
T
h

e
C

o
m

p
le

xi
ty

o
f

C
o

n
ce

p
t

L
an

g
u

ag
es

F.
M

.D
o

n
in

i,
M

.L
en

ze
ri

n
i,

D
.N

ar
d

i,W
.N

u
tt

R
R

-9
5-

07
R

es
ea

rc
h

R
ep

or

��

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-07

The Complexity of Concept Languages

F. M. Donini, M. Lenzerini, D. Nardi,W. Nutt

June 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche In-
telligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was found-
ed in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft,
GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Research
projects conducted at the DFKI are funded by the German Ministry of Education, Science, Research and
Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.
From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland
Director

The Complexity of Concept Languages

F. M. Donini, M. Lenzerini, D. Nardi,W. Nutt

DFKI-RR-95-07

A short version of this paper appeared in the Proceedings of the 2nd International
Conference on Knowledge Representation and Reasoning, KR-91.

This work has been supported by a grant from The Federal Ministry of Education,
Science, Research and Technology (FKZ ITWM-9201).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy in whole
or part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole
or partial copies include the following: a notice that such copying is by permission of the Deutsche Forschungszen-
trum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors
and individual contributors to the work; all applicable portions of this copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a licence with payment of fee to Deutsches Forschungszentrum für
Künstliche Intelligenz.
ISSN 0946-008X

The Complexity of Concept Languages

Francesco M� Donini� Maurizio Lenzerini� Daniele Nardi

Dipartimento di Informatica e Sistemistica

Universit�a di Roma �La Sapienza�

via Salaria ���� I�		�
� Roma� Italy

fdonini�lenzerini�nardig�disuniroma�it

Werner Nutt

German Research Center for Arti�cial Intelligence � DFKI GmbH

Stuhlsatzenhausweg �� D������ Saarbr�ucken� Germany

nutt�dfkiuni�sbde

Abstract

The basic feature of Terminological Knowledge Representation Systems is to repre�
sent knowledge by means of taxonomies� here called terminologies� and to provide
a specialized reasoning engine to do inferences on these structures�

The taxonomy is built through a representation language called concept language

�or description logic�� which is given well�de�ned set�theoretic semantics� The e��
ciency of reasoning has often been advocated as a primary motivation for the use
of such systems�

Deduction methods and computational properties of reasoning problems in con�
cept languages are the subject of this paper� The main contributions of the paper
are	 �
� a complexity analysis of concept satis�ability and subsumption for a wide
class of concept languages� ��� the algorithms for these inferences that comply with
the worst�case complexity of the reasoning task they perform�

Contents

� Introduction �
�� Concepts as Structured Set Descriptions �
�� Reasoning about Concept Taxonomies �
�� Motivation and Scope �
�� Main Results and Organization of the Paper � � � � � � � � � � � � � � � � � �

� Concept Languages and Their Inference Problems �
�� Syntax and Semantics of Concepts �

�� Concepts as Predicate Logic Formulas ��
�� Inferences with Concepts ��

� A Calculus for Checking Satis�ability ��
�� Normal Forms of Concepts ��
�� The Completion Rules ��
�� Soundness and Completeness ��
�� The Computational Properties of Constraint Systems � � � � � � � � � � � � �	

� PSPACE�Complete Languages ��
�� A PSPACE�Algorithm for ALCNR ��
�� Unsatis�ability in ALC ��
�� Subsumption in FL �	
�� Unsatis�ability in ALUR ��
�� Unsatis�ability in ALNR ��
�� Summary on PSPACE�Complete Languages � � � � � � � � � � � � � � � � � �	

� NP�Complete Languages �	
�� An NP�Algorithm for ALER �	
�� NP�Hardness Results ��
�� Summary on NP�Complete Languages ��

 Co�NP�Complete Languages ��
�� An Optimized Calculus for ALCN ��
�� Polynomial Length of Derivations ��
�� Co�NP�Hard Languages �

�� Summary on Co�NP�Complete Languages � � � � � � � � � � � � � � � � � � �

� Polynomial Languages �	

� Summary of Complexity Results ��

� Conclusion ��

�

� Introduction

Among computer systems based on Arti�cial Intelligence technologies� the distinguishing
feature of Knowledge�Based Systems �KBS� is that knowledge is explicitly represented�
via a suitable language� and that new knowledge can be inferred from the existing one
by an inference engine� tailored to the representation language employed� e�g�� a forward
reasoner for rules� or a classi�er for taxonomies
The information stored in language expressions� plus the inference engine are usually

considered as a Knowledge Representation System �KRS� in its own� which can be re�
garded as the core of a KBS The communication between the KRS and the rest of the
KBS is realized via queries and answers to queries The type of language used to represent
knowledge� and the inferences drawn from it characterize the KRS �Lev���
In this paper we are concerned with Terminological Knowledge Representation Sys�

tems �TKRSs�� whose basic feature is to represent knowledge by means of taxonomies�
here called terminologies� and to provide a specialized reasoning engine to do inferences on
these structures Such TKRSs have their roots in Structured Inheritance Networks pro�
posed by Brachman and realized in the kl�one system �Bra�
� This novel paradigm was
motivated by the shortcomings of semantic networks� which have been criticized for their
lack of formal semantics which results in ambiguity and contradictions �Woo��� Bra���
During the last ten years� this line of research has led to the development of various
TKRSs �see for example �WS
�� SIG
�� BFH�
��� These systems make a clear distinc�
tion between intensional knowledge� or general knowledge about the problem domain�
and extensional knowledge� which is speci�c to a particular problem Typically� the in�
tensional knowledge takes the form of a taxonomy� which is built through a representation
language that is called concept language �or description logic�� and is given well�de�ned
set�theoretic semantics The e�ciency of reasoning has often been advocated as a primary
motivation for the use of such systems Among the consequences of the formalization of
the representation language� there is the possibility of studying the computational proper�
ties of inference by means of a complexity analysis� as �rst proposed in �BL��� Deduction
methods and computational properties of reasoning problems in concept languages are the
subject of this paper We use standard notions from complexity theory �see for exam�
ple �Joh
	�� In the introduction we �rst describe informally concept languages and the
reasoning services of a TKRS� then we illustrate the motivations and main results of the
paper

��� Concepts as Structured Set Descriptions

At the heart of a TKRS is a concept language for specifying concepts� which are general
descriptions of the classes in the domain of interest A concept expression is formed by
means of several constructors� some of which specify relationships to other concepts �role
links� Role links can be quali�ed in various ways �e�g�� value restrictions� number restric�
tions� co�references� By analyzing concept expressions the system organizes concepts into
a hierarchy according to their speci�city This hierarchical structure is the basis for the
realization of reasoning services� such as inheritance computation Depending on which
constructors are allowed� di�erent structures can be built Such structures can be de�

�

scribed also pictorially �as in early proposals of semantic networks�� however in the paper
we almost always use language expressions
The basic building blocks of concept languages are atomic concepts� which can be

thought of as unary predicates� and atomic roles� which can be thought of as binary
predicates They are combined to build complex concepts and roles using constructors
that are characteristic of the language employed Concept languages are given a Tarski�
style semantics where concepts are interpreted as subsets of a domain and roles as binary
relations �cf Section ��
For the sake of examples� let us suppose that Female� Person� and Woman are atomic

concepts and that has�child and has�female�relative are atomic roles Using the operators
intersection� union and complement� interpreted as their set theoretical counterparts� we
can describe the class of �persons that are not female� and the class of �individuals that
are female or male� by the expressions

Person u �Female and Female tMale�

An alternative notation for the �rst concept� proposed in �PS
��� is �AND Person �NOT

Female��
Most languages provide existential and universal quanti�cation over roles that allow

one to describe the classes of �individuals having a female child� and of �individuals whose
children are all female� by the concepts

�has�childFemale and �has�childFemale�

In a kl�one�like notation �BS���� the latter concept corresponds to a link via the role
has�child� and a value restriction to Female of this link

Number restrictions on roles denote classes of individuals having at least or at most a
certain number of �llers for a role For instance� the concept

��� has�child� u ��� has�female�relative�

represents the class of �individuals having at least three children and at most two female
relatives�

Role intersection is a role forming construct Intuitively� has�child u has�female�relative

yields the role �daughter�� so the concept

Woman u ��� �has�child u has�female�relative��

denotes the class of �women having at most � daughters�
In this paper we consider a family of concept languages that we call AL�languages

and that are de�ned as extensions of a simple language called AL� where concepts are
formed using intersection� complement� universal role quanti�cation� unquali�ed existen�
tial quanti�cation �written �R�� which simply requires the existence of some role �ller�
and primitive complement �ie� complement only applied to atomic concepts� The lan�
guages of the AL�family are then obtained by extending the constructs of AL with all
possible combinations of union� quali�ed existential role quanti�cation� number restric�
tions and role conjunction

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Female Person

Woman

Mother

Parent

Z
Z

Z
Z

ZZ�

HH
HH

HH
HHY

��
��

��
���

B
B
B
B
B
B
B
B
B
B
BM

���
���

���
���

���
��

��
��

�
�
�
��

v�r

has�child

���nil�

Figure �� A kl�one�like picture of an example terminology

��� Reasoning about Concept Taxonomies

In a TKRS� the user can give names to concept expressions and use these names inside
other concept expressions� thus specifying a terminology This name comes historically
from the use of concept names as terms in the language of the external KBS The module
of the KRS containing the terminology is known as Terminological Box� or simply TBox
�BFL���
As an example� we discuss a terminology whose pictorial representation is given in

Figure �� where we have the concept Parent de�ned by

Parent �� Person u �has�childPerson u �has�childPerson�

�A parent is a person having at least one child� who is a person� and all of his�her children
are persons� When a concept is de�ned as an intersection of some other concepts� it
inherits the properties of these� for example� the concept

Mother �� Female u Parent

inherits from Parent the links to Person through the role has�child�ie also mothers are
persons� have at least one child� who is a person� and all of their children are persons�
Observe that there may be implicit inclusions between concepts For example� if we

consider
Woman �� Person u Female

we have that every Mother is a Woman Such dependencies �usually more complex than
this one� should be detected automatically by the KRS
The inference engine that is necessary to build and to use the terminology relies on

two basic inferences�

� concept satis�ability� which is the problem of checking whether a concept expression
does not always denote the empty concept�

�

� subsumption� which is the problem of checking whether one concept �the subsumer�
e�g�Woman in Figure �� is considered more general than a second one �the subsumee�
e�g� Mother in Figure ��� in other words� subsumption checks whether the �rst
concept always denotes a superset of the set denoted by the second

In fact� concept satis�ability is a special case of non�subsumption �with the second
concept being the empty concept� and therefore subsumption is the basic reasoning task
to be accomplished by the TKRS
In theory� terminologies play a role when looking at complexity issues� since Nebel

�Neb
	� showed that expanding de�nitions gives rise to an unavoidable source of com�
plexity In practice� however� de�nitions increasing the complexity of reasoning do not
occur Moreover� a common requirement on terminologies is that the meaning of a concept
�can be completely understood in terms of the meaning of its parts and the way these are
composed� �SB��� Consequently� systems usually admit only terminologies that satisfy
the following conditions�

� there is no more than one de�nition for a concept name�

� the de�nitions are acyclic in the sense that concepts are neither de�ned in terms of
themselves nor in terms of other concepts that refer to them via a chain of de�nitions

In this case� every de�ned concept can be expanded in a unique way into a complex
concept containing only atomic concepts by replacing every de�ned concept with the
right�hand side of its de�nition Under these assumptions the computational complexity
of inferences can be studied by abstracting from the terminology and by considering all
given concepts as fully expanded expressions Therefore� in this paper we are concerned
with reasoning on concept expressions and� in particular� with concept satis�ability and
subsumption

��� Motivation and Scope

Although in early work the meaning of concepts had been speci�ed already with a log�
ical semantics� the design of inference procedures was in�uenced for a long time by the
tradition of semantic networks� where concepts were viewed as nodes and roles as edges
in a graph Subsumption had been recognized as the key inference and the basic idea of
the �rst subsumption algorithms was to transform two input concepts into labeled graphs
and test whether one could be embedded into the other� the embedded graph would cor�
respond to the more general concept �the subsumer� �see �Lip���� This method is called
structural comparison� and the relation between concepts it computes is called structural
subsumption However� a careful analysis of the algorithms for structural subsumption
shows that they are correct but not always complete in terms of the logical semantics�
whenever they return �yes� the answer is correct� but when they report �no� the answer
may be incorrect In other words� structural subsumption is in general weaker than logical
subsumption
The study of correct and complete algorithms for reasoning in concept languages and

the systematic use of complexity analysis to characterize their computational properties
originated with the in�uential paper by Brachman and Levesque �BL��� They provided a

�

complete polynomial algorithm for a very limited language� called FL�� and showed that
for the seemingly slightly more expressive language FL subsumption is co�NP�hard �for a
de�nition of FL� and FL see Subsection ��� Nebel �Neb��� identi�ed other constructs
that give rise to co�NP�hard subsumption problems Other work identi�ed languages with
undecidable subsumption problem �Pat�
� Sch�
� Sch��� However� neither �BL��� LB���
nor �Neb��� give algorithms for the co�NP�hard languages
The �rst nonstructural complete subsumption algorithm was devised by Schmidt�

Schau� and Smolka �SS
��� for an extension of FL by a construct for complements of
concepts� calledALC In fact� they changed the paradigm for designing algorithms in that�
using complements� they reformulated subsumption problems as satis�ability problems
Perceiving satis�ability of concepts as a constraint�solving problem� they developed a
calculus on constraints by which satis�ability and thus subsumption of concepts in
ALC can be decided Moreover� they proved satis�ability and subsumption in ALC to
be PSPACE�complete and identi�ed a sublanguage with co�NP�complete unsatis�ability
problem
The aim of the paper is to provide a complete computational analysis of the inference

problems for concept description languages obtained by combining the most frequently
used concept forming constructs Therefore� the paper ideally ful�lls one of the goals of
the research started after Brachman and Levesque!s paper �BL���� namely determining
the computational complexity of inference in a concept language characterized in terms
of its concept�forming constructs
The outcomes of our study have both theoretical and practical signi�cance First

of all� the study of the computational behavior of concept languages has led to a clear
understanding of the properties of the language constructs and their interaction This
is not only valuable from a theoretical viewpoint� but gives insights to the designer of a
TKRS �see for example �Bra
���� with clear indications of the language constructs or their
combinations that are di�cult to deal with and general methods to cope with them
Second� the complexity results have been obtained by exploiting a general technique

for satis�ability checking� which relies on a form of tableaux calculus that has proved
extremely useful for studying both the correctness and the complexity of the algorithms
More speci�cally� it provides an algorithmic framework that is parametric with respect to
the language constructs For manyAL�langugages� the algorithms for concept satis�abil�
ity and subsumption obtained from the calculus on constraints represent the only known
complete deduction procedures They have been the basis of actual implementations
�BH
�� BFH�
�� where they have been tuned by special control strategies
Third� the analysis of intractable cases has led to discover cases of incompleteness of the

algorithms developed for implemented systems� and can be used in the de�nition of worst�
case test sets for verifying implementations For example� the comparison of implemented
systems described in �HKNP
�� has bene�ted from the results of the complexity analysis

There are at least two other areas of research that have a relationship with concept
description languages and the associated inference problems� modal logic and query con�
tainment in databases
Schild �Sch
�� pointed out that certain concept languages are notational variants of

certain propositional modal logics Among the languages we consider� ALC has a modal�

�

logic counterpart� namely the multimodal version of the logic K �see �HM
��� Actually�
ALC�concepts and formulas in multimodal K can immediately be translated into each
other Moreover� a concept is satis�able if and only if the corresponding formula is sat�
is�able Research in the complexity of the satis�ability problem for modal propositional
logics started a long time before the complexity of concept languages was investigated
Ladner �Lad��� showed that satis�ability in unimodal K a logic whose counterpart is
the set of all ALC�concepts with at most one role symbol is PSPACE�complete Inter�
estingly� in order to prove membership in PSPACE� Ladner� too� exhibited a tableaux�like
algorithm Halpern and Moses �HM
�� showed� again using a tableaux calculus� that also
in multimodal K satis�ability of formulas can be decided with polynomial space How�
ever� the results we found on the complexity of reasoning in concept languages are new
if translated into the framework of modal logic In particular� the language ALE �ALC
plus existential quanti�cation on roles� corresponds to the fragment of multimodal K�
consisting of those formulas whose negation normal form does not contain disjunction
Number restrictions correspond to a numerically�parameterized modal operator� and our
results can be transferred to reasoning in such non�standard modal logics �dRvdH
��
With regard to query containment in databases� we observe that the main di�erence

between database query languages and concept languages is that concept languages have
a variable�free syntax This� on one hand� limits the expressiveness of concept languages
as query languages In fact� database query languages may create arbitrary coreferences
between di�erent parts of a query by using the same variable name On the other hand�
query containment in relational query languages is undecidable �Kan
	� pg�	���� while
subsumption is decidable for most concept languages �see results in this paper� It is inter�
esting to observe that subsumption is undecidable in concept languages with a construct
expressing arbitrary coreferences �Pat�
� Sch�
�

��� Main Results and Organization of the Paper

The goal of the paper is to provide algorithms that perform various kinds of reasoning
about concepts and to study the complexity of such tasks To this end we introduce
the family of AL�languages as a framework for investigating how the interplay of the
most common constructs in concept languages a�ects the complexity of reasoning and
how to devise adequate inference techniques Each element in the AL�family is obtained
by adding to the core language AL a combination of the four constructs union� full
existential quanti�cation� number restriction� and role intersection Therefore� we obtain
sixteen di�erent concept languages
The main contributions of the paper are�

� a complexity analysis of concept satis�ability and subsumption in AL�languages�

� the algorithms for these inferences that comply with the worst�case complexity of
the reasoning task they perform

For our work we employ a calculus of logical constraints that has �rst been introduced
in �HN
	� and that signi�cantly extends the one in �SS
�� In fact� it covers a more
expressive language� and it employs a more concise notation� which points out its similarity

�

to the tableaux calculus for �rst�order predicate logic We use the calculus in two ways
The analysis of its behavior leads to proofs of worst�case complexity In addition� we
obtain our algorithms by modifying the rules of the calculus and submitting them to a
suitable control strategy
Since concept satis�ability is a special case of subumption� the complexity analysis is

accomplished as follows�

� For eachAL�language we assess an upper bound on the complexity of subsumption
and hence of unsatis�ability by proving that it is in one of the classes P� NP� co�NP�
or PSPACE For a given language� the proof consists in devising an algorithm that
complies with the resource bounds by which the respective class is de�ned

� For the languages where subsumption is not polynomial� we give a lower bound for
the complexity of unsatis�ability and hence of subsumption by proving that is
hard for one of the classes NP� co�NP� or PSPACE

With the exception of one language� upper and lower bounds coincide This means that
from the viewpoint of worst�case complexity our algorithms are optimal for the problems
they solve
The paper is organized as follows In Section �� we formally introduce syntax and

semantics of AL�languages� and de�ne the properties of concepts we want to infer In
Section �� we introduce the calculus and summarize the results concerning its soundness
and completeness In Sections � to � we discuss the computational properties of AL�
languages� structuring the presentation according to complexity classes Thus we have
sections on languages for which reasoning is PSPACE�complete� NP�complete� co�NP�
complete� or polynomial In Section � we summarize our complexity results� and Section

concludes the paper

� Concept Languages and Their Inference

Problems

In this section� we introduce syntax and semantics of the AL�family of concept languages�
discuss their relationship to �rst�order predicate logic� and formally de�ne the inferences
to be performed on concepts For the syntax of concepts� we employ a notation that is
similar to the one in �SS
�� The speci�cation of the semantics follows the one in �BL���
and �SS
��

��� Syntax and Semantics of Concepts

In the simplest AL�language� called AL� concepts �ranged over by C� D� are built out
of atomic concepts �ranged over by A� and atomic roles �ranged over by P � according to

the syntax rule

C�D 	
 A j �atomic concept�
� j �universal concept�
� j �empty concept�
�A j �atomic negation�
C uD j �intersection�
�RC j �universal role quanti�cation�
�R� �restricted existential role quanti�cation��

where R denotes a role� which in AL is always atomic �more general languages provide a
constructor for role intersection� A subconcept of a concept C is a substring of C that is
a concept
An interpretation I � �"I � �I� consists of a set "I �the domain of I� and a function

�I �the interpretation function of I� that maps every concept to a subset of "I and every
role to a subset of "I "I such that

�I � "I

�I � �

�C uD�I � CI �DI

��A�I � "I nAI

��RC�I � fa � "I j �b� �a� b� � RI
 b � CIg

��R��I � fa � "I j �b� �a� b� � RIg�

Observe that an interpretation function is already determined by the way it interprets
atomic concepts and roles
More general languages are obtained by adding to AL the following constructors�

� union of concepts �indicated by the letter U�� written as C tD� and interpreted as

�C tD�I � CI �DI �

� full existential quanti�cation �indicated by the letter E�� written as �RC� and in�
terpreted as

��RC�I � fa � "I j �b� �a� b� � RI � b � CIg

�note that �RC di�ers from �R� in that arbitrary concepts are allowed to occur
in the scope of the existential quanti�er��

� complement of non�atomic concepts �indicated by the letter C�� written as �C� and
interpreted as

��C�I � "I n CI�

� number restrictions �indicated by the letter N �� written as ��nR� and ��nR��
where n ranges over the nonnegative integers� and interpreted as

��nR�I � fa � "I j cardfb j �a� b� � RIg � ng�

�	

and
��nR�I � fa � "I j cardfb j �a� b� � RIg � ng�

respectively� where card � denotes the cardinality of sets��

� intersection of roles �indicated by the letter R�� written as Q u R� where Q and R
are arbitrary roles� and interpreted as

�Q u R�I � QI �RI �

Extending AL by a subset of the above constructs yields a particular AL�language
We name each AL�language by a string of the form

AL�U ��E��N ��R��

where a letter in the name stands for the presence of the corresponding construct For
instance� ALNR is the extension of AL by number restrictions and intersection of roles
Observe that the semantics enforces the following equivalences �among others�� C t

D � ���C u�D�� �RC � ��R�C Hence� union and full existential quanti�cation can
be expressed using complements� and conversely� the combination of union and full exis�
tential quanti�cation gives us the possibility to express complements of concepts �through
their equivalent negation normal form� see Section ��� Therefore� without loss of gen�
erality we assume that union and full existential quanti�cation are available in every
language that contains complements� and vice versa� and in language names we use the
letter C instead of UE� eg� ALUEN � ALCN It follows that there are sixteen pairwise
non�equivalent AL�languages� which form a lattice� whose bottom element is AL and
whose top element is ALCNR
Throughout the paper� if no particular language is speci�ed� we refer to ALCNR�

concepts simply as �concepts�
In addition to AL�languages� in Section �� we consider also the concept language FL

�BL���� whose concepts can be expressed as particular ALCNR�concepts

��� Concepts as Predicate Logic Formulas

The semantics of concepts identi�es concept languages as fragments of �rst�order pred�
icate logic Since an interpretation I assigns to every atomic concept or role a unary
or binary relation over "I � respectively� one can think of atomic concepts and roles as
unary and binary predicates Then� any concept expression C can be translated e�ective�
ly into a predicate logic formula �C�x�� which has one free variable� such that for every
interpretation I the set of elements of "I satisfying �C�x� is just CI This can easily
be seen as follows� an atomic concept A is translated into the formula A�x�� the concept
forming constructs intersection� union� and negation are expressed through conjunction�

�From a semantic viewpoint� the actual coding of n is immaterial� however� since the coding does
matter in complexity analysis� we will specify in each case whether we assume that n is coded in unary
�i�e�� the integer n is represented by a string of length n� or not�

��

disjunction� and negation� respectively� if C is already translated into �C�x� and R is an
atomic role� then role quanti�cation and number restrictions are captured by the formulas

��RC�x� � �y�R�x� y� � �C�y�

��RC�x� � �y�R�x� y�
 �C�y�

���nR��x� � �y�� � � � � yn� �
�
i��j

yi �
�
� yj� �R�x� y�� � � � � �R�x� yn�

���nR��x� � �y�� � � � � yn��� R�x� y�� � � � � �R�x� yn���

�
i��j

yi
�
� yj �

�nally� ifR � P�u� � �uPk is the intersection of the atomic roles P�� � � � � Pk� each occurrence
of an atom R�x� y� in the above formulas has to be replaced with P��x� y�� � � � �Pk�x� y�
Note that equality �

�
�� between variables is needed to express number restrictions�

while concepts without number restrictions can be translated into equality�free formulas
This fact will be re�ected later on by our calculus
Although concepts can be translated into predicate logic in principle� the variable�

free syntax of concept expressions is more readable and lends itself more easily to the
development of algorithms Moreover� characterizing syntactically which �rst�order for�
mulas express concepts of a given language� and which do not� would lead to unnatural
descriptions Therefore� it seems to us preferable the use of a concept�language syntax

��� Inferences with Concepts

As argued in Section �� a central reasoning task on concepts is the check for satis�ability�
i�e�� the test whether a concept can be interpreted as a nonempty set Other inferences
are whether� given two concepts� the sets denoted by them are always the same� always
disjoint� or whether one is always a subset of the other The semantics of concepts allows
us to de�ne them formally as follows�

Satis�ability� A concept C is satis�able if there exists an interpretation I such that CI

is nonempty In this case we say that I is a model of C

Subsumption� A concept C is subsumed by a concept D if CI � DI for every interpre�
tation I

Equivalence� Two concepts C and D are equivalent if CI � DI for every interpreta�
tion I In this case we write C � D

Disjointness� Two concepts C and D are disjoint if CI �DI � � for every interpreta�
tion I

Using complement of concepts� we can reduce subsumption� equivalence� and disjoint�
ness of concepts to satis�ability problems �see also �Smo�����

Proposition �� Let C and D be concepts� Then�

�� C is subsumed by D i� C u �D is not satis�able�

��

�� C and D are equivalent i� �C u �D� and ��C uD� are not satis�able�

	� C and D are disjoint i� C uD is not satis�able�

Because of the above proposition� it is su�cient to develop algorithms that decide
satis�ability of concepts if one is interested in decision procedures for any of the other
three inferences However� when studying the complexity of the above inferences in a
particular AL�language� it is not su�cient to restrict oneself to satis�ability� since sub�
sumption and equivalence problems for a language without full complement give rise to
satis�ability problems for concepts not contained in the language Nonetheless� we show
later on that for such languages too� algorithms obtained through this approach are opti�
mal with respect to the complexity of the problem they solve In this paper� we will only
be interested in the complexity of satis�ability and of subsumption� since from the view�
point of worst�case complexity these are the most speci�c and the most general kind of
inferences� respectively In fact� as stated more precisely in the following propositions� all
problems can be rephrased as subsumption problems� while unsatis�ability is a particular
case of all problems

Proposition �� �Reduction to Subsumption� Let C
 D be concepts� Then

�� C is unsatis�able i� C is subsumed by ��

�� C and D are equivalent i� C is subsumed by D and D is subsumed by C�

	� C and D are disjoint i� C uD is subsumed by ��

Corollary �� For each AL�language
 an upper bound for the complexity of the sub�
sumption problem yields an upper bound for the complexity of the unsatis�ability
 the
equivalence
 and the disjointness problem�

Hence� whenever we prove that subsumption between concepts of a givenAL�language
is a problem in P� NP� co�NP� or PSPACE� then so are the other problems

Proposition �� �Reducing Unsatis�ability� Let C be a concept� Then the following
are equivalent�

�� C is unsatis�able�

�� C is subsumed by ��

	� C and � are equivalent�

�� C and � are disjoint�

Corollary �� For each AL�language
 a lower bound for the unsatis�ability problem
yields a lower bound for the subsumption
 the equivalence
 and the disjointness problem�

Hence� whenever we prove that the unsatis�ability problem is NP�hard� co�NP�hard�
or PSPACE�hard� then so are the other problems

��

� A Calculus for Checking Satis�ability

In this section we introduce a calculus for checking the satis�ability of concepts The
calculus appeared �rst in �HNS
	� and is discussed in full detail in �HN
�� It is in�uenced
by the completion calculus in �SS
��� but employs a much simpler notation that emphasizes
its similarity to the tableaux calculus for �rst�order predicate logic �see �Smu��� BM���
Fit
	��
The calculus consists of inference rules that decompose complex concepts according

to the top�level construct Actually� the rules can be simulated by applications of several
rules of the tableaux calculus using a special control strategy The strategy is essential to
guarantee termination� i�e�� to exclude in�nite chains of rule applications
The data structures underlying our calculus are constraints which state either ��� that

an individual is a member of a concept� or ��� that two individuals are related through
a role� or ��� that two individuals are distinct The rules operate on sets of constraints
that are understood as conjunctions of their elements If we start with a set of constraints
corresponding to a concept C� every derivation terminates after �nitely many steps If
all terminal sets of constraints that are derivable contain an �obvious contradiction�
a notion that has to be de�ned precisely then C is unsatis�able Otherwise we can
conclude that C is satis�able� since a terminal set that is free of obvious contradictions
describes a model of C
To keep the number of inference rules small we assume that concepts are in a normal

form� which is similar to negation normal form of logical formulas This normal form is de�
scribed in Subsection �� Then� in Subsection �� we introduce the data structures sets
of constraints and the rules In Subsection �� we review the soundness and completeness
of the calculus� and in Subsection �� we discuss its computational properties

��� Normal Forms of Concepts

We say a concept is in negation normal form or simple if it contains only complements
of the form �A where A is a primitive concept Arbitrary concepts can be rewritten to
simple concepts by the following equivalence�preserving rules�

�� 	
 �

�� 	
 �

��C uD� 	
 �C t �D

��C tD� 	
 �C u �D

��C 	
 C

���RC� 	
 �R�C

���RC� 	
 �R�C

���nR� 	
 ��n# �R�

���nR� 	

�
�R� if n � �

��n	 �R� if n � ��

If C � is a simple concept that has been obtained from C using the above rules� then we say
that C � is the negation normal form of C The idea to consider only concepts in negation

��

normal form appeared before in �Smo��� and �SS
��

Proposition �� For any concept one can compute in linear time its negation normal
form
 which is equivalent to the original concept�

��� The Completion Rules

Now we introduce the expressions on which our calculus operates We assume that there
exists an alphabet of variable symbols �ranged over by x� y� z� A constraint �ranged over
by c� is a syntactic object of one of the forms

x�C� xPy� x �
�
� y�

where C is a simple concept and P is a primitive role Intuitively� x�C says that x has
to be interpreted as an element of C� xPy says that x and y have to be interpreted as
individuals related by P � and x �

�
� y that x and y have to be interpreted as distinct

individuals Observe that we allow complex concepts in constraints� but only primitive
roles Since every role is an intersection of �nitely many primitive roles� it is not necessary
to allow constraints of the form xRy� where R � P� u � � � u Pk We will use instead the
constraints xP�y� xP�y� � � � � xPky
We extend the semantics of concepts to constraints Let I be an interpretation An

I�assignment is a function � that maps every variable to an element of "I We say that
� satis�es

x�C if ��x� � CI �

xPy if ���x�� ��y�� � P I �

x �
�
� y if ��x� �� ��y��

A constraint c is satis�able if there is an interpretation I and an I�assignment � such
that � satis�es c A constraint system S is a �nite� nonempty set of constraints An
I�assignment � satis�es a constraint system S if � satis�es every constraint in S A
constraint system S is satis�able if there is an interpretation I and an I�assignment �
such that � satis�es S
The following proposition is an immediate consequence of the above de�nitions

Proposition �� A simple concept C is satis�able if and only if the constraint system
fx�Cg is satis�able�

Let us introduce some notation to help us specify the rules of the calculus Let S be
a constraint system and R � P� u � � � u Pk be a role We say that y is an R�successor
of x in S if xP�y� � � � � xPky are in S We say that y is a successor of x in S if for some
role R y is an R�successor of x If S is clear from the context we simply say that y is an
R�successor or a successor of x With S�y�z� we denote the constraint system obtained
from S by replacing each occurrence of y by z We say that x and y are separated in S if
the constraint x �

�
� y is in S

The completion calculus is given by the rules in Figure � Note that there is a rule
for every concept�forming construct� except for complement Since concepts occurring in

��

Intersection

�
u� S
u fx�C�� x�C�g � S

if x�C� u C� is in S� and x�C� and x�C� are not both in S

Union

�
t� S
t fx�Dg � S

if x�C� t C� is in S� neither x�C� nor x�C� is in S�
and D � C� or D � C�

Existential Quanti�cation

�
�� S
� fxP�y� � � � � xPky� y�Cg � S

if x��RC is in S� R � P� u � � � u Pk�
there is no z such that z is an R�successor of x and z�C is in S�
and y is a new variable

Universal Quanti�cation

�
�� S
� fy�Cg � S

if x��RC is in S� y is an R�successor of x in S�
and y�C is not in S

At�least Restriction

�
�� S
� fxP�yi� � � � � xPkyi j i � ���ng �
fyi �

�
� yj j i� j � ���n� i �� jg � S

if x� ��nR� is in S� R � P� u � � � u Pk�
the number of R�successors of x in S is less than n�
and y�� � � � � yn are new variables

At�most Restriction

�
�� S
� S�y�z�

if x� ��nR� is in S� x has more than n R�successors in S�
and y� z are two R�successors of x that are not separated

Figure �� The completion rules

��

constraints are supposed to be in negation normal form� we do not need rules that handle
concepts with complement as outermost symbol
The rules are designed in such a way that� intuitively� their application can be under�

stood as an attempt to construct a model by generating new individuals as required by
the constraints In this sense� they will be used to complete an initial system fx�Cg by
additional constraints Note that the rule conditions guarantee that a rule can be applied
to a constraint system only if its application changes the system In the following� we
discuss the action of the rules in more detail
The
u�rule and the
t�rule decompose constraints of the form x�C� u C�� and

x�C� t C�� respectively
A constraint x��RC states that x has an R�successor which is in the interpretation

of C To satisfy this constraint� if such an R�successor does not yet exist� the
��rule
generates a a new R�successor of x and constrains it to C
The
��rule is applied to a combination of constraints of the form x��RC and

xP�y� � � � � xPky where R � P� u � � � u Pk It is di�erent from the analogous tableaux
rule for universally quanti�ed formulas� which allows one to instantiate a universally
quanti�ed variable by an arbitrary term� in that it is only applied to R�successors of x
If one applied the tableaux calculus to a formula corresponding to a concept without this
restriction� one could generate nonterminating derivations
Intuitively� a constraint x� ��nR� requires x to have at least n distinct R�successors

By application of the
��rule this condition is satis�ed in that n new R�successors of x
are generated together with additional constraints stating that they are pairwise distinct
If a constraint system S contains the constraint x� ��nR� and there are more than n R�

successors of x then every assignment satisfying S must interpret at least two R�successors
by the same individual The
��rule takes this fact into account by nondeterministically
identifying two R�successors that are not constrained to be distinct

Example �� Consider the concept C �� �P �Au�P �AtB�� which is simple Applying
the completion rules� one can obtain the following constraint systems from S� �� fx�Cg�

S�
u S� � S� � fx��P �A� x��P �A tB�g

� S� � S� � fxPy� y��Ag

� S� � S� � fy� �A tB�g

t S	 � S� � fy�Ag�

Alternatively� one can apply the
t�rule such that

S�
t S� � fy�Bg�

We distinguish two kinds of completion rules� the deterministic rules
u�
��
��
and
�� and the nondeterministic rules
t and
� The nondeterministic rules handle
concept�forming constructs that contain disjunction when translated into predicate logic
Obviously� the union of concepts is the analogue of the disjunction of formulas Moreover�
also the formula ���nR��x� contains disjunction� as shown in Subsection ��

��

The following proposition shows that the completion rules keep the satis�ability of
constraint systems invariant The proof follows straightforwardly from the soundness of
the tableaux calculus �see �HN
���

Theorem �� �Invariance� Let S and S� be constraint systems�

�� If S� is obtained from S by application of a deterministic rule
 then S is satis�able
if and only if S� is satis�able�

�� If S� is obtained from S by application of a nondeterministic rule then S is satis�able
if S� is satis�able� Conversely
 if S is satis�able and a nondeterministic rule is
applicable to a constraint c in S
 then it can be applied to c in such a way that it
yields a satis�able constraint system�

��� Soundness and Completeness

In order to check with the completion calculus whether a simple concept C is satis�able
one starts with a constraint system fx�Cg and adds new constraints by application of
the completion rules until no more rules apply Up to variable renaming� only �nitely
many such systems which we call complete can be derived These systems can easily
be checked for satis�ability by looking for certain obvious contradictions� called clashes�
that will be de�ned later on If each of the derived systems contains a clash� then C is
unsatis�able� otherwise it is satis�able
The calculus is sound � in the sense that if a clash free complete constraint system

can be derived from fx�Cg� then fx�Cg is satis�able� and that it is complete in the
sense that if fx�Cg is satis�able� then a complete system without clash can be derived
The soundness is shown by proving that a complete system without clash is satis�able�
which immediately yields the claim� since fx�Cg is contained in any complete system
derived from it Completeness is shown by proving that there is no in�nite chain of rule
applications issuing from fx�Cg� and then using the Invariance Theorem �� Below we
outline the proofs and describe the underlying ideas The full proofs are given in �HN
��
A constraint system is complete if no completion rule applies to it A complete system

that has been derived from a system S is also called a completion of S A clash is a
constraint system having one of the following forms�

� fx��g�

� fx�A� x��Ag� where A is a primitive concept�

� fx� ��nR�g � fxP�yi� � � � � xPkyi j i � ���n# �g

� fyi �
�
� yj j i� j � ���n# �� i �� jg�

where R � P� u � � � u Pk

The third form of clash comprises those systems where a variable x is constrained to have
at most n �llers for a role� but the system contains n# � successors which are explicitly
stated to be distinct
Clashes allow one to identify unsatis�able constraint systems

��

Proposition �� If a constraint system contains a clash
 then it is not satis�able�

The notion of clash can be used to characterize satis�able complete constraint systems

Proposition �
 A complete constraint system is satis�able if and only if it does not
contain a clash�

The �only if� part of the above proposition follows from Proposition �� The �if�
part is proved by constructing from a complete constraint system S an interpretation I
and an I�assignment � such that � satis�es S The domain "I is the set of all variables
appearing in the constraint system� and the interpretation is de�ned on the basis of all
constraints in S of the form x�A and xPy involving only atomic concepts and roles

Example �� From the clash�free complete constraint system S	 of Example �� we
construct the following interpretation I � �"I� �I�� "I � fx� yg� AI � fyg� BI � �� and
P I � f�x� y�g The I�assignment � is de�ned by ��x� �� x and ��y� �� y It is easy to
check that � satis�es every constraint in S	

The above propositions imply the soundness of the completion calculus

Theorem �� �Soundness� A simple concept C is satis�able if there exists a clash�free
completion of fx�Cg�

Our next goal is to show the completeness of the calculus To this end it is necessary
to prove the termination of the completion calculus� which is done by exhibiting a suitable
termination order �see �HN
���

Proposition �� �Termination� Let C be a simple concept� Then there is no in�nite
chain of completion steps issuing from fx�Cg�

Theorem ��	 �Completeness� Let C be a simple concept� If C is satis�able
 then
from fx�Cg one can derive with �nitely many steps a complete constraint system that
does not contain a clash�

Proof� By the Invariance Theorem ��� there is a chain of completion steps issuing from
fx�Cg that ��� preserves satis�ability and ��� is either in�nite or ends with a complete
system By Proposition �
 this chain cannot be in�nite Since the last constraint system
in this chain is satis�able and complete� we know by Proposition �� that it does not
contain a clash

On the basis of the above results� it is straightforward to turn the calculus into a
decision procedure In order to check a concept C for satis�ability� one transforms it into
its negation normal form C � and then generates all complete constraint systems derivable
from fx�C �g� which are� up to variable renaming� �nitely many If all these systems
contain a clash� then C is unsatis�able� otherwise it is satis�able

Theorem ��� �Decidability� Satis�ability of ALCNR�concepts is decidable�

Since a concept C is subsumed by a concept D if and only if C u �D is unsatis�able�
the calculus can be applied to subsumption checking as well

Corollary ��� Subsumption of ALCNR�concepts is decidable�

�

��� The Computational Properties of Constraint Systems

In this section we discuss the computational properties of the completion calculus outlined
in the previous section� and we show how they can be used to highlight the computational
properties of deduction problems for AL�languages
We have shown how to check concept satis�ability and subsumption by nondetermin�

istically computing completions of constraint systems The deterministic version of this
process can be seen as the process of generating all possible completions by applying the
completion rules� and verifying� for every generated completion� if it contains a clash
Hence� the computational complexity of the whole method depends on the following fac�
tors�

� the complexity of selecting a rule and applying it�

� the complexity of checking for the presence of a clash in a completion�

� the number of di�erent completions to be generated�

� the number of rule applications leading to a single completion

In what follows� we suppose that the numbers occurring in number restrictions are
coded in unary notation From the form of the completion rules� one can see that the
time for selecting and applying a rule to a constraint system S is polynomial with respect
to the size of S Observe that without the assumption on the unary coding of numbers�
this statement would not hold for the
��rule and the
��rule
Also� checking whether a complete constraint system S contains a clash can be achieved

in time polynomial in the size of S This is obvious for the �rst two kinds of clashes To
see that it is also true for the third kind of clash� it is su�cient to observe that a complete
system S contains such a clash� involving� say� a constraint x� ��nR�� if and only if x
has at least n # � R�successors in S Observe that for complete systems� we do not need
to check that the n # � successors are pairwise separated they must be so� otherwise
the
��rule would be applicable� and S would not be complete Instead� for arbitrary
constraint systems deciding the presence of a clash of this kind is NP�hard� since deciding
whether a graph has a clique of size at least n#� can be easily reduced to clash checking
Therefore the crucial parameters for measuring the complexity of the method are the

number of di�erent completions� and the number of di�erent rule applications leading to
a single completion Indeed� it is easy to see that the application of a rule can have a
twofold e�ect�

� Increasing the number of di�erent completions to be inspected� this happens when
several applications of a nondeterministic rule are possible

� Increasing the size of the constraint system� this happens in the applications of all
the rules except for the
��rule

We �rst discuss the increase in the number of completions� and then turn to the increase
in the size of a single completion

�	

The di�erent choices of applying a nondeterministic rule �namely�
t and
�� to a
constraint lead to di�erent completions For example� each application of the
t�rule
to a constraint x�C� t C� nondeterministically chooses between two di�erent constraint
systems� one containing x�C� and the other containing x�C� In general� exponentially
many di�erent completions may be generated due to applications of the
t�rule There�
fore� we can identify a �rst source of exponential complexity �or simply complexity� in
the calculus� caused by the presence of the union construct in a concept language Recall
from Section �� that also the ��nR� construct implicitly contains a disjunction

We now turn our attention to the size of each completion The completion rules can be
classi�ed into generating rules and non�generating rules The
��rule and the
��rule
are called generating rules� because they introduce new variables� whereas the other rules
�
u�
t�
��
�� do not� and are therefore called non�generating rules Intuitively�
the latter are harmless with respect to the size of the resulting constraint system Indeed�
given a constraint system S� each non�generating rule may only introduce new constraints
y�D such that the variable y is already present in S and D is a subconcept of a concept
appearing in S Since a concept has only a number of subconcepts that is linear with
respect to its size� the size of a constraint system obtained by exhaustive application of
non�generating rules is polynomial with respect to the size of S
Conversely� consider the constraint system fx��P C�� x��P C�� x��P C�g The appli�

cation of the
��rule adds the constraints xPy� y�C�� xRz� z�C� To this system� the

��rule is applicable twice� adding y�C�� z�C� Observe that now the concept C� occurs
twice in the resulting constraint system Generalizing this argument� one can show that
the completion of the constraint system fx�Cg� where C is the concept

�R�C�� u
�R�C�� u
�R���R�C�� u

�R�C�� u
�R�� � � � ��RnCn� u

�RnCn� u
�RnD� � � ����

contains distinct variables y�� � � � � y�n and one constraint of the form yi�D for every i �
����n Hence� generating rules may produce completions whose size is exponentially bigger
than the one of the initial constraint system Therefore� we can identify in the calculus
a second source of complexity� which is caused by those constructs in a concept language
that are treated by the generating rules� namely the constructs �RC and ��nR�
A natural question arises� are the two sources of complexity just properties of the

calculus
 or do they single out inherent properties of the deduction problems associated
with concept languages
One of the main achievements of the research presented in this paper is to provide

the answer to this question In Section �� we mentioned some previous results about the
computational complexity of satis�ability and subsumption Let us brie�y review these
results in the light of the two sources of complexity

��

In �SS
��� concept satis�ability in ALC was proved to be PSPACE�complete The lan�
guage ALC contains both union and quali�ed existential quanti�cation The PSPACE�
hardness result can be intuitively explained with the fact that both sources of complexity
are present in the language� and this gives rise both to an exponential number of com�
pletions and to an exponential size of each completion in the worst case Nevertheless�
in �SS
�� it was shown that the calculus can work by keeping in memory just a polyno�
mial portion of a completion This observation yields a polynomial�space algorithm for
checking the satis�ability of ALC�concepts Subsumption can be computed by reducing
it to unsatis�ability� C is subsumed by D if and only if the ALC�concept C u �D is
unsatis�able Hence subsumption too is PSPACE�complete
In �DHL�
��� it was shown that unsatis�ability and subsumption in the language

ALE� obtained by adding quali�ed existential quanti�cation to AL� is NP�complete� thus
proving that existential quanti�cation indeed represents a source of complexity in the
language We will show in Section �� that quali�ed existential quanti�cation can appear
implicitly through combinations of other constructs� like existential quanti�cation and
conjunction of roles
The union construct as a source of complexity has been studied in �SS
��� where the

language ALU obtained by adding union to AL was investigated Any propositional
formula can be translated into a corresponding ALU �concept� which is satis�able if and
only if the propositional formula is Hence� satis�ability in ALU is NP�hard Contrast
this result with the one on ALE � there� unsatis�ability is NP�hard hence satis�ability is
co�NP�hard while here satis�ability is NP�hard Note that disjunction can appear also
implicitly through combinations of other constructs� as shown in �Neb��� for the language
ALNR
Finally� the language AL� which does not include any of the two sources of complexity

was investigated in �SS
��� and it was proved that satis�ability in this language can be
checked by means of a polynomial time algorithm

Taking into account these results about the computational complexity of concept lan�
guages� we can now classify the AL�languages according to the presence or absence of
each source of complexity� and by this classi�cation give a road map to the rest of the
paper
The topmost language ALCNR� being a superlanguage of ALC contains both sources

of complexity Therefore� concept satis�ability is PSPACE�hard In Section �� we will ex�
hibit a satis�ability algorithm working in polynomial space� thus matching the PSPACE�
hardness lower bound of ALC� which proves that satis�ability in ALCNR is PSPACE�
complete Subsumption can be computed by reducing it to unsatis�ability� and therefore
it is PSPACE�complete too In Section �� we also deal with several other sublanguages
of ALCNR whose inference problems are PSPACE�complete With a slight abuse of
complexity terminology� we call these languages �PSPACE�complete languages�
In Section �� we consider languages that are a�ected only by the source of complexity

caused by quali�ed existential quanti�cation� and where unsatis�ability can be veri�ed by
generating just a polynomial number of completions For these languages� unsatis�ability
is NP�hard
Subsumption can be rephrased in terms of unsatis�ability� C is subsumed by D if

��

and only if C u �D is unsatis�able However� this leads to a concept expression that
does not belong to the initial class of languages� because �D once it is rewritten in
negation normal form may in general contain unions Nevertheless� such unions can be
treated ad hoc in non�deterministic polynomial time� and therefore constraint systems
again provide an optimal NP upper bound for subsumption in these languages We refer
to these languages as �NP�complete languages�� since subsumption and satis�ability are
NP�complete
In Section �� we address languages that are a�ected only by the other source of

complexity the one related to disjunction Unsatis�ability is co�NP�hard in these lan�
guages Again� reducing subsumption between C and D to unsatis�ability of C u �D
leads to a concept that does not belong to the initial class of languages� because �D may
in general contain quali�ed existential quanti�cation Nevertheless� we prove that in this
context existential quanti�cation does not lead to completions of exponential size Based
on this property� we show how non�subsumption can be veri�ed by a non�deterministic
polynomial�time algorithm that guesses a clash�free completion of polynomial size� prov�
ing that subsumption is in co�NP We refer to these languages as �co�NP�complete lan�
guages�� as both unsatis�ability and subsumption are co�NP�complete
Finally� in Section �� we deal with languages where none of the two sources of com�

plexity is present� and we devise a calculus that checks the satis�ability of a concept by
constructing a polynomial number of completions� each one of polynomial size We de�
vise techniques for reducing subsumption to concept unsatis�ability� while still avoiding
both sources of complexity Hence �un�satis�ability and subsumption can be checked in
polynomial time for these languages� which we call �polynomial languages�

� PSPACE�Complete Languages

In this section we start with a control strategy for the completion calculus that allows
one to check satis�ability of ALCNR�concepts using polynomial space Since ALCNR
is the top element of the lattice of AL�languages� this implies that the satis�ability and
subsumption problems are in PSPACE for all AL�languages Then we will turn to AL�
languages for which satis�ability is PSPACE�hard It has been shown �SS
�� thatALC has
this property We will identify two other minimal PSPACE�hard AL�languages� namely
ALUR and ALNR Using an appropriate modi�cation of the proof for ALC� we can
also show that subsumption in Brachman and Levesque!s language FL is PSPACE�hard
Throughout this section we assume that numbers occurring in number restrictions are

coded as unary strings

��� A PSPACE�Algorithm for ALCNR

A straightforward implementation of the calculus developed in the previous section would
generate for a given simpleALCNR�concept C all completions of fx�Cg and would check
whether they contain a clash As pointed out in Section ��� even in the case of the smaller
language ALC there may be exponentially many completions and each of them may be
of exponential size

��

For a more e�cient method one therefore has to avoid generating more than one
completion at a time and one also has to avoid storing entire completions In the following
we will show that one can apply the rules of the completion calculus in such a way that
these requirements are met To this end we will have a closer look at the structure of
constraint systems
Let S be a constraint system and y� z be variables occurring in S We say that y is a

predecessor of z if z is a successor of y

Lemma �� Let C be a simple concept and S be a constraint system derived from fx�Cg�
Then the �successor� relation on the variables in S is a tree with root x
 that is
 each
variable in S
 except x
 has exactly one predecessor and x has no predecessor at all�

Proof� The proof is by induction over the length of the derivation leading to S If the
last rule applied was the
�� or the
��rule� then new variables have been created which
have a unique predecessor If it was the
��rule then two successors of one variable have
been identi�ed In either case a tree has been transformed into a tree If any other rule
has been applied the �successor� relation has not been a�ected Obviously� no derivation
step creates a predecessor of the start variable x

Suppose S has been derived from fx�Cg A �nite sequence � � y� � � � yn of variables
is a chain in S if yi is a successor of yi�� in S for i � ���n We say that � has starting
point y�� end point yn and length n For any variable y occurring in S we say that the
level of y is n and write ��y� � n� if there is a chain in S with starting point x and end
point y Since the �successor� relation is a tree� every variable has a unique level It is
easy to see that the level of a variable is not a�ected by applying a completion rule to S
If D is a concept� then 	D denotes the number of symbols occurring in D� i�e�� the

length of the string D� where primitive concepts and primitive roles are considered as
strings of length �

Lemma �� Let C be a simple concept and S be derived from fx�Cg� Then for every
constraint y�D in S we have ��y� # 	D � 	C�

Proof� The proof is by induction over the length of derivations and makes a case
analysis according to the form of the rule by which y�D has been introduced

In order to illustrate the idea behind the control structure embodied in our algorithm
let us remark two observations about constraint systems
First� the clashes in a constraint system are �localized�� Let us say that a constraint

c depends on a variable y if c is of the form y�D or yPz or z �
�
� z�� where z and z� are

successors of y Looking at the de�nition of clashes one realizes that the constraints in a
clash always depend on a unique variable Hence� one can look for clashes independently
in the di�erent successors of a variable
Second� as shown above� the �successor� relation on the variables occurring a con�

straint system S derived from fx�Cg is a tree� whose the root is the initial variable x
As seen in Subsection ��� this tree may be bushy� but it is not deep More precisely� it
follows from Lemma �� that the length of a path in this tree is always bounded by the
length of C

��

sat� variable constraint system
 bool

sat�y� S� �
if S contains a clash
then false

elsif y�C uD � S and y�C �� S or y�D �� S
then sat�y� S � fy�C� y�Dg�

elsif y�C tD � S and y�C �� S and y�D �� S
then sat�y� S � fy�Cg� or sat�y� S � fy�Dg�

elsif y��RC � S and y has no R�successor z in S with z�C � S
then sat�y� S � fyP�z� � � � � yPkz� z�Cg�

where P� u � � � u Pk � R and z is a new variable
elsif y��RC � S and z is an R�successor of y in S with z�C �� S
then sat�y� S � fz�Cg�

elsif y� ��nR� � S
and y has less than n R�successors in S

then sat�y� S � fyP�zi� � � � � yPkzi j i � ���ng
� fzi �

�
� zj j i� j � ���n� i �� jg�

where P� u � � � u Pk � R and z�� � � � � zn are new variables
elsif y� ��nR� � S and y has more than n R�successors in S
then there exist non�separated R�successors z� z� in S such that

sat�y� S�z�z���
else for all successors z of y

sat�z� S�

Figure �� A PSPACE�Algorithm for ALCNR

These observations show that it is not necessary to store an entire completion S in
order to check it for clashes but it su�ces to explore S in such a way that one variable
and the constraints depending on it are considered at a time If the tree of successors of x
is traversed depth��rst� then one only needs to store constraints depending on a number
of variables that is linear in the length of C
For the simpler setting of checking the satis�ability of ALC�concepts� this idea has

been formally captured in �SS
�� by the notion of a �trace� In our case� the situation is
complicated by the presence of both number restrictions and role intersections that force
us to generate for a given variable more than one successor at at time We will use traces
later on� when dealing with NP�complete languages
In Figure � we give a functional algorithm that implements a strategy of applying the

completion rules along these ideas It can be regarded as an extension of the algorithm
in �SS
�� for checking the satis�ability of ALC�concepts The function sat takes as input
a variable y and a constraint system S In particular� if the simple concept C is to be
checked for satis�ability� sat is called with arguments x and fx�Cg
Essentially� sat explores an AND�OR graph� where an AND�node corresponds to the

��

�independent� check of all successors of a variable� while an OR�node corresponds to the
application of a nondeterministic rule More precisely� when called with arguments y and
S� sat �rst checks whether S contains a clash and if so it returns false If S is clash�free
and there is in S a constraint depending on y to which a rule is applicable� then the
rule is applied If the rule is deterministic then it yields one constraint system� say S��
and sat is called again with y and S� If it is nondeterministic� then rule application
may result in two systems S�� S� as for the
t�rule or �nitely many systems S�� � � � � Sn
as for the
��rule In such a case� sat is called recursively with y and each of the Si!s
and returns true if one of the recursive calls returns true For the case of the
��rule
this is expressed with the there exist construct If no rule is applicable to a constraint
depending on y then for each successor z of y the function sat expands the constraints
that depend on z It returns true if all these recursive calls return true� which is the
case� in particular� if there are no successors

Proposition �� Let C be a simple concept� Then�

�� sat�x� fx�Cg� terminates�

�� sat�x� fx�Cg� returns true if and only if C is satis�able�

Proof� � The function sat implements a strategy of applying the completion rules
The only di�erence to the original completion calculus is that sat branches for nonde�
terministic rules and explores all possible outcomes of applying such a rule to a given
constraint As seen above� the number of possible outcomes is always �nite Together
with the termination property of the calculus ��
� this yields termination of sat using
K�onig!s Lemma
� The claim follows from the correctness and completeness of the completion calculus

if we take into account the following observations Suppose sat has been called with
arguments x and fx�Cg� which has led to the recursive call sat�y� S� First� if no rule is
applicable to a constraint depending on a variable situated on the chain between x and
y then rules will not become applicable to such a constraint after working on constraints
depending on successors of y Second� working on the constraints depending on one
successor of y will never create constraints depending on a di�erent successor These two
observations justify sat!s strategy of never returning to a variable if at some stage of the
computation no rule is applicable to a constraint depending on it and of expanding the
constraints depending on each successor independently of other successors

Let us now estimate how much space is needed to execute sat� if it is implemented
in a straightforward manner To simplify the discussion� we will assume that sat is
implemented in a straightforward manner
Let C be a simple concept of length n Suppose that sat has been started with

arguments x and fx�Cg and is now called for some y and S Let us �nd out how often
sat will apply a rule to constraints depending on y Using the fact that the number of
subconcepts of the initial concept C is bounded by n� one concludes that at any time of
the computation there exist at most n constraints of the form y�D Hence the
u��
t��

��� and the
��rule are applied at most n times to constraints depending on y Notice
that only the
�� and the
��rule create successors of y Since we assume that numbers

��

are represented as unary strings� they generate at most n successors The
��rule can
be applied no more times than there are successors of y� that is at most n times The

��rule can be applied at most once for every constraint of the form y��RD and every
successor of y Hence� it is applied at most n� times Summing up we get that for a
variable y there are at most �n # n� calls to sat with �rst argument y on the recursion
stack Since the length of a chain of successors is bounded by the size of C� the whole
recursion stack contains at most O�n�� calls
Next� let us consider how much space is needed to store one call Since our algorithm

expands per level in the �successor� tree only the constraints depending on a single vari�
able� S contains at most n variables per level Thus� S contains no more than n� variables
on the whole because there are at most n levels Since the number of constraints per vari�
able is bounded by the length of C� we conclude that S contains at most n� constraints�
which implies that the size of S is at most O�n	�

Proposition �� For any simple concept C the call sat�x� fx�Cg� can be executed with
polynomial space�

Proof� As seen above� the recursion stack for a call sat�x� fx�Cg� has depth at most
O�n�� where n is the length of C Since a call covers at most O�n	� space� sat�x� fx�Cg�
can be executed with O�n
� space

A much more detailed and implementation�oriented analysis shows that the space
needed is in fact O�n�� Anyway� also the above analysis leads the following conclusion

Theorem �� Satis�ability and subsumption of ALCNR�concepts can be decided with
polynomial space�

��� Unsatis�ability in ALC

As mentioned before� Schmidt�Schau� and Smolka �SS
�� have shown that the unsatis��
ability problem in ALC is PSPACE�hard From results in later sections of this paper it
follows that for the strict sublanguages of ALC� i�e�� ALE � ALU � and AL� unsatis�ability
and subsumption do not have this property �provided NP is di�erent from PSPACE� In
the rest of this section we will also identify ALUR and ALNR as minimalAL�languages
with PSPACE�hard unsatis�ability problem We complement the results onAL�languages
by a proof that subsumption in Brachman and Levesque!s language FL is PSPACE�hard
The proofs will consist either in appropriate modi�cations of the reduction that has been
used in �SS
�� for ALC or in a reduction of the satis�ability problem for ALC itself
To make the paper self�contained we will start by resuming Schmidt�Schau� and Smol�

ka!s reduction for ALC� which consists in associating to each quanti�ed boolean formula
an ALC�concept such that the formula is valid if and only if the concept is satis�able
Then we will show that this reduction can be modi�ed so as to yield PSPACE�hardness
of subsumption in FL The proof for ALUR will consist in translating ALC�concepts
into ALUR�concepts in such a way that satis�ability is preserved Finally� we will use
a reduction of the validity problem for quanti�ed boolean formulas to show PSPACE�
hardness of ALNR In the following we will introduce the validity problem for quanti�ed
boolean formulas and show how it can be translated into the satis�ability problem for
ALC�concepts

��

Quanti�ed Boolean Formulas

We will �rst introduce quanti�ed boolean formulas in an intuitive way and then give a
formalization that is more appropriate for our purposes
A quanti�ed boolean formula is built up of propositional variables �like x� y� z� and

quanti�ers ��� �� It consists of a �nite sequence P of quanti�cations over variables�
called the pre�x � and a propositional logic formulaM in conjunctive normal form� called
the matrix An example of a quanti�ed boolean formula is P �M �� �x�y� ��x � �y� �
�x � y� Quanti�ed boolean formulae are interpreted over the set of boolean values B ��
ftrue� falseg as follows We transform the matrix M into a formula M � of �rst order
predicate logic by replacing each occurrence of variable x with the atom is�true�x� The
predicate is�true is interpreted over B in the obvious way Now� P �M is said to be
valid if P �M � is valid over B Deciding the validity of quanti�ed boolean formulas is a
PSPACE�complete problem �GJ�
� The following reformulation of the problem is due to
�SS
��
A literal is a nonzero integer A clause is a nonempty �nite set N of literals such that

l � N implies 	l �� N A pre�x from m to n� where m and n are positive integers such
that m � n� is a sequence

�Qmm��Qm��m# �� � � � �Qnn��

where each Qi is either ��� or ��� A quanti�ed boolean formula is a pair P �M � where�
for some n� P is a pre�x from � to n and M is a �nite nonempty set of clauses containing
only literals between 	n and n �called the matrix of the clause�
Let P be a pre�x from m to n A P �assignment is a mapping

fm�m# �� � � � � ng
 ftrue� falseg�

An assignment � satis�es a literal l if ��l� � true if l is positive and ��	l� � false if l is
negative An assignment satis�es a clause if it satis�es at least one literal of the clause
Let P be a pre�x from m to n A set A of P �assignments is canonical for P if it

satis�es the following conditions�

� A is nonempty

� if P � ��m�P �� then all assignments of A agree on m and� if P � is nonempty�
f�jfm������ng j � � Ag is canonical for P �

� if P � ��m�P �� then

�a� A contains an assignment that satis�es m and� if P � is nonempty�
f�jfm������ng j � � A and ��m� � trueg is canonical for P �

�b� A contains an assignment that satis�es	m and� if P � is nonempty� f�jfm������ng j
� � A and ��m� � falseg is canonical for P �

A quanti�ed boolean formula P �M is valid if there exists a set A of P �assignments
every clause of M

��

The Reduction to Satis�ability in ALC

Let P �M be a quanti�ed boolean formula� where P � �Q��� � � � �Qmm� is a pre�x from �
to m and M � fM�� � � � �Mng Then P �M is translated into an ALC�concept

CP�M � D� u C
�
� u � � � u C

n
� �

Let A be primitive concept and R be a primitive role The concept D� is obtained
from the pre�x P using the equations

Dl ��

�
��RA� u ��R�A� u ��RDl��� if Ql � �

�R�u ��RDl��� if Ql � �

for l � ����m	 �� and the equation

Dm ��

�
��RA� u ��R�A� if Qm � �

�R� if Qm � ��

The concept C i
� is obtained from the clause Mi as follows Let

k �� max
l�Mi

jlj�

Then� for l � ����k 	 ��� one de�nes

C i
l ��

���������������������������

�R�A t C i
l��� if l �Mi

�R��A t C i
l��� if 	l �Mi

�RC i
l��

if neither l nor
	l is in Mi�

and one de�nes

C i
k ��

�
�RA if k �Mi

�R�A if 	k �Mi

We will brie�y discuss the idea underlying this construction The concept CP�M is
constructed in such a way that canonical sets of assignments for P satisfying the clauses of
M can be translated into clash�free complete constraint systems obtained from fx�CP�Mg
and vice versa Under this translation a correspondence is established between chains of
variables �see Subsection ��� of length m with starting point xand assignments for P
A variable y that occurs at position l in a chain and has the constraint y�A or y��A

indicates that the corresponding assignment satis�es the literal l or 	l� respectively The
structure of the concept C i

�� which encodes the i�th clause� ensures that for every clash

�The de�nition given in �SS	
� is� Dl ��R�A t �R��A� u ��R�Dl��� if Ql � and Dm ��R�A t

�R��A� if Qm �� It is easy to see that these de�nitions are equivalent to ours�

�

free complete constraint system derived from fx�CP�Mg the assignments corresponding
to chains satisfy the clause Mi
Conversely� one can show that a set of assignments which is canonical for P and whose

elements satisfy every clause inM provides guidance for applying the completion rules in
such a way that they transform fx�CP�Mg into a clash free complete constraint system
The following two results have been shown in �SS
��

Lemma �
 �ALC�Reduction� A quanti�ed boolean formula P �M is valid if and only
if its translation CP�M is satis�able�

Theorem �� Satis�ability of ALC�concepts is PSPACE�hard�

��� Subsumption in FL

In their paper �BL���� which initiated the complexity analysis of concept languages� Brach�
man and Levesque introduced the language FL�� which can be thought of as the minimal
meaningful concept language� and proved that the subsumption problem in FL� can be
solved in quadratic time A seemingly slight extension of FL� by so�called role restrictions
led to a language� called FL� for which subsumption was shown co�NP�hard
As already pointed out in �SS
��� FL can be viewed as a sublanguage of ALC� which

gives membership in PSPACE as an upper bound for the complexity of subsumption
We will prove that subsumption in FL actually is PSPACE�hard� thus complementing
the upper bound by a lower bound Together� they precisely characterize the complexity
of this problem as being PSPACE�complete We now formally introduce the languages
FL� and FL In FL� only atomic roles are allowed as role expressions� and concepts
are formed according to the syntax rules

C�D 	
 A j C uD j �RC j �R��

Notice that FL� di�ers from AL in that neither it contains the concepts � and �
nor it allows for any form of complement As a consequence� every FL��concept C is
satis�able This can be seen by considering a completion of fx�Cg� which due to the lack
of any kind of complement does not contain a clash Therefore� deciding the satis�ability
of FL��concepts is trivial As said before� it has been shown �BL��� that subsumption of
FL��concepts can be decided in polynomial time This result also follows from a more
general result in Section � where subsumption in the more expressive language ALN is
proved to be polynomial
The language FL extends FL� by more expressive roles For a role R and a concept C

the restriction of R to C� which is written as RjC � is a role that denotes in an interpretation
I the set

�RjC�
I � f�a� b� � "I "I j �a� b� � RI � b � CIg�

The syntax rules for FL are obtained from those for FL� by adding the rules for roles�

R 	
 P j RjC �

�	

Every FL�concept can be translated into an equivalent ALC�concept� using the following
equivalences�

�RjCD � �R��C tD� ���

�RjC � � �RC� ���

In order to enhance the readability of concept expressions we often adopt the notation on
the right hand side for expressing role restrictions It has been shown that� as for FL��
every FL�concept is satis�able �SS
�� Therefore� satis�ability is a trivial problem for
this language too
In the following we reduce the validity problem for quanti�ed boolean formulas to the

subsumption problem for FL�concepts As a �rst step in this reduction we show that the
satis�ability problem for an intersection of FL�concepts and negated FL�concepts can be
reduced to the subsumption problem in FL Since FL does not allow for complement�
concepts of the form �D are not in FL

Lemma �� Let D�� � � � �Dm and D�
�� � � � �D

�
n be FL�concepts� Then one can compute in

linear time FL�concepts E and E� such that the following are equivalent�

� �D� u � � � u �Dm uD�
� u � � � uD

�
n is unsatis�able

� E is subsumed by E��

Proof� Let A be an atomic concept that neither occurs in the Di!s nor in the D�
j !s�

and let P be an atomic role Then we de�ne E �� E� u E� where

E� �� ��P jD�
A� u � � � u ��P jDmA� and

E� �� �P �D�
� u � � � uD

�
n��

Moreover� we de�ne

E� �� �P A�

Next� we observe that

E� � �P ��D� t A� u � � � u �P ��Dm t A� ���

� �P ���D� t A� u � � � u ��Dm tA�� ���

� �P ���D� u � � � u �Dm� tA�� ���

where ��� holds because of the equivalence ���� ��� holds because for all roles R and all
concepts C�� C� we have �RC� u �RC� � �R�C� u C��� and ��� holds because �t�
distributes over �u�
Now� E is subsumed by E� if and only if �E� u E is unsatis�able if and only if

�E� u E� u E� is unsatis�able� that is� the concept

�P �A u �P ���D� u � � � u �Dm� tA�

u �P �D�
� u � � � uD

�
n�

��

is unsatis�able Since A does neither occur in the Di!s nor in the D�
j !s� the latter is the

case if and only if �D� u � � � u �Dm uD�
� u � � � uD�

n is unsatis�able

Next we show that in a simple ALC�concept one can simulate complement of atomic
concepts using negated FL�concepts in such a way that satis�ability is preserved Let C
be a simpleALC�concept and A be an atomic concept Let BA� PA be an atomic concept
and an atomic role not occurring in C We de�ne two FL�concepts by

A� �� �PABA and A� �� �PA��

Let A� and A� be the negation normal form of �A� and �A�� respectively� ie A
� ��

�PA�BA� and A� �� �PA� Observe that A� and A� are satis�able� but A� u A� �
�PA�BAu�PA� is unsatis�able The concept that is obtained from C by �rst replacing
every occurrence of �A with A� and then every occurrence of A with A� is denoted as
CjA

Lemma �� Let C be a simple ALC�concept and A be an atomic concept� Then C is
satis�able if and only if CjA is satis�able�

Proof� Suppose that CjA has been obtained from C using the atomic role PA and
the atomic concept BA We �rst show that for every interpretation I there exists an
interpretation IA over the same domain such that �CjA�IA � CI Let I � �"I� �I� be
an interpretation Then IA � �"I� �IA� is obtained from I by de�ning BIA �� BI for
all atomic concepts B �� BA� P

IA �� P I for all atomic roles P �� PA� �BA�
IA �� �� and

�PA�IA �� f�a� a� � "I "I j a � AIg Obviously� �A��IA � ��PA�BA�IA � AI and
�A��IA � ��PA��IA � "I n AI Hence� �CjA�IA � CI Thus� CjA is satis�able if C is
satis�able
Conversely� suppose CjA is satis�able Then one can derive from fx�CjAg a complete

constraint system S that does not contain a clash We turn S into a constraint system
S� by replacing every occurrence of A� and A� with A and �A� respectively One easily
veri�es that S� is again complete and clash free Since S� contains the constraint x�C�
which originated from x�CjA� it follows that C is satis�able

Let P �M be a quanti�ed boolean formula� where P is a pre�x from � to m and
M � fM�� � � � �Mng is a set of clauses Let CP�M � D� uC�

� u � � �uC
n
� be the translation

of P �M into an ALC�concept as de�ned in Subsection �� Recall that CP�M is built up
with an atomic concept A and an atomic role R
The rest of the proof is structured as follows� First� we describe how one can transform

P �M in quadratic time into a concept

$CP�M � $D� u � � � u $Dm u $C� u � � � u $Cn�

where each $Di and each $Cj is the negation normal form of an intersection of FL�concepts
and negated FL�concepts Secondly� we show that $CP�M and CP�M jA are equivalent
By virtue of Lemma �� and Lemma �
 this will imply that P �M is valid if and only if
$CP�M is satis�able

��

The pre�x �Q��� � � � �Qmm� is translated into the intersection $D�u� � �u $Dm as follows
If Qi � �� then de�ne the two FL�concepts

Di
� �� �R� �R� � � � � �R� 	z

i�� times

� �RA��

Di
� �� �R� �R� � � � � �R� 	z

i�� times

� �RA��

and let $Di be the negation normal form of �Di
�u�D

i
� Notice that we have the equivalence

$Di � �R��R� � � � ��R� 	z

i�� times

� ��RA� u �RA���

If Qi � �� then de�ne the FL�concept

$Di �� �R��R� � � � ��R� 	z

i�� times

��R��

Let Mi be the i�th clause and let

k �� max
l�Mi

jlj�

We recursively de�ne FL�concepts by

Ei
l ��

���������������������������

�R�A� u Ei
l��� if l �Mi

�R�A� u Ei
l��� if 	l �Mi

�REi
l��

if neither l nor
	l is in Mi�

for l � ����k 	 �� and by

Ei
k ��

�
�RA� if k �Mi

�RA� if 	k � Mi

Let $C i be the negation normal form of �Ei
�

Lemma ��	 $CP�M and CP�M jA are equivalent�

Proof� It su�ces to prove that $D �� $D� u � � � u $Dm and D�jA are equivalent and that
for each i � ���m the concepts $C i and C i

�j
A are equivalent

One can check that rewriting $D with the rule �RC� u�RC� 	
 �R�C� uC�� yields
the concept D�jA Since this rule preserves equivalence� the �rst part of the claim follows
Considering the de�nitions of the concepts Ei

l and C
i
l � one notices that the negation

normal form of Ei
l is exactly C

i
l j
A Hence� $C i � C i

�j
A� which yields the second part of the

claim

Theorem ��� Subsumption in FL is PSPACE�complete�

��

��� Unsatis�ability in ALUR

Now� we show that unsatis�ability in ALUR is PSPACE�hard by a reduction of the
unsatis�ability problem for ALC The reduction is based on the observation that subroles
can be used to simulate full existential quanti�cation Since we will use this technique in
later sections as well� we de�ne it for the entire language ALCNR
We transform every simple ALCNR�concept C into an ALUNR concept %C such that

%C is satis�able if and only if C is satis�able Recall that by de�nition of ALUNR the
concept %C must not contain subconcepts of the form �RD where D �� �
Let C be a simple ALCNR�concept Suppose that for every subconcept D of C there

is a primitive role PD that does not occur in C We de�ne a function %� that maps every
subconcept D of C to a concept %D The function %� is given by the equations

g�RD � ��R u PD��u��R u PD� %Dg�RD � �R %DgD� uD� � %D� u %D�gD� tD� � %D� t %D�

and by %D � D if D is neither an intersection nor a union nor a concept of the form �RD�

or �RD� We say that %C is an E�simulation of C

Proposition ��� For every simple ALCNR�concept C one can compute in polynomial
time an E�simulation %C�

Lemma ��� Let C be a simple ALCNR�concept and %C be an E�simulation of C� Then
C is satis�able if and only if %C is satis�able�

Proof� Suppose that %C is an E�simulation obtained from C using primitive roles PD
If I is an interpretation� then it is easy to see that %DI � DI for every subconcept D

of C Therefore� C is satis�able if %C is satis�able
Conversely� we show that for every interpretation I there exists an interpretation

%I over the same domain such that %C
�I � CI Let I � �"I � �I� be an interpretation

Then %I � �"I� �
�I� is obtained from I by de�ning A

�I � AI if A is a primitive concept�

P
�I � f�a� b� � "I "I j b � DIg if P � PD for some subconcept D of C� and P

�I � P I

for the remaining primitive roles Now it is straightforward to verify that %D
�I � DI for

every subconcept D of C Thus %C is satis�able if C is satis�able

Corollary ��� Satis�ability of ALUR�concepts is PSPACE�hard�

Proof� Satis�ability of ALC�concepts can be reduced to satis�ability of ALUR�
concepts� since for every simple ALC�concept C the E�simulation %C is in ALUR

��

��� Unsatis�ability in ALNR

We show that unsatis�ability in ALNR is PSPACE�hard This sharpens a result by
Nebel �Neb���� who showed that subsumption in ALNR is co�NP�hard The proof is by
a reduction of the validity problem for quanti�ed boolean formulas �QBF� We �rst reduce
QBF to satis�ability in ALENR Then using E�simulations we conclude the claim
Let P �M be a quanti�ed boolean formula where P � �Q��� � � � �Qmm� is a pre�x

from � to m and M � fM�� � � � �Mng We translate P �M into an ALENR concept

CP�M � D� u C
�
� u � � � u C

n
� �

Let A� B be atomic concepts� P�� P�� � � � � Pn be atomic roles� and R �� P� uP� u � � � uPn
The concept D� is obtained from the pre�x P using the equations

Dl ��

�
��RA� u ��R�A� u ��RDl��� if Ql � �

��R�� u ��RDl��� if Ql � �

for l � ����m	 �� and the equation

Dm ��

�
��RA� u ��R�A� if Qm � �

�R� if Qm � �

The concept C i
� is obtained from the clause Mi as follows Let

k �� max
l�Mi

jlj�

Then� for l � ����k 	 ��� de�ne

C i
l ��

���������������������������

���Pi� u �Pi�B uA� u �Pi��B u C i
l��� if l �Mi

���Pi� u �Pi�B u �A� u �Pi��B u C i
l��� if 	l �Mi

�PiC
i
l�� otherwise

and de�ne

C i
k ��

�
�PiA if k �Mi

�Pi�A if 	k �Mi

The basic idea in the de�nition of CP�M is similar to the one underlying the reduction
of QBF to satis�ability in ALC Comparing the two reductions� one realizes that in fact
the concepts Dl are de�ned in the same way The de�nitions of the concepts C i

l di�er�
because ALENR does not provide an explicit disjunction through union However� there
is a hidden disjunction in the �at�most� restrictions� which is re�ected in the completion
calculus by the nondeterministic behavior of the
��rule� that identi�es di�erent suc�
cessors of a variable Intuitively� this nondeterminism only is a source of complexity if
it matters which variables are identi�ed In other words� the hidden disjunction is only

��

activated if di�erent successors have di�erent constraints For this reason� the �at�most�
restriction in the de�nition of C i

l is combined with existential quanti�cations
As in the reduction for ALC the concept CP�M is de�ned in such a way that canonical

sets of assignments for P satisfying the clauses of M can be translated into clash free
complete constraint systems obtained from fx�CP�Mg and vice versa We will explain
this correspondence at an intuitive level before providing the proofs
Let S be a constraint system and R a be role A chain � � y�� � � � � yn is S is called

an R�chain if yi is an R�successor of yi�� in S for i � ���n Recall that y� is called the
starting point of the chain� and n is the length of the chain
Suppose that S is a clash�free complete constraint system obtained from fx�CP�Mg

Consider any variable y such that the constraint y�Dl occurs in S for some l � ���m
The variable x� for instance� is one such variable� since S contains x�D� The concept Dl

encodes the l�th quanti�er Ql in the pre�x P It is de�ned in such a way that� if Ql � ��
the completion rules create R�successors y�� y�� of y with the constraints y��A� y����A or�
if Ql � �� a single R�successor y� without specifying whether it belongs to A or �A In
addition� S contains y��Dl�� and y

���Dl�� if l
 m This shows that the set of R�chains
of length m with starting point x has a structure similar to a set of assignments that is
canonical for P
The concept C i

� encodes the i�th clause Mi We now point out how the implicit
disjunction present in the �at�most� restriction is exploited to mimic the disjunction in
clauses Let � � y� � � � ym be an R�chain of length m with starting point y� � x Let yl��
be a variable occurring in � such that S contains the constraint yl���C i

l and Mi contains l
or 	l By de�nition of the C i

l !s this is the case if� for instance� l is the least number such
that Mi contains l or 	l Without loss of generality we may assume that l � Mi Now�
the completion rules create two Pi�successors z�� z�� of yl�� together with the constraints

y� ���Pi�� z��B� z��A� z����B� z���C i
l���

No subsequent application of rules may identify z� and z��� because otherwise S would
contain a clash Since yl�� occurs in �� it also has an R�successor yl Since R is a subrole
of Pi and S contains yl��� ���Pi�� either yl and z� or yl and z�� have been identi�ed
The choice between z� and z�� corresponds to the logical disjunction in the clause Mi
If yl and z� are identi�ed� then yl is constrained to A This means that the assignment
corresponding to � satis�es the literal l However� when identifying yl and z�� we end up
with the constraint yl�C i

l��� which corresponds to postponing the choice of the literal to
be satis�ed
Along the lines of the above discussion we will now prove that a quanti�ed boolean

formula P �M is valid if and only if the ALENR�concept CP�M is satis�able In the
proof we will use the following de�nitions that make the relation between chains and
assignments explicit
Let A be the atomic concept and R be the role used in the de�nition of CP�M Let

k� l be positive integers with k � l and S be a constraint system derived from fx�CP�Mg
If � is an R�chain of length l 	 k # � in S� say � � yk�� � � � yl� then we associate to � the
assignment

�k�l� � fk� k # �� � � � � lg
 ftrue� falseg

��

that is de�ned by

�k�l� �i� ��

�
true if yi�A is in S
false otherwise

For every variable y and all positive integers k� l we denote as �S�k�ly the set of all �
k�l
�

obtained from R�chains � of length l 	 k # � in S that have starting point y

Lemma ��� If CP�M is satis�able
 then P �M is valid�

Proof� Suppose that CP�M is a satis�able concept Let x be a variable Since CP�M
is satis�able� the constraint system fx�CP�Mg has a clash�free completion S We will
show that

� the set of assignments �S���mx is canonical for P

� every assignment in �S���mx satis�es every clause of P �M

� To show that �S���mx is canonical for P � we prove that for all k � ���m the following
claim holds�

if y is a variable such that y�Dk is in S� then �S�k�my is canonical for �Qkk� � � � �Qmm�

We prove the claim by induction on m	 k
Suppose that k � m We distinguish the case that Qm � � and the case that Qm � �

If Qm � �� then by de�nition of Dm we have

Dm�� � ��RA� u ��R�A��

Since S is complete� the variable y has R�successors y�� y�� such that the constraints
y��A and y����A are in S Hence� �S�m�m

y contains exactly two assignments �� and ����
which correspond to the two R�chains yy� and yy�� They satisfy ���m� � true and
����m� � false This implies that �S�m�m

y is canonical for �Qmm�
If Qm � �� a similar argument applies
Suppose the claim holds for some positive integer k We show that it also holds

for k 	 � Let y be a variable such that the constraint y�Dk�� is in S As before� we
distinguish between the case that Qk�� � � and the case that Qk�� � � If Qk�� � ��
then by de�nition of Dk�� we have

Dk�� � ��RA� u ��R�A� u ��RDk��

Since S is complete� y has R�successors y�� y�� with constraints y��A� y��Dk and y����A�
y���Dk are in S By the induction hypothesis� the sets of assignments �S�

k�m

y� and �S�
k�m

y�� are

canonical for �Qkk� � � � �Qmm� By de�nition of the set �S�
k���m
y it follows that �S�k���my is

canonical for �Qk��k 	 �� � � � �Qmm�
If Qk�� � �� a similar argument applies
� Let Mi be a clause in M such that k � maxl�Mi

jlj Furthermore� let � be an
assignment in �S���mx Then there exists in S a R�chain � � y�y� � � � ym with starting point
y� � x such that � � ���m

� We will prove that �
��m
� satis�es Mi

��

To do so� observe that either yk���C i
k is in S� or there is an l � ����k 	 �� such that

yl���C i
l is in S� but yl�C

i
l�� is not in S

Suppose that yk���C i
k is in S Then by de�nition of C

i
k we have

C i
k � �PiA

��

where A� � A if k � Mi� and A� � �A if 	k � Mi Since R is a subrole of Pi and
S is complete� the constraint yk�A� is in S Hence� ���m

� �k� � true if k � Mi� and
���m
� �k� � false if 	k � Mi Thus ���m

� satis�es Mi
If there is an l such that yl���C i

l is in S� but yl�C
i
l�� is not in S� then either l or 	l is in

Mi Otherwise� by de�nition of C i
l we would have C

i
l � �PiC

i
l�� Since R is a subrole of

Pi and S is complete� this would imply that yl�C i
l�� is in S� which yields a contradiction

Suppose that l �Mi Then by de�nition of C i
l we have

C i
l � ���Pi� u �Pi�B uA� u �Pi��B u C i

l����

Since S is complete� yl has Pi�successors z�� z�� which are constrained by z��B� z��A and
z����B� z���C i

l�� Furthermore� z
� and z�� are distinct because otherwise there would be a

variable in S that is constrained by B and �B� which contradicts the fact that S is clash
free
Now� yl is constrained to have at most two �llers of Pi� but the completion rules have

generated two distinct Pi�successors z� and z�� and the R�successor yl�� Since R is a
subrole of Pi� the variable yl�� must have been identi�ed either with z� or with z�� If it
has been identi�ed with z��� then S contains the constraint yl�C

i
l��� which contradicts our

assumption on l Hence� it has been identi�ed with z�� which implies that S contains the
constraint yl�A By de�nition of ���m

� � we have �
��m
� �l� � true Thus� ���m

� satis�es Mi
If 	l �Mi� a similar argument applies

Lemma ��
 If P �M is valid
 then CP�M is satis�able�

Proof� If P �M is valid� then there exists a set of assignments A such that A is
canonical for P and every � � A satis�es every clause Mi �M
Let x be a variable In order to show that CP�M is satis�able it su�ces to construct

fromA a complete and clash�free constraint system $S that contains the constraint system
fx�D�� x�C�

� � � � � � x�C
n
� g This is done in two steps�

� we construct a complete and clash�free constraint system S� containing fx�D�g such
that �S����mx � A

� for every i � ���n we construct a complete and clash�free constraint system Si that
contains S� � fx�C i

�g

Since the roles occurring in C i
� and C

j
� are di�erent� we can assume that for i �� j� every

variable occurring in Si � Sj occurs also in S� Then $S �
Sn
i�� S

i is a constraint system
with the desired properties
� Let S � be a completion of fx�D�g Because of the structure of D�� the system S� is

clash�free

��

Due to our encoding of existential quanti�ers in P � not all variables in S� that have
been introduced by the completion rules are constrained to A or to �A We will add
constraints to S� such that every variable� except x� is constrained either to A or �A In
this process� we exploit the structure of A
Observe that for every R�chain � � xy� � � � ym of length m in S� there exists exactly

one assignment � � A such that ��l� � true if yl�A is in S� and ��l� � false if yl��A
is in S� We denote this assignment as �� Now� we transform S� into S� as follows For
every variable y �� x occurring in S� that is neither constrained to A nor to �A we choose
an R�chain � � xy� � � � ym with y � yl for some l� and add to S� the constraint y�A if
���l� � true or y��A if ���l� � false� respectively Notice that this construction does
not depend on which chain � we choose for y
By construction� S� is clash�free and �S����mx � A
� We derive Si from S� � fx�C i

�g using a modi�ed set of completion rules that we
obtain by replacing the
��rule by the following
���rule�

S
�� S�y�z�

if no other completion rule applies to S�
there is a variable v such that v� ���Pi� is in S�
y is an R�successor of v� z is an Pi�successor of v�
y �� z� and neither y�A� z��A nor y��A� z�A are in S

This rule applies� if y is an R�successor of v in S�� and if for some l � ����k	 �� such that
l �Mi or 	l � Mi the constraint v�C i

l is in S In this case

C i
l � ���Pi� u �Pi�B uA�� u �Pi��B u C i

l����

where A� � A if l � Mi and A� � �A if 	l � Mi The completion rules will introduce
Pi�successors z�� z�� of v together with the constraints z��B� z��A�� and z����B� z���C i

l��
Now� the
���rule applies and identi�es the variables y and z� or y and z�� in such a way
that no clash arises
Let Si be a completion of S� � fx�C i

�g obtained with the modi�ed set of completion
rules By construction� Si is clash�free Since the only �at�most� restriction occurring in
Si have the form ���Pi�� the system Si is also complete with respect to the original set
of rules

We now come to the main result of this subsection

Lemma ��� Satis�ability in ALENR is PSPACE�hard�

Proof� Computing for a quanti�ed boolean formula its translation into an ALENR�
concept takes polynomial time By Lemmas ��� and ��� the formula is valid if and only
if the concept is satis�able Then there exists a polynomial�time reduction of the validity
problem for quanti�ed boolean formulas� which is PSPACE�hard� to the satis�ability
problem in ALENR

Theorem ��� Satis�ability in ALNR is PSPACE�hard�

Proof� For every ALENR�concept C the E�simulation %C is in ALNR Since E�
simulations can be computed in polynomial time� Lemma ��� yields the claim

�

��	 Summary on PSPACE�Complete Languages

Since there exists a polynomial space algorithm for subsumption in ALCNR� which is
the top element of the lattice of AL�languages� we know that subsumption and satis��
ability in all AL�languages are in PSPACE Moreover� satis�ability is PSPACE�hard in
ALC� ALUR� and ALNR It follows that for all extensions of these three languages
subsumption and satis�ability are PSPACE�complete

Theorem ��� �PSPACE�Completeness� Subsumption and �un�satis�ability are
PSPACE�complete problems for ALC
 ALUR
 ALNR
 ALCR
 ALCN
 ALENR

ALUNR
 and ALCNR�

� NP�Complete Languages

In this section we consider languages that do not contain constructs expressing logical
disjunction whether explicitly� like unions� or implicitly� like �at�most� restrictions In
the lattice of AL�languages� ALER is the greatest element with this property
We will show that reasoning in ALER is easier than in the languages considered in

the previous section We show that whenever an ALER�concept is subsumed by another
one� there exists in the completion calculus a proof for this fact which is of polynomial
size Since such a proof can be guessed in nondeterministic polynomial time� it follows
that the problem of deciding subsumption between ALER�concepts is in NP
In �DHL�
�� unsatis�ability and subsumption in ALE were shown to be NP�complete�

hence they are NP�complete for ALER too We also show that ALR unsatis�ability is
NP�hard� thus identifying a third NP�complete language

��� An NP�Algorithm for ALER

An ALER�concept C is subsumed by the ALER�concept D if C u �D is unsatis�able
In general� C u �D is not in ALER� since ALER does not allow for negation of arbi�
trary concepts However� it is an element of ALCR If we use the completion calculus
for checking the unsatis�ability of arbitrary ALCR�concepts it possibly will generate an
exponential number of constraint systems each of which is of exponential size In order
to be sure that the concept is unsatis�able we have to �nd a clash in each system In the
following we will change the completion calculus� which attempts to build up a model for
a given concept� into a calculus that is tailored to �nding clashes
As a �rst step we introduce a modi�ed completion calculus in which the applicability

of the
��rule is reduced The trace rules �see also �SS
��� consist of the
u�� the
t��
and the
��rule given in Subsection ��� together with the rule

S
T� fxP�y� � � � � xPky� y�Cg � S

if there is no successor of x in S�
x��RC is in S� R � P� u � � � u Pk�
and y is a new variable

�	

The di�erence between the
��rule and the
T��rule is that the latter is applied only
once for a variable x We are thus compelled to make a nondeterministic choice among
the constraints of the form x��RC
Let C be a simple ALCR�concept A constraint system T is a trace of fx�Cg if T is

obtained from fx�Cg by application of the trace rules Obviously� the variables occurring
in a trace T form a chain with starting point x For this reason the size of a trace
is polynomial in the size of C If S is a completion of fx�Cg then for any variable y
occurring in S there exists a trace T such that T contains all the constraints in S that
depend on y Since clashes involve only constraints that depend on a single variable�
S contains a clash if and only if there is a trace T � S that contains a clash These
observations are summarized in the following proposition

Proposition �� Let C be a simple ALCR�concept� Then�

�� the size of a trace derived from fx�Cg is polynomial in the size of C�

�� C is unsatis�able if and only if for every completion S of fx�Cg there exists a trace
T � S such that T contains a clash�

In order to prove that C is unsatis�able it is su�cient to generate traces instead of
completions However� it is necessary to generate enough traces to cover all completions
For this purpose we introduce the S�rule calculus� that operates on sets of traces� and
behaves nondeterministically only for existential quanti�cation It is interesting to observe
that the S�rules provide an alternative method for deciding the satis�ability of ALCR�
concepts
The S�rules are �T denotes a set of traces��

� fTg � T
S
	 fT �g � T

if T �� T and T
	 T
� where � � fu� t�� �g

� fTg � T
S
t fT �� T ��g � T

if T �� T � x�C tC � is in T � neither x�C nor x�C � is in T and
T � � fx�Cg � T � T �� � fx�C �g � T

The S�rules eliminate the nondeterminism introduced by unions� since the two traces that
can be obtained by an application of the
t�rule are put both into the new set of traces
The nondeterminism in choosing a constraint to which the
T��rule applies persists
The following lemmata can be proved with arguments similar to those in �DHL�
��

Lemma �� Let C be a simple ALCR�concept� Then�

�� every S�rule derivation starting with ffx�Cgg terminates�

�� C is unsatis�able if and only if ffx�Cgg can be transformed by the S�rules into a
set T such that each trace in T contains a clash�

��

Part � of Lemma �� yields the correctness and completeness of the S�calculus To�
gether with Part � it suggests a nondeterministic method for deciding the unsatis�ability
of an ALCR�concept C The method generates a number of traces that is in the general
case exponential in the size of C This is not surprising� since unsatis�ability in ALCR
is PSPACE�complete However� when checking subsumption between ALER�concepts D
and C� which is equivalent to checking the unsatis�ability of C u �D� a better result can
be achieved Intuitively� the reason is that C contains no unions� the negation normal
form of D� say D�� contains no intersections� and the intersections in C and the unions in
D� do not interact

Lemma �� Let C
 D be ALER�concepts and let D� be the negation normal form of
D� Then any S�rule derivation starting with ffx�C uD�gg leads to a set of traces whose
cardinality is bounded by the size of D��

From this results we can conclude that subsumption between ALER�concepts is in
NP

Theorem �� Subsumption in ALER can be decided in nondeterministic polynomial
time�

Proof� Let C� D be ALER�concepts and let D� be the negation normal form of D
By Lemma ��� traces of fx�C uD�g are of polynomial size� and by Lemma ��� each set
derived from ffx�C uD�gg contains polynomially many traces By Part � of Lemma ���
C is subsumed by D if and only if ffx�C uD�gg can be transformed with the S�rules into
a set of traces each of which contains a clash By the above arguments� computing such
a derivation takes time polynomial in the size of C and D

��� NP�Hardness Results

From �DHL�
�� we know that unsatis�ability in ALE is NP�hard We use this result to
conclude that unsatis�ability in ALR is NP�hard� too

Theorem �� Unsatis�ability in ALR is NP�hard�

Proof� The claim follows by Lemma ���� since for every ALE �concept C the E�
simulation %C is in ALR

Moreover� since ALE is a sublanguage of ALEN � the NP�hardness result for ALE
yields a lower bound for the complexity of reasoning in ALEN

Proposition �
 Unsatis�ability in ALEN is NP�hard�

��

��� Summary on NP�Complete Languages

We combine the results of the preceding subsections in the following theorem

Theorem �� �NP�Completeness� Subsumption and unsatis�ability are NP�complete
problems for ALE
 ALR
 and ALER�

As discussed in Section ��� results on NP�completeness have a character di�erent
from former intractability results for concept languages The work in �BL��� Neb��� SS
��
identi�ed the disjunctive constructs role restriction� �at�most� restriction� and union that
together with concept intersection give rise to intractability The NP�hardness of ALE
and ALR� however� shows that the interplay of universal and existential quanti�ers is
another unavoidable source of complexity The di�erent nature of the two sources of
complexity is illustrated by the fact that the former makes subsumption co�NP�hard and
the latter makes it NP�hard

	 Co�NP�Complete Languages

In ALU � intersection� union� and complement of primitive concepts are available There�
fore� deciding the unsatis�ability of ALU �concepts is at least as hard as deciding the
unsatis�ability of formulas in propositional logic� which is known to be a co�NP�complete
problem Conversely� it has been shown that universal quanti�cation and restricted ex�
istential quanti�cation over roles do not increase the complexity of the problem� i�e��
unsatis�ability in ALU is co�NP�complete �SS
��
One might conjecture that subsumption in ALU is harder� since it is equivalent to

unsatis�ability of certain concepts containing both unions and full existential quanti�ca�
tion These two constructs show up in subsumption problems� since C is subsumed by
D if and only if C u �D is unsatis�able if and only if C uD� is unsatis�able� where D�

is the negation normal form of �D If D is an ALU �concept containing intersection and
universal role quanti�cation� then D� contains union and full existential role quanti�ca�
tion In the sequel we will show that subsumption in an even larger language� namely
ALUN � has the same complexity as unsatis�ability in ALU This result still holds if
we drop the assumption that numbers are encoded in unary Therefore� in the present
and the following section we will assume that numbers occurring in concepts are written
in binary notation �or� more generally� q�ary notation for some q � �� Note that� as a
consequence� a concept of the form ��nP � has length O�log n�� but every model of it has
cardinality at least n� i�e�� the cardinality is exponential in the length of the concept

	�� An Optimized Calculus for ALCN

As discussed before� since the language ALUN is not closed under complements� sub�
sumption checking in ALUN amounts to checking the unsatis�ability of certain ALCN �
concepts Intuitively� the reason why the satis�ability of such concepts can be decided
in nondeterministic polynomial time is that� even if the models of a concept may have a
number of elements that is exponential in the length of the concept� in models generated

��

by the completion calculus the elements can be grouped in polynomially many sets in
such a way that elements belonging to one set share the same constraints In order to
make this more precise we will modify the general calculus given in Subsection �� in such
a way that �at�least��constraints only lead to the introduction of a single new variable
The modi�ed calculus appeared �rst in �HNS
	� and its soundness and completeness are
proved in �HN
�� We present it here because it is the basis for our complexity studies
The quasi�completion rules consist of the
u��
t��
���
��� and
��rules together

with the following revised
��rule�

S
�� fxPyg � S

if no other completion rule applies to S�
x� ��nP � is in S� x does not have a P �successor in S�
and y is a new variable

Intuitively� this weak version of the
��rule is su�cient because in the absence of role
intersection� for any variable and primitive role P the completion rules will impose the
same constraints on all P �successors generated during a
��step Notice that� because
of the applicability condition of the rule� the P �successor of x generated by the
���rule
is the only P �successor of x and will remain the only one in all constraint systems derived
from S � fxPyg
Obviously� for the quasi�completion calculus an invariance theorem analogous to The�

orem �� holds A constraint system is quasi�complete if no quasi�completion rule is
applicable
The original calculus detects contradictory number restrictions of the form

fx� ��mR�� x� ��nR�g with m � n because the
��rule generates m pairwise sepa�
rated R�successors of x that together with the constraint x� ��nR� form a clash In order
to �nd contradictions of this kind in quasi�complete constraint systems we have to rede�ne
the notion of a clash A simpli�ed clash is a constraint system having one of the following
forms�

� fx��g�

� fx�A� x��Ag�

� fx� ��mP �� x� ��nP �g where m � n

Note that simpli�ed clashes consist of contradictory membership constraints� but do not
involve relationship constraints or disequations It is easy to see that� in order to detect
contradictions in constraint systems containing role intersection� it does not su�ce to look
only for simpli�ed clashes However� as the next lemma shows� the quasi�completion rules
provide a sound and complete method for deciding the satis�ability of ALCN �concepts
A proof of the lemma can be found in �HN
��

Lemma
� Let C be a simple ALCN �concept and S be a quasi�complete constraint
system derived from fx�Cg by the quasi�completion rules� Then S is satis�able if and
only if it contains no simpli�ed clash�

��

	�� Polynomial Length of Derivations

In this subsection we will use the quasi�completion calculus to show that nonsubsumption
of ALUN �concepts can be decided in nondeterministic polynomial time Let C� D be
ALUN �concepts and let D� be the negation normal form of D By Lemma ��� C is not
subsumed by D if and only if the constraint system fx�C uD�g can be transformed by
the quasi�completion rules into a quasi�complete system that does not contain a simpli�ed
clash Our goal is to show that any derivation with the quasi�completion rules issuing
from fx�C uD�g has length O�n�� where n � 	�C uD��
The fact that such derivations are of polynomial length may be surprising� because

both universal and full existential quanti�cation appear in C uD� and we have identi�ed
the interplay of universal and existential quanti�ers as an unavoidable source of complexity
in Section � However� the interaction of quanti�ers is rather limited in the present case�
since all existentially quanti�ed subconcepts of C have the form �P � and all universally
quanti�ed subconcepts of D� have the form �P �
We assume in the following that ALCN �concepts do not contain subconcepts of the

form �P � We can do so without loss of generality� since each such subconcept can be
replaced with ���P � while preserving equivalence Transforming a concept by making
these replacements takes time linear in the length of the concept
For the arguments we use in this subsection it is crucial that we consider subconcepts

of an ALCN �concept as di�erent entities� even if they are syntactically equal In order to
be able to do so we have to slightly modify the quasi�completion calculus After sketching
the behavior of such a modi�ed calculus we will draw conclusions about the original one
The technical details of the modi�cation are immaterial for our arguments Therefore we
describe rather informally what the constraints and rules of such a calculus look like
Obviously� everyALCN �concept E can be viewed as a �syntactic� tree Let us assume

that we have arbitrarily many colors Then we paint the root of every subtree of E with
a di�erent color� except that we do not paint role symbols
We call such a concept a colored version of E For example� if E � A u �P A� a

possible colored version is
Ayellow ugreen �redP �Ablue�

where the superscript indicates the color of the corresponding symbol The semantics of
concepts remains una�ected by coloring
The calculus will operate on constraint systems that contain constraints with colored

concepts In such a system� constraints y�E� and y�E�� even if they are syntactically
equal� are considered as distinct elements if E� and E� are colored di�erently As an
example� applying the
u�rule to the system S �� fy�AyellowuredAblueg yields the system
S � fy�Ayellow� y�Ablueg� where y�Ayellow and y�Ablue are two distinct constraints Recall
that the conditions of application of a rule to a given constraint system S require that S
does not yet contain the constraints that the rule adds In the colored calculus we will
ignore the coloring when checking the applicability of a rule For example� the
u�rule
is not applicable to the system fy�Ayellow ured Ablue� y�Agreeng As a consequence� the
colored calculus will behave similarly to the uncolored one

��

Lemma
� Let C be an ALCN �concept and C � be a colored version of C� Then no
derivation with the quasi�completion calculus issuing from fx�Cg is longer than the longest
derivation with the colored calculus issuing from fx�C �g�

Proof� Let D� be the set of derivations with the colored calculus issuing from fx�C �g
and let D be the set of derivations obtained from D� by forgetting about the colors
Obviously� any derivation with the quasi�completion calculus issuing from fx�Cg occurs
as an element of D

Next we want to derive an upper bound of the number of variables occurring in a
constraint system derived from fx�C uD�g In order to do so� we divide the variables in
two groups For the de�nition we need the following technicality
Let E be a colored concept and F a subconcept of E We say that F is inside�� if

E has a subconcept �P E� such that F is a subconcept of E�� and outside�� otherwise
Intuitively� F is outside�� if it does not occur in the scope of a universal quanti�er
Now� suppose S has been derived from fx�C u D�g by means of the colored quasi�

completion rules We say that a variable y is outside�� in S if C u D� has an outside�
� subconcept E such that S contains the constraint y�E and that it is inside�� in S
otherwise The idea underlying this de�nition is that a variable is outside�� in S if it is x
or if it has been generated through the
��rule �because due to the particular structure
of C uD� no existential quanti�er occurs in the scope of a universal quanti�er� and it is
inside�� if it has been generated through the
���rule
As already pointed out before� the condition for applying the
���rule guarantees

that for a given variable y and role P either all P �successors are created through the
��
rule or there is a single P �successor created through the
���rule As a consequence� the

��rule will only identify outside�� variables From this and the de�nition it follows that
an outside�� �inside��� variable in S remains outside�� �inside��� in any system derived
from S
The next lemma gives an upper bound of the number of outside�� variables

Lemma
� If S has been derived from fx�C u D�g by means of the colored quasi�
completion calculus
 then

�� for every outside�� subconcept E of C u D� there is at most one constraint of the
form y�E in S�

�� S contains at most 	�C uD�� outside�� variables�

Proof� � The proof is by induction over the length of the derivation leading to S
Obviously� the claim is true for fx�C u D�g Suppose the claim holds for S�� and S is
obtained from S� by the application of a quasi�completion rule If the rule employed is the

��� or the
��rule� then nothing has to be shown� since these rules do not introduce
any constraint of the form y�E If it is the
��rule� then a constraint y�E has been added
where E is inside��
Now� suppose that S � S� � fyPz� z�Eg has been obtained from S� by applying the

��rule to the constraint y��P E in S� Since in CuD� no existential quanti�er occurs in
the scope of a universal quanti�er� the concepts �P E and E are outside�� Assume that

��

S contains a constraint z��E with z� �� z Then z��E is already contained in S� Since
concepts in S� are colored� this constraint must have been introduced by applying the

��rule to a constraint y���P E� i�e�� a constraint containing the same concept �P E
Since we can assume without loss of generality that y� has not been replaced with another
variable by the
��rule� we conclude that y���P E is in S� But this contradicts the
induction hypothesis that only one constraint of the form y��P E is in S� Thus� the
assumption that S contains a constraint z��E was incorrect and the induction hypothesis
holds also for S
In case S is obtained using the
u� or the
t�rule a similar argument applies
� The claim follows immediately from ���� sinceD� has no more than 	D� subconcepts

We now want to count the inside�� variables
Let y and z be variables in S We say that z is an all�inside�� descendant of y if z is

an inside�� descendant of y and the chain with starting point y and end point z contains
only inside�� variables� except possibly y Observe that� since the �successor� relation
on the variables in S is a tree with root x �see Lemma ���� for every inside�� variable z
there is a unique outside�� variable y such that z is an all�inside�� descendant of y The
variable y is the last outside�� variable on the path from x to z
We will count the inside�� variables by counting for every outside�� variable its all�

inside�� descendants

Lemma
� If S has been derived from fx�C u D�g by means of the colored quasi�
completion calculus and n � 	�C uD��
 then

�� an outside�� variable in S has at most �n all�inside�� descendants�

�� S contains at most �n� inside�� variables�

Proof� � Let us �rst show that S has the following property� if y is an outside��
variable and F is a subconcept of C uD� then y has at most one all�inside�� descendant
z such that z�F is in S
Again� the proof is by induction over the length of the derivation leading to S Ob�

viously� fx�C u D�g has the above property Now� suppose S� has this property and S
has been obtained from S� by a quasi�completion step It is easy to see that a
u� or
a
t�step does not change this property If the step is a
���step then the property
remains unchanged� too� because no constraint of the form z�F is added It also remains
unchanged by an
��step� because such a step identi�es only outside�� variables Given
the particular form of C u D�� a
��step introduces only constraints for outside�� vari�
ables As seen above� since inside�� variables are created by the
���rule� a variable has
for a given role P at most one inside�� P �successor Hence� the property remains invariant
under the
��rule
Now� let y be an outside�� variable in S We �rst consider the number of all�inside��

descendants z such that for some subconcept F of C uD� the constraint z�F is in S This
number is obviously bounded by the number of subconcepts of C uD�� which is at most
n Next we consider the number of all�inside�� descendants z� such that S contains no
constraint of the form z��F Such a variable must have been created by the
���rule

��

Thus� if z� is such a variable and z is the predecessor of z�� then S contains a constraint
z� ��mP � Hence� by the preceding argument� the number of such variables is bounded
by n� too This means that y has no more than �n all�inside�� descendants
� By Lemma ��� S contains at most n outside�� variables Since every inside��

variable is an all�inside�� descendant of a unique outside�� variable� ��� implies that S
contains at most n��n� inside�� variables

Lemma
� If S has been derived from fx�C u D�g by means of the colored quasi�
completion calculus and n � 	�C uD��
 then

�� S contains at most �n� # n variables and ��n� # n��n# �� constraints�

�� any derivation leading to S comprises at most O�n�� steps�

Proof� � By Lemma ��� S contains no more than n outside�� variables and by
Lemma ��� S contains at most �n� inside�� variables Summing up this yields �n� # n
variables
Let N be the number of variables occurring in S Since C u D� has no more than n

subconcepts� S contains at most Nn constraints of the form y�E If z is a successor of y
in S then S contains exactly one constraint of the form yPz� because in ALUN all roles
are primitive Since the �successor� relation on the variables in S is a tree� and a tree
with N nodes has N 	 � edges� S contains N 	 � constraints of the form yPz Thus� S
contains no more than Nn #N � N�n# �� � ��n� # n��n # �� constraints
� Let us �rst consider the e�ect of
��steps As already seen� only outside�� variables

are identi�ed during such a step Suppose S� is a constraint system occurring during
the derivation of S If y� y� are distinct outside�� variables and S� contains constraints
y�E� y��E�� where E� E� are outside�� subconcepts� then Lemma �� implies that E and
E� are distinct� As a consequence� these constraints remain distinct if one of the variables
y� y� is replaced by the other Hence� a
��step does not reduce the number of constraints
in S having the form y�E� where E �� � is an outside�� subconcept Whenever an outside�
� variable y is generated� a corresponding constraint y�E is generated Since the number
of such constraints in S is at most n� we conclude that during the whole derivation of S at
most n outside�� variables have been created Hence� during the derivation the
��rule
has been applied at most n times All other rules have the property that applying them
leads to at least one additional constraint
The number of constraints created during the derivation of S equals the number of

constraints contained in S plus the number of constraints eliminated by
��steps Since
one variable occurs in no more than n constraints� S contains no more than ��n� #
n�n constraints As seen above� a
��step does not reduce the number of membership
constraints Since roles are primitive� a
��step reduces the number of relationship
constraints by one Hence� no more than ��n� # n�n # n constraints have been created
during the derivation of S
This is an upper bound of the number of times rules other than the
��rule have

been used during the derivation of S If we take into account that there are at most

�Observe that E and E� need not be distinct if we do not take the coloring into account�

��

n applications of the
��rule� we obtain that S has been derived with no more than
��n� # n�n# n# n quasi�completion steps

Corollary

 Any derivation from fx�CuD�g by means of the ordinary quasi�completion
calculus has length O�n�� where n � 	�C uD���

Let us summarize what we have achieved so far Suppose C and D are ALUN �
concepts Then C is not subsumed by D if and only if C uD� is satis�able� where D� is
the negation normal form of �D By Lemma �� and the invariance property of the quasi�
completion calculus� this is the case if and only if one can derive from fx�CuD�g a quasi�
complete constraint system that does not contain a simpli�ed clash By Corollary ���
the length of such a derivation is polynomial with respect to 	�C uD��� which obviously
means that it is as well polynomial with respect to 	C # 	D

Proposition
� Nonsubsumption in ALUN can be decided in nondeterministic polyno�
mial time�

Proof� A nondeterministic algorithm can be devised as follows It takes ALUN �
concepts C and D as input� computes the negation normal form D� of �D� derives a
quasi�completion S of fx�C uD�g� and checks whether it is free of simpli�ed clashes As
said before� transforming D into D� can be done within polynomial time Computing S
takes polynomial time� since one has to make polynomially many quasi�completion steps�
each of which can be computed in polynomial time The check for simpli�ed clashes can
be performed in polynomial time� too� since S has polynomial cardinality

	�� Co�NP�Hard Languages

In Section � we have seen that deciding the unsatis�ability of ALEN �concepts is NP�
hard Actually� Nebel!s proof �Neb��� of co�NP�hardness of subsumption in ALNR yields
a second lower bound of the complexity of unsatis�ability in ALEN Analyzing his
reduction� one �nds� �rst� that the subsumption problem to which he reduces the hitting
set problem can be converted into an unsatis�ability problem and� second� that he uses
role intersection only to mimic full existential quanti�cation Thus� his reduction can
easily be modi�ed so as to yield a proof of the following theorem

Theorem
� Unsatis�ability in ALEN is co�NP�hard�

Moreover� in �SS
�� it is noted that unsatis�ability in ALU easily simulates proposi�
tional unsatis�ability� hence unsatis�ability in ALU is co�NP�hard

	�� Summary on Co�NP�Complete Languages

Combining the fact that unsatis�ability in ALU is co�NP�hard and the fact that sub�
sumption in ALUN is in co�NP we obtain the following result

Theorem
� �Co�NP�Completeness� Subsumption and unsatis�ability are co�NP�
complete problems for ALU and ALUN
 independently of whether numbers are repre�
sented in q�ary notation for q � � or q � ��

�

 Polynomial Languages

In Sections � and � we have shown that two di�erent sources of complexity are inherent
to inferences in concept languages On the one hand� the interplay between universal and
full existential quanti�ers where the latter might be present explicitly or realized implic�
itly through restricted existential quanti�cation over subroles� as in ALR is responsible
for constraint systems of exponential size On the other hand� the interaction of intersec�
tion and constructs that embody logical disjunction like union� or �at�most��restriction
in combination with full existential quanti�cation makes it necessary to generate an
exponential number of constraint systems
Consequently� one expects languages to be computationally tractable if they contain

neither of the two sources of complexity The largest such language is ALN We will
prove that in order to decide subsumption between two ALN �concepts it su�ces to check
a linear number of constraint systems each of which can be derived in polynomial time
with the quasi�completion calculus using only deterministic rules Building on this result�
one can devise a polynomial�time algorithm for deciding subsumption in ALN As in
the previous section� the result will not depend on a particular notation of numbers
Therefore� we assume that the numbers occurring in number restrictions are represented
in the standard binary notation
Throughout this section� we assume that everywhere subconcepts of the form �P �

have been replaced with the equivalent concept ���P �
Every ALN �concept can be rewritten in quadratic time to an equivalent concept of

the form
C� u � � � u Ck�

where none of the concepts Ci contains intersections� by using the rule

�P �C uD� 	
 ��P C� u ��P D��

Suppose that C� D are ALN �concepts and that D is of the above form� that is� D �
D�u� � �uDk and none of theDi!s contains intersections Deciding whether C is subsumed
by D is equivalent to checking whether C u �D � C u ��D� u � � � uDk� is unsatis�able
Now� C u �D is equivalent to �C u �D�� t � � � t �C u �Dk� The latter is unsatis�able if
and only if each concept C u�Di� i � ���k� is unsatis�able� or equivalently� if each C uD�

i

is unsatis�able� where D�
i is the negation normal form of �Di Note that each concept D

�
i

has the form
�P��P� � � � ��PmE�

where E is of the form �� �� A� �A� �P �� ��nP �� or ��nP � We call such a concept
a thread�

Lemma �� Let C be an ALN �concept
 D� be a thread
 and n � 	�C u D��� Suppose
that C u D� is colored and that S has been derived from fx�C u D�g with the colored
quasi�completion calculus� Then�

�� every variable in S has at most one successor per role�

�� only deterministic rules are applicable to S�

�	

	� S contains for every subconcept E of CuD� at most one constraint of the form x�E�

�� S contains at most �n constraints�

Proof� � Successors of variables are created either by the
���rule or by the
��rule
As argued before� if a P �successor of a variable y has been introduced by the
���rule�
then y does not have any other P �successor and there never will be one in all systems
derived from S Moreover� only D� has existentially quanti�ed subconcepts Since D� is
a thread� for any variable y in S there is only one constraint of the form y��P E Thus�
the
��rule is applied at most once for any variable y
� Since no disjunction occurs in C u D�� the
t�rule is not applicable to S Since

every variable in S has at most one successor per role� the
��rule is not either
� The proof is by induction over the length of the derivation leading to S
Obviously� fx�C uD�g has the required property Now� suppose S� has this property

and S has been obtained from S� by a quasi�completion step The property is not changed
if S�
�� S because no constraint of the form y�E is introduced into S If S�
u S
then there is a constraint y�E u E� in S such that neither y�E nor y�E� are in S� and
S � S��fy�E� y�E�g �Observe that we can conclude the �neither&nor� because we have
assumed that C uD� is colored� Assume that S contains in addition a constraint of the
form y��E or y��E� Then this constraint is already contained in S� Now� the coloring
of concepts implies that S� contains also the constraint y��E u E �� which contradicts the
fact that S � has the required property A similar argument applies to the case S�
� S
Finally� suppose that S�
� S Then S� contains constraints y��P E and yPz such that
S � S � � fz�Eg� but S� does not contain a constraint y���P E for some y� distinct from
y By ��� we know that z is the only P �successor of y Hence� S does not contain another
constraint of the form z��E Since by ��� we only have to consider deterministic rules�
this yields the claim
� By ��� we know that S contains at most n membership constraints Since every

relationship constraint has been generated from a membership of the form y� ��mP �
or y��P E� we conclude that S contains at most n relationship constraints Hence� S
contains at most �n constraints

Lemma �� Let C be an ALN �concept
 D� be a thread
 and let n � 	�C u D��� Then
every derivation with the quasi�completion rules issuing from fx�C u D�g comprises at
most �n steps�

Proof� Since by ��� the
��rule is not applicable to any constraint system derived
from fx�C u D�g with the colored quasi�completion rules� since each of the other rules
adds at least one constraint� and since by ��� no such system contains more than �n
elements� it follows that no more than �n rules have been applied in a colored derivation
By Lemma �� no derivation with the original calculus comprises more than �n steps

Theorem �� Subsumption and satis�ability in AL and ALN can be decided in polyno�
mial time
 independently of the notation for numbers�

��

Proof� It su�ces to prove the claim for subsumption in ALN
Let C� D be ALN �concepts� and let n � 	C # 	D In order to decide whether C

is subsumed by D� we check whether the concept C u �D is unsatis�able� transforming
it in the following way� We �rst rewrite D into the concept D� u � � � u Dk� where each
Di contains no intersection Then we rewrite C u �D as �C u �D�� t � � � t �C u �Dk�
Finally� we rewrite each concept �Di into its negation normal form D�

i� which is a thread
This rewriting takes time at most quadratic in n
Now for each of the threads D�

i we have to decide whether C uD�
i is unsatis�able By

Lemma �� Part � this can be done by deriving a single quasi�completion of fx�C uD�
ig

By Lemma �� the number of steps in such a derivation is linear in n Since deciding
the applicability of a rule and applying it takes time polynomial in n� computing the
whole derivation takes polynomial time Checking whether the resulting constraint system
contains a clash takes again polynomial time Therefore� deciding whether C u D�

i is
unsatis�able can be done in polynomial time
Since the number of concepts D�

i is linear in n� the whole check whether C u �D is
unsatis�able takes time polynomial in n

� Summary of Complexity Results

We have studied the complexity of reasoning about concepts fromAL�languages� a family
that covers most of the concept�forming constructs proposed in the literature The basis
for our investigation was a calculus for satis�ability checking� which can be understood
as a tableaux calculus with a special control on the application of rules For some AL�
languages that do not o�er the full range of constructs we have optimized the general
calculus Employing these calculi for checking unsatis�ability and subsumption we have
derived upper bounds for the complexity of the two inferences
Studying the computational properties of the calculi� we have come up with a series

of hardness results� that yield lower bounds on complexity Combining upper and low�
er bounds� we obtain an �almost� complete picture of the complexity of reasoning with
concepts� for �fteen out of the sixteen AL�languages we precisely characterized the sat�
is�ability and the subsumption problem as either being polynomial or being complete for
one of the classes NP� co�NP� or PSPACE For each of these languages the complexity
of unsatis�ability and subsumption are the same Consequently� the equivalence and the
disjointness problem have the same complexity �see Subsection ���
We summarize the results for AL�languages in Table � The table is to be read

as follows� each row corresponds to one of the concept forming constructs union� full
existential quanti�cation over roles� number restrictions on roles� and intersection of roles�
and each column corresponds to a language that extends the basic language AL by the
constructs whose row is marked with �� Languages are grouped according to the
complexity of unsatis�ability and subsumption
Previous results� noted in the last row� are the following Complete results for both

unsatis�ability and subsumption have been given ��� for ALE in �DHL�
��� and ��� for
ALC in �SS
�� Starred notes refer to the following partial results� In �SS
��� it was
shown that ��'� unsatis�ability in AL is polynomial� and that ��'� unsatis�ability in

��

AL
#

poly�
nomial

NP�
complete

Co�NP�
complete

PSPACE�complete

C t D

�RC

��nR�
��nR�

R uR�

previous
results

��'� ��� ��'� ��� ��'�

Table �� Complexity of unsatis�ability and subsumption in AL�languages Notes with a
star refer to partial results

ALU is co�NP�complete In �Neb���� it was shown that ��'� subsumption in ALNR is
co�NP�hard All other results represented by the table have been proved in this paper
The only language that we could not completely characterize is ALEN � which ex�

tends AL by full existential quanti�cation and number restrictions However� we have
provided lower and upper complexity bounds It follows from results reported in �Neb���
that unsatis�ability for ALEN is co�NP�hard �see Subsection ���� whereas in this paper
we proved that unsatis�ability is also NP�hard �see Subsection ��� Since ALEN is a
sublanguage of ALCNR� the top element in our lattice� we also know that subsumption
can be decided with polynomial space For the concept language FL� which does not �t
into the lattice of AL�languages� we have shown that subsumption is PSPACE�complete�
thus improving upon an earlier result by Brachman and Levesque �BL���� who showed
that it is co�NP�hard
In Section ��� we have singled out two possible sources of complexity First� com�

plexity comes in through the interplay between conjunctive constructs� like intersection�
and disjunctive constructs� like union or �at�most� restrictions that are activated by full
existential quanti�cation This source is re�ected by co�NP�hardness of unsatis�ability
and subsumption Speaking in terms of our calculus� it may give rise to an exponential
number of constraint systems that have to be explored for clashes Less obviously� the
interplay between universal and existential quanti�ers is a source of complexity too This
is re�ected by the NP�hardness results On the level of the completion calculus� this
source may lead to constraint systems that contain exponentially many variables For all
AL�languages where both sources of complexity are present except ALEN it has been
shown that the unsatis�ability and the subsumption problem are PSPACE�hard
We remark that in Sections �� and �� we have assumed unary encoding of numbers

occurring in number restrictions We feel that this assumption is justi�ed because it
allows one to translate concept expression into �rst�order formulas in polynomial time� so

��

that our complexity results refer also to the decision problem for the fragments of �rst�
order logic that correspond to concept languages Without this assumption� however� we
would not have been able to prove that satis�ability in ALCNR is in PSPACE It is open
whether this upper bound still holds if we allow for binary encoding of numbers
Since the complexity results with an exception for ALEN are all completeness

results� they show that our calculi are optimal for the problems they solve in that they
do not use more time or space resources than allowed by the complexity class for which
the problem is hard

� Conclusion

In this paper� we have shown that a general approach to inferences in concept languages
based on a modi�ed tableaux calculus for �rst order logic leads to decision procedures
that in terms of worst case complexity are very often optimal for the problem they
solve
Originally� the complexity analysis of terminological reasoning started with the goal

to identify languages for which subsumption can be decided in polynomial time �BL���
Now it has turned out that practically all interesting constructs in concept languages lead
to intractability
One might conclude from the results in this paper that terminological reasoning in all

its variants is infeasible Such a conclusion would implicitly assume that the complexity
analysis is intended to restrict the practical use of concept languages to those where
satis�ability and subsumption can be computed in polynomial time However� it is our
opinion that the study of the complexity of concept languages goes far beyond a mere
classi�cation of tractable and intractable languages
First of all� the results developed so far refer to the computational complexity in the

worst case� which represents only one aspect to be taken into account when considering the
practical use of concept languages Notice that� as pointed out in �Neb
	�� another aspect
that deserves further investigation is the characterization of the average cases occurring in
practice Second� the techniques used for the complexity analysis have provided the formal
basis for the design of e�ective algorithms for computing subsumption and unsatis�ability
in a large class of concept languages Finally� in the design of deduction procedures for
knowledge representation systems based on concept languages� one can take advantage of
the knowledge about the complexity of subsumption� by isolating di�cult cases and using
specialized e�cient algorithms whenever possible

��

References

�BFH�
�� Franz Baader� Enrico Franconi� Bernhard Hollunder� Bernhard Nebel� and
Hans�J�urgen Pro�tlich An empirical analysis of optimization techniques for
terminological representation systems or� Making KRIS get a move on Ap�
plied Intelligence� Special Issue on Knowledge Base Management� ���	
&����
�

�

�BFL��� Ronald J Brachman� Richard E Fikes� and Hector J Levesque KRYP�
TON� A functional approach to knowledge representation IEEE Computer�
����	����&��� �
��

�BH
�� Franz Baader and Bernhard Hollunder KRIS� Knowledge Representation
and Inference System SIGART Bulletin� ������&��� �

�

�BL��� Ronald J Brachman and Hector J Levesque The tractability of subsumption
in frame�based description languages In Proceedings of the Fourth National
Conference on Arti�cial Intelligence �AAAI����� pages ��&��� �
��

�BL��� Ronald J Brachman and Hector J Levesque Readings in Knowledge Repre�
sentation Morgan Kaufmann� Los Altos� �
��

�BM��� John L Bell and Moshe Machover A Course in Mathematical Logic North�
Holland Publ Co� Amsterdam� �
��

�Bra�
� Ronald J Brachman On the epistemological status of semantic networks
In Nicholas V Findler� editor� Associative Networks� pages �&�	 Academic
Press� �
�

�Bra��� Ronald J Brachman �I lied about the trees� AI Magazine� ������	&
�� �
��

�Bra
�� Ronald J Brachman �Reducing� CLASSIC to practice� Knowledge repre�
sentation meets reality In Proceedings of the Third International Conference
on the Principles of Knowledge Representation and Reasoning �KR����� pages
���&��� Morgan Kaufmann� Los Altos� �

�

�BS��� Ronald J Brachman and James G Schmolze An overview of the KL�ONE
knowledge representation system Cognitive Science�
�������&���� �
��

�DHL�
�� Francesco M Donini� Bernhard Hollunder� Maurizio Lenzerini� Alber�
to Marchetti Spaccamela� Daniele Nardi� and Werner Nutt The complex�
ity of existential quanti�cation in concept languages Arti�cial Intelligence�
�&���	
&���� �

�

�dRvdH
�� Marten de Rijke and Wiebe van der Hoek Counting objects in generalized
quanti�er theory� modal logic� and knowledge representation Journal of Logic
and Computation� ��������&���� �

�

�Fit
	� Melvin Fitting First�Order Logic and Automated Theorem Proving Springer�
Verlag� �

	

��

�GJ�
� Michael R Garey and David S Johnson Computers and Intractability�A
guide to NP�completeness WH Freeman and Company� San Francisco� �
�

�HKNP
�� Jochen Heinsohn� Daniel Kudenko� Bernhard Nebel� and Hans�J�urgen Prof�
itlich An empirical analysis of terminological representation systems Arti��
cial Intelligence� ���������&�
�� �

�

�HM
�� Joseph Y Halpern and YoramMoses A guide to completeness and complexity
for modal logics of knowledge and belief Arti�cial Intelligence� ��������
&��	�
�

�

�HN
	� Bernhard Hollunder and Werner Nutt Subsumption algorithms for concept
languages Technical Report RR�
	�	�� Deutsches Forschungszentrum f�ur
K�unstliche Intelligenz �DFKI�� Kaiserslautern� Germany� �

	

�HN
�� Bernhard Hollunder and Werner Nutt Algorithms for concept languages Re�
search Report� DFKI� Stuhlsatzenhausweg �� D������ Saarbr�ucken� Germany�
�

� Forthcoming

�HNS
	� Bernhard Hollunder� Werner Nutt� and Manfred Schmidt�Schau� Subsump�
tion algorithms for concept description languages In Proceedings of the Ninth
European Conference on Arti�cial Intelligence �ECAI����� pages ���&����
London� �

	 Pitman

�Joh
	� David S Johnson A catalog of complexity classes In J van Leeuwen� editor�
Handbook of Theoretical Computer Science� volume A� chapter � Elsevier
Science Publishers B V �North Holland�� �

	

�Kan
	� Paris C Kanellakis Elements of relational database theory In J van Leeuwen�
editor� Handbook of Theoretical Computer Science� volume A� chapter ��
Elsevier Science Publishers B V �North Holland�� �

	

�Lad��� Richard E Ladner The computational complexity of provability in systems of
modal propositional logic SIAM Journal on Computing� ��������&��	� �
��

�LB��� Hector J Levesque and Ronald J Brachman Expressiveness and tractability
in knowledge representation and reasoning Computational Intelligence� ����&

�� �
��

�Lev��� Hector J Levesque Foundations of a functional approach to knowledge rep�
resentation Arti�cial Intelligence� ������&���� �
��

�Lip��� Thomas Lipkis A KL�ONE classi�er In JG Schmolze and RJ Brachman�
editors� Proc� ���� KL�ONE Workshop� pages ���&���� Cambridge �Mas�
sachusetts� USA�� �
�� The proceedings have been published as BBN Report
No ���� and as AI Technical Report �� Schlumberger Palo Alto Research

�Neb��� Bernhard Nebel Computational complexity of terminological reasoning in
BACK Arti�cial Intelligence� ���������&���� �
��

��

�Neb
	� Bernhard Nebel Terminological reasoning is inherently intractable Arti�cial
Intelligence� ������&��
� �

	

�Pat�
� Peter F Patel�Schneider Undecidability of subsumption in NIKL Arti�cial
Intelligence� �
����&���� �
�

�PS
�� Peter F Patel�Schneider and Bill Swartout Working version �draft�� De�
scription logic speci�cation from the KRSS e�ort� June �

� Unpublished
Manuscript

�SB��� James G Schmolze and Ronald J Brachman� editors Proc� ���� KL�ONE
Workshop BBN Report ���� Bolt� Beranek� and Newman Inc� Cambridge
�Massachusetts� USA�� May �
�� Also available as AI Technical Report ��
Schlumberger Palo Alto Research� May �
��

�Sch��� Klaus Schild Undecidability of subsumption in U Technical Report KIT�
Report ��� FB Informatik� Technische Universit�at Berlin� Berlin� Germany�
�
��

�Sch�
� Manfred Schmidt�Schau� Subsumption in KL�ONE is undecidable In
Ronald J Brachman� Hector J Levesque� and Ray Reiter� editors� Proceed�
ings of the First International Conference on the Principles of Knowledge
Representation and Reasoning �KR����� pages ���&��� Morgan Kaufmann�
Los Altos� �
�

�Sch
�� Klaus Schild A correspondence theory for terminological logics� Prelimi�
nary report In Proceedings of the Twelth International Joint Conference on
Arti�cial Intelligence �IJCAI����� pages ���&���� Sydney� �

�

�SIG
�� SIGART Bulletin Special issue on implemented knowledge representation and
reasoning systems� �

�

�Smo��� Gert Smolka A feature logic with subsorts Technical Report ��� IWBS� IBM
Deutschland� PO Box �	 	� �	 D��			 Stuttgart �	� Germany� �
��

�Smu��� Raymond M Smullyan First Order Logic Springer�Verlag� Berlin� �
��

�SS
�� Manfred Schmidt�Schau� and Gert Smolka Attributive concept descriptions
with complements Arti�cial Intelligence� �������&��� �

�

�Woo��� William A Woods What!s in a link� Foundations for semantic networks In
D G Bobrow and A M Collins� editors� Representation and Understanding�
Studies in Cognitive Science� pages ��&�� Academic Press� �
�� Republished
in �BL���

�WS
�� William A Woods and James G Schmolze The KL�ONE family In F W
Lehmann� editor� Semantic Networks in Arti�cial Intelligence� pages ���&
��� Pergamon Press� �

� Published as a special issue of Computers �
Mathematics with Applications� Volume ��� Number �&

��

