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Abstract

CFT is a recent constraint system providing records as a logical data struc�

ture for logic programming and for natural language processing� It combines

the rational tree system as de�ned for logic programming with the feature tree

system as used in natural language processing�

The formulae considered in this paper are all �rst�order�logic formulae over

a signature of binary and unary predicates called features and arities� respec�

tively� We establish the theory CFT by means of seven axiom schemes and

show its completeness�

Our completeness proof exhibits a terminating simpli�cation system decid�

ing validity and satis�ability of possibly quanti�ed record descriptions�
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� Introduction

Records are an important data structure in programming languages� They appeared

�rst with imperative languages such as algol �� and Pascal� but are now also

present in modern functional languages such as SML� Variants of records have also

been employed in logic programming and in computational linguistics� but in di�erent

ways�

In logic programming� �rst order terms are used as restricted means for describing a

special kind of records� There� records have �xed arities� and attributes are identi�ed

by their position in the �rst order term� The functions used in the �rst order terms

are extensional� i�e�� two terms ft�� � � � � tn� and gt��� � � � � t
�
m� are assumed to be equal

if and only if f � g� n � m and ti � t�i for every i � � � � � n� Hence� two records

are identical if they have the same set of attributes and identical values under each

attribute�

Another way of describing records is by feature descriptions� which are common in

the area of computational linguistics� Here� the attributes of a record are modeled

by functional� binary relations called features� This implies that the attributes are

identi�ed by name instead of by position� Furthermore� feature descriptions do not

�x an arity for the record they describe� Thus� additional attributes can always be

added to a feature description without making it inconsistent� This allows for great

�exibility� since it is possible to describe only some selected attributes of a record

without specifying the others and even without specifying which other attributes

must exists�� This is not the case if we model records by �rst order terms� On the

other hand� it is impossible under an in�nite signature� which we consider here� to

state in a feature descriptions which features are missing� since the arity is not �xed�

In this paper� we consider the �rst order theory CFT� which was introduced in �ST��a��

CFT combines feature descriptions with the expressivity of �rst order terms� In this

theory� record descriptions are �rst order formulae interpreted over �rst order struc�

tures�

There are two complementary ways of specifying a theory for records� either by

explicitly constructing a standard model and taking all sentences valid in it� or by

stating axioms and proving their consistency� Both approaches to �xing a theory for

records have their advantages� The construction of a standard model provides for a

clear intuition and yields a complete theory i�e�� if � is a closed record description�

then either � or �� is a consequence of the theory�� The presentation of a recursively

enumerable axiomatization has the advantage that we inherit from predicate logic

a sound and complete deduction system for valid record descriptions� Note that all

�



models of a complete theory are elementarily equivalent�

The ideal is to specify a theory for records by both a standard model and a cor�

responding recursively enumerable axiomatization� The existence of such a double

characterization� however� is by no means obvious� since it implies that the theory is

decidable� In �ST��a�� both approaches have been exempli�ed� A standard model�

namely the model of feature trees� has been presented� together with a �rst order the�

ory CFT based on a set of axioms� It has been conjectured that CFT is a complete

theory� We will show in this paper that CFT is in fact a complete axiomatization

of the algebra of feature trees� Furthermore� it has been shown in �ST��a� that the

theory is complete for ���sentences�

Our proof of CFT�s completeness will exhibit a simpli�cation algorithm that computes

for every feature description an equivalent solved form from which the solutions of

the description can be read o� easily� For a closed feature description the solved

form is either � which means that the description is valid� or � which means that

the description is invalid�� For a feature description with free variables the solved

form is � if and only if the description is unsatis�able� We do not know whether

our simpli�cation algorithm can be made feasible� nor do we know its worst�case

complexity�

Note that the notion of completeness considered in this paper is di�erent from the

notion of completeness considered in related work by Kasper and Rounds �KC�	� and

Moss �Mos���� These authors study logical equivalence for rooted and quanti�er�free

feature descriptions called feature terms in �Smo��� BBN����� and give complete

equational axiomatizations of the respective congruence relations� In contrast� we

are concerned with a much larger class of possibly quanti�ed feature descriptions�

Moreover� exploiting the power of predicate logic� we are not committed to any

particular model or any particular deductive system� but instead prove a result that

implies that any complete proof system for Predicate Logic will be complete for

proving equivalence of feature descriptions with respect to any model of our feature

theory�

��� Records as Feature Trees

Records are described in CFT in the tradition of feature descriptions� which have

a long history� They originated in the late seventies in the framework of so�called

uni�cation grammars �Kay��� KB���� a by now very popular family of declarative

grammar formalisms for the description and processing of natural language� Fea�

ture descriptions have been proposed in various forms with various formalizations
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�AK��� AK��� KR��� RK��� KC�	� Joh��� Joh��� Smo��� BBN���� Bac��b� Car���

Mos���� More recently� the use of feature descriptions in logic programming has been

advocated and studied �AKN��� AKN��� AKP��� AKPS��� ST��a��

The work presented here follows the logical approach as introduced by �Smo���� where

feature descriptions are �rst order formulae� Consider a typical feature description

written in matrix notation

x � �y

�
���������

woman

father �

�
engineer

age � y

�

husband �

�
painter

age � y

�

�
���������
�

This may be read as saying that x is a woman whose father is an engineer� whose

husband is a painter� and whose father and husband are of the same age� Written in

plain �rst�order syntax we obtain the less transparent formula

�y�F�H  womanx� �

fatherx�F� � engineerF� � ageF� y� �

husbandx�H� � painterH�� ageH � y� ��

As descriptional primitives� the feature description contains the atomic formulae

fx� y� for feature selection which we will henceforth write in in�x notation� and

Ax� for sort membership� In addition� CFT o�ers for every �nite set of features

F a unary predicate xF written in post�x notation� stating that the only features

de�ned on x are those listed in F see section �����

In the standard model of CFT� records are modeled by feature trees� A feature tree

see Figure �� is a possibly in�nite� tree whose edges are labeled with features� and

whose nodes are labeled with sorts� As one would expect� the labeling with features

must be functional� that is� the direct subtrees of a feature tree must be uniquely

determined by the features of the edges leading to them� Feature trees without

subtrees model atomic values e�g�� numbers�� Feature trees may be �nite or in�nite�

where in�nite feature trees provide for the convenient representation of cyclic data

structures� The last example in Figure � gives a �nite graph representation of an

in�nite feature tree� which may arise as the syntactic representation of the recursive

type equation nat � � � snat��

A �rst�order ground term� say f ga�b��hc��� can be seen as a feature tree whose

nodes are labeled with function symbols and whose arcs are labeled with numbers�
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Figure �� Examples of Feature Trees�
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Thus the trees corresponding to �rst�order terms are in fact feature trees observing

certain restrictions e�g�� the features departing from a node must be consecutive

positive integers��

The standard model of CFT is the �rst order structure I� whose universe is the set

of all feature trees over a given signature�� and whose interpretation of the atomic

formulae is de�ned as follows�

� Every sort symbolA is taken as a unary predicate� where a sort constraint Ax�

holds if and only if the root of the tree x is labeled with A�

� Every feature symbol f is taken as a binary predicate� where a feature constraint

xfy holds if and only if the tree x has the direct subtree y at feature f �

� Every �nite set F of features is taken as a unary predicate� where an arity

constraint xF holds if and only if the tree x has direct subtrees exactly at the

features appearing in F �
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The descriptions or constraints of CFT are now exactly the �rst order formulae

obtained from the primitive forms speci�ed above� where we include equations x
�
� y

between variables�

��� Expressivity of CFT

CFT can be seen as the minimal combination of Colmerauer�s rational tree system

RT �Col��� Col��� with the feature tree system FT �BS���� For this reason� CFT is

a promising constraint system for use both in logic programming and computational

linguistics� Note that we are assuming an in�nite signature for CFT� In the case of

�nite signatures� all three languages have the same expressivity�

The di�erence between FT and CFT is that CFT additionally has arity constraints�

This implies that every FT formula is also a CFT formula� However� we have to

extend the completeness proof for FT see �BS���� in a non�trivial way� since we have

to handle additional equations imposed by the arity constraints� E�g�

Ax �Ay � xffg � xfx � yffg � yfy j�CFT x
�
� y

holds in CFT stating that there is only one solution for the formula Ax�xffg�xfx�

In FT it is not possible to identify one element of the domain by a formula� Thus�

CFT requires records to be extensional i�e�� two records are identical if the have the

same sort� the same set of attributes and the identical values under the corresponding

attributes�� Note that this property could not be guaranteed using the language of FT

i�e�� FT has non�extensional models�� The integration of extensionality into feature

descriptions was considered in �Car���� Since the underlying feature logic was too

weak to express extensionality� the notion of extensional types was introduced� But as

Carpenter observed� the conditions stated for extensionality are too weak to identify

feature descriptions which describe in�nite trees� In CFT� those descriptions can

be identi�ed as the above example shows�� Rounds introduced in �Rou��� di�erent

concepts of extensionality� Using his classi�cation� the standard model of CFT is

strongly extensional�

For the comparison of RT and CFT� �ST��a� have presented a translation of RT�

formulae into CFT�formulae that preserves validity� i�e�� there exists for every formula

� in RT a corresponding formula in � in CFT such that � is valid in the standard

model of RT if and only if � is valid in the standard model of CFT� The following

examples are taken from �ST��a�� Given an RT formula �

x � pointy� z��

�



translating � yields the CFT formula

x � point � xf�� �g � x � y � x � z�

But again� CFT has more expressive power than RT� It is possible to express within

