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Abstract

Traditionally� the core of a Terminological Knowledge Representation System

�TKRS� consists of a TBox� where concepts are introduced� and an ABox�

where facts about individuals are stated in terms of concept memberships�
This design has a drawback because in most applications the TBox has to

meet two functions at a time� On the one hand�similarly to a database

schema�frame�like structures with type information are introduced through

primitive concepts and primitive roles	 on the other hand� views on the objects

in the knowledge base are provided through de
ned concepts�

We propose to account for this conceptual separation by partitioning the

TBox into two components for primitive and de
ned concepts� which we call

the schema and the view part� We envision the two parts to di�er with respect

to the language for concepts� the statements allowed� and the semantics�

We argue that this separation achieves more conceptual clarity about the

role of primitive and de
ned concepts and the semantics of terminological
cycles� Three case studies show the computational bene
ts to be gained from

the re
ned architecture�
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� Introduction

Research on terminological reasoning usually presupposes the following abstract ar�
chitecture of a knowledge representation system� which quite well re�ects the struc�
ture of implemented systems� There is a logical representation language that allows
for two kinds of statements� In the TBox� or terminology� concept descriptions are
introduced� and in the ABox� or world description� individuals are characterized
in terms of concept membership and role relationship� This abstract architecture
has been the basis for the design of systems� such as classic �Borgida� Brachman�
McGuinness� � Alperin Resnick� ������ back �Peltason� ������ loom �MacGre�
gor� ������ and kris �Baader � Hollunder� ������ the development of algorithms
�see� e�g�� Nebel� ����a�� and the investigation of the computational properties of
inferences �see� e�g�� Nebel� ����b� Donini� Lenzerini� Nardi� � Schaerf� ������

Given this setting� there are three parameters that characterize a terminological
system� �i� the language for concept descriptions� �ii� the form of the statements
allowed� and �iii� the semantics given to concepts and statements� Research tried to
improve systems by modifying these three parameters� But in all existing systems
and almost all theoretical studies language and semantics are supposed to be uniform
for all components��

The results of those studies were unsatisfactory in at least two respects� First� it
seems that tractable inferences are only possible for languages with little expressivity�
Second� no consensus has been reached about the semantics of terminological cycles�
although in applications the need to model cyclic dependencies between classes of
objects arises constantly �see� e�g�� MacGregor� ���
��

Based on experience with applications of terminological systems� we suggest
to re�ne the two�layered architecture consisting of TBox and ABox� Our goal is
twofold� On the one hand we want to achieve more conceptual clarity about the
role of primitive and de�ned concepts and the semantics of terminological cycles�
on the other hand� we want to improve the tradeo� between expressivity and worst�
case complexity� Since our changes are not primarily motivated by mathematical
considerations but by the way systems are used� we expect to come up with a more
practical system design�

In applications we found that the TBox has to meet two functions at a time�
One is to declare frame�like structures by introducing primitive concepts and roles�
together with type information like isa�relationships between concepts� or range
restrictions and number restrictions of roles� For example� suppose we want to
model a company environment� Then we may introduce the concept Employee with
slots lives�in of type City� works�for of type Department� salary of type Salary� and
boss of type Manager� The slots lives�in and salary have exactly one �ller� works�for
may have more than one �ller� The concept Manager is a specialization of Employee�

�In �Lenzerini � Schaerf� ����� a combination of a weak language for ABoxes and a strong
language for queries has been investigated�
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having a salary in HighSalary� Such declarations are similar to class declarations in
object�oriented systems� For this purpose� a simple language is su�cient� Cycles
occur naturally in modeling tasks� e�g�� the boss of an Employee is a Manager and
therefore also an Employee� These declarations have no de�nitional import� they
just restrict the set of possible interpretations�

The second function of a TBox is to de�ne new concepts in terms of primitive
ones by specifying necessary and su�cient conditions for concept membership� This
can be seen as de�ning abstractions or views on the objects in the knowledge base�
De�ned concepts are important for querying the knowledge base and as left�hand
sides of trigger rules� For this purpose we need more expressive languages� If cycles
occur in this part they must have de�nitional import�

As an outcome of our analysis we propose to split the TBox into two components�
one for declaring frame structures and one for de�ning views� By analogy to the
structure of databases we call the �rst component the schema and the second the
view part� We envision the two parts to di�er with respect to the language� the
form of statements� and the semantics of cycles�

The schema consists of a set of primitive concept introductions� formulated in
the schema language� and the view part consists of a set of concept de�nitions�
formulated in the view language� In general� the schema language will be less ex�
pressive than the view language� Since the role of statements in the schema is to
restrict the interpretations we admit� �rst order semantics�also called descriptive
semantics in this context �see Nebel� ������is adequate for cycles occurring in the
schema� For cycles in the view part� we propose to choose a semantics that de�nes
concepts uniquely� e�g�� least or greatest �xpoint semantics�

The purpose of this work is not to present the full��edged design of a new system�
but to explore the options that arise from the separation of the TBox into schema
and views� Among the bene�ts to be gained from this re�nement are the following
three� First� the new architecture has more parameters for improving systems� since
language� form of statements� and semantics can be speci�ed di�erently for schema
and views� So we found a combination of schema and view language that allows for
polynomial inference procedures whereas merging the two languages into one leads
to intractability� Second� we believe that one of the obstacles to a consensus about
the semantics of terminological cycles has been precisely the fact that no distinction
has been made between primitive and de�ned concepts� Moreover� intractability of
reasoning with cycles mostly refers to inferences with de�ned concepts� We proved
that reasoning with cycles is easier when only primitive concepts are considered�
Third� the re�ned architecture allows for more di�erentiated complexity measures�
as will be shown in the sequel�

In the following section we outline our re�ned architecture of a TKRS� which
comprises three parts� the schema� the view taxonomy� and the world description�
dealing with primitive concepts� de�ned concepts and assertions in traditional sys�
tems� respectively� In Section � we examine the e�ect of terminological cycles in

�



Construct Name Syntax Semantics

top � �I

bottom � �

singleton set fag faIg

intersection C uD CI �DI

union C tD CI �DI

complement �C �I n CI

universal quanti�cation �R�C fd� j �d� � �d�� d�� 	 RI 
 d� 	 CIg

existential quanti�cation �R�C fd� j �d� � �d�� d�� 	 RI � d� 	 CIg

existential agreement �Q
�
� R fd� j �d� � �d�� d�� 	 QI � �d�� d�� 	 RIg

number restrictions
� nR� fd� j �fd� j �d�� d�� 	 RIg  ng

�� nR� fd� j �fd� j �d�� d�� 	 RIg � ng

Table �� Syntax and semantics of concept forming constructs�

Construct Name Syntax Semantics

inverse role P�� f�d�� d�� j �d�� d�� 	 P Ig

role restriction �R�C� f�d�� d�� j �d�� d�� 	 RI � d� 	 CIg

role chain Q �R f�d�� d�� j �d� � �d�� d�� 	 QI � �d�� d�� 	 RIg

role conjunction Q uR f�d�� d�� j �d�� d�� 	 QI � �d�� d�� 	 RIg

self � f�d�� d�� j d� 	 �
Ig

Table 
� Syntax and semantics of role forming constructs�

our architecture and in Section �� schemas are considered in detail� In Section �� we
show by three case studies that adding a simple schema with cycles to existing sys�
tems does not increase the complexity of reasoning� Finally� conclusions are drawn
in Section ��

� The Re�ned Architecture

We start this section by a short reminder on concept languages� Then we discuss
the form of statements and their semantics in the di�erent components of a TKRS�
Finally� we specify the reasoning services provided by each component and introduce
di�erent complexity measures for analyzing them�

�



��� Concept Languages

In concept languages� complex concepts �ranged over by C� D� and complex roles
�ranged over by Q� R� can be built up from simpler ones using concept and role
forming constructs �see Tables � and 
 for a set of common constructs�� The ba�
sic syntactic symbols are �i� concept names� which are divided into schema names
�ranged over by A�B� and view names �ranged over by V �� �ii� role names �ranged
over by P �� and �iii� individual names �ranged over by a� b�� An interpretation
I � ��I � �I� consists of the domain �I and the interpretation function �I� which
maps every concept to a subset of �I � every role to a subset of �I ��I � and every
individual to an element of �I � We assume that di�erent individuals are mapped
to di�erent elements of �I � i�e�� aI �� bI for a �� b� This restriction is usually called
Unique Name Assumption �UNA�� Complex concepts and roles are interpreted ac�
cording to the semantics given in Tables � and 
� respectively �with �X we denote
the cardinality of the set X�� We call two concepts C and D equivalent �written
C � D�� i� CI � DI for every interpretation I� A subconcept of a concept C is a
substring of C that is itself a concept�

In our architecture� there are two di�erent concept languages in a TKRS� a
schema language for expressing schema statements and a view language for formu�
lating views and queries to the system� The schema language allows only for schema
names whereas the view language allows for both schema and view names� The view
and schema languages in the case studies will be de�ned by restricting the set of
concept and role forming constructs to a subset of those in Tables � and 
�

��� The Three Components

Now we describe the three parts of a TKRS� the schema� the view taxonomy and
the world description� We �rst focus our attention to the schema�

����� The Schema

The schema introduces concept and role names and states isa�relationships between
concepts and elementary type constraints for the roles� Figure � shows a part of the
concepts and roles that models the company environment� Concepts are represented
by ovals� �direct� isa relationships by dotted arrows and roles by normal arrows�

Formally� relationships between concepts and type constraints on roles are stated
by inclusion axioms having one of the forms�

A v D� P v A� � A��

where A� A�� A� are schema names� P is a role name� and D is a concept of the
schema language� Intuitively� the �rst axiom� called a concept inclusion� states that
all instances of A are also instances of D� The second axiom� called a role inclusion�
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Figure �� Concepts and roles in the company environment

Employee v ��  salary�
�� v ��  lives�in�

Manager v Employee
�� v �salary�HighSalary

Researcher v Employee
�� v �works�for�ResearchDept
�� v ��  has�degree�

ResearchDept v Department

Engineering v Subject

HighSalary v Salary

salary v Employee � Salary

boss v Employee �Manager

works�for v Employee � Department

lives�in v Employee � City

has�degree v Researcher� Subject

situated v Department� City

Figure 
� Schema axioms for the company environment

states that the role P has domain A� and codomain A�� A schema S consists of
a �nite set of inclusion axioms� An interpretation I satis�es an axiom A v D if
AI � DI� and it satis�es P v A� � A� if P

I � AI
� � AI

� � The interpretation I is
a model of the schema S if it satis�es all axioms in S� Given a schema S and two
concepts C� D� we say that C is S�satis�able if there is a model I of S such that
CI �� �� and we say that C is S�subsumed by D� written C vS D or S j� C v D� if
CI � DI for every model I of S�

In Figure 
 we give the schema axioms for the company example of Figure ��
The fact that the role salary has the domain Employee and the codomain Salary is
stated by the axiom salary v Employee � Salary� The restriction that an Employee

must have exactly one salary is expressed by the two axioms Employee v � � salary�
and Employee v �� � salary��� The fact that every Manager is an Employee leads

�Two axioms of the form A v �� � P � and A v �� � P � are abbreviated by A v �	 � P ��

�



to the axiom Manager v Employee� and that a Manager must have a HighSalary to
Manager v �salary�HighSalary��

Inclusion axioms impose only necessary conditions for being an instance of the
schema name on the left�hand side� For example� the axiom �Manager v Employee
declares that every manager is an employee� but does not give a su�cient condition
for being a manager��

A schema may contain cycles through inclusion axioms� So one may state
that the bosses of an employee are themselves employees� writing �Employee v
�boss�Employee� In general� existing systems �such as classic and kris� do not
allow for terminological cycles� which is a serious restriction� since cycles are ubiq�
uitous in domain models� One of the main issues related to cycles is to �x their
semantics� We argue that axioms in the schema have the role of narrowing down
the class of models we consider possible� Therefore� they should be interpreted under
so�called descriptive semantics� which takes all models into consideration for reason�
ing� Nebel ������ proposes two other kinds of semantics in the presence of cycles�
namely least �xpoint and greatest �xpoint semantics� which take into account only
models that in some sense are the least or greatest� respectively� We will discuss
this issue in more detail in Section ��

����� The View Taxonomy

The view part contains view de�nitions of the form

V
�
� C�

where V is a view name and C is a concept in the view language� Views provide
abstractions by de�ning new classes of objects in terms of other views and the
concept and role names introduced in the schema� We refer to �V

�
� C as the

de�nition of V � The distinction between schema and view names is crucial for our
architecture� It ensures the separation between schema and views�

A view taxonomy V is a �nite set of view de�nitions such that �i� for each view
name there is at most one de�nition� and �ii� each view name occurring on the right
hand side of a de�nition has a de�nition in V�

Di�erently from schema axioms� view de�nitions give necessary and su�cient
conditions� As an example of a view� using the inverse of boss� one can describe the
bosses of the employee Bill as the instances of �BillsBosses

�
� �boss���fBILLg�

An interpretation I satis�es the de�nition V
�
� C if V I � CI � and it is a model

for a view taxonomy V if I satis�es all de�nitions in V�

�The introduced syntax for de
ning a schema is well�suited for studying the theoretical prop�
erties of the new architecture� However� in a real system one would implement more user�friendly
languages as they are known from frame systems and object�oriented databases�

�It gives� though� a su�cient condition for being an employee If an individual is asserted to be
a Manager we can deduce that it is an Employee� too�
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Whether or not to allow cycles in view de�nitions is a delicate design decision�
Di�erently from the schema� the role of cycles in the view part is to state recursive
de�nitions� In this case� descriptive semantics is not adequate because it might not
determine uniquely the extension of de�ned concepts from the extension of the other
ones� We will discuss this problem in general in the section on terminological cycles�
In this paper however� we only deal with cycle�free view taxonomies� Therefore this
problem does not arise and descriptive semantics is adequate�

����� The World Description

A state of a�airs in the world is described by assertions of the form

a�C� aRb�

where C and R are concept and role descriptions in the view language� Intuitively�
an assertion a�C states that a is an instance of the concept C� and aRb states that
a is in relation with b through the role R� Assertions of the form a�A or aPb� where
A and P are names in the schema� resemble basic facts in a database� Assertions
involving view names and complex concepts are comparable to view updates�

A world description W is a �nite set of assertions� The semantics is as usual� an
interpretation I satis�es a�C if aI 	 AI and it satis�es aRb if �aI � bI� 	 RI� it is a
model of W if it satis�es every assertion in W�

Summarizing� a knowledge base is a triple  � hS�V�Wi� where S is a schema�
V a view taxonomy� and W a world description� An interpretation I is a model
of a knowledge base if it is a model of all three components� A knowledge base is
satis�able if there exists a model for it� The concept names that occur on the left�
hand side of a view de�nition are called de�ned concepts� the other ones are called
atomic concepts� All role names are atomic roles� since their are no role de�nitions�

��� Reasoning Services

For each component� there is a prototypical reasoning service to which the other
services can be reduced�

Schema Validation� Given a schema S� check whether there exists a model of S that
interprets every schema name as a nonempty set�

View Subsumption� Given a schema S� a view taxonomy V� and view names V� and
V�� check whether V

I
� � V I

� for every model I of S and V� This is written as
S�V j� V� v V� or as V� vS�V V��

Instance Checking � Given a knowledge base  � an individual a� and a view name
V � check whether aI 	 V I holds in every model I of  � This is written as
 j� a�V �

��



Schema validation supports the knowledge engineer by checking whether the skeleton
of his!her domain model is consistent� Instance checking is the basic operation in
querying a knowledge base� View subsumption helps in organizing and optimizing
queries �see e�g�� Buchheit� Jeusfeld� Nutt� � Staudt� ������ Note that the schema
S has to be taken into account in all three services and that the view taxonomy V is
relevant not only for view subsumption� but also for instance checking� In systems
that forbid cycles� one can get rid of S and V by expanding de�nitions �as shown in
Nebel� ����b�� This is not possible when S and!or V are cyclic�

��� Complexity Measures

The separation of the core of a TKRS into three components allows us to introduce
re�ned complexity measures for analyzing the di�culty of inferences�

The complexity of a problem is generally measured with respect to the size of the
whole input� However� with regard to our setting� three di�erent pieces of input are
given� namely the schema� the view taxonomy� and the world description� For this
reason� di�erent kinds of complexity measures may be de�ned� similarly to what has
been suggested in �Vardi� ���
� for queries over relational databases� We consider
the following measures �where jXj denotes the size of X��

Schema Complexity � the complexity as a function of jSj�

View Complexity � the complexity as a function of jVj�

World Description Complexity � the complexity as a function of jWj�

Combined Complexity � the complexity as a function of jSj " jVj" jWj�

The combined complexity takes into account the whole input� The other three
instead consider only a part of the input� so they are meaningful only when it is
reasonable to suppose that the size of the other parts is negligible� For instance� it is
sensible to analyze the schema complexity of view subsumption because usually the
schema is much bigger than the two views which are compared� Similarly� one might
be interested in the world description complexity of instance checking whenever one
can expect W to be much larger than the schema and the view part�

It is worth noticing that for every problem the combined complexity� taking into
account the whole input� is at least as high as the other three� For example� if
the complexity of a problem is O�jSj � jVj � jWj�� the combined complexity is cubic�
whereas the other ones are linear� Similarly� if the complexity of a given problem
is O�jSjjVj�� the combined complexity and the view complexity are exponential� the
schema complexity is polynomial� and the world description complexity is constant�

In this paper� we use combined complexity to compare the complexity of rea�
soning in our architecture with reasoning in the traditional one� Moreover� we use
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schema complexity to show how the presence of a large schema a�ects the complexity
of the reasoning services previously de�ned� View and world description complexity
have been investigated �under di�erent names� in �Nebel� ����b� Baader� ����� and
�Schaerf� ����� Donini et al�� ������ respectively�

For a general description of the complexity classes we use� see �Johnson� ������

� Terminological Cycles

Terminologies with cycles�so called �terminological cycles�have been investi�
gated by a number of researchers� There are two main issues related to termi�
nological cycles� The �rst is to �x the semantics and the second� based on this� to
come up with a proper inference procedure� In this section we discuss in detail the
problem of semantics� To this end� we �rst recall some de�nitions and then summa�
rize the previous work on this topic� Then we examine the di�erent possibilities of a
semantics for our formalism� It shows up that our choice� the descriptive semantics�
comes o� best� The problem of inferences and the in�uence of the di�erent kinds of
cycles to their complexity will be dealt with in Section � and ��

��� Semantics for Cycles

Intuitively� a set of inclusions or de�nitions is cyclic� if a concept name appearing
on the left�hand side also appears on the right�hand side� In the following� we will
formally de�ne when a terminology� schema or view taxonomy is cyclic� Then we
review various kinds of semantics for cycles� For the moment we suppose that a
schema consists only of concept inclusions� In Section � we will extend this to role
inclusions� There we will also distinguish between di�erent types of cycles and their
e�ects on the complexity of inferences for concrete schema languages�

Let T be a terminology consisting of concept inclusions and view de�nitions
where for each view name there is at most one de�nition� We de�ne the dependency
graph D�T � of T as follows� The nodes are the concept names in T � Let A�� A�

be two nodes� There is an edge from A� to A�� i� there is a concept inclusion or
a view de�nition with A� on its left�hand side and A� appearing on its right�hand
side� We say T is cyclic� if D�T � contains a cycle� and cycle�free otherwise� Let
 � hS�V�Wi be a knowledge base� We say S is cyclic� if D�S� contains a cycle�
We say� V is cyclic� if D�S � V� contains a cycle� Note that� since view names are
not allowed in the schema� D�S � V� contains a cycle if and only if D�V� contains
one�

To come up with a semantics for a terminology means to de�ne which of its
models should be considered for reasoning� This is a problem when cycles are
present since an interpretation of the atomic concepts might be extendible to a
model of the terminology in more than one way� Therefore� the de�ned concepts
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are not uniquely determined by the atomic ones� This is counterintuitive to the
idea of a �de�nition� So one has to restrict the models taken into account� Nebel
�����a� proposes three types of semantics for a terminology in the presence of cycles�
descriptive semantics� least �xpoint semantics �lfp�semantics�� and greatest �xpoint
semantics �gfp�semantics�� The descriptive semantics takes into account�as usual
�rst�order semantics�all models of a terminology� The lfp� and gfp�semantics take
into account only those models that are in some sense minimal or maximal� To
make this idea more precise� we need some de�nitions�

Let T be a set of concept de�nitions� T �� fAi
�
� Ci j i 	 ���ng� where each Ai

occurs only once as the left�hand side of a de�nition� i�e�� Ai �� Aj for i �� j� An
atomic interpretation J of T interprets only the atomic concepts and roles in T �
An atomic interpretation J can be extended to an interpretation of T by de�ning
the denotation of the Ai#s� Note that not every extension of J is a model of T �

Let J be an atomic interpretation of T with domain �� Let 
� denote the set of
all subsets of � and �
��n the n�fold Cartesian product of 
�� We de�ne a mapping
TJ � �


��n 
 �
��n by

TJ � �O� �� �C
I
� � � � � � C

I
n��

where �O �� �O�� � � � � On� and I is the extension of J de�ned by AI
i �� Oi for

i 	 ���n�

A �xpoint of TJ is an �O 	 �
��n such that TJ � �O� � �O� Obviously� the in�

terpretation de�ned by J and �O is a model of T if and only if �O is a �xpoint of
TJ �

A mapping T �D
 D on a complete lattice �D��� is called monotonic if a � b
implies T �a� � T �b� for all a� b 	 D� Every monotonic mapping on a complete
lattice has a �xpoint� Among the �xpoints there is a greatest �xpoint and a least
�xpoint �see e�g�� Lloyd� ����� Chapter �� Section ��� Let �� be the componentwise
subset ordering on �
��n� Since ��
��n��� is a complete lattice� every monotonic
mapping TJ has a greatest and a least �xpoint� There exist simple syntactic criteria
on terminologies which guarantee that� for a given T � all TJ are monotonic for all
J �see e�g�� Schild� ����b�� We say that a terminology T is monotonic if the TJ are
monotonic for all J �

For a set of concept de�nitions T the gfp�semantics takes into account only those
models of T that are the greatest �xpoint of some mapping TJ �gfp�models�� The
lfp�semantics takes into account only those models of T that are the least �xpoint
of some mapping TJ �lfp�models��

��� Previous Work

There exists a rich body of research on the semantics of terminological cycles and
on algorithms for reasoning in their presence�

In �Baader� ����� inferences with respect to the three types of semantics for
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the language FL�� containing concept conjunction and universal quanti�cation� are
characterized as decision problems for �nite automata� Baader argues that �as it
stands� the gfp�semantics comes o� best �see Baader� ����� page �
��� In �Nebel�
����� these characterizations are extended to the language T LN � which extends
FL� by number restrictions� Nebel argues that �the only semantics� which covers our
intuitions is the descriptive one �see Nebel� ����a� page ����� In both languages� the
presence of cycles increases the complexity of reasoning� For example� the complexity
of subsumption with respect to a terminology rises from NP�complete to PSPACE�
complete for lfp� and gfp�semantics�

Dionne� Mays� and Oles ����
� ����� base their approach to the semantics of
cycles on non�wellfounded set theory� They consider a limited language for which
they show that subsumption under their semantics is equivalent to subsumption
under gfp�semantics�

Reasoning with respect to descriptive semantics has been considered in �Baader�
B�urckert� Hollunder� Nutt� � Siekmann� ����� for the language ALC and in �Buch�
heit� Donini� � Schaerf� ����� for ALCNR� The language ALC extends FL� by
complements of concepts and ALCNR extends ALC by role conjunction and num�
ber restrictions�� ALCNR is the language of the system kris� For both ALC and
ALCNR subsumption checking with cyclic de�nitions is EXPTIME�hard� whereas
the problem is PSPACE�complete for cycle�free terminologies�

An approach based on the ��calculus was proposed independently by Schild
�����b� and De Giacomo and Lenzerini ������� Following this approach it is pos�
sible to specify locally in a terminology whether to apply lfp� or gfp�semantics to a
particular de�nition� This o�ers optimal �exibility but it leaves the burden of choice
to the user and not to the designer of the system�

Summarizing one can say that the presence of terminological cycles increases the
complexity of reasoning in the examined cases� No consensus has been reached as
to which semantics�lfp�� gfp�� or descriptive�should be preferred�

��� Inclusions versus De�nitions

In order to apply the di�erent kinds of semantics to our schema formalism and to
examine the consequences� we have to transform inclusions into de�nitions� since
�xpoint semantics is de�ned only for sets of de�nitions� Nebel �����a� proposes to
transform an inclusion A v C into a de�nition A

�
� $AuC where $A is a new concept

name� Schild �����b� proposes the transformation into A
�
� A u C� However� both

transformations are unsatisfactory or even unnecessary for schema inclusions as we
will show in the following�

Let S � fAi v Ci j i 	 ���ng be a set of inclusion axioms� Without loss of
generality� we suppose that each Ai occurs only once on the left�hand side� since

�See Section ��� for a formal de
nition of the two languages�
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inclusions A v D�� � � � � A v Dm can be replaced by the single inclusion A v D� u
� � �uDn� With $S �� fAi

�
� $AiuCi j i 	 ���ng we denote the transformation proposed

by Nebel� with Su �� fAi
�
� Ai u Ci j i 	 ���ng the one proposed by Schild� and

with S� �� fAi
�
� Ci j i 	 ���ng the one that replaces the inclusions by de�nitions�

Obviously� every model of $S� Su� or S� is also a model of S�

Now we consider in turn the di�erent combinations of lfp� and gfp�semantics
and the two transformations of Nebel and Schild� Taking lfp�semantics has for
both transformations the consequence that naturally arising models are omitted�
Obviously� an lfp�model of Su interprets each Ai as the empty set� independently
of the interpretation of the Ci� In order to examine the transformation $S� we
consider an example� Let S be the schema S � fA v �P �Ag� The lfp�models of
$S � fA

�
� $A u �P �Ag can be characterized in terms of P �chains� A P �chain is a

sequence of objects where each is a P ��ller of its predecessor� An lfp�model of $S
interprets A as all the instances of $A for which all the objects reachable by a P �chain
are again in $A and from which no in�nite P �chain is issuing �see Baader� ������ This
means that models containing a cyclic P �chain are omitted� For example� with the
schema S � fEmployee v �is�deputy�of�Employeeg and the world description where
JOE is�deputy�of MARY andMARY is�deputy�of JOE� with the lfp�semantics� JOE and
MARY cannot be Employees� This shows that the approach of taking lfp�semantics
is not acceptable�

Before we consider the combinations of gfp�semantics with the two transforma�
tions� we have to introduce some notations� Let T �D 
 D be a mapping on a
complete lattice �D���� With gfp�T � we denote the greatest �xpoint of T � Let X
be a subset of D� With lubX we denote the least upper bound of X� The next
result is a weak form of the Proposition ��� in �Lloyd� ������

Proposition ��� Let T �D 
 D be a monotonic mapping on the complete lattice
�D���� Then gfp�T � � lubfx j x � T �x�g�

The following proposition� due to Schild �����a� shows that for a large class of
schemas� Su and S� are equivalent under gfp�semantics�

Proposition ��� Let S be a set of inclusion axioms� Suppose that Su and S� are
monotonic� Then an interpretation I is a gfp�model of Su i� I is a gfp�model of
S��

Proof� Let I � ��� �I� be an interpretation and J the corresponding atomic inter�
pretation� i�e�� the restriction of I to the atomic concepts and roles of S� Remember
that ��
��n��� is a complete lattice� With �CI we denote the vector �CI

� � � � � � C
I
n �

and with �� the componentwise intersection on �
��n� Then the following holds�

gfp�SuJ � � lubf �O j �O � SuJ � �O�g ���

� lubf �O j �O � �O � �CIg �
�

��



� lubf �O j �O � �CIg ���

� lubf �O j �O � S�
J � �O�g ���

� gfp�S�
J � ���

Equations � and � follow from Proposition ���� 
 and � by de�nition of the mappings
SuJ and S

�
J � respectively� and � is based on a well known result from set theory� i�e��

A � B if and only if A � A �B�

As a consequence of the preceding proposition� taking the transformation of
Schild together with gfp�semantics forces all schema concepts with the same frame�
like structure to be identical� For example� if the schema is S � fCity v �name�String�
Employee v �name�Stringg� cities and employees would be equivalent under gfp�
semantics�

Next we consider the transformation $S� We show that the descriptive models
of S and the gfp�models of $S correspond to each other in the sense that ��� every
gfp�model of $S is a descriptive model of S and �
� every descriptive model of S can
be turned into a gfp�model of $S by choosing the denotation of the additional atomic
concepts $Ai in a suitable manner� The �rst point is obvious� To see the second
point� for an interpretation I of S let $I denote the interpretation of $S de�ned by
A

	I �� AI and P
	I �� P I for every concept name A and role name P appearing in S

and $Ai

	I
�� AI

i for i 	 ���n� Then the following holds�

Proposition ��� Let I be a model of S� Then $I is a gfp�model of $S�

Proof� Let $J denote the atomic interpretation corresponding to $I� We �rst show
that �A

	I
� � � � � � A

	I
n� is a �xpoint of $S 	J � To this end we have to show that A

	I
i �

� $Ai u Ci�
	I for i 	 ���n� By de�nition of $I this is equivalent to AI

i � AI
i � CI

i for
i 	 ���n� The inclusions AI

i � AI
i �C

I
i hold trivially� For the inclusions A

I
i � AI

i �C
I
i

it remains to show that AI
i � CI

i for i 	 ���n� But this follows from the fact that I
is a model of S � fAi v Ci j i 	 ���ng�

In order to see that $I is a gfp�model observe that for every �xpoint model I�

extending $J it holds that AI�

i � $A
	J
i � CI�

and therefore AI�

i � $A
	J
i � But by

de�nition of $I we have $A
	J
i � $A

	I
i � AI

i � A
	I
i � That is� A

I�

i � A
	I
i � Hence� I

� is a
smaller �xpoint than $I�

Hence taking the transformation of Nebel has the consequence that descriptive
semantics and gfp�semantics coincide� i�e�� every conclusion with respect to descrip�
tive semantics is also a conclusion with respect to gfp�semantics and vice versa� But
this means that making that transformation and then providing a mechanism for
reasoning with respect to gfp�semantics is just a detour of reasoning with respect to
descriptive semantics�

Summarizing one can say that adopting lfp� or gfp�semantics for our schema for�
malism leads either to unacceptable results or is equivalent to descriptive semantics�
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This gives additional evidence for our choice to take descriptive semantics for the
schema�

��� Schema Cycles versus View Cycles

We feel that much of the confusion about the semantics of terminological cycles and
many computational problems stem from the mixing of inclusions and de�nitions�
Therefore we propose to make a distinction between the schema� containing only
inclusions� and the view taxonomy containing only de�nitions� These two parts also
di�er with respect to the concept language and the type of semantics� The axioms in
the schema have the role of narrowing down the class of models we consider possible�
Therefore� they should be interpreted under descriptive semantics� Also the results
presented in this section support this choice�

Di�erently from the schema� the role of cycles in the view part is to state recur�
sive de�nitions� For example� if we want to describe the group of individuals that
are above Bill in the hierarchy of bosses we can use the de�nitions �BillsBosses

�
�

�boss���fBILLg and �BillsSuperBosses
�
� BillsBosses t �boss���BillsSuperBosses�

But as argued before� in general this does not yield a de�nition if we assume de�
scriptive semantics� For a �xed interpretation of BILL and the role subordinate there
may be several ways to interpret BillsSuperBosses in such a way that the above
equality holds� In this example� we only obtain the intended meaning if we assume
lfp�semantics� Unfortunately� algorithms for subsumption of views under such se�
mantics are known only for fragments of the concept language de�ned in Tables �
and 
�

In this paper� we only deal with cycle�free view taxonomies� In this case all the
three types of semantics coincide�

� Schemas

The schema introduces the concepts and roles of the domain to be modeled and
describes their relationships� In this section we �rst introduce the concept language
SL� In SL� we can express the statements most frequent occurring in the declaration
of primitive concepts in terminological systems and in the static parts of object�
oriented database schemas� Then we investigate two extensions of SL� the language
SLdis� where one can state that two classes are disjoint� and SLinv� which allows for
statements about inverse attributes� We show that reasoning about SL�schemas is
easy� while it is hard for the two extensions� The language SL will also be used in
Section � as the schema language in our case studies�
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��� SL�schemas

A schema does not contain de�nitions� but imposes only necessary conditions on
concepts and roles� which are expressed by inclusion axioms�

Basic schema information can be captured if we choose the concept language
SL� introduced in �Buchheit et al�� ������ which is de�ned by the syntax rule

D �
 A j �P �A j � � P � j �� � P ��

As shown in Section 
� by such schemas we can express elementary type information
like domain and codomain of roles� inclusion relationships� and restrictions of the
codomain of a role due to restrictions of its domain� Moreover� we can specify a role
as necessary �at least one value� or single valued �at most one value�� An SL�schema
is a set of inclusion axioms where all concepts are from SL�

The basic reasoning task for schemas is to determine validity� For SL�schemas�
this is trivial�

Proposition ��� Every SL�schema is valid�

Proof� For a given SL�schema S we construct an interpretation I � ��I � �I� as
follows� Let �I be the set of individual names in our language �we assume that
there is at least one�� For any concept name A� role name P and individual a we
de�ne AI �� �I � P I �� f�a� a� j a 	 �Ig� and aI �� a� It is easy to check that I
satis�es every axiom in S and that AI �� � for every concept name A�

It is also interesting to determine the subsumption relations between schema
names that are entailed by a schema� An SL�schema may entail non�obvious sub�
sumptions� For example� from the schema

fsalary v Person� Salary� Employee v � � salary�g

it follows that every employee is a person� We will call a schema S isa�complete if all
implicit subsumption relations of this kind also appear explicitly� i�e�� if S contains
the axiom A� v A� whenever there are in S axioms P v A��B and A� v � �P ��

General Assumption� In the rest of the section we assume that all schemas are
isa�complete�

For a schema S� we write A �S B if there are schema names A � A�� A� � � � � An �
B such that S contains the axioms Ai�� v Ai for i 	 ���n� In other words� ��S is
the transitive� re�exive closure of the explicit subsumption statements in S�

Proposition ��� Let S be an SL�schema and A� B be schema names� Then A vS

B if and only if A �S B�

Proof� This is a consequence of Proposition ���� on page 
��

We conclude that subsumption of schema names w�r�t� an SL�schema can be
computed in polynomial time�
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��� Schemas with Disjointness Axioms

In many modeling tasks one would like to state that certain classes are disjoint�
Considering the company environment in Figure 
� one might want to require em�
ployees� cities� departments etc� not to have common instances� This can be achieved
by disjointness axioms of the form

A v �B�

The schema language obtained from SL by adding negation of concept names �B
is called SLdis�

In contrast to SL� not every SLdis�schema is valid� We say that a schema S is
locally valid if every schema name is interpreted as a nonempty set by some model
of S� The following proposition says that validity of SLdis�schemas can be decided
by considering one concept at a time�

Proposition ��� An SLdis�schema is valid if and only if it is locally valid�

Proof� �See Appendix�

����� Validity of SLdis�schemas is co�NP�hard

We show that deciding the validity of SLdis�schemas is co�NP�hard� The proof
consists in a reduction of the satis�ability problem for concepts of the language
ALE �see Schmidt�Schau% � Smolka� ������ which is de�ned by the syntax rule

C�C � �
 � j � j A j �A j C u C � j �P �C j �P �C�

In �Donini� Hollunder� Lenzerini� Spaccamela� Nardi� � Nutt� ���
� it has been
shown that deciding satis�ability of ALE�concepts is co�NP�complete� The intuitive
reason for this result is that for an unsatis�able concept there always exists an
unsatis�ability proof of polynomial length� However� the interaction of universal
and existential quanti�ers may generate an exponential number of Skolem constants�
which results in an exponential number of deductions that have to be considered
during the search for a proof�

The proof in �Donini et al�� ���
� reveals� more speci�cally� that satis�ability
is still co�NP�complete for restricted ALE�concepts C� which satisfy the following
properties�

�� only one role symbol occurs in C�


� no concept name other than � and � occurs in C�

�� there is exactly one occurrence of � in C�
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�� every proper subconcept of C distinct from � is satis�able�

A subconcept is proper if it is a proper substring� The condition that no proper
subconcept other than � is unsatis�able implies that a restricted concept has no
subconcept of the form �P �� or � uD�

Our proof consists in associating to every restricted ALE�concept C an SLdis�
schema SC such that SC is valid if and only if C is satis�able�

Construction ��� Let C be a restricted ALE�concept whose only role symbol is
Q� Without loss of generality� we assume that C �� �� The assumptions imply that
C has exactly one subconcept of the form �Q��� We choose for each subconcept
D �� � of C a concept name AD and for every subconcept D � �Q�D� a role symbol
PD� Let PC be the set of all such role symbols� Let A
� A� be two additional
concept names� For every subconcept D of C we enter the following axioms into the
schema SC �

�� AD v AD� � AD v AD�� � if D � D� uD���


� AD v � � PD�� AD v �PD�AD�� if D � �Q�D��

�� AD v �P �AD� for all P 	 PC � if D � �Q�D� with D� �� ��

�� AD v �P �A
� AD v �P �A�� for all P 	 PC � and A

 v �A� if D � �Q���

The idea underlying our reduction is to �unfold the concept C into a set of ax�
ioms� In this process� conceptually the role Q is imitated by the union of all P 	 PC �
universally quanti�ed subconcepts of C are translated into universal quanti�cation
over all roles P 	 PC � and existentially quanti�ed subconcepts D are translated into
an existential quanti�cation over the role PD� Thus� the reduction shows that� as
in reasoning about ALE�concepts� the interplay between universal and existential
quanti�ers makes inferences about SLdis�schemas di�cult�

Lemma ��� Let C be a restricted ALE�concept� Then SC is valid if and only if C
is satis�able�

Proof� �See Appendix�

Theorem ��
 Validity of SLdis�schemas is co�NP�hard�
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����� An Algorithm for Reasoning about SLdis�schemas

Next we describe an algorithm for deciding the local validity of an SLdis�schema S�
Actually� it is a method to check whether a �nite conjunction of schema names is
S�satis�able� From it we can derive as an upper complexity bound that validity can
be decided with polynomial space for arbitrary schemas�

Our method consists in constructing for every schema S a labeled directed graph
GS such that the validity of S can be decided by traversing GS � The size of GS is
exponential in the size of S� and the portion of GS to be explored might also be
exponential in the size of S� We obtain our PSPACE result by keeping only a small
portion of GS in memory at a time�

Let P be a role symbol� We say that P is necessary on A if there is an A� with
A �S A� and A� v � � P � 	 S� If P is necessary on A then in any model of S
every instance of A has a P ��ller�

We say that S contains a P �transition from A to B �written A
P
�
SB� if there

is an A� with A �S A� and A� v �P �B 	 S or if there is a role inclusion P v
A���B 	 S� Note that if P is necessary on A then� since S is isa�complete� it holds
that A �S A

��� If there is a P �transition from A to B� then in any model of S every
P ��ller of an instance of A is an instance of B�

If C is a set of concept names occurring in S we de�ne the range of P on C as
the set

range�P� C� �� fB j A
P
�
SB for some A 	 Cg�

Construction ��� For an SLdis�schema S the schema graph GS is de�ned as fol�
lows�

� every set C of concept names occurring in S is a node of GS �

� there is an edge with label P from C to C � if

 P is necessary on A for some A 	 C� and

 C � � range�P� C��

A node C is a con	ict node if there are A� B 	 C such that A� v �B� 	 S for some
A�� B� with A �S A

� and B �S B
��

Intuitively� a node C � fA�� � � � � Amg represents the assumption that A�� � � � � Am

have a common instance� A con�ict node stands for an assumption that contradicts
some disjointness axiom in S� If there is an edge with label P from C to C � �
fB�� � � � � Bng� then every common instance of A�� � � � � Am has a P ��ller �because P
is necessary on some Ai�� which is a common instance of B�� � � � � Bn �because C � is
the range of P on C�� The set C � might be the empty set� But then there is no edge
going out of C �� since a role P can be necessary only on concepts� The graph GS will







be used to check whether the assumption that A�� � � � � Am have a common instance
leads to a contradiction�

Lemma ��� Let S be an SLdis�schema and C � fA�� � � � � Amg� Then A� u � � �uAm

is S�unsatis�able if and only if there is no path in GS from C to a con	ict node�

Proof� �See Appendix�

By Lemma ���� A� u � � �uAm is not S�satis�able if and only if there is a path in
GS from C � fA�� � � � � Amg to some con�ict node C �� Such a path can be detected
nondeterministically as follows� for a given node we construct a sequence of successor
nodes until we have reached a con�ict node� A successor node can be computed if
the current node and the schema are known� Both can be stored using no more than
polynomial space� Thus� there exists a nondeterministic polynomial space algorithm�
By Savitch#s Theorem �see Hopcroft � Ullman� ������ it can be transformed into a
deterministic polynomial space algorithm� This proves the following theorem�

Theorem ��	 There is a PSPACE algorithm that decides for an SLdis�schema S
and schema names A�� � � � � Am whether the conjunction A�u� � �uAm is S�satis�able�

Combining Theorem ��� with the preceding hardness result leads to the following
complexity bounds�

Corollary ���� The validity problem for SLdis�schemas is in PSPACE and co�NP�
hard�

����� Cycles in SLdis�Schemas

In Section � we introduced a general notion of terminological cycles for arbitrary
schemas without role inclusions� In this section we re�ne this notion for SLdis�
schemas and adopt it also to role inclusions� Then we identify a class of cycles
that increases the complexity of reasoning about SLdis�schemas� To this end� we
extend the dependency graph in two directions� First� we add edges coming from
role inclusions and second� we mark the edges in order to classify the cycles�

Role inclusions may give rise to terminological cycles� To see this� note that
an axiom of the form P v A� � A� is equivalent to the two axioms � � P � v
A��� v �P �A��

� Thus� a role inclusion P v A��A� leads to two kinds of additional
edges� There is an edge from A to A� for every concept name A� since A v � and
� v �P �A� hold� There is also an edge from A to A� for every axiom A v � � P ��
since � � P � v A� holds�

�Two sets of axioms are equivalent if they have the same models� An interpretation I satis
es
an inclusion C v D if CI � DI �
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We want to distinguish between di�erent classes of cycles and clarify their in�
�uence on the complexity of inferences� Some cycles are computationally harmless�
For example� the schema S � fA� v A�� A� v A�g is cyclic� but in every model of S�
A� and A� denote the same set� One can get rid of say A� while keeping essentially
the same meaning� We extend the dependency graph de�nition by using labeled
edges� The label indicates the kind of axiom the edge comes from�

Let S be an SLdis�schema� We rede�ne the dependency graph D�S� of S as
follows� The nodes are the concept names in S� Let A�� A� be two nodes� There is

� an isa�edge from A� to A� if there is an axiom A� v A� in S�

� a some�edge from A� to A� if there are axioms A� v � �P � and P v A��A�

in S�

� an all�edge from A� to A� if there is an axiom A� v �P �A� in S or if there is
an axiom P v A� A� in S�

� a neg�edge from A� to A� if there is an axiom A� v �A� in S�

Since schemas are assumed to be isa�complete� there is always an isa�edge from
A� to A� if there is a some�edge from A� to A�� We say S is cyclic� if D�S� contains
a cycle� and cycle�free otherwise� An all�cycle is a cycle which contains at least one
all�edge and no neg�edge� A schema S is all�cycle�free� if D�S� contains no all�cycle�

So the all�cycle�free schemas are a subset of all schemas and the cycle�free
schemas are a subset of the all�cycle�free schemas� Now we want to determine
the complexity of reasoning for these subclasses�

Notice that the schema built by Construction ��� is always cycle�free� This leads
to the following lower bound for validity checking�

Theorem ���� Validity of cycle�free SLdis�schemas is co�NP�hard�

Now we turn to the upper bound� First notice the correspondence between
all�cycles and cyclic chains of P �transitions�

Proposition ���� A schema S contains an all�cycle i� there is a sequence of tran�

sitions A�
P��
SA�� � � � � Ak

Pk�
SA��

Thus� if C�� C�� � � � � Cn is a path in the schema graph GS of an all�cycle�free schema
S� then any two distinct sets Ci� Cj on the path are disjoint� Therefore� the length
of paths in GS is bounded linearly by the number of names occurring in S� Thus�
the nondeterministic algorithm of Section ��
�
 that follows a path issuing from
fA�� � � � � Amg until it reaches a con�ict node can be run in polynomial time� This
gives the following result�
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Theorem ���� Let S be an all�cycle�free SLdis�schema� Then deciding whether a
conjunction A� u � � � u Am of schema names is S�satis�able can be done in nonde�
terministic polynomial time�

Combining this theorem with the hardness result of Theorem ��� leads to the
following complexity bound�

Corollary ���� The validity problem for all�cycle�free SLdis�schemas is co�NP�
complete�

����� Subsumption in SLdis

Deciding subsumption of schema names with respect to an SLdis�schema S cannot
be easier than checking satis�ability� A� u � � � u Am is S�unsatis�able i� for any
name B not occurring in S we have A� u � � �uAm vS B� The following proposition
shows that the di�culty of subsumption checking stems solely from the di�culty of
checking satis�ability and that for satis�able concepts S�subsumption is captured
completely by the relation ��S�

Proposition ���� Let S be an SLdis�schema and A� A�� � � � � Am� be schema names�
Suppose that A� u � � �uAm is S�satis�able� Then A� u � � �uAm vS A if and only if
there is an Ai such that Ai �S A�

Proof� Obviously� if Ai �S A� then Ai vS A and thus A� u � � � u Am vS A�

If A� u � � � u Am is S�satis�able� then the interpretation I constructed in the
proof of Lemma ��� is a model of S with C �� fA�� � � � � Amg 	 AI

� � � � � � AI
m� If

there is no Ai with Ai �S A� then C �	 AI � Hence� A� u � � �uAm is not S�subsumed
by A�

����� Dichotomic Schemas

We now investigate a restricted class of SLdis�schemas that allow for polynomial
time reasoning� We facilitate our presentation by assuming that schemas come in a
normal form�

A schema S is normal if for every P occurring in S we have�

� S contains exactly one axiom of the form P v A�B�

� if A� v � � P � 	 S� A� v �� �P � 	 S� or A� v �P �B� 	 S� then A� �S A
and B� �S B�
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In normal schemas� the domain and codomain of a role P have a unique name
in the schema� We denote them as dom�P � and cod�P �� respectively� Moreover�
statements about P only involve concepts that are S�subsumed by the domain or
codomain of P �

A normal SLdis�schema S is dichotomic if for every role P we have that S
contains at most one axiom of the form A v � � P �� and if so� then A � dom�P ��
Dichotomic schemas owe their name to the fact that a role is either necessary on its
entire domain or it is not necessary for any concept� Thus� in such a schema� the
interaction between universal and existential quanti�cation over roles is limited�

Practical schemas are mostly normal and often also dichotomic� For example�
schemas of object�oriented databases usually enforce implicitly this property by
distinguishing between set�valued and other attributes� For a set�valued attribute�
the set of �llers may be empty� while other attributes always have exactly one �ller�
The latter correspond to necessary� the former to non�necessary roles�

We will show that for dichotomic schemas validity can be decided in polynomial
time� For any dichotomic schema S we construct a directed graph DS such that it
su�ces to inspect DS in order to decide the satis�ability of concepts� In contrast to
GS � the size of DS is polynomial in the size of S�

Construction ���
 For every SLdis�schema S the dichotomic schema graph DS is
de�ned as follows�

� every nonempty �nite set C of concept names with jCj � 
 is a node of DS �

� there is an edge with label P from fA�Bg to fA�� B�g if

 P is necessary on dom�P �� and

 A
P
�
SB and A� P

�
SB
��

A node fA�Bg is a con	ict node if there are A�� B� with A �S A�� B �S B� such
that A� v �B� 	 S�

The intuition underlying DS is similar to the one that led to GS � For arbitrary
SLdis�schemas� however� we had to take into account arbitrarily big sets of schema
names� while for dichotomic schemas we can concentrate on sets with at most two
elements�

Lemma ���� Let S be a dichotomic schema and A�� � � � � Am be concept names� A
con	ict node in GS is reachable from fA�� � � � � Amg if and only if there are Ai� Aj

such that a con	ict node in DS is reachable from fAi� Ajg�

Proof� �See Appendix�
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Corollary ���� Let S be a dichotomic schema and A�� � � � � Am be concept names�
Then the following are equivalent


�� A� u � � � u Am is not S�satis�able�

� there are Ai� Aj such that Ai u Aj is not S�satis�able�

�� there are Ai� Aj such that a con	ict node in DS is reachable from fAi� Ajg�

Corollary ���	 For dichotomic schemas� satis�ability and subsumption of conjunc�
tions of concept names can be decided in polynomial time�

��� Schemas with Inverse Roles

Often� it would be convenient to make statements about inverses of roles in a schema�
For instance� let the role employs be a shorthand for works�for��� Then with the
axiom ResearchDept v �employs�Researcher� one can express that only researchers
are working for a research department�

As seen before� subsumption relations between names occurring in an SL�schema
S are obvious in the sense that A vS B i� A �S B �Proposition ��
�� while the
di�culty of subsumption w�r�t� SLdis�schemas stems only from the di�culty of sat�
is�ability checking �Proposition ������ However� if we allow for inverse roles in a
schema� this may give rise also to implicit subsumption relationships between satis�
�able concepts� as we illustrate by an example� Consider the following fragment of
the company schema�

S � f Researcher v � � works�for��

Researcher v �works�for�ResearchDept�

ResearchDept v �employs�Employeeg�

Although the schema is isa�complete and Researcher �S Employee does not hold�
it entails that Researcher is subsumed by Employee� Suppose that JOE is an arbi�
trary researcher� Then JOE works for some research department� say D���� Since
research departments only employ employees� every individual employed by D��� is
an employee� Hence� JOE is an employee�

Detecting such implicit subsumption relations might be complex� Let us call
SLinv the language obtained from SL by allowing for inverse roles� i�e�� SLinv con�
tains also concepts of the form �P���A� � � P��� and �� �P���� In this subsec�
tion� we prove that subsumption of concept names w�r�t� SLinv�schemas is NP�hard�
Moreover� we show that for SLinv�schemas there is a di�erence between reasoning
w�r�t� all models and reasoning w�r�t� all �nite models�
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����� Subsumption with respect to SLinv�schemas is NP�hard

We construct for every restricted ALE�concept C an SLinv�schema $SC containing
two concept names A and A� such that $SC j� A v A� if and only if C is unsatis�able�

To specify the construction we inductively de�ne a function �C�D� that asso�
ciates to each subconcept D of C the level at which D occurs in C� the concept C
itself occurs at depth �� if D � D� uD�� then �C�Di� �� �C�D�� if D � �R�D� or if
D � �R�D� then �C�D

�� �� