help of operators provided by a given concept language� For example	 if
we have the concept names Rich	 Woman and Man	 and the atomic roles loves	 we
can describe the concept �men that love only rich women� by the expression Man u
� loves���Woman t Rich�� Concept de�nitions �terminological axioms� can then be
used to introduce names for complex concepts� For example	 �fortune hunter� could
be an appropriate name for the concept from above


Fortune�hunter �Man u � loves���Woman t Rich��

In addition	 so�called assertional axioms can be used to associate objects �or individ�
uals� with concepts and to describe role relationships between objects� For example	
one can say that Peter is a fortune hunter	 who loves Mary	 using the assertions

Peter 
Fortune�hunter and Peter loves Mary�

Various terminological systems have been designed and implemented that are based on
the ideas underlying kl�one	 for example	 back ����	 classic ���	 kandor ����	 kl�
two ���� k�rep ����	 krypton ��� kris ���	 loom ����	 meson ���	 nikl ����	 sb�one
�����

Representing knowledge of an application domain with such a system amounts to
introducing the terminology of this domain via concept de�nitions	 and then describing
�an abstraction of� the relevant part of the �world� by listing the facts that hold in this
part of the world� In a traditional terminological system	 such a description is rigid in
the sense that it does not allow for the representation of notions like time	 or beliefs
of di�erent agents� Thus	 in a pure terminological formalism we can express the fact
that �Mary loves John	� but we are unable to formulate facts like �John believes that
Mary loves him� or �until yesterday	 Mary loved John�� In systems modeling aspects
of intelligent agents	 however	 intentions	 beliefs	 and time�dependent facts play an
important role�

Modal logics with possible worlds semantics is a formally well�founded and well�
investigated framework for the representation of such notions� The present paper is
concerned with integrating modal operators �for time	 belief	 etc�� into a terminolog�
ical formalism� For example	 if we extend the terminological language by two modal
operators �belief�John� and hfuturei 	 to be read as �John believes that� and �at some
time in the future it will hold that	� respectively	 we can use a formula like

�belief�John� �� � hfuturei ��
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to represent the fact that John believes that Mary does not love him yet �expressed
by the assertion � 
 Mary loves Peter�	 but he thinks that this will change eventually
�expressed by the assertion � 
 Mary loves John�� This small example shows that
there could be a high degree of cross�fertilization between terminological knowledge
representation and modal logics� For this to come true one must �nd an appropriate
semantics for the combined language� In addition	 if such a language should be used
in a system	 one must design algorithms for the important inference problems �such as
consistency of knowledge bases� for the language�

Several approaches have been proposed to combine terminological formalisms with
notions like time or beliefs� A very simple possibility to represent beliefs of agents is
realized in the partition hierarchy SB�PART ����	 which is an extension of the sb�one
system� In this approach	 each agent may have its own set of terminological axioms
�TBox �	 and these TBoxes can be ordered hierarchically� However	 this extension lacks
a formal semantics and it does not allow for representing properties of belief	 such
as introspection	 or interactions between beliefs of di�erent agents� A more formal
approach is used in m�krypton ����	 where a sub�language of the krypton represen�
tation language is extended by modal operators Bi	 which can be used to represent
the beliefs of agent i� Properties of beliefs are taken into consideration by using the
well�known modal logic KD��� Due to the undecidable base language	 however	 ����
just introduces a formal semantics	 without giving any inference algorithms for the ex�
tended language� In ����	 it has been shown that terminological systems already have
a strong connection to modal logic� In fact	 the concept language ALC is nothing but
a syntactic variant of the propositional multi�modal logic K�m�� Building upon this
observation	 ���� augments ALC by tense operators�

The two approaches that come next to the one we shall introduce below are de�
scribed in ���	 ��� and in ����� Both extend ALC by modal operators	 but with di�erent
emphasis� In ���	 ���	 modal operators are allowed in front of terminological and as�
sertional axioms only	 and not inside of concept expressions� In ����	 multi�modal
operators can be used at all levels of the concept expressions and	 additionally	 they
can be used to modify roles and other modal operators� However	 assertional axioms
have not been considered at all	 and terminological axioms �concept de�nitions� are
only provided with a semantics	 but they are not treated by the inference algorithm
described in �����

� Classi�cation

When extending a terminological KR language by modalities for belief	 time	 etc� one
has various degrees of freedom� Before describing the speci�c choices made in this
article	 we shall informally explain the di�erent alternatives� This will also clarify the
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di�erences between the formalism presented below and the extensions of terminological
languages described in ���� and ���	 ����

For simplicity	 assume that we are interested in time and belief operators only�
Thus	 in addition to the objects �like John and Mary� we have time points and belief
worlds� This means that the domain of an interpretation is the Cartesian product
�D � Dobject � Dtime � Dbelief of the set of objects	 the set of time points	 and the
set of belief worlds� Concepts are no longer just sets of objects� their interpretation
also depends on the actual belief world and time point� Thus	 they can be seen as
subsets of �D	 and not just as subsets of Dobject� Roles �like loves or owns� operate on
objects	 whereas modalities for time �like future or tomorrow� operate on time points	
and modalities for belief �like belief�John� operate on belief worlds� As for concepts	
however	 the interpretation of roles and modalities depends on all dimensions� Thus	
loves is interpreted as a function from �D into �Dobject	 which relates any individual in
Dobject �say John� with a set of individuals �the individuals John loves�	 but this set
depends on the actual time point and belief world� Modalities like future are treated
analogously� Modal operators can now be used both inside of concept expressions and
in front of concept de�nitions and assertions� For example	 we can describe the set
of individuals that love a woman that�according to John�s belief�is pretty by the
concept expression

� loves��Woman u �belief�John�Pretty��

and we can express that�according to John�s belief�a happy husband is one married
to a woman whom he �John� believes to be pretty by

�belief�John� �Happy�husband � �married�to��Woman u �belief�John�Pretty�� �

The assertion �belief�John�hfuturei �Peter married�to Mary� says that John believes
that	 at some point in the future	 Peter will be married to Mary�

With the usual interpretation of the Boolean operators	 of value and exists restric�
tions on roles	 and of box and diamond operators for the modalities	 this yields a
multi�dimensional version of the multi�modal logic Km� As described until now	 this
logic is a sub�language of the one introduced in ����� The restriction lies in the fact that	
unlike in ����	 we do not consider roles and modalities that have a complex structure
�such as �wants�own	 where the modality wants is used to modify the role own��

There are several reasons why this approach is not yet satisfactory� First	 the object
and the other dimensions are treated analogously� This means	 for example	 that the
interpretation of the modality future depends not only on the actual time point	 but
also on the current object and the belief world� Whereas the dependence from the
belief world may seem to be quite reasonable	 it is rather counterintuitive that the
future time points reached from time t� are di�erent	 depending on whether we are
interested in the individual Sue or Mary� For example	 assume that for all time points	
Sue belongs to the interpretation of Pretty i� Mary belongs to the interpretation of
Pretty� Nevertheless	 it could be the case that Mary belongs to hfutureiPretty	 whereas

�



Sue does not� In fact	 in the future time point at which Mary is pretty	 Sue is pretty as
well� However	 this time point may only be a future time point with regard to Mary	
but not with regard to Sue� Thus	 it seems to be more appropriate to treat the object
dimension in a special way
 whereas the interpretation of roles should depend on the
actual time point etc�	 the interpretation of modalities should not depend on the object
under consideration�

The need for a special treatment of the object dimension can also be motivated
by considering the semantics of concept de�nitions �and assertions�� In ����	 concept
de�nitions are required to hold for all objects	 time points	 and belief worlds� This
is a straightforward generalization of the treatment of de�nitions in terminological
languages	 where a de�nition C � D must hold for all objects	 i�e�	 in a model of
C � D all objects o must satisfy that o belongs to the interpretation of C i� it belongs
to the interpretation of D� For the other dimensions	 however	 this di�ers from the
usual de�nition of models in modal logics	 where a formula is only required to hold in
one world� �Only the characteristic axioms of the particular modal system are required
to hold in all worlds��

Another problem is that not only the roles	 but also all the other modalities are just
interpreted in the basic logic K	 i�e�	 they are not required to satisfy speci�c axioms for
belief or time�

In the present paper	 we shall not take into account this last aspect	 but we shall
treat the object dimension in a special way	 thus eliminating the problems mentioned
above� In ���	 ��� both aspects are considered� However	 modal operators are not
allowed to occur inside of concept expressions	 which considerably simpli�es the algo�
rithmic treatment of the formalism� The di�erence to ���� is	 on the one hand	 the
special treatment of the object dimension� In addition	 ���� does not consider asser�
tions	 and even though concept de�nitions are introduced	 they are not handled by
the satis�ability algorithm� On the other hand	 ���� allows for very complex roles and
modalities	 which are not considered here�

� Syntax and Semantics of ALCM

First	 we present the syntax of our multi�dimensional modal extension of the concept
language ALC� As for ALC	 we assume a set of concept names	 a set of role names	 and
a set of object names to be given� Beside the object dimension �which will be treated
di�erently from the other dimensions�	 we assume that there are � � � additional di�
mensions �such as time points	 epistemic alternatives	 or intensional states�� In each
dimension	 there can be several modalities	 which can be used in box and diamond
operators� For example	 in the dimension time points we could have future and tomor�
row	 and in the dimension belief worlds we could have belief�John and belief�Mary� If
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o is a modality of dimension i we write dim�o� � i� In this case	 �o� and hoi are modal
operators of dimension i�

De�nition ��� Concept descriptions �or� for short� concepts� of ALCM are induc�
tively de�ned as follows�

�	 Each concept name is a concept� and � and 	 are concepts	


	 If C and D are concepts� R is a role name� and o is a modality then

�a� CuD �concept conjunction�� CtD �concept disjunction�� and �C �concept
negation� are concepts�

�b� �R�C �value restriction� and �R�C �exists restriction� are concepts�

�c� �o� C �box operator� and hoi C �diamond operator� are concepts	

Terminological axioms of ALCM are of the form m �C � D� where C and D are
concepts of ALCM and m is a �possibly empty� sequence of modal operators	 Assertional
axioms of ALCM are of the form m �xRy� or m �x 
 C� where x and y are object names�
R is a role name� C is a concept� and m is a �possibly empty� sequence of modal
operators	 An ALCM�formula is either a terminological or an assertional axiom	

Traditional terminological systems impose severe restrictions on the admissible sets
of terminological axioms
 ��� The concepts on the left�hand sides of axioms must be
concept names	 �
� concept names occur at most once as left�hand side of an axiom
�unique de�nitions�	 and ��� there are no cyclic de�nitions� The e�ect of these re�
strictions is that terminological axioms are just macro de�nitions �introducing names
for large descriptions�	 which can simply be expanded before starting the reasoning
process� Unrestricted terminological axioms are a lot harder to handle algorithmically
���	 �	 ��	 but they are very useful for expressing constraints on concepts that are
required to hold in the application domain� In the presence of modal operators	 the
requirement of having unique de�nitions is not appropriate anyway� For example	 Peter
may have a de�nition of Happy�husband that is quite di�erent from John�s de�nition�
Thus	 it is desirable to have di�erent de�nitions m� �A � C� and m� �A � D� of the
same concept name A for di�erent modal sequences m� and m�� Even though m� and
m� are di�erent	 there can be interactions between these de�nitions� For example	 m�

could be of the form hoi and m� of the form �o� � Thus	 it is not a priori clear how the
requirement of �unique de�nitions� can be adapted to case of terminological axioms
with modal pre�x� To avoid these problems	 we consider the more general case where
arbitrary axioms are allowed�

Let us now turn to the semantics ofALCM� The modal operators will be interpreted
by a Kripke�style possible worlds semantics ����� Thus	 for each dimension i we need a
set of possible worlds Di� Modalities of dimension i correspond to accessibility relations
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on Di	 which may	 however	 depend on the other dimensions as well� Concepts and
roles are interpreted in an object domain	 but this interpretation also depends on the
modal dimensions� The next de�nition formalizes these ideas�

De�nition ��� A Kripke structure K � �W���KI � consists of a set W of possible
worlds� a set of accessibility relations �� and a K�interpretation KI over W�


 W is the Cartesian product of non�empty domains D�� � � � �D� � one for each di�
mension	 It will be called the set of possible worlds	


 � contains for each modality o of dimension i an accessibility relation �o� which
is a function �o 
 W � �Di 	 Instead of d�i � �o�d�� � � � � di� � � � � d�� we will often
write ��d�� � � � � di� � � � � d��� �d�� � � � � d�i� � � � � d��� � �o	


 The K�interpretation KI consists of a domain KI and an interpretation function
KI 	 The domain is the union of non�empty domains  KI�w� for all worlds
w � W	 The interpretation function associates

 with each object name x an element xKI �  KI �

 with each concept name A and world w � W a set �A�w�KI �  KI�w��

 with the top concept and the bottom concept the sets ��� w�KI �  KI�w�
and �	� w�KI � � �for each world w��

 with each role name R and world w � W a binary relation �R�w�KI �
 KI �w�� KI�w�	

Note that the interpretation of object names does not depend on the particular
world �i�e�	 we are using so�called �rigid designators��	 whereas the interpretation of
concept and role names depends on the world� For a given world w	 the interpretation of
A �resp� R� in w is a subset of �resp� binary relation on� the domain  KI�w� associated
with w�

The interpretation of concept names and roles is expanded to the concept forming
operators as follows
 If C and D are concepts	 R is a role	 and w is a world	 then

�C uD�w�KI � �C�w�KI � �D�w�KI �

�C tD�w�KI � �C�w�KI � �D�w�KI �

��C�w�KI �  KI�w� n �C�w�KI �

��R�C� w�KI � f� �  KI�w� j �� � �C�w�KI for each �� with ��� ��� � �R�w�KIg�
��R�C� w�KI � f� �  KI�w� j �� � �C�w�KI for some �� with ��� ��� � �R�w�KIg�
��o�C�w�KI � f� �  KI�w� j � � �C�w��KI for each world w� with �w�w�� � �og�
�hoi C�w�KI � f� �  KI�w� j � � �C�w��KI for some world w� with �w�w�� � �og�

Note that	 for each concept C and world w	 we have �C�w�KI �  KI�w�� Two ALCM
concepts C and D are called equivalent i� for all Kripke structures K � �W���KI �
and all worlds w � W we have �C�w�KI � �D�w�KI �
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Now	 we can de�ne under which condition an ALCM�formula F is satis�ed in a
Kripke structure K � �W���KI � and a world w � W	 written as K�w j� F 	 by
induction on the length of the modal pre�x


K�w j� C � D i� �C�w�KI � �D�w�KI �

K�w j� x 
C i� xKI � �C�w�KI �

K�w j� xRy i� �xKI � yKI� � �R�w�KI �

K�w j� �o�G i� K�w� j� G for each world w� with �w�w�� � �o�

K�w j� hoi G i� K�w� j� G for some world w� with �w�w�� � �o�

Here G is an ALCM�formula	 C	 D are concepts	 x	 y are object names	 R is a role
name	 and o is a modality� A set fF�� � � � � Fng of ALCM�formulas is satis�able i� there
exists a Kripke structure K � �W���KI � and a world w� � W such that K�w� j� Fi
for i � �� � � � � n� In this case we write K j� F�� � � � � Fn�

Even though we have introduced a domain  KI�w� for each world w	 we have not
yet said anything about the relationship between the domains of di�erent worlds� In
the simplest approach	 the domains  KI�w�� and  KI�w�� of each pair w�� w� of worlds
are independent of each other� This approach is known as varying domain assumption�
In most cases	 however	 it is more reasonable to assume certain relationships between
the domains of di�erent worlds�

The most commonly used approach is the so�called increasing domain assumption	
where  KI�w� �  KI�w�� if the world w� is accessible from the world w� Accessible
means that there are n � � worlds w�� � � � � wn such that w � w�	 w� � wn	 and for all
i� � � i 	 n	 there exist a modality o such that �wi� wi��� � �o� The advantage of this
approach is that domain elements that have been introduced in w can also be referred
to in all worlds that are accessible from w	 i�e�	 domain elements do not �vanish� when
we move from one world to another� As an example	 consider worlds as time points	 and
the accessibility relation between worlds as the !ow of time� With increasing domain
assumption	 if there is a domain elementAristotle at some time point t�	 we can speak
about Aristotle at any time point later than t� �i�e�	 which is accessible from t���

As a special case	 the constant domain assumption is sometimes used	 where the
domains  KI�w�� and  KI�w�� are identical whenever world w� is accessible from w��
Finally	 the decreasing domain assumption can be used to express that new domain
elements cannot arise when moving from one world to another one�

As an example that demonstrates the consequences of changing the requirements
on the relationship between domains of worlds	 consider the ALCM�formulas x 
 �hoiC�
and hoi �x 
C�	 where x is an object name	 o is a modality	 and C is a concept� For a
Kripke structure K � �W���KI � and a world w � W we have

�i� K�w j� x 
 hoiC i� xKI �  KI�w� and there exists a world w� such that �w�w�� �
�o and x

KI � �C�w��KI 	
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�ii� K�w j� hoi�x 
C� i� there exists a world w� such that �w�w�� � �o	 xKI �  KI �w��	
and xKI � �C�w��KI �

Thus	 the main di�erence is that in the �rst case xKI is required to be in  KI�w�	
whereas this is not necessary in the second case� The reason is that	 in the �rst case	
x must belong to the interpretation of a concept in world w� In the second case	 x is
just required to be in the interpretation of a concept in the successor world�

If we assume just increasing domains	 it is possible that xKI �  KI�w��	 but xKI ��
 KI�w�� Hence it may be the case that K�w j� hoi �x 
 C�	 but K�w �j� x 
 �hoi C��
If we assume constant domains	 however	 it holds that  KI�w� �  KI�w��	 and thus
K�w j� x 
 �hoiC� i� K�w j� hoi �x 
C��

With the exception of Section �	 where we discuss the algorithmic problems that are
caused by the constant domain assumption	 we will restrict our attention to increasing
domains in the following� Furthermore	 we assume that all terminological axioms are
of the form m �C � ��	 where C is a concept and m is a �possibly empty� sequence of
modal operators� It is easy to verify that this can be done without loss of generality�

Lemma ��� Let K � �W���KI � be a Kripke structure� w be a world in W� m be
a �possibly empty� sequence of modal operators� and C�D be concepts	 Then K�w j�

m �C � D� i� K�w j� m
�
�C uD� t ��C u �D� � �
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Proof� First	 assume that m is empty� Then K�w j� C � D i� �C�w�KI � �D�w�KI �
This is equivalent to saying that	 for each element � �  KI�w�	 it holds that either �i�
� � �C�w�KI and � � �D�w�KI or �ii� � �� �C�w�KI and � �� �D�w�KI � This is the case
i� K�w j� �C uD� t ��C u �D�� Building upon this	 the argument is straightforward
for non�empty modal pre�x m�

� Testing Satis�ability of ALCM�formulas

We present an algorithm for testing satis�ability of a �nite set fF�� � � � � Fng of ALCM�
formulas�� To keep notation simple we assume concepts to be in negation normal form	
i�e�	 negation signs occur immediately in front of concept names only� Concepts can be
transformed into an equivalent negation normal form by the rules

��o� C � hoi �C ��C � C ��C uD� � �C t �D
�hoi C � �o� �C �� � 	 ��C tD� � �C u �D

�	 � � ���R�C�� �R��C
���R�C�� �R��C

�It is easy to see that all the other interesting inference problems �like the subsumption or the
instance problem� can be reduced to this problem�

��



where o is a modality	 C is a concept	 and R is a role� Our calculus for testing
satis�ability of ALCM�formulas is based on the notions of labeled ALCM�formulas and
of world constraint systems�

De�nition ��� A labeled ALCM�formula consists of an ALCM�formula F together
with a label l� written as F jj l	 The label l is a syntactic representation of a world in
which F is required to hold	 A world constraint is either a labeled ALCM�formula or a
term l �o l

�� where l� l� are labels and �o is a syntactic representation of the accessibility
relation of modality o	 A world constraint system is a �nite� non�empty set of world
constraints	

A Kripke structureK � �W���KI � satis�es a world constraint systemW i� there is
a mapping 
 that maps labels in W to worlds inW such that �i� K�
�l� j� F for each
world constraint F jj l in W 	 and �ii� �
�l�� 
�l��� � �o for each world constraint l �o l

�

in W � A world constraint system W is satis�able i� there exists a Kripke structure
satisfying W �

In order to test satis�ability of a set fF�� � � � � Fng of ALCM�formulas we translate
this set into the world constraint system W� � fx� 
 � jj l�� F� jj l�� � � � � Fn jj l�g	 where
x� is a new object name not occurring in fF�� � � � � Fng	 and l� is an arbitrary label
�which is intended to represent the real world�� We say the world constraint system
W� is induced by fF�� � � � � Fng� It is easy to verify that fF�� � � � � Fng is satis�able i�
W� is satis�able� The world constraint x� 
 � jj l� can obviously be satis�ed by any
Kripke structure� The proof of completeness given in the next section will show that
this constraint is necessary to guarantee that the domains  KI�w� of the canonical
Kripke structure constructed in this proof are non�empty�

The ALCM�satis�ability algorithm takes as input a world constraint system W�

that is induced by a �nite set of ALCM�formulas� It successively adds new world
constraints to W� by applying several propagation rules	 which will be de�ned later�
A world constraint system that is induced by a �nite set of ALCM�formulas	 or that is
obtained by a �nite sequence of applications of propagation rule to an induced system	
will be called derived system�

In the following	 we use the letters x� y� z to denote object names	 l to denote labels	
A�B to denote concept names	 C�D to denote concepts	 and R to denote role names�
If necessary	 these letters will have an appropriate subscript�

Before introducing the rules in a formal way	 let us �rst describe the underlying
ideas on an intuitive level� The rules that handle the usual ALC concept forming
operators are well�known and rather straightforward �see	 e�g�	 ����� As an example
for the treatment of the Boolean operators	 assume that there is a world constraint
x 
C uD jj l in a world constraint system W � The �u rule adds the world constraints
x 
C jj l and x 
D jj l to W �unless they are already present in W ��
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Example ��� To illustrate the rules that handle modalities and world constraints of
the form C � � jj l	 suppose that the ALCM�formula hoi �B � �� is given	 where o is
a modality of some dimension� In order to test satis�ability of this ALCM�formula	 we
start with the induced world constraint system

W� � fx� 
 � jj l�� hoi �B � �� jj l�g�

By de�nition	W� is satis�able i� there is a Kripke structureK � �W���KI �	 a mapping

	 and a world w� � 
�lo� � W such that xKI

� �  KI �w�� and K�w� j� hoi �B � ���
Since K�w� j� hoi �B � �� i� K�w� j� B � � for some world w� with �w�� w�� � �o	
the �� rule adds the world constraints l� �o l� and B � � jj l� to W�	 where l� is a
new label� This yields the new world constraint system

W� �W� � fl� �o l�� B � � jj l�g�

Because of the semantics of ALCM�formulas we know that K�w� j� B � � i� � �
�B�w��KI for all � �  KI�w��� By the increasing domain assumption	 x

KI
� �  KI�w��

implies xKI
� �  KI�w��� Summing up	 we must guarantee that x

KI
� � �B�w��KI and

therefore must add the world constraint x� 
B jj l� to W �

More generally	 we say that an object name x is relevant for label l �in a world
constraint system W � i� there is a label l� occurring in W such that

�� W contains a world constraint of the form x 
 C jj l�	 xRy jj l�	 or yRx jj l��

�� l is accessible from l�	 i�e�	 l is l� or there are world constraints l� �o� l�� � � � � ln�� �on

l in W for some modalities o�� � � � � on�

Now	 if x is relevant for l and there is a world constraint C � � jj l in W for some
concept C	 then the�� rule adds x 
C jj l to W �unless this world constraint is already
contained in W ��

In our example	 this rule applies to W�	 and it yields the world constraint system

W� � W� � fx� 
B jj l�g�

To W� no more propagation rules are applicable	 and�as we shall show below�we
can use this system to construct a Kripke structure that satis�es the ALCM�formula
hoi �B � �� from W�� A world constraint system to which no more propagation rules
are applicable will be called complete�

Termination of the propagation rule applications can only be guaranteed if appli�
cability of the usual rule for handling exists restrictions is restricted in an appropriate
way� This is due to the presence of axioms of the form C � ��
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Example ��� To illustrate this problem	 consider the world constraint system W �
fx 
A jj l��R�C � � jj lg� Since x is relevant for l	 the �� rule adds x 
 �R�C jj l�
Now	 the usual propagation rule �� that treats exists restrictions would add xRy jj l
and y 
C jj l to W 	 where y is a new object� However	 y is again relevant for l	 and
thus we must add y 
�R�C jj l� The �� rule would thus be applicable to y 
�R�C jj l	
generating new world constraints yRz jj l and z 
C jj l	 etc�

In order to avoid such in�nite chains of rule application	 we introduce the notion
of blocked objects�� Intuitively	 an object x is blocked w�r�t� label l if we need not
introduce a new object in order to be sure that the exists restrictions on x can be
satis�ed�

Example ��� Consider the world constraint system

W � fx 
�R�C jj l� x 
D jj l� xRy jj l� y 
�R�C jj lg�

In this case	 it is su"cient to apply the �� rule just to x� In fact	 since all constraints
for y are also constraints for x	 any contradiction that could be obtained by applying
this propagation rule to y can already be obtained by applying it to x�

The idea is thus to say that y is blocked by x with respect to a label l if fC j x 

C jj l � Wg � fD j y 
D jj l � Wg� In the above example	 y would thus be blocked by x	
and the �� rule would only be applied to x� In general	 this notion of blocking is too
strong	 though� In fact	 consider the system W � that is obtained from W by deleting
the constraint x 
D jj l� In this system	 x would be blocked by y and vice versa� Such
cyclic blocking is clearly not appropriate since contradictions that are possibly hidden
in C would never be detected�

In order to avoid cyclic blocking	 we assume that the �countably in�nite� set of all
object names is given by an enumeration y�� y�� y�� � � �We write x 	 y if x comes before
y in this enumeration� This ordering is used as follows� Whenever a new object y is
introduced by applying the �� rule to a world constraint system W 	 y is chosen such
that all objects in W are smaller than y w�r�t� this ordering� In addition	 only smaller
objects can block a given object�

De�nition ��	 An object x is blocked by an object y w	r	t	 label l in a world constraint
system W i� fC j x 
C jj l � Wg � fD j y 
D jj l � Wg and y 	 x	

Now	 the�� rule is applicable to a world constraint x 
�R�C jjl in a world constraint
system W only if x is not blocked by some object y w�r�t� l in W �

�This idea was already used in ��� �	� with slightly di
ering de�nitions of blocked objects�

��



W �� fl �o l
�� �� jj l�g �W

if � jj l is in W 	 where � is hoi F �resp� x 
 hoiC�	 �� is F �resp� x 
C�	
there is no label l�� in W such that the world constraints l �o l

�� and
�� jj l�� are in W 	 and l� is a new label�

W �� f�� jj l�g �W

if � jj l and l �o l
� are in W 	 where � is �o� F �resp� x 
 �o�C�	 �� is F

�resp� x 
C�	 and �� jj l� is not in W �

W �u fx 
C� jj l� x 
C� jj lg �W

if x 
C�uC� jjl is inW andW does not contain both world constraints
x 
C� jj l and x 
C� jj l�

W �t fx 
D jj lg �W

if x 
C�tC� jj l is in W 	 neither x 
C� jj l nor x 
C� jj l is in W 	 and D
is either C� or C��

W �� fxRy jj l� y 
C jj lg �W

if x 
�R�C jj l is in W 	 x is not blocked in W 	 and y is a new object
such that y � z for all objects z occurring in W �

W �� fy 
C jj lg �W

if x 
�R�C jj l and xRy jj l are inW and W does not contain the world
constraint y 
C jj l�

W �� fx 
C jj lg �W

if x is relevant for l	 C � � jj l is in W 	 and x 
C jj l is not in W �

Figure �
 Propagation rules of the ALCM�satis�ability algorithm�

A formal description of the propagation rules is given in Figure �� Given a set
fF�� � � � � Fng of ALCM�formulas the ALCM�satis�ability algorithm proceeds as follows�
Starting with the world constraint system W� that is induced by fF�� � � � � Fng	 propa�
gation rules are applied as long as possible�

The transformation rules are sound in the sense that	 if W is a satis�able world
constraint system	 each applicable propagation rule can be applied in such a way that
the obtained derived system is satis�able �see Section � for a proof�� For the �don�t�
know� non�deterministic �t rule there are two alternative successor systems	 and
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soundness means that one of them is satis�able if the original system is satis�able��

For the other rules �which are deterministic�	 soundness just means that application of
the rule transforms a satis�able system into a new satis�able system�

Furthermore	 given an arbitrary induced world constraint system W�	 only a �nite
number of propagation rules can successively be applied	 starting with W� �see also
Section � for a proof�� This means that	 after a �nite number of propagation rule
applications to W� we obtain a complete world constraint system �i�e�	 a system to
which no more rules apply�	 say W �� If W � is satis�able we can conclude that W�

is satis�able �since W� is a subset of W ��� Otherwise	 if W � is unsatis�able	 we can
possibly derive another complete world constraint system fromW� by another choice for
the non�deterministic�t rule� If all the ��nitely many� choices lead to an unsatis�able
complete system then soundness of the rules implies that the original system W� was
unsatis�able�

Thus	 it remains to be shown how satis�ability of a complete world constraint
system can be decided�

De�nition ��� A world constraint system W contains an obvious contradiction �or
clash for short� if it contains either a pair of labeled ALCM�formulas of the form x 
Ajjl
and x 
�A jj l or a labeled ALCM�formula x 
	jj l �for some object x� concept name A�
modality o� and label l�	

Obviously	 a world constraint system containing a clash is unsatis�able� On the
other hand	 if a system is clash�free and complete then it is satis�able �this property	
which shows completeness of the propagation rules	 will be proved in the next sec�
tion�� Summing up	 we obtain the following theorem	 which will be proved as soon as
soundness	 completeness	 and termination of the propagation rules are established�

Theorem ��� Satis�ability of a �nite set of ALCM�formulas is decidable if we assume
increasing domains	

� Proofs of Soundness	 Completeness	 and Termi�

nation

In this section we prove Theorem ��� by giving proofs for soundness	 termination	 and
completeness of the propagation rules in the Subsections ���	 ���	 and ����

�Note that this is the only source of �dont�know� non�determinism� The choice of an applicable
rule is �dont�care� non�deterministic� i�e�� we need not try di
erent orders of rule application�
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��� Soundness

The following lemma states that the propagation rules are sound�

Lemma 	�� Let W be a satis�able derived system	 Then each applicable propagation
rule can be applied toW in such a way that the obtained derived systemW � is satis�able	

Proof� For all rules other than the �t rule we must show that application of the rule
transforms a satis�able system W into a satis�able system W �� For the �t we must
show that one of the two systems W ��W �� that can be derived by applying this rule is
satis�able	 provided that the original system W was satis�able�

Let K � �W���KI � be a Kripke structure that satis�es W 	 and let 
 be a mapping
that maps labels in W to worlds in W such that �i� K�
�l� j� F for each world
constraint F jj l in W and �ii� �
�l�� 
�l��� � �o for each world constraint l �o l

� in W �
Since W was assumed to be satis�able such a Kripke structure and a mapping 
 exist�

Case �� W �� W � � W � fl �o l�� F jj l�g� Here the �� rule was applied to
a constraint hoi F jj l for some modality o and ALCM�formula F � The label l

� is a
new label that does not occur in W � Since the pair K�
 satis�es W we know that
K�
�l� j� hoi F 	 and hence there is a world w� in W such that �
�l�� w�� � �o and
K�w� j� F � Thus	 we can de�ne 
� such that 
��l�� � w� and 
��l��� � 
�l��� for all
labels l�� di�erent from l�� Obviously	 K�
� satis�es W ��

Case �� W �� W � � W � fl �o l�� x 
C jj l�g� Here the �� rule was applied to
a constraint x 
 hoi C jj l �for a modality o and an ALCM concept C�� Again	 label
l� is a new label that does not occur in W � Now K�
�l� j� x 
 hoi C implies that
xKI � �hoi C�
�l��KI 	 and thus xKI � �C�w��KI for some world w� with �
�l�� w�� � �o�
As in Case �	 we de�ne 
��l�� � w� and 
��l��� � 
�l��� for all other labels� Obviously	
K�
� satis�es W ��

Case �� W �� W � � W � fF jj l�g� Here the �� rule was applied to �o� F jj l
and l �o l� for some modality o and ALCM�formula F � Since K�
 satis�es W we
can conclude that �
�l�� 
�l��� � �o and that K�w� j� F for each world w� such that
�
�l�� w�� � �o� This impliesK�
�l�� j� F 	 and thus K�
 satis�es W �� The case where
the �� rule is applied to a constraint x 
 �o�C jj l can be treated similarly�

Case �� W �t W
�	 W �u W

�	W �� W
�	 or W �� W

�� The proof of soundness is
almost identical to the one for the corresponding propagation rules for ALC �see ������

Case �� W �� W � � W � fx 
C jj lg� Here the �� rule was applied to C � � jj l
and an object name x that is relevant for l in W � Thus	 there is a label l� such
that �i� W contains a world constraint of the form x 
 C jj l�	 xRy jj l�	 or yRx jj l�	
and �ii� l is accessible from l�� Because of �i� we know that xKI �  KI�
�l���	 and
because of �ii� and the increasing domain assumption we have  KI �
�l��� �  KI �
�l���
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Furthermore	 by assumption	 we know that K�
�l� j� C � �	 and hence we can
conclude xKI � �C�
�l��KI � To sum up	 K�
�l� j� x 
C	 and thus K�
 satis�es W ��

��� Termination

The next lemma shows that	 given a �nite derived system W 	 only a �nite number of
propagation rules can successively be applied to W � In order to simplify the notation
we will use ConW �x� l� to denote the set fC�� � � � � Cng of concepts such that x 
 Ci jj l
occurs in W � By de�nition	 an object x is blocked by an object y w�r�t� label l in W
i� ConW �x� l� � ConW �y� l� and y 	 x�

The depth of labels in a derived system W is recursively de�ned as follows� The
depth of label l� �which represents the real world� is �	 written as depthW �l�� � �� If
l is a label with depthW �l� � n and there is a world constraint l �o l

� in W for some
modality o	 then depthW �l

�� � n# �� Note that	 due to the de�nition of the �� rule	
for each label l� �� l� occurring a derived system W there is exactly one label l and one
modality o such that l �o l

� is in W � In addition	 application of propagation rules does
not change the depth of an already existing label�

The maximal nesting depth of modal operators in a labeled ALCM�formula F jj l is
denoted by mnd�F jj l�� The maximal nesting depth of a label l in a derived system
W 	 written as mndW �l�	 is de�ned as maxfmnd�F jj l� j F jj l � Wg�

Lemma 	�� Let W� be a system that is induced by a �nite set of ALCM�formulas
fF�� � � � � Fng	 Then any sequence of propagation rule applications starting with W� is
�nite	

Proof� Assume to the contrary there is an in�nite sequence of rule applications W� �
W� �W� �   � The following facts are an easy consequence of the way the propaga�
tion rules and Con are de�ned


�� Let x be an object name in Wi and let l be a label� Then ConWi
�x� l� �

ConWi��
�x� l��

�� If x 
 C jj l is in Wi then C is a concept that is a subexpression of a concept
occurring in F�� � � � � Fn� Consequently	 there can be only �nitely many di�erent
sets ConWi

�x� l� �in the whole sequence��

�� If F jj l is in Wi for an ALCM�formula F with non�empty modal pre�x then there
is an i and a sequence of modal operators m such that Fi � mF � Consequently	
the number of possible formulas F is �nite�
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The second and the third fact imply that an in�nite sequence of rule applications is
possible only if in�nitely many objects or in�nitely many labels are generated� In this
case there are three possibilities


�� For some label l an in�nite chain of world constraints of the form l �o� l�� l� �o�

l�� � � � is generated	

�� there is a label l such that in�nitely many ALCM�formulas labeled by l are
generated	 or

�� for some label l an in�nite number of world constraints of the form l �o� l�� l �o�

l�� � � � is generated�

First	 we show that the �rst case is impossible� This is an obvious consequence of
the following claim� Let mnd� be the maximal nesting depth of modal operators in
F�� � � � � Fn� Then for all i and all labels l occurring in Wi we have

��� depthWi
�l� #mndWi

�l� � mnd��

The claim can be shown by induction on i� For i � � the only label occurring in W� is
l�	 and this label has depth �� In addition	 mndW�

�l�� � mnd��

For the induction step	 note that it is easy to see that application of rules other
than the�� or�� rule cannot change the maximal nesting depth or depth of a label�

First	 we consider the case where the world constraint l �o l
� has been introduced

in the step from Wi to Wi�� by an application of the �� rule to a formula � labeled
by l� Thus	 we have depthWi��

�l�� � depthWi��
�l� # � � depthWi

�l� # �� The labeled
ALCM�formula � is either of the form hoi F jj l or of the form x 
 hoi C jj l	 where F
is an ALCM�formula	 x is an object	 and C is a concept� If the �� rule has been
applied to hoiF jj l	 then it has added exactly one ALCM�formula with label l�	 namely
F jj l�� Analogously	 if the �� rule has been applied to x 
 hoi C jj l	 this propagation
rule application has added x 
 C jj l� as the only ALCM�formula with label l�� Thus	
in both cases mndWi��

�l�� is strictly smaller than the maximal nesting depth of modal
operators in �� This and the fact that depthWi��

�l�� � depthWi
�l� # � imply that ���

holds for Wi�� and l�� Since nothing has changed for the other labels	 we are done in
this case�

Second	 assume that an additional ALCM�formula � with label l� has been added
in the step from Wi to Wi�� by an application of the �� rule to a formula with label
l� Again	 � has a maximal nesting depth of modal operators that is smaller than
mndWi

�l� � mndWi��
�l�	 and depthWi��

�l�� � depthWi
�l� # �� This implies that ���

holds for Wi�� and l��

This concludes the proof that there cannot be an in�nite sequence l �o� l�� l� �o�

l�� � � �	 i�e�	 Case � is not possible� By induction on the depth of labels we show that
Cases � and � cannot occur�
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Base Case� Consider the initial label l�� It is easy to see that Case � can occur only
if the�� rule is applied in�nitely often to a constraint with label l�� To a �xed object
x and label l the �� rule cannot be applied in�nitely many times� This shows that
there must be in�nitely many objects x�� x�� x�� � � � to which the �� rule is applied at
label l�� Since	 for an object x	 there are only �nitely many smaller objects	 we may
without loss of generality assume that x� 	 x� 	 x� 	 � � �

For all i	 let Wji �� Wji�� be the transformation step at which the ���rule is ap�
plied to xi� Now consider the sets ConWji

�xi� l��� Since there are only �nitely many dif�
ferent such sets	 there must be indices k 	 h such that ConWjk

�xk� l�� � ConWjh
�xh� l���

However	 we know that ConWjk
�xk� l�� � ConWjh

�xk� l��	 and that xk 	 xh� Thus	 xh
should be blocked in Wjh	 which is a contradiction to our assumption that the�� rule
is applied to xh in Wjh � This completes the proof that Case � cannot hold for label l��

An easy consequence of this is that there are only �nitely many applications of
propagation rules to formulas with label l�� In particular	 the �� rule is applied only
a �nite number of times to formulas with label l�	 which completes the proof that
Case � cannot hold for label l��

Induction step� The only di�erence to the base case is that a label l may �inherit�
objects from other labels l�	 if l is accessible from l�� Thus	 in addition to showing that
the �� rule is applied only in�nitely often for label l	 one must prove that there are
only �nitely many such inherited objects� However	 if l is accessible from l� then l� is of
depth smaller than l	 and thus we know by induction that there are only �nitely many
objects for l�� The remainder of the proof is identical to the one for the base case�

��� Completeness

LetW� � fx� 
 �jj l�� F� jj l�� � � � � Fn jj l�g be the world constraint system that is induced
by the �nite set fF�� � � � � Fng of ALCM�formulas� Assume that W is a complete and
clash�free world constraint system that is derived from W� by applying propagation
rules� We must show that W is satis�able� Since W� is a subset of W 	 this implies
that W� is satis�able	 and thus also fF�� � � � � Fng

In order to show satis�ability of W 	 we introduce the notion of the canonical Kripke
structure K � �W���KI � of W 	 and of the corresponding canonical mapping 
 from
labels to worlds of this structure�


 For all dimensions i the domain Di consists of all labels occurring in W 	 i�e�	
the set W of worlds is given by the ��fold Cartesian product D �    �D where
D 
� fl j l is a label in Wg�


 The mapping 
 from labels to worlds is de�ned by induction on the depth of
labels


��



 The initial label l� is the only label of depth �� For this label	 we de�ne

�l�� 
� �l�� � � � � l��� Obviously	 the tuple 
�l�� contains exactly one label of
maximal depth �in this case depth ��	 and this maximal label is l� itself�

 Now assume that l� is a label of depth k#�� There is exactly one label l� of
depth k and a modality o such that l �o l

� is in W � Let i be the dimension
of o� By induction	 we can assume that 
�l� is already de�ned	 and that
the �unique� label of maximal depth occurring in this tuple is l� The tuple

�l�� is obtained from 
�l� by replacing the i�th component by l�� Since all
the components of 
�l� are of depth less or equal k	 the unique component
of maximal depth in 
�l�� is l��

Obviously	 the mapping 
 was de�ned such that there is a �$��correspondence
between labels and worlds� Note	 however	 that not all world tuple are in the
image of 
� In principle	 only those tuples that are in the image are of interest�


 In order to de�ne the accessibility relation �o for a given modality o of dimension
i we distinguish two cases


 If w � W is not in the image of 
 then we set �o�w� 
� ��

 Now	 assume that w � 
�l� for a label l occurring inW � We de�ne �o�w� 
�
fl� j l �o l

� � Wg�

An easy consequence of this de�nition and the de�nition of 
 is that we have
�w�w�� � �o i� there exist labels l� l� in W such that w � 
�l�	 w� � 
�l��	 and
l �o l

� � W �


 The set  KI consists of all object names occurring inW � For de�ning the domains
of the di�erent worlds	 we distinguish two cases


 If w � 
�l� for a label l then we de�ne  KI�w� 
� fx j x is relevant for lg�
Since every label in W is accessible from l�	 we know that  KI�w� contains
at least the object name x��

 If w is not in the image of 
 then we set  KI �w� 
� fx�g�

It is easy to see that the increasing domain assumption is satis�ed this way�


 For each object name x in W we de�ne xKI 
� x�


 For each concept name A and world w � 
�l� we de�ne �A�w�KI 
� fx j x 

A jj l � Wg� If w is not in the image of 
 then �A�w�KI 
� ��


 For each role R and world w we de�ne �R�w�KI 
� �	 if w is not in the image of

� Now	 assume that w � 
�l�� We de�ne �R�w�KI inductively along the total
well�founded ordering 	 on the object names� If bx is the least object w�r�t 	 we
de�ne �bx� y� � �R�w�KI i� bxRy jj l � W � Now let x be an object in W that is
di�erent from bx�

��



 If x is not blocked w�r�t� l in W 	 then �x� y� � �R�w�KI i� xRy jj l � W �

 Otherwise	 if x is blocked w�r�t� l in W 	 let z be the least object �w�r�t�
	� such that x is blocked by z w�r�t� l� Then z 	 x and we can thus
assume that the set fy j �z� y� � �R�w�KIg is already de�ned� We de�ne
�x� y� � �R�w�KI i� �i� �z� y� � �R�w�KI or �ii� xRy jj l � W �

We will show in the following that	 given a complete and clash�free derived system W 	
the canonical Kripke structure of W is a model of W �

Lemma 	�� LetW be a complete and clash�free derived system	 Then W is satis�able	

Proof� Let K � �W���KI � be the canonical Kripke structure of W 	 and let 
 be the
corresponding canonical mapping of labels to worlds� We must show that

�� �
�l�� 
�l��� � �o for each world constraint l �o l
� in W 	 and

�� K�
�l� j� F for each labeled ALCM�formula F jj l in W �

Because of the de�nitions of 
 and of the accessibility relations	 the �rst property is
obviously satis�ed�

Thus	 let us show the second property� If F is of the form xRy there is also nothing
to show� In order to treat the other cases	 we will �rst show

��� K�
�l� j� x 
C if x 
C jj l is in W

by induction on the structure of the concept C�

Case � 	Base case
� If x 
A jj l is in W �where A is a concept name�	 then K�
�l� j�
x 
A follows immediately from the construction of K� If x 
�Ajjl is inW 	 then we know
that A is a concept name because we assumedALCM�formulas to be in negation normal
form� Since W is clash�free	 x 
A jj l is not in W in this case� Thus	 K�
�l� �j� x 
A by
construction	 and therefore K�
�l� j� x 
�A�

Case �� Assume that x 
C� u C� jj l is in W 	 where C� and C� are concepts� Since
W is complete we know that both labeled ALCM�formulas x 
C� jj l and x 
C� jj l are
in W � By induction hypothesis it follows that K�
�l� j� x 
C� and K�
�l� j� x 
C�	
which yield K�
�l� j� x 
C� u C�� The argument for x 
C� t C� is analogous�

Case �� x 
�R�C jj l is in W for some concept C� If	 for some object y	 the world
constraints xRy jj l and y 
C jj l are both in W we can conclude K�
�l� j� x 
�R�C by
de�nition of RKI and the induction hypothesis� Now suppose there is no such object
y� Then x 
�R�C jj l is blocked in W w�r�t� l since W is complete� Let z be the least
�w�r�t� 	� object in W that blocks x� First	 note that z is not blocked
 otherwise	 if

��



z were blocked by	 say z�	 w�r�t� l then z� would also block x w�r�t� l and z� 	 z� This
contradicts the assumption that z is the least object that blocks x�

Since x is blocked by z w�r�t� l	 and z is not blocked w�r�t� l	 we know that there
are world constraints zR%z jj l and %z 
C jj l in W � By induction hypothesis	 this implies
K�
�l� j� %z 
C� In addition	 we have �x� %z� � �R�
�l��KI because of the de�nition of
RKI in the canonical Kripke structure K� From these facts K�
�l� j� x 
�R�C can be
concluded�

Case �� x 
 �R�C jj l is in W � In order to show that K�
�l� j� x 
 �R�C we must
show that y � �C�
�l��KI for each object y such that �x� y� � �R�
�l��KI � There are
two possibilities for �x� y� to be in �R�
�l��KI 	 namely �i� there is a world constraint
xRy jj l in W and �ii� x is blocked by some object z w�r�t� l in W�where we assume
z to be the least element �w�r�t� 	� that blocks x in l�and �z� y� � �R� l�KI � In case
�i�	 the �� rule has been applied to x 
 �R�C jj l and xRy jj l such that y 
 C jj l is
in W � In case �ii�	 we know that ConW �x� l� � ConW �z� l�	 and hence z 
�R�C jj l is
in W � Furthermore	 since z is not blocked w�r�t� l	 we know that zRy jj l is in W if
�z� y� � �R�
�l��KI � This means	 however	 that y 
 C jj l is in W because otherwise
the �� rule would be applicable� Now	 in both cases y � �C�
�l��KI follows from the
induction hypothesis�

Case �� x 
 hoiC jj l is inW for some modality o� SinceW is complete there is a label
l� such that the world constraints l �o l

� and x 
C jj l� are both in W � Consequently	
we have �
�l�� 
�l��� � �o	 and the induction hypothesis yields K�
�l�� j� x 
C� This
implies K�
�l� j� x 
 hoi C� The proof for x 
 �o�C jj l is similar�

This completes the proof of ��� by induction on the structure of the concept C in
labeled concept instances of the form x 
C jj l� Thus	 we know that K satis�es each
labeled concept instance in W � It remains to be shown that K satis�es each labeled
world constraint of the form hoi F jj l	 �o� F jj l	 or C � � jj l in W 	 where F is an
ALCM�formula	 o is a modality	 C is a concept	 and l is a label�

First	 assume that C � � jj l occurs in W � We must show that x � �C�
�l��KI for
each x �  KI�
�l��� Since  KI �
�l�� consists of exactly those objects that are relevant
for l	 and W is complete	 the �� rule has been applied and x 
C jj l occurs in W � We
have already shown that in this case K�
�l� j� x 
C holds�

Second	 let hoi F jj l be in W � In this case	 for some label l� the world constraints
l �o l� and F jj l� are in W since W is complete� If F does not contain a leading
modality	 we have already shown that K�
�l�� j� F � Otherwise	 K�
�l� j� hoi F can
easily been shown by induction on the number of modalities in hoi F � The argument
for �o� F jj w is accordingly�

This completes the proof of Theorem ���	 i�e�	 we have shown that satis�ability of
a �nite set of ALCM�formulas is decidable �w�r�t� the increasing domain assumption��
A short look at the algorithm reveals that the number � of di�erent dimensions	 and
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the fact that di�erent modalities may operate on di�erent dimensions was never ex�
plicitly used in this algorithm� Thus	 if we are only interested in satis�ability	 there
is no di�erence between the ��dimensional formalism �where modalities have di�erent
dimensions and the set of worlds is a ��fold Cartesian product� and the corresponding
��dimensional language �where we assume just one dimension in which all modalities
operate��

Corollary 	�� Assume that fF�� � � � � Fng is a set of formulas for a ��dimensional
ALCM�language	 Then fF�� � � � � Fng is satis�able �in the ��dimensional case� i� it is
satis�able in the corresponding ��dimensional language	


 The Constant Domain Assumption

Up to now we have investigated increasing domains only� In this section we will con�
sider the consequences of assuming that the domains of all worlds are identical� Since
this constant domain assumption is a special case of assuming increasing domains	 an
appropriate extension of the presentedALCM�satis�ability algorithm might seem to be
rather easy� The goal of this section is to point out why developing such an extended
algorithm requires more than a straightforward modi�cation of the existing approach�
In fact	 until now we did not succeed in �nding an appropriate modi�cation�

In a �rst attempt one could try to use the presented ALCM�satis�ability algorithm
for the case of constant domains as well� However	 not surprisingly	 this does not
always yield the correct answers� For example	 consider the ALCM�formulas

��o� �A� � � and hoi �x 
A�

where o is a modality	 x an object	 and A a concept name� It is easy to see that an appli�
cation of theALCM�satis�ability algorithm to the induced system fx� 
 �jjl�� ��o��A� �
�jjl�� hoi�x 
A�jjl�g yields a complete and clash�free derived system� The reason is that
the object name x is not relevant for l�� This shows that the above ALCM�formulas
are satis�able if we assume increasing domains�

On the other hand	 they are not satis�able if we assume constant domains� Suppose	
to the contrary	 that K � �W���KI � is a Kripke structure such that K�w j� ��o��A� �
� and K�w j� hoi �x 
A� for some world w in W� Because of K�w j� hoi �x 
A� there
exists a world w� with �w�w�� � �o and K�w� j� x 
A	 i�e� xKI � �A�w��KI � On the other
hand	 we have xKI � ��A�w��KI since xKI �  KI�w� �constant domain assumption�
and K�w j� ��o� �A� � ��

In the ALCM�satis�ability algorithm we took the increasing domain assumption
into consideration by an appropriate de�nition of the notion of �relevant objects	�
which was then used in the �� rule
 given a labeled ALCM�formula C � � jj l in a
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derived systemW 	 the�� rule adds the labeledALCM�formula x 
C jjl toW whenever
x is relevant for l� Recall that an object x is said to be relevant for label l if there is a
label l� occurring in W such that

�� W contains a world constraint of the form x 
 C jj l�	 xRy jj l�	 or yRx jj l��

�� l is accessible from l��

Now	 if we want to deal with constant domains	 a promising approach seems to be
a modi�cation of the �� rule according to the following idea� Suppose W to be a
derived system and l� l� to be labels in W � Furthermore	 let K � �W���KI � be a
Kripke structure that satis�es W � Because of the constant domain assumption we
know that xKI �  KI�w� for each world w in W	 whenever there is a world constraint
of the form x 
D jj l	 xRy jj l	 or yRx jj l in W � In this case we say that x is a top�level
object in W �to distinguish it from objects occurring only inside of modal operators��
If x is a top�level object in W 	 and if the world constraint C � �jj l� occurs in W 	 then
the �� rule must add x 
C jj l� to W�independently from the fact whether or not x
is relevant for l� �where �relevant� is de�ned as in the increasing domain approach��
This consideration leads us to a modi�ed rule ��� to handle world constraints of the
form C � � jj l	 which is given by

W ��� fx 
C jj lg �W

if x is a top�level object in W 	 C � � jj l is in W 	 and x 
C jj l is not
in W �

This apparently �slight� modi�cation of the �� rule	 however	 may cause in�nite
chains of propagation rule applications� As an example	 consider the world constraint
systemW that consists of the two labeled ALCM�formulas x� 
�jj l� and �hoi�R�C� �
� jj l�	 where o is an arbitrary modality� An application of the ��� rule yields the
derived system

W� �W � fx� 
 hoi �R�C jj l�g�

and	 by one application of the �� and of the �� rule each	 we obtain

W� �W� � fl� �o l�� x� 
�R�C jj l�� x�Rx� jj l�� x� 
C jj l�g

where x� is a new object and l� is a new label� Because of the newly introduced object
x� and the world constraint �hoi�R�C� � �jjl� inW�	 the��� rule is again applicable	
and yields

W� � W� � fx� 
 hoi �R�C jj l�g�

However	 to x� 
 hoi �R�C jj l� the same propagation rules are applicable as to x� 

hoi �R�C jj l� before� This means	 another new label and a new object are introduced	
and so on� Note that none of the newly generated objects is ever blocked since they all
have di�erent world labels� In order to avoid such in�nite chains of propagation rule
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applications	 the de�nition of blocked objects must be modi�ed such that assertions
with other labels are taken into account as well�

To sum up	 we have seen that the problem of how to avoid in�nite chains of propa�
gation rule applications is more complicated if we are dealing with constant domains�
In particular	 the above example shows that	 for testing whether or not an object is
blocked w�r�t� some label l	 it is not su"cient to consider only ALCM�formulas that are
labeled with l� A straightforward generalization of the notion of blocked objects	 which
takes di�erent labels into account	 could be de�ned as follows� An object x is constant
domain blocked �for short cd�blocked� by an object y w�r�t� label l in a world constraint
system W i� for some label l� in W it holds that ConW �x� l� � ConW �y� l�� and y 	 x�
This approach is su"cient to handle the above example correctly� However	 if we want
to decide whether or not the�� rule must be applied to a labeled ALCM�formula sev�
eral problems arise	 which will be illustrated by the following three examples� The �rst
example shows that in general one must take into account ALCM�formulas with more
than two di�erent labels when testing whether or not an object should be blocked�

Example ��� Consider the system W� that consists of the world constraints

x 
�R��R�A jj l� y 
�R��R�A jj l� z� 
�R�A jj l�
%z 
�A jj l� yRz jj l� z�R%z jj l�

z 
�R�A jj l� %z 
A jj l��

Let us have a closer look at the labeled ALCM�formula x 
�R��R�A jj l�� There is no
R�successor of x in l�	 and x is cd�blocked in W� w�r�t� l�� Since x is blocked by y	 and
y has an R�successor z	 the idea is that x can �re�use� z as its R�successor� At �rst
sight	 this seems to be feasible� However	 z itself is blocked by z�� Again	 there is an
R�successor %z of z�	 and we should like to �re�use� it as R�successor of z that is in A�
For label l�	 this does not lead to problems� However	 our intention was to use z also
with label l�� Here the re�using of %z as an R�successors of z that is in A leads to a
contradiction since we already have a constraint %z 
�A jj l��

The second example illustrates that information about role�successors in a world
constraint system may be essential when testing whether or not an object should be
blocked�

Example ��� Suppose a derived systemW� to be given which	 among others	 contains
the world constraints

x 
�R��Q�A jj l� y 
�R��Q�A jj l�
zQz� jj l� yRz jj l�
z� 
�A jj l� z 
�Q�A jj l��

In this world constraint system the object x is cd�blocked by y w�r�t� l�� Nevertheless	
we cannot �re�use� z as R�successor of x in l�� In fact	 this would mean that we
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implicitly add the labeled ALCM�formulas xRz jj l� and z 
�Q�A jj l�� These additional
world constraints	 however	 would cause a contradiction to the labeledALCM�formulas
zQz� jj l� and z� 
�A jj l�� However	 if one applies the �� rule to x 
�R��Q�A jj l�	 one
obtains a new object	 for which no contradictions arise� This shows that x should not
be blocked in this situation�

The �nal example shows that the test whether or not the �� rule must be applied
in a world constraint system W depends on the information W �implicitly� contains
about the accessibility relations of Kripke structures satisfying W �

Example ��� Suppose W� to contain	 among others	 the world constraints

x 
�R�hoiA jj l� y 
�R�hoiA jj l�
x� 
 �o�	 jj l� yRz jj l�

z 
 hoiA jj l��

Obviously W� is not satis�able� However	 if we do not apply the �� rule to x 

�R�hoiA jj l�	 the ALCM�satis�ability algorithm does not add the world constraints
xRx� jj l�	 x� 
 hoi A jj l�	 l� �o l�	 x� 
A jj l�	 and x� 
	 jj l� to W� �where x� is a new
object and l� is a new label�� Since	 especially	 x� 
	 jj l� is not derived	 the ALCM�
satis�ability algorithm �with cd�blocking instead of blocking� does not add a clash to
W�	 i�e�	 does not detect the unsatis�ability of W��

Unfortunately	 we did not yet succeed in �nding an appropriate de�nition of cd�
blocked objects in world constraints� We thus leave this de�nition as an open problem
for the moment� Note that an alternative to restricting the applicability of the�� rule
by the de�nition of cd�blocked objects would be to restrict the applicability of the��

rule in an appropriate way� However	 not surprisingly	 with both approaches similar
problems must be solved	 and it is not yet clear how this can be achieved�

� Conclusion

The framework for integrating modal operators into terminological knowledge repre�
sentation languages presented in this paper should be seen as the starting point for
developing more elaborate hybrid languages of this type� Extensions in at least two
directions will be necessary�

First	 for the adequate representation of notions like belief and time	 the basic modal
logic K is not su"cient� Instead	 one must consider modalities that satisfy appropriate
modal axioms� A well�known example is the use of KD�� for modeling the beliefs of
agents� For the case where modal operators occur only in front of terminological and
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assertional axioms	 an integration of KD��modal operators has already been considered
in �����

Second	 the multi�dimensionality of our language has not really been made us of�
In fact	 we have seen that with respect to satis�ability there is no di�erence between
the ��dimensional and the corresponding ��dimensional case �Corollary ����� We have
introduced a multi�dimensional framework since it is more !exible� In an extended
language	 di�erent dimensions could satisfy di�erent modal axioms �e�g�	 KD�� in the
belief dimension	 and at least S� in the time dimension��	 In addition	 one might want
to specify certain interactions between di�erent dimensions such as independence of
one dimension from certain other dimensions�

The reason for considering a simpli�ed framework without any of these extensions
in the present paper is that in this context it is possible to design a rather intuitive
calculus for satis�ability� Also	 the proof of soundness	 termination and completeness
of this calculus is still relatively short and comprehensible� For this reason	 we claim
that this calculus can serve as a basis for satis�ability algorithms for more complex
languages�

Another topic of future research will be investigating the constant domain assump�
tion and its algorithmic rami�cations�
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