CFT that a record has some feature without saying anything about other features�

A description of the form

x color y

just tells that x has a color feature� but it does not disallow other features such as

shape� size� position or anything else� In the case of a �nite signature� this could be

de�ned by a disjunction of the form

x � circle� � � � y� � � �� � x � triangle� � � � y� � � �� � � � �

enumerating all constructors for which a color attribute is appropriate� But the

computational behavior of this disjunction is much worse than that of the single

constraint x color y� In the case of an in�nite signature which we consider here��

such a single feature constraint is not de�nable in RT since it would correspond to

an in�nite disjunction��

��� Quanti�er Elimination

The completeness proof uses a version of the standard method of quanti�er elimi�

nation which was introduced by �Mah���� For this method� it is necessary to �nd a

class of formulae here called prime formulae� satisfying certain properties� Quanti�

�er elimination is then performed with respect to this class of formulae� i�e�� every

formula � can be transformed into an equivalent Boolean combination of prime for�

mulae� In our case� the set of prime formulae is the set of existentially quanti�ed

solved formulae� As de�ned in �ST��a�� a solved formula is a normal form of con�

junction of atomic formulae having certain desirable properties� In particular� it is

always satis�able�

The �rst property we need for prime formulae is that every closed prime formula

is valid in CFT� which is a trivial consequence of the axioms� The second prop�

erty is that the class of prime formulae is closed under conjunction and existential

quanti�cation� Again� this is easy to show in our case�

The third and di�cult to prove� property is that the following two equivalences are

valid in CFT� �� Given prime formulae �� ��� � � � � �n� then

�X� �
n	
i��

��i� j�j
n	
i��

�X� � ��i�� ��

�



and �� there exists for all prime formulae �� �� a Boolean combination of prime

formulae � such that

�X� � ���� j�j �� ��

where X is a set of variables� These schemes can now be used for a system trans�

forming every formula in the language of CFT into a Boolean combination of prime

formulae� If the input formula is closed� the result will also be closed� Since every

closed prime formula is valid in CFT� we know that the result of transforming a closed

formula � reduces either to � or to �� In the �rst case� � is valid in CFT� Otherwise�

�� is valid in CFT�

The transformation works as follows� An invariant of the transformation is that both

the input and output formulae of a single transformation step are of the form

Q� � � �Qn�

where Q� � � �Qn are quanti�ers and � is a Boolean combination of prime formulae� A

single transformation step now eliminates the innermost quanti�er�

If the innermost quanti�er Qn is an existential one� then we �rst transform � into dis�

junctive normal form� treating the prime formulae as atoms� Then we can distribute

the existential quanti�er over the disjuncts� yielding a disjunction of formulae of the

form

�x
n	
i��

�i �
k	

j��

���j�

where all �i and ��j are prime formulae� Since prime formulae are closed under

conjunction� we can assume that the disjuncts are of the form

�x� �
k	

j��

�� �j��

Now we can apply scheme �� transforming each disjunct into a conjunction of the

form
k	

j��

�x� � ���j��

which can be transformed into a Boolean combination of prime formulae � by scheme ��

All together� we have eliminated the innermost existential quanti�er�

If� on the other hand� the innermost quanti�er is a universal one� we substitute

��x�� for 	x�� Then we put �� into its negation normal form ��� treating the

prime formulae as atoms� Now applying the elimination method as described for

�



existential quanti�cation on �x�� yields a Boolean combination of prime formulae ��

Now putting �� into negation normal form again treating prime formulae as atoms�

yields a Boolean combination of prime formulae that is equivalent to 	x��

We have described the elimination of a single quanti�er� But as the schemes � and �

use an existential quanti�cation over a whole set of variables X� the elimination

methods apply also to a whole set of quanti�ers of the same type i�e�� if we start with

a formula Q� � � � Qk � � �Qk�n� where Qk � � � Qk�n are either of the form �xk � � ��xk�n
or of the form 	xk � � �	xk�n� then we can eliminate Qk � � �Qk�n in one step�

��� Related Work

A complete axiomatization for RT over an in�nite signature is given in �Mah����

and for FT in �BS���� All proofs have the same overall structure using a quanti�er

eliminationmethod as described in the last section� but di�er in the way the schemes �

and � are proved� Maher�s proof heavily depends on the structure of �rst order terms

in using substitutions� This is not applicable in our case since we are using a purely

relational language� A complete axiomatization for RT over a �nite signature is given

in �Mah��� CL���� An extension of the language of CFT� where features are �rst class

values� was considered in �Tre���� There it was shown that the full �rst order theory

of the feature tree model over this language is undecidable�

When comparing the completeness proofs for FT and CFT� additional problems arise

in CFT in the handling of inequations� Manipulation of inequations is needed for the

proofs of the schemes in � and in �� To give a concrete example� consider the FT�

formula �x� � ���� with

� �� �x�� x�xfx� � xgx� �Ax� �Ax��

�� �� �yxfy � xgy��

which is an instance of left hand side of scheme �� In the standard model of FT

which is the same as for CFT�� there always exists a valuation for x satisfying �

such that the values under the features f and g are di�erent� This implies that the

equivalence

�x� � ���� j�j �x� ��

is valid in FT� Hence� �x� is the Boolean combination of prime formulae as required

by scheme �� Roughly speaking� this equivalence is proven by extending � to a prime

formula �ext which makes x� and x� di�erent� e�g� the prime formula

�x�� x�� x
�
�� x

�
�



xfx� � xgx� �Ax� � Ax� �

x�fx
�
� �Bx�� � x�fx

�
� �B�x��

�

�	



with B�B � being two di�erent sort symbols� Clearly� �x�ext is satis�able in FT�

Hence� there exists in every model of FT a valuation for x satisfying �ext� Since this

valuation must also satisfy � and cannot satisfy ��� this shows the equivalence in ��

Therefore� it is necessary in the proof to characterize the variables for which such

additional constraints must be added� In the case of FT this is easy� they are exactly

the variables where an additional equation is added when applying the solved form

algorithm on

� � �� � �x�� x�� yxfx� � xgx� �Ax� �Ax� � xfy � xgy��

But in the case of CFT� it can be more complex� since variables can be determined

using the arity constraints� Consider the following two formulae �� and ���

�� � �x�� x�� x�� x�

�
BB

xfx� � xgx� �

Ax� � x�ffg � x�fx� �

Ax� � x�ffg � x�fx�

�
CCA

�� � �x�� x�

�
BB

xfx� � xgx� �

Ax� � x�ffg � x�fx� �

Ax� � x�ffg � x�fx�

�
CCA

We let � � again be �yxfy � xgy�� Although in both cases an additional equation

x�
�
� x� is added when solving ����� or ������ the equivalence �x������� j�j �x��

is valid in CFT� whereas the equivalence �x�� � �� �� j�j �x�� is not�

The work done in this paper can be seen as an extension of �ST��a�� There� two

decision procedures for fragments of CFT are presented� The �rst procedure tests

satis�ability� which is the same as testing validity of the positive existential fragment

of CFT� This is used in our proof for calculating a solved form for the conjunction

of prime formulae� The second algorithm checks entailment or disentailment of one

prime formula by another� A formula � entails a formula �� in CFT written � j�CFT

��� i� in every model A of CFT and for every every valuation � in A� A� � j� �

implies A� � j� ��� Since � entails �� if and only if

CFT j� 	X� 
 ���

where X is the set of free variables of � and ��� one can check entailment of arbitrary

formulae in CFT� The algorithm presented in �ST��a� applies only to existentially

quanti�ed conjunctions of atomic constraints� Thus� the quanti�er elimination is a

real extension of the work done there� since it applies to arbitrary CFT�formulae�

One of the simplest examples that is not covered by �ST��a� is to test the validity of

the entailment

�x�� x�xfx� � Ax� � xgx� � Bx�� j�CFT �y�� y�xfy� � xgy� � y� �� y���

��



The use of such negated equations has e�g� been considered in �Car���� Note that

for testing entailment of existential quanti�ed conjunction of atomic constraints� the

algorithm as described in �ST��a� is more useful than using quanti�er elimination�

since it is optimized for this purpose�

Another completeness proof for CFT is presented in �BT���� where Ehrenfeucht�

Fraisse games are used� This method is based on semantics in showing that all mod�

els of CFT are elementarily equivalent i�e�� make the same sentences valid�� which

immediately implies that CFT is complete� This yields a trivial decision method for

CFT�sentences by enumerating all consequences of CFT� Given an arbitrary sentence

�� the enumeration will produce either � or �� since CFT is complete� On the other

hand� this paper employs a proof theoretic method in showing explicitly that for ev�

ery sentence �� either � or �� is valid in CFT� Both methods have their merits� The

proof in �BT��� is shorter though similar problems arise in handling inequations��

while the proof in this paper presents a decision method for validity�

��� Organization of the Paper

Section � recalls the necessary notions and notations from Predicate Logic� Section �

de�nes the standard model for CFT� Section � de�nes the theory CFT by means of

seven axiom schemes� Section 
 establishes the overall structure of the completeness

proof by means of a lemma� Section � studies quanti�er�free conjunctive formulae�

gives a solved form� and introduces path constraints� Section � de�nes congruences

and normalizers� Section � studies the properties of so�called prime formulae� which

are the basic building blocks of the solved form for general feature constraints� Sec�

tion � presents the quanti�er elimination lemmas and completes the proof of com�

pleteness� We present in this section a concrete example for testing validity of some

formula� Furthermore� we prove that FT is really less expressive than CFT�

Technical Note Although we have introduced CFT as a constraint language that

allows for sort constraints of the form Ax� we will for the sake of �exibility replace

these constraints by a new kind of constraints� In order to build the new constraints�

we must introduce certain constants or atoms�� The intended meaning of constants

is that they represent distinct elements of the domain that have no features de�ned on

them� We can now easily simulate sort constraints using constants� we use a constant

symbol for every sort symbol and add a feature sort to hold it� A sort constraint Ax

can than be represented by the constraint

x sort A�

��



For the sake of clarity� we refer in the following to the new language as CFT�� and to

the language originally introduced �ST��a� as CFT�

The additional �exibility can be seen through the following example� We can express

the notion that two objects x and y have the same sort by the formula

�zx sort z � y sort z��

which is impossible when using sort constraints� Clearly� the completeness proof for

CFT� can easily be adopted for the original language CFT�

� Preliminaries

Throughout this paper we assume a signature CON � FEA consisting of an in�nite

set CON of constant symbols and an in�nite set FEA of binary predicate symbols

called features� For the completeness of our axiomatization it is essential that there

are both in�nitely many constants and in�nitely many features� The letters a� b� c

will always denote constants� and the letters f � g� h will always denote features�

A path is a word i�e�� a �nite� possibly empty sequence� over the set of all features�

The symbol 	 denotes the empty path� which satis�es 	p � p � p	 for every path p�

A path p is called a pre�x of a path q� if there exists a path p� such that pp� � q�

We also assume an in�nite alphabet of variables and adopt the convention that x�

y� z always denote variables� and X� Y always denote �nite� possibly empty sets of

variables� Under our signature CON�FEA� every term is a variable or a constant� and

an atomic formula is either a feature constraint xfy fx� y� in standard notation��

an arity constraint xF F x� in standard notation�� an equation x
�
� y� � �false���

or � �true��� We will use the letter t when denoting a term that is a variable or a

constant� Compound formulae are obtained as usual with the connectives �� �� 
�

� � and the quanti�ers � and 	� We use ��� ��	�� to denote the existential �universal�

closure of a formula �� Moreover� V�� is taken to denote the set of all variables that

occur free in a formula �� The letters � and 
 will always denote formulae�

We assume that the conjunction of formulae is an associative and commutative op�

eration that has � as identity element� This means that we identify �� 
 � �� with

� � 
 � ��� and � � � with � but not� for example� xfy � xfy with xfy�� A con�

junction of atomic formulae can thus be seen as the �nite multiset of these formulae�

where conjunction is multiset union� and � the �empty conjunction�� is the empty

multiset� We will write 
 � � or 
 � �� if 
 is an atomic formula� if there exists a

formula 
� such that 
 � 
� � ��

��



Moreover� we identify �x�y� with �y�x�� If X � fx�� � � � � xng� we write �X� for

�x� � � ��xn�� If X � �� then �X� stands for ��

Structures and satisfaction of formulae are de�ned as usual� A valuation into a

structure A is a total function from the set of all variables into the universe jAj of A�

A valuation �� into A is called an x�update �X�update� of a valuation � into A if

�� and � agree everywhere except possibly on x �X�� We use �A to denote the set of

all valuations � such that A� � j� �� We write � j� 
 �� entails 
�� if �A � 
A for

all structures A� and � j�j 
 �� is equivalent to 
�� if �A � 
A for all structures A�

A theory is a set of closed formulae� Amodel of a theory is a structure that satis�es

every formula of the theory� A formula � is a consequence of a theory T T j� ��

if �	� is valid in every model of T � A formula � entails a formula 
 in a theory T

� j�T 
� if �A � 
A for every model A of T � Two formulae �� 
 are equivalent in

a theory T � j�j
T

� if �A � 
A for every model A of T �

A theory T is complete if for every closed formula � either � or �� is a consequence

of T � A theory is decidable if the set of its consequences is decidable� Since the

consequences of a recursively enumerable theory are recursively enumerable com�

pleteness of �rst�order deduction�� a complete theory is decidable if and only if it is

recursively enumerable�

Two �rst�order structures A� B are elementarily equivalent if� for every �rst�order

formula �� � is valid in A if and only if � is valid in B� Note that all models of a

complete theory are elementarily equivalent�

� The Feature Tree Structure

In this section we establish the standard model for CFT��

A tree domain is a nonempty set D � FEA� of paths that is pre�x�closed� that

is� if pq � D� then p � D� Note that every tree domain contains the empty path�

A feature tree is a pair � � D���� where D is a tree domain and � is a partial

function �� FEA� 
 CON satisfying

� dom�� � D�

� if �p� is de�ned for some p � D� then pq �� D for every nonempty path q�

The paths in D represent the nodes of the tree� the empty path represents its root�

� represents the leaves of the tree that are constants� A feature tree � � D��� is

��



called �nite in�nite� if its domain D is �nite �in�nite�� The letters � and  will

always denote feature trees�

The subtree p� of a feature tree � � D��� at a path p � D is the feature tree

D�� ��� de�ned by in relational notation�

D� � fq j pq � Dg and �� � fq� a� j pq� a� � �g�

A feature tree � is called a subtree of a feature tree  � D��� if � is a subtree of

 at some path p � D� and a direct subtree if p � f for some feature f �

A feature tree � � D��� is called rational if �� � has only �nitely many subtrees

and �� � is �nitely branching i�e�� for every p � D� the set fpf � D j f � FEAg is

�nite�� Note that for every rational feature tree � � D��� there exist �nitely many

features f�� � � � � fn such that D � ff�� � � � � fng
��

The feature tree structure I is the CON � FEA�structure de�ned as follows�

� the universe of I is the set of all feature trees

� aI � f�g� f�� a�g� for every constant symbol a � CON�

� ��  � � fI i�  � f� i�e��  is the subtree of � at f��

� � � D��� � F I i� ��� is unde�ned and D � FEA � F

i�e� � is not the interpretation of a constant and has exactly the features in F

de�ned�

The rational feature tree structure R is the substructure of I consisting only of

the rational feature trees�

� The Axioms

The �rst six axiom schemes of the theory CFT� are�

�




Ax�� �	xfy � xfz
 y
�
� z� for every feature f �

Ax�� �	cfx
�� for all constants c�

Ax�� c� �
�
� c� if c� and cs are di�erent constants

Ax�� �	xF � xfy 
�� if f �� F �

Ax
� cF 
 � for every constant c and arity F �

Ax�� �	xF 
 �yxfy�� if f � F and x �� y�

The last three axiom schemes handle the arity constraints� They guarantee that if x

has arity F � then exactly the features f � F are de�ned on x�

In order to achieve a complete theory� we must add an axiom scheme that is similar

to axiom Ax�� of the theory FT as presented in �BS���� In contrast to FT� it is

not enough to guarantee that solved forms are consistent in the intended models�

Consider the formula

xffg � xfx�

Then there exists exactly one element of R and I that satis�es this description� The

uniqueness of the solution of such descriptions must also be expressed in the ax�

ioms� Note that it is not possible to �x one element of the domain in the theory FT

since we cannot restrict the arities of the variables in FT� The axiom scheme that

guarantees both the existence and under certain conditions also the uniqueness of

solutions of solved forms was �rst introduced by �ST��a�� They also introduced a

complete axiomatization for CFT in this paper without actually proving complete�

ness� Before stating the required axiom scheme� we will recall the important notion

of a determinant as presented in �ST��a��

De�nition ��� �Basic Constraint� A basic constraint is either � or a possibly

empty conjunction of atomic formulae�

Note that � is a basic constraint since � is the empty conjunction�

De�nition ��� �Determinant� A determinant for x is a formula of the form

xff�� � � � � fng � xf�t� � � � � � xfntn�

where each ti is a variable or constant� We will write the above formula for conve�

nience as

x
�
� f� � t�� � � � � fn � tn��

��



Given a basic constraint �� we say that x is determined in � if � contains a determi�

nant for x� A determinant for pairwise distinct variables x�� � � � � xn is a conjunction

x�
�
� D� � � � � � xn

�
� Dn�

where D�� � � � �Dn are determinants for x�� � � � � xn� For a basic constraint � we de�ne

D�� to be the set of variables that are determined in ��

The variables in V��nD�� are called the parameters of ��

For the remaining axiom scheme we must introduce a new existential quanti�er ��x��

This quanti�er is an abbreviation for

�x� � 	x� y�� ��x�y�
 x
�
� y��

For a set of variables X the quanti�er ��X� is de�ned as usual� Now we can de�ne

the last axiom scheme as introduced by �ST��a�� which states that for every valuation

of the parameters of a determinant � there is exactly one valuation for the variables

determined by ��

Ax�� �	��D���� if � is a determinant�

An example of an instance of scheme Ax�� is

	y� z� w��x� u� v

�
BB

x
�
� f �u g� v�

u
�
� h�x g� y f � z�

v
�
� g� z h�w�

�
CCA

The theory CFT� consists of the axiom schemes Ax���Ax���

Proposition ��� The structures I and R are models of CFT��

Proof� That the �rst six axioms schemes are satis�ed is obvious� To show that

I and R satis�es the last axiom scheme� one assumes arbitrary feature trees for

the universally quanti�ed variables and constructs feature trees for the existentially

quanti�ed variables� �
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� Outline of the Completeness Proof

The completeness of CFT� will be shown by exhibiting a simpli�cation algorithm for

CFT�� The following lemma gives the overall structure of the algorithms� which is the

same as in Maher�s �Mah��� completeness proof for the theory of constructor trees�

The same structure was used in the completeness proof for FT see �BS�����

Lemma ��� Suppose there exists a set of prime formulae such that�

�� every arity constraint xF � every feature constraint xft� and every equation

t
�
� t� with t �� t� is a prime formula

�� � is a prime formula� and there is no other closed prime formula

	� for every two prime formulae � and �� one can compute a formula � that is

either prime or � and satis�es

� � �� j�j
CFT� � and V�� � V� � ���


� for every prime formula � and every variable x one can compute a prime for�

mula �� such that

�x� j�j
CFT� �

� and V��� � V�x��

�� if �� ��� � � � � �n are prime formulae� then

�x� �
n	
i��

��i� j�jCFT�

n	
i��

�x� � ��i�

�� for every two prime formulae �� �� and every variable x one can compute a

Boolean combination � of prime formulae such that

�x� � ���� j�j
CFT� � and V�� � V�x� � ������

Then one can compute for every formula � a Boolean combination � of prime formulae

such that � j�j
CFT� � and V�� � V���

Proof� Suppose a set of prime formulae exists as required� Let � be a formula� We

show by induction on the structure of � how to compute a Boolean combination � of

prime formulae such that � j�j
CFT� � and V�� � V���

��



If � is an atomic formula tF or tft�� then � is equivalent to �� If � is an atomic

formula xF � xft or t
�
� t�� then � is either a prime formula� or � is a trivial equation

t
�
� t� in which case it is equivalent to the prime formula ��

If � is �
� 
 � 
� or 
 � 
�� then the claim follows immediately with the induction

hypothesis�

It remains to show the claim for � � �x
� By the induction hypothesis we know that

we can compute a Boolean combination � of prime formulae such that � j�j
CFT� 
 and

V�� � V
�� Now � can be transformed to a disjunctive normal form where prime

formulae play the role of atomic formulae� that is� � is equivalent to �� � � � � � �n�

where every �clause� �i is a conjunction of prime and negated prime formulae� Hence

�x
 j�j �x�� � � � � � �n� j�j �x�� � � � � � �x�n�

where all three formulae have exactly the same free variables� It remains to show

that one can compute for every clause � a Boolean combination � of prime formulae

such that �x� j�j
CFT� � and V�� � V�x��� We distinguish the following cases�

�i� � � � for some basic constraint �� Then the claim follows by assumption ���

�ii� � � � �
Vn
i�� ��i� n � 	� Then the claim follows with assumptions 
� and ���

�iii� � �
Vn
i�� ��i� n � 	� Then � j�j

CFT� � �
Vn
i�� ��i and the claim follows from

case ii� since � is a prime formula by assumption ���

�iv� � � ���� � ���k������� � ����
�
n� k � �� n � 	� Then we know by assumption ��

that either ���� � ���k j�jCFT� � or ���� � ���k j�jCFT� � for some prime formula

�� In the former case we choose � � ��� and in the latter case the claim follows

from case i� or ii��

�

Note that� provided a set of prime formulae with the required properties exists for

CFT� � the preceding lemma yields the completeness of CFT� since every closed

formula can be simpli�ed to � or �� since � is the only closed prime formula��

In the following we will we will establish a set of prime formulae as required�

��



� Solved Formulae and Path Constraints

In this section we de�ne a solved form for conjunctions of atomic formulae�

We say that a basic constraint � binds x to y �or c� if x
�
� y � � or x

�
� c � ��

respectively� and x occurs only once in �� Here it is important to note that we

consider equations as directed� that is� assume that x
�
� y is di�erent from y

�
� x if

x �� y� We say that � eliminates x if � binds x to some variable y or some constant

c�

De�nition ��� �Solved Formula� A basic constraint � is a solved formula if

�� no atomic formula occurs twice in �

�� an equation x
�
� t appears in � if and only if � eliminates x

	� if xft � � and xft� � �� then t � t�


� if xF� xG � �� then F � G

�� if xF � � and f �� F � then xfy �� �

�� � does not contain an atomic formula of the form c
�
� t� cF or cft�

Every solved form � has a unique decomposition � � �N � �G into a possibly empty

conjunction �N of equations �x
�
� y� and a possibly empty conjunction �G of con�

straints �xF� and feature constraints �xfy�� We call �N the normalizer and �G the

graph of ��

Proposition ��� Let � be the graph of a solved formula� A variable x is said to

be constrained in � if � contains a constraint xft or xF � Let C�� be the set of all

variables constrained in �� Then

CFT� j� �	�C���

Proof� We will extend � to a determinant � with D�� � C���

For every x � C�� and x �� D�� let Fx be a set of features such that Fx contains

exactly the features f with xfy � � and let � be de�ned as

� � � � fxFx j x � C��g

�	



By de�nition� � is a determinant� By axiom Ax�� we know that

CFT� j� �	�D���

which proves CFT� j� �	�C���� �

The letter � always denotes a solved form� We will see that every basic constraint is

equivalent in CFT� to either � or a solved formula�

Figure � shows the so�called basic simpli�cation rules� By ��x � y� we denote

the formula that is obtained from � by replacing every occurrence of x with y� We

say that a formula � simpli�es to a formula 
 by a simpli�cation rule � if �

�
is an

instance of �� We say that a basic constraint � simpli�es to a basic constraint 
 if

either � � 
 or � simpli�es to 
 in �nitely many steps each licensed by one of the

basic simpli�cation rules in Figure ��

Note that the basic simpli�cation rules Cong�� CFCl�� CCl�� FArCl� and CArCl�

correspond to the axioms schemes Ax��� Ax��� Ax��� Ax�� and Ax
�� respec�

tively� The rule ArCl� follows from Ax�� and Ax��� Thus� they are equivalence

transformation with respect to CFT�� The remaining simpli�cation rules are equiva�

lence transformations in general�

Proposition ��� The basic simpli�cation rules are terminating and perform equiv�

alence transformations with respect to CFT�� Moreover� a basic constraint � �� � is

solved if and only if no basic simpli�cation rule applies to it�

Proof� To see that the basic simpli�cation rules are terminating� observe that no

rule adds a new variable and that every rule preserves eliminated variables� Since

rule Elim� increases the number of eliminated variables� and the remaining rules

obviously terminate� the entire system must terminate� The other claims are easy to

verify� �

Proposition ��� Let � be a basic constraint� Then one can compute a formula �

that is either solved or � such that � j�j
CFT� � and V�� � V���

Proof� Follows from the preceding proposition and the fact that the basic simpli��

cation rules do not introduce new variables� �

We say that a basic constraint clashes if it can be reduced to � with one of the clash

rules i�e�� rules CFCl�CArCl�� and we call a basic constraint clash�free if it does

not clash�

��



Cong� xft� � xft� � �
xft� � t�

�
� t� � �

Elim� x
�
� t � �

x
�
� t � ��x� t�

x � V�� and x �� y

Triv� t
�
� t � �
�

Orient� c
�
� x

x
�
� c

CFCl� cft
�

CCl� c�
�
� c�
�

c� �� c�

ArCl� xF � xG � �
�

F �� G

FArCl� xfy � xF � �
�

f �� F

CArCl� cF � �
�

Figure �� The basic simpli�cation rules�
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In the quanti�er elimination proofs to come it will be convenient to use so�called path

constraints� which provide a �exible syntax for atomic formulae closed under conjunc�

tion and existential quanti�cation� The notion of path constraints was introduced

in �BS���� We start by de�ning the denotation of a path�

The interpretations fA� gA of two features f � g in a structure A are binary relations

on the universe jAj of A� hence their composition fA � gA is again a binary relation

on jAj satisfying

afA � gA�b �� �c � jAj� afAc � cfAb

for all a� b � jAj� Consequently we de�ne the denotation pA of a path p � f� � � � fn
in a structure A as the composition

f� � � � fn�
A �� fA� � � � � � f

A
n �

where the empty path 	 is taken to denote the identity relation� If A is a model of

the theory CFT�� then every path denotes a unary partial function on the universe

of A� Given an element a � jAj� pA is thus either unde�ned on a or leads from a to

exactly one b � jAj�

De�nition ��� �Path Constraints� Let p� q be paths� x� y be variables� F be an

arity� and c be a constant symbol� Then path constraints are de�ned as follows�

A� � j� xpc ��� �x� pA cA

A� � j� xpy ��� �x� pA �y�

A� � j� xp � yq ��� �a � jAj� �x� pA a � �y� qA a

A� � j� xpF ��� �a � jAj� �x� pA a � a � FA

A proper path constraint is a path constraint of the form �xpc�� �xpF� or �xp� yq��

Note that path constraints xpy generalize feature constraints xfy� We use xp� as an

abbreviation for xp�xp� By de�nition� xp� is satis�ed by some valuation � into some

structure A i� the path pA is de�ned on �x��

Every path constraint can be expressed with the existing formulae� as can be seen

from the following equivalences�

x	t j�j x
�
� t

xfpt j�j �zxfz � zpt� z �� x� t�

xp � yq j�j �zxpz � yqz� z �� x� y�

xpF j�j �yxpy � yF � y �� x��

��



De�nition ��� �Closure� The closure ��� of a solved formula � is the closure of the

atomic formulae occurring in � with respect to the following deduction rules�

x	x

x
�
� t

x	t

xpy yft

xpft

xpt yqt

xp � yq

yF xpy

xpF
�

Recall that we assume that equations x
�
� y are directed� that is� are ordered pairs of

variables� Hence� x	y � ��� and y	x �� ��� if x
�
� y � ��

Proposition ��	 Let � be a solved formula� Then�

�� if � � ���� then � j�CFT� �

�� x	t � ��� i� x � t or x
�
� t � �

	� xft � ��� i� xft � � or �z� x
�
� z � � and zft � �


� xpft � ��� i� �z� xpz � ��� and zft � �

�� if p �� 	 and xpt� xpt� � ���� then t � t�

�� it is decidable whether a path constraint is in ����

Proof� For the �rst claim one veri�es the soundness of the deduction rules for path

constraints� The veri�cation of the other claims is straightforward� �

� Congruences and Normalizers

Until now we have de�ned the notion of normalizer as being the set of equations

attached to a solved formula� But for the completeness proof we need a more detailed

de�nition of a normalizer� To this end we use the notion of congruence of a basic

constraint� The de�nitions of congruence and normalizers are taken from �ST��a��

where they were de�ned and used for the �rst time�

A congruence of a basic constraint � is an equivalence relation � between vari�

ables satisfying the following�

� x
�
� y � � implies x � y

� xfy� x�fy� � � and x � x� implies y � y��

��



It is easy to see that the set of congruences of a basic constraint is closed under

intersection� Since the equivalence relation identifying all variables is a congruence

for every basic constraint� we know that every basic constraint has a least congruence�

It will be convenient to represent congruences as idempotent substitutions�

De�nition 	�� A normalizer of a congruence � is an idempotent substitution � that

maps variables to constants or variables and satis�es

	x� y � �x� � �y�� x � y��

We say that substitution � is �nite if there are only �nitely many variables x with

�x� �� x� A �nite substitution can be represented as	
fx

�
� �y� j x �� �y�g�

For convenience� we will simply use � to denote this formula� Clearly� for every basic

constraint � and every substitution � we have

� � � j�j � � ���

De�nition 	�� �Normalizer� A normalizer of a basic constraint � is a normalizer

of the least congruence of ��

We will now recall some properties of normalizers that have been proven in �ST��a��

A graph constraint is a basic constraint that contains no equations� A graph

constraint is called a graph if it is a solved formula�

Proposition 	�� Let A be a model of CFT�� � a basic constraint and � a normalizer

of �� Then � is unsatis�able in A if and only if ��G clashes� where �G is a graph

constraint containing all constraints of � of the form xF and xft�

Proposition 	�� Let � � �G � �N be the normal form of a basic constraint � that is

normal with respect to the rules �Triv�� �Cong�� �Orient� and �Elim�� Then � � �N
is a normalizer of � satisfying �G � ��G and V�� � V���

This proposition allows us to calculate normalizers� Note that this also implies that

for a solved formula the two notions of normalizer as de�ned in De�nition ��� and in

De�nition ��� agree�

A basic constraint � is called saturated if for every arity constraint xF � � and

every feature f � F there exists a feature constraint xfy � ��

�




Lemma 	�� Let � be a saturated graph constraint and � be a normalizer of some

congruence of �� If �� is clash�free and if V�� � D��� then

� j�CFT� ��

For our purposes� we need two additional propositions�

Proposition 	�� A substitution � is a normalizer of some congruence of a graph

constraint � if and only if �� is a graph�

Proposition 	�	 Let � be the normalizer of some congruence of graph � and let

� � �� � ��� be a partition of �� If �� is a normalizer of some congruence of �� then ���

is a normalizer of some congruence of ����

Proof� Let �� �� ��� and ��� be given as described� If �� is a normalizer of some

congruence of �� we have to show that ��� is a normalizer of some congruence of ����

Clearly� ��� is an idempotent substitution� The congruence property follows from the

last proposition together with the fact that �����x�� � �x�� �

	 Prime Formulae

We now de�ne a class of prime formula for the theory CFT� that have the properties

as required by lemma 
���

De�nition ��� �Prime Formula� Let � be a basic constraint� A formula � � �X�

is called prime if it satis�es the following conditions�

�� � is solved and saturated

�� X has no variable in common with the normalizer of �

	� for every x � X there is a variable y � V�� and a path p such that ypx � ����

The letter � will always denote a prime formula� Note that � is the only closed prime

formula�

Next we will show that every existentially quanti�ed basic constraint can be trans�

formed into � or a prime formula� To do this we need the notion of decided variables�

��



which are variables that are reachable from the free variables of a formula� We will

show that every existentially quanti�ed formula is equivalent to the set of constraints

on the decided variables� For convenience� we will use a slightly generalized notion

of decidedness which is more appropriate for the proofs to come�

De�nition ��� �Decided Variables� Let � be some solved formula� and let 
 �

�X�� A variable x � V�� is said to be explicitly decided in 
 if there is a variable

y free in 
 and a path p such that

ypx � ����

A variable x � V�� is called implicitly decided in 
 if � contains a determinant D

for x where each parameter of D is explicitly decided in 
� We say that x � V�� is

decided in 
 if there is a z with x	z � ��� and z is explicitly or implicitly decided in


�

We say that a variable is undecided if it is not decided� The set of decided variables

of a formula 
 will be denoted by Dec
�� The set of explicitly decided variables

is denoted by Dece
�� Note that if �X� is a prime formula� then every variable in

V�� is explicitly decided� For the formula


 � �x� x�� x�xfy � x�ff� gg � x�fy � x�gx� � zhx��

we get Dece
� � fy� z� x�g and Dec
� � Dece
��fx�g� The variable x is the only

one which is undecided in 
�

Proposition ��� Let � be a solved formula� 
 � �X�� and Y be the subset of X

containing all variables that are decided in 
� Then for every valuation � into a CFT�

model A with A� � j� 
 there exists a unique Y �update �� of � such that

A� �� j� �XnY ��

Proposition ��� Let � be a solved formula and X be a set of variables� If x is a

variable that is decided in �X� and � contains a constraint xfy� then y is also decided

in �X��

The following lemmas and propositions will show that we can transform every ex�

istentially quanti�ed basic constraint into a prime formula� A constraint c is called

a constraint for x if c is of the form xft� xF or x
�
� t� We will say that two

formulae 
 � �X� and 
� � �X ��� di�er only on the undecided variables if

V
� � V
��� Dece
� � Dece
��� and 
 and 
� contain exactly the same con�

straints for the explicitly decided variables�

��



Lemma ��� Let �� �� be graphs and let 
 � �X� and 
� � �X ��� be formulae that

di�er only on the undecided variables� Then


 j�j
CFT� 


��

Proof� Let 
� 
� be given as described and let Z � Dece
� �X � Dece
�� �X ��

As 
 and 
� contains the same constraints for the decided variables� we can write 


and 
� as


 � �Z�Y � � �� and 
� � �Z�Y �� � � ���

where Y � XnZ� Y � � X �nZ and � contains all constraints for the variables in Z�

Note that all variables of � are decided in 
� Hence V�� � Y � � and V��� Y � � ��

This implies that


 j�j �Z�Y � � �� and 
� j�j �Z�Y ��� � ���

Now � and �� are graphs� The variables which are free in �Y � and �Y �� � are decided

or free in 
 and 
�� This implies that � and �� contain no constraints for the free

variables in �Y � and �Y ���� Hence�

CFT� j� �	�Y � and CFT� j� �	�Y �� �

by proposition ���� This shows 
 j�j �Z� and 
� j�j �Z�� �

Lemma ��� �Garbage Collection� Let 
 � �X� and 
� � �X ��� be existentially

quanti�ed solved formulae that di�er only on the undecided variables� Then


 j�j
CFT� 


��

Proof� Let Y � Dece
� � X � Dece
�� � X �� Z � XnY and Z � � X �nY � Y

contains the existentially quanti�ed� explicitly decided variables� whereas Z and Z �

contain the variables that are not explicitly decided in 
 and 
�� respectively� We

will show that there is a possible empty conjunction of equations � such that

�X� j�j
CFT� �Y � � �Z�G� and �X� j�j

CFT� �Y � � �Z
���G�� ��

Once we have shown this� the lemma can be proven as follows� Since V�Z�G� �

Dece
�� we know that every variable explicitly decided in �Z�G must also be ex�

plicitly decided in 
� a variable x is explicitly decided in �Z�G if there is a variable

y � V�Z�G� with ypx � ��G�� Since y � Dece
�� we know that there is variable

z � V
� with zqy � ��� for some path q� Hence� zpqx � ���� which implies that z is

explicitly decided in 
�

��



Similarly we can show that Dece�Z ���G� � Dece
�� This implies that �Z�G� and

�Z ���G� are graphs that do not di�er on the decided variables� Then the previous

lemma shows that

�Z�G j�jCFT� �Z
���G�

which proves 
 j�j
CFT� 
��

For the proof of �� let � be the subset of equations x
�
� t in �N � ��N with Vx

�
�

t� � Dece
�� Then all variables occuring on the left side of an equation in �Nn�

resp� ��Nn�� cannot be explicitly decided in 
 resp� 
��� Since � and �� eliminate

the variables on the left side of the equations� we get

�X� j�j �X� � �G� and �X�� j�j �X� � ��G�

Now �� follows from the fact that V�� � Z � � and V�� � Z � � �� �

Proposition ��	 For every prime formula � and every set of variables X one can

compute a prime formula �� such that

�X� j�j
CFT� �

� and V��� � V�X���

Proof� We will proof that we can compute a formula �� as required by the lemma

for the special case X � fxg� For arbitrary sets X we can compute a �� by iterative

application of the method for this special case�

Let � � �Y � be a prime formula� and x be a variable� We construct a prime formula

�� such that �x� j�j
CFT� �� and V��� � V�x��� We distinguish the following cases�

�	 x �� V��	 Then �� �� � does the job�

�	 � � x
�
� t � ���	 Then �� �� �Y � � does the job�

�	 � � y
�
� x����	 Then �� �� �Y ���x� y�� does the job since � j�j x

�
� y � ���x� y��


	 x �� Y and x occurs in the graph but not in the normalizer of �	 Then �x�Y � j�j

�N � �x�Y �G� Let � �G contain all the constraints for the variable that are decided

in �x�Y �G� Then �x�Y �G and �x�Y ��G have the same set of decided variables and

contain the same constraints for the decided variables� Since �G and ��G contain no

equations� they are solved clauses� Hence� by proposition ���

�x�Y �G j�jCFT� �x�Y �
�
G

This implies that �� � �N ��x�Y �
�
G is a prime formula with � j�jCFT� �� and V��� �

V��� �

��



Proposition ��� For every two prime formulae � and �� one can compute a formula

� that is either prime or � and satis�es

� � �� j�j
CFT� � and V�� � V� � ����

Proof� Let � � �X� and �� � �X ��� be prime formulae� Without loss of generality

we can assume that X and X � are disjoint� Hence

� � �� j�j �X�X �� � ����

Since ���� is a basic constraint� Proposition ��� tells us that we can compute a formula

� that is either solved or �� and satis�es � � �� j�j
CFT� � and V�� � V� � ���� If

� � �� then � �� � does the job� Otherwise� � is solved� Since

� � �� j�j
CFT� �X�X ���

we know by Proposition ��� how to compute a prime formula ��� such that ���� j�j
CFT�

���� From the construction of ��� one can verify easily that V���� � V� � ���� �

Now we extend the notion of a closure as de�ned for solved formulae to prime for�

mulae�

De�nition ��
 �Closure of Prime Formulae� The closure of a prime formula � �

�X� is de�ned as follows�

��X�� �� f� � ��� j � � x	� or � proper path constraint with V�� �X � � g�

Proposition ���� If � is a prime formula and � � ���� then � j� � �and hence

�� j� ����

Proof� Let � � �X� be a prime formula� A� � j� �� and � � ���� Let �� be an

arbitrary X�update of � such that A� �� j� �� Since ��� � ���� we have � � ��� and

thus A� �� j� �� If � has no variable in common with X� then A� � j� �� Otherwise�

� has the form �x	�� and hence A� � j� � holds trivially� �

We now know that the closure ���� taken as an in�nite conjunction� is entailed by ��

We will show that� conversely� � is entailed by certain �nite subsets of its closure ����

For this we �rst need the de�nition of a rooted path�

�	



De�nition ���� �Rooted Path� A rooted path xp consists of a variable x and a

path p� The value jxpj� of a rooted path xp in some solved formula � is de�ned as

follows�

jxpj� ��

������
�����

x i� p � 	 � x
�
� t �� �

t i� p � 	 � x
�
� t � �

t i� xpt � ���

unde�ned otherwise�

A rooted path xp is said to be realized in a solved formula � i� jxpj� is de�ned� A

rooted path xp is realized in a prime formula � � �X� if either p � 	 or x � V��

and xp is realized in ��

We say that a proper path constraint � contains a rooted path xp if � � xp��

� � xpc� � � xp � yq or � � yq � xp

Proposition ���� j � j� is a partial function for every solved formula ��

Proof� Follows from proposition ��� 
�� �

Proposition ���� Let xp be a rooted path with p �� �� If xp is realized in some solved

formula �� then jxpj� is either a constant or a variable z with z � V�G��

Proposition ���� Let � � �X� be a prime formula and � � xp � yq be a proper

path constraint with V�� �X � �� If both xp and yq are realized in �� then

� � � j�j
CFT� �X� � jxpj�

�
� jyqj���

De�nition ���� �Access Function� An access function for a prime formula � �

�X� is a function that maps every x � V�� � X to the rooted path x	� and every

x � X to a rooted path x�p such that x�px � ��� and x� �� X�

Proposition ���� For every prime formula � � �X� and every access function  

of ��

j xj� � x�

��



Thus� j � j� is the left inverse of  � But the converse is not true� Given the prime

formula � � �z� with

� � xfz � ygz

and the access function with  z � xf � we have  jygj� � xf �

Note that every prime formula has at least one access function� and that the access

function of a prime formula is injective on V�� follows from Proposition ��� 
���

De�nition ���	 �Projection� The projection of a prime formula � � �X� with

respect to an access function  for � is the conjunction of the following proper path

constraints�

fx	 � y	 j x
�
� y � �g �

fx�pF j xF � �� x�p �  xg �

fx�pf � y�q j xfy � �� x�p �  x� y�q �  yg�

Obviously� one can compute for every prime formula an access function and hence a

projection� Furthermore� if � is a projection of a prime formula �� then � taken as a

set is a �nite subset of the closure ����

Proposition ���� Let � be a projection of a prime formula �� Then � � ��� and

� j�j
CFT� ��

Proof� Let � be the projection of a prime formula � � �X� with respect to an

access function  �

Since every path constraint � � � is in ��� and thus satis�es � j� �� we have � j� ��

To show the other direction� suppose A� � j� �� where A is a model of CFT�� Then

A� �� j� x�px for every x � X with  x � x�p de�nes a unique X�update �� of ��

From the de�nition of a projection it is clear that A� �� j� �� Hence A� � j� �� �

As a consequence of this proposition one can compute for every prime formula an

equivalent quanti�er�free conjunction of proper path constraints�

��




 Proof of the Main Lemmas

In this section we will show that our prime formulae for CFT� satisfy requirements 
�

and �� of lemma 
��� We will de�ne the central notion of an X�joker� where X is a

set of variables� This is the main device for proving the equivalences as required by

the conditions 
 and � of the Lemma 
��� Roughly speaking� a path constraint p is

an X�joker for a prime formula � if it is not a consequence of � and contains a rooted

path whose value is a variable which is both undecided and undetermined in �X��

To given an example� consider the path constraint xf � xg� which is a projection of

the formula

� � �� �yxfy � xgy�

that we used in the introductory example on page �	� Then xf � xg is an fxg�joker

for the formula

� �� �x�� x�xfx� � xgx���

since the values of xf and xg in � are both undetermined and undecided in �x�� On

the other hand� xf � xg is not an fxg�joker for the formulae

�� � �x�� x�� x�� x� xfx� � xgx� � x�ffg � x�fx� � x�ffg � x�fx��

�� � �x�� x� xfx� � xgx� � x�ffg � x�fx� � x�ffg � x�fx�� �

But in the case of �� we can calculate an fxg�joker for �� which is a consequence of

xf � xg� namely the path constraint xff � xgf � In the case of �� this is not possible�

De�nition 
�� A rooted path xp is said to be determined in � � �X� if jxpj� is

de�ned and jxpj� � D���

Proposition 
�� Let � � �X� be some prime formula and x � D�� be a variable

that is undecided in �� Then there is a variable y and path p such that xpy � ����

y �� D�� and y is undecided in ��

Proof� Since x is in D�� and is undecided� every determinant � � � with x � D��

must contain an undecided parameter� Now let � be the largest determinant such

that � � �� x � D�� and for every z � V�� there is a path p with

xpz � ����

��



Such a determinant must exists since � is saturated� Now let y be one parameter of

� that is undecided� y cannot be determined in �� If � contained a determinant D

for y� then �� � � � y
�
� D would be a determinant that is larger than � and satis�es

�� � �� x � D��� and 	z � V����p � xpz � ���� Hence� y is the variable we sought�

�

De�nition 
�� Let � � �Y � be a prime formula and X be a set of variables� A

rooted path xp is said to be decided in � wrt� X if either x �� X or there is some

pre�x p� such that xp� is realized and jxp�j� is either constant or a variable that is

decided in �X��

Proposition 
�� If � is a proper path constraint such that all rooted paths contained

in � are decided in � wrt� X� then either A� � j� 	X� 
 �� orA� � j� 	X� 
 ����

De�nition 
�� �X�Joker� Let � � �Y � be a prime formula and X be a set of

variables� We say that a rooted path xp is free in � wrt� X if xp is neither determined

in � nor decided in � wrt� X� A proper path constraint is called an X�joker for � if

� �� ��� and one of the following conditions is satis�ed�

� � � xp� and xp is free in � wrt� X�

� � � xpc and xp is free in � wrt� X�

� � � xp � yq and xp is free in � wrt� X�

� � � yq � xp and xp is free in � wrt� X�

Proposition 
�� It is decidable whether a rooted path is free in a prime formula wrt�

a set of variables� and whether a path constraint is an X�joker for a prime formula�

Proof� Follows from proposition ���� �

Lemma 
�	 Let � � �Y � be a prime formula and � be a proper path constraint�

Then either we can calculate an X�joker �� for � with

� � � j� ��

or for every CFT� model A and every valuation � we have

A� � j� 	X�
 �� or A� � j� 	X� 
 ����

��



Proof� Without loss of generality we can assume that V�� � Y � �� If � is an

element of ���� then � j�CFT� � by proposition ���	� If the normal form of � � � is

�� then � j� ��� If both fail� then we distinguish the cases listed below� We will

say that a rooted path xp is decided when xp is decided in � wrt� X� and we will

use the term undecided correspondingly� Analogously� we will say that a variable is

un��decided if it is un��decided in �X��

The possible cases are as follows�

�� all rooted paths contained in � are decided	 Then proposition ��� shows that

for every CFT� model A and every � either A� � j� 	X� 
 �� or A� � j�

	X�
 ����

�� � contains a rooted path xp that is undecided and not realized in �	 Then xp�

is an X�joker since � is saturated�

�� � contains at least one undecided rooted path� and the undecided rooted paths

contained in � are realized in �	 We will subdivide this case as follows�

��a � � xp�� Then � is in ����

��b � � xpc and xp is undecided but realized in �	 By our assumption we can

assume that xp is not determined in � since this would imply � � � j�j
CFT� ��

Hence� � must be an X�joker�

��c � � xpF � Analogous to case ��b��

��d � � xp � yq and xp is decided and yq is undecided	 Then yq is realized� If yq

is undetermined in �� then � is an X�joker�

Otherwise let z � jyqj� with z � D��� Since z is undecided� proposition ���

shows that there is a variable u �� D�� that is undecided and a path r such

that zru � ���� Then yqr is a rooted path that is both undecided and not

determined in ��

Now jxprj� must be either unde�ned or a variable z� with z� �� z� since otherwise

u would be a decided variable� Hence� �� � xpr � yqr is not in ���� This shows

that �� is an X�joker with � j�CFT� ���

��e � � xp � yq and both xp and yq are undecided	 Then xp and yq are realized in

��

If jxpj� is not an element of V�G�� then xp is not determined in �� which implies

that � is an X�joker� and similar for yq�

�




Otherwise� let  be some access function of � and � be a normalizer of �G �

jxpj�
�
� jyqj�� Note that

� � � j�j
CFT� �Y �N � �G � jxpj�

�
� jyqj��

and

�G � jxpj�
�
� jyqj� j�j

CFT� �G � ��

Since Vjxpj�
�
� jyqj�� � V�G�� we can assume by proposition ��� that V�� �

V�G� Since �N eliminates the variable on the left side of the equations� this

implies

�N � �G � jxpj�
�
� jyqj� j�jCFT� �N � �G � ��

Furthermore� we can assume without loss of generality that � contains no trivial

equations of form z
�
� z� Hence�  z� �  z� �� ��� for every equation z�

�
� z� in

�� Since we have assumed � � � �j�CFT� �� we know that ��G is clash�free�

If � contains an equation z
�
� c where z is undecided� then z � V�G�� Now z

cannot be determined in �G as ��G is clash�free� Hence�  zc is an X�joker ��

with � � � j�CFT� ���

If � contains an equation z�
�
� z� or z�

�
� z� where z� is undecided and z� is

decided� then �� �  z� �  z� is a proper path constraint with � � � j� ���

Furthermore� we can apply case ��d� to �� yielding an X�joker ��� with ��� j�

����

If � contains an equation z�
�
� z� or z�

�
� z� where z� and z� are undecided and

z� is not determined in �G� then �� �  z� � z� is an X�joker with � � � j� ���

The remaining case is that � contains only equations of the form z
�
� c with z

decided or equations of the form z�
�
� z� where either both variables are decided

or both variables are undecided but determined in �G� We will show that in

this case A� � j� �X� � �� implies A� � j� 	X�
 ���

Now assume that A� � j� �X� � ��� We will show that then

A� � j� 	X	Y �G 
 ��� 
�

This implies that A� � j� 	X	Y �N � �G 
 jxpj�
�
� jyqj��� which is equivalent

to A� � j� 	X�Y � 
 ���

Let �� be the subset of � containing all equations among decided variables� and

let ��� be the rest of �� ��� contains only equations between variables that are

determined in �G� It is easy to check that �� is a normalizer of some congruence

of �G� This implies by proposition ��� that ���G is a solved graph�

��



Let �� be the unique extension of � to the variables that are decided� and let

Z � X �Y be the set of undecided variables� Clearly� A� �� j� ��� Furthermore�

V��� � Z � �� This implies

A� �� j� 	Z�G  ���G��

Since ��� is a normalizer of some congruence of ���G by proposition ���� ���G is

a solved graph and V���� � D���G�� we know by lemma ��
 that

���G j� ����

Hence� A� �� j� 	Z�G 
 �� � ����� which implies A� �� j� 	Z�G 
 ��� From

this follows 
� as �� was the unique update of � to Dec�X���

�

Corollary 
�� Let � be a prime formula and � be a proper path constraint� If there

is a CFT� model A and a valuation � into A with

A� � j� �X� � �� and A� � j� �X� � ����

then we can calculate an X�joker for � with � � � j� ���

Lemma 
�
 Let � � �Y � be a prime formula and ��� � � � � �n be X�jokers for ��

Then

�X� j�CFT� �X� �
n	
i��

��i�

Proof� Let � � �Y � be a prime formula� ��� � � � � �n n � 	� be X�jokers for �� A be

some model of CFT�� and � be some valuation into A with A� � j� �X�� We have

to show that A� � j� �X� �
Vn
i�� ���� We will de�ne a prime formula �

� satisfying

the following�

� �� j� ��

� �X� j�j
CFT� �X���

� A� � j� 	X� � 
 ��i� for all i � ���n

��



Once we have de�ned a �� satisfying these conditions� we can prove the claim using

the following argument� Since �X� j�j
CFT� �X�� and A� � j� �X�� there must be

an X�update �� of � such that A� �� j� � �� But as �� j� � and for all i � ���n

A� � j� 	X�� 
 ��i�� we know that A� �� j� � �
Vn
i�� ��i� This shows A� � j�

�X� �
Vn
i�� ��i��

For the construction of � � let Rd denote the set of all rooted path that occur in

some �i and that are decided in � wrt� X� In the following� we will just say that a

rooted path xp is decided when xp is decided in � wrt� X� and we will use undecided

similarly� Let Z � V�G� be the set of all variables of �G that are undecided and not

determined in �G� For each z � Z we �x a non�empty set of features Fz with the

following properties�

�� Fz � ff j zfy � �g � fhg� where h is a new feature�

�� A� � j� 	X� 
 �yqFz� for all yq � Rd

It is understood that Fz �� Fz� for z �� z��

We can �nd such sets Fz satisfying the above properties if for every yq � Rd there

are in�nitely many sets F with A� � j� 	X� 
 �yqF �� For this it is su�cient to

prove that for every yq � Rd there is at most one set of features F with A� � j�

�X� � yqF �� Assume that A� � j� �X� � yqF�� and A� � j� �X� � yqF�� with

F� �� F�� By proposition ��� we can conclude that in this case A� � j� 	X�
 yqF��

and A� � j� 	X�
 yqF��� This would imply

A� � j� 	X�
 yqF� � yqF����

Since yqF��yqF� j�jCFT� �� this is contradictory to our assumption that A� � j� �X��

The formula �� � �X�� is now de�ned by

�� � � �
	
z�Z

zFz

Clearly� �� j�CFT� �� Furthermore� �X� j�j �X�� by proposition ����

It remains to show that A� � j� 	X�� 

Vn
i�� ��i� for all i � ���n� We distinguish

the following cases for �i�

�� �i contains a rooted path xp that is undecided and not realized in �� Let p� be

the longest path such that xp� is realized in � such a path must exists since

at least x� is realized�� and let p � p�fq� Note that xp� is not determined in

��



� as � is saturated� Since xp is undecided� we know that jxp�j� is a variable z

with z � Z� which implies that �� contains an arity constraint zFz� As p� is the

longest subpath of p� with xp� realized in � we know that zft �� � and therefore

f �� Fz� Hence� � j� �xp��

�� every undecided rooted path contained in �i is realized in �	 Note that in this

case �i cannot be of the form xp�� since xp realized implies that xp� � ���� We

will split this case up as follows�

a� �i � xpc� Then xp must be undecided as �i is an X�joker� Since xp is

realized in �� we know that jxpj� is a variable z with z � Z� Then either �

contains an arity constraint zF or we have added an arity constraint zFz

in ��� In each case we get �� j� ��i�

b� �i � xpF � Analogous to case �a�

c� �i � xp � yq or �i � yq � xp where xp is undecided and not determined in

�	 By the above cases we can assume that xp is realized in �� Again we

get jxpj� � z � Z� This implies that we have added a feature constraint

zFz in �
��

If yq is undecided� we can assume without loss of generality that yq is also

realized in �� jyqj� must be variable since yq is undecided� Let z� � jyqj��

If yq is determined in �� then � contains an arity constraint z�F with

F �� Fz as Fz contains a feature h which is new� If yq is not determined in

�� then z� � Z� This implies that we have added an arity constraint z�Fz�

in ��� In both cases we get �� j�CFT� ���

If yq is decided� then A� � j� 	X�
 �yqFz� by the de�nition of Fz� As

�� j� �� this shows A�� j� 	X�� 
 �xp � yq��

�

Lemma 
��� If �� ��� � � � � �n are prime formulae� then

�X� �
n	
i��

��i� j�j
CFT�

n	
i��

�X� � ��i��

Proof� Let �� ��� � � � � �n be prime formulae� Then �X� �
Vn
i�� ��i� j�

Vn
i�� �X� �

��i� is trivial� To see the other direction� suppose that A is a model of CFT� and

A� � j�
Vn
i�� �X����i�� We must exhibit someX�update �

� of � such thatA� �� j� �

and A� �� j� ��i for i � �� � � � � n�

��



Without loss of generality we can assume that A� �� j� �X� � �i� for i � �� � � � �m

and A� �� j� ��X� � �i� for i � m � �� � � � � n� For every i � �� � � � �m let �i be a

projection of �i�

Since for every i � �� � � � �m

�i j�jCFT� �i�

we know that there is a proper path constraint � with

A� � j� �X� � �� and A� � j� �X� � ����

This implies by corollary ��� that we can calculate� for every i � �� � � � �m� an X�joker

��i for � with � � �i j�CFT� ��i� By Lemma ��� we have

�X� j� �X� �
m	
i��

���i��

from which

�X� j� �X� �
m	
i��

��i��

follows�

Since ��i j� ��i by Proposition ���	� we have

�X� j� �X� �
m	
i��

��i��

Hence we know that there exists an X�update �� of � such that A� �� j� � and A� �� j�

��i for i � �� � � � �m� Since we know that A� � j� ��X� � �i� for i � m� �� � � � � n�

we have A� �� j� ��i for i � m� �� � � � � n� �

Lemma 
��� For every two prime formulae �� �� and every set of variables X one

can compute a Boolean combination � of prime formulae such that

�X� � ���� j�j
CFT� � and V�� � V�X� � �����

Proof� Let � be a projection of �� and A be model of CFT�� We distinguish the

following cases�

�� There exists a � � � such that we can derive an X�joker �� with � � � j�CFT�

�� using lemma ���� Then �X� j�CFT� �X� � ���� by lemma ���� Since

� � ��� j�CFT� ��� we get

�X� j�CFT� �X� � ����

�	



Since �� j�CFT� � j� �� we know that �� j�CFT� ��� and hence �X� j�CFT�

�X� � ����� Thus

�X� � ���� j�j
CFT� �X�

The rest follows from proposition ����

�� For every � � � lemma ��� does not produce an X�joker �� with ��� j�CFT� ���

Then for every valuation � into A and every � � � either A� � j� 	X� 
 ��

or A� � j� 	X� 
 ���� This implies that either

A� � j� 	X�

	
���

��

or

A� � j� 	X� 
 �
	
���

����

Since
V
��� � j�j � j�jCFT� ��� this implies that there is no valuation � with

A� � j� �X� � ��� and A� � j� �X� � �����

Hence

�X� � �� �� j�j
CFT� �X� � ��X� � ����

The rest follows from propositions ��� and ����

�

Theorem 
��� For every formula � one can compute a Boolean combination � of

prime formulae such that � j�j
CFT� � and V�� � V���

Proof� Follows fromLemma 
��� Propositions ��� and ���� and Lemmas ���	 and �����

�

Corollary 
��� CFT� is a complete and decidable theory�

Proof� The completeness of CFT� follows from the preceding theorem and the fact

that � is the only closed prime formula� The decidability follows from the complete�

ness and the fact that CFT� is given by a recursive set of sentences� �

For the special case V�� � V��� � X� the algorithm which can be extracted from

the lemma ���� is closely related to the entailment test as described in �ST��a��

��



If case � of lemma ���� applies� then � does not entail ���� Coincidently� the same

approach is used in the proof of lemma ���� and in the algorithm described in �ST��a��

Roughly speaking� both test whether the uni�cation of � and �� further constrains

some variables of �� On the other hand� we have also to consider the case where

X � V�� � V���� This case is outside the scope of �ST��a��

Now we want to give a concrete example of how the quanti�er elimination works�

Suppose we shall prove that if c� and c� are two di�erent constant symbols� then

CFT� j� 	x�xfc� � xgc��
 �y�� y�xfy� � xgy� � �y� � y����� ��

This is the same as showing that xfc��xgc� entails �y�� y�xfy��xgy��y� �� y��� In

the following� we will abbreviate xfc� � xgc� by �� and xfy� � xgy� by ��� Note that

both �� � � are prime formulae� The �rst step is to eliminate the quanti�ers �y��y��

A projection for y� � y� is y�� � y��� Since both y�� and y�� are decided in �� wrt�

fy�� y�g� we know that y�� � y�� is no fy�� y�g�joker for ��� Hence� we can apply case

� of lemma �����

	x��� � �y�� y�� � � �y� � y����

� case � of lemma ����

	x��� � �y�� y��� � ��y�� y��� � y� � y�����

Now �y�� y��� � y� � y�� is no prime formula� An equivalent prime formula is

��� � �yxfy�xgy�� Now we have to eliminate the out�most quanti�er 	x� for which

purpose we have �rst to apply some �rst�order equivalence transformation�

	x��� � �y�� y��� � �������

�

��x�� � ��y�� y��� � ������

�

���x� � ��y�� y���� � �x� � ������

Since c� �� c�� we get �x� � ���� � �x� � �yxfy � xgy�� j�j
CFT� �� Hence� we have

to consider only ��x� � ��y�� y����� Now a projection � for �y�� y��� is fxf�� xg�g�

Since � � ���� we can again apply case � of lemma ����� yielding

���x� � ��x� � �y�� y��
����

�Note that under our assumption V��� � V���� � X� the disentailment of �� by � implies that

there can be an X�joker for � calculated in case �� Hence� the instance of case 	 where � disentails

�� is not used under the assumption V��� � V���� � X�

��



But �x� j�j
CFT� � and �x� � �y�� y���� j�jCFT� �� which implies that we get ��� �

���� which is the same as �� or �� This proves ��

Finally� we want to show that CFT is less expressive than FT� which is established

by the existence of a quanti�er elimination for FT as proven in �BS���� We have

claimed that �� in FT it is impossible to identify a unique element of the domain�

and that �� the arity predicate cannot be de�ned within FT� These claims are a

trivial consequence of the following lemma� We show the result for the original

language CFT as de�ned in �ST��a� and its subsignature FT as de�ned in �BS����

since we can use some proposition and lemmas proven in �BS����� Anyway� the same

method applies for CFT� and its subsignature FT� not containing arity constraints

for a quanti�er elimination of FT� see �Bac��a���

Lemma 
��� Let �x� be any �rst�order FT�formula with one free variable x such

that FT j� �x�x�� Then there is a feature f such that for all sort symbols A�

FT j� �x�yxfy �Ay� � �x���

Proof� Note that we assume the de�nitions of �BS��� for the di�erent notions used

in this proof� Roughly speaking� these notions are just the restrictions of the corre�

sponding notions as de�ned in this papers to the signature of FT�

Let �x� be a formula with one free variable� and let �x� be the corresponding

Boolean combination of prime formulae equivalent to �x� which is the result of

quanti�er elimination� Note that x is the only free variable in �x� by the de�nition

of the quanti�er elimination� Without loss of generality� we can assume that �x� is

in disjunctive normal form� Since prime formulae are closed under conjunction� we

can furthermore assume that every disjunct of �x� is of the form �x��
Vk
j�� ��jx��

where �x�� ��x�� � � � �kx� are prime formulae such that x is the only variable free

in �x�� ��x�� � � � �kx��� Furthermore� we can assume that every disjunct of �x� is

satis�able in FT�

Now we choose some disjunct � �
Vk
j�� ��j of �x�� Let f be an arbitrary feature

that is not used in �� ��� � � � �k� A be some arbitrary sort symbol and �� be the prime

formula equivalent to the conjunction of �yxfy�Ay� and �� Since we have in�nitely

many feature and sort symbols in FT� for the claim of the lemma it is su�cient to

�Recall that CFT and FT use sort constraints Ax� which are unary� disjoint predicates� but do

not have constant symbols�
�Recall that every closed prime formula is valid in FT and hence equivalent to �� This implies

that we can assume without loss of generality that ��x�� ���x�� � � ��k�x� have x as a free variable�

��



prove

FT j� �x�� �
k	

j��

��j�� ��

Since ��
Vk
j�� ��j is satis�able and the closure of a prime formula is equivalent seen

as an in�nite conjunction� to the prime formula itself see �BS���� Proposition �����

we know that there for every j � � � � � k there is a path constraint �j contained in the

closure ��j� of �j such that

FT j� �x� � ��i��

This implies that �j is not contained in the closure of �� Since x is the only free

variable� we know that for every j � � � � � k� �j is an x�joker for �� But this must also

hold for �� since the feature f is not used in �j for every j � � � � � k� which implies that

f is not used in the �j�s� Now Lemma ��� of �BS��� which is similar to Lemma ���

in this paper� shows that

�x� � j�j
FT
�x� � �

n	
j��

��j��

Since � is satis�able� �x� j�FT �x�� and ��j j�FT ��j for every j � � � � � k� this

immediately proves ��� �

�� Conclusion

We have proven the completeness of the theory CFT� given by seven axioms� Our

completeness proof exhibits a terminating simpli�cation system deciding validity and

satis�ability of arbitrary CFT��formulae� The simpli�cation computes for every for�

mula � an equivalent normal form consisting of a Boolean combination of existential

quanti�ed solved formulae� from which the solutions of � can be easily read of�

One can think of di�erent extensions of the work in this paper� First� one can consider

�nite trees instead of in�nite trees� For this purpose� the axiomatization of CFT� has

to be changed in order to exclude cyclic feature descriptions� We conjecture that it

is su�cient to modify axiom scheme Ax�� and to add one new axiom scheme� thus

resulting in

Ax�� �	��D���� if � is a determinant that contains no cycle

Ax�� ��xxpx� for every path p � FEA��

��



These axioms have to be considered when testing satis�ability of quanti�er�free for�

mulae� Clearly� this has also e�ects on the simpli�cation system for CFT��formulae

since such a satis�ability test is integrated�� But on the other hand� the restriction

to �nite trees should have no e�ects on the completeness proof itself� To take an

example� one of the parts of the completeness proof is to show that

n	
i��

�X� � ��i� j�CFT� �X� �
n	
i��

��i�� ��

where �� ��� � � � � �n are prime formulae i�e�� existential quanti�ed solved formulae��

This implication is proven by constructing a prime formulae �ext with the property

that �ext j�CFT� � and for every i � � � � � n�

CFT� j� 	X�ext 
 ��i��

Clearly� the existence of an X�solution for �ext for every valuation that satis�es �X�

proves ��� This is guaranteed by the construction of �ext which is performed in such a

way that �ext contains no cycles if � contains no cycles� Hence� the argumentation in

this proof as well as in the other proofs of this paper� carries over to �nite trees� To

summarize� considering �nite trees as a standard model would change the behavior

of the simpli�cation system presented in this paper� but the proof of correctness of

the simpli�cation should remain unchanged�

The second and more interesting extension is to add new predicates to the language

of CFT� and to see whether the theory of the feature tree model over the extended

language remains completely axiomatizable� An interesting predicate is AjoinAt�

which has been introduced in �SHW��� Smo��b� in the context of the Oz�system

for the description of the Oz�system and the underlying concepts see also �Smo��a�

ST��b��� AjoinAt�� f� ���  � holds if  is a feature tree which has the same subtrees

as � except at the feature f � where  has �� as a subtree� If the feature f is de�ned on

�� then  has the same arity as �� otherwise the arity of  is the arity of � extended

by the feature f �

Finally� it would be interesting to determine the complexity of the quanti�er elim�

ination for CFT� and to compare it with the complexity of Rabin�s algorithm for

deciding SnS� This is of interest since there exist approaches to translate the theory

of constructor trees for restricted signatures into SnS �CP���� But to our knowledge

it is still an open problem whether one can translate also CFT� into SnS�

�
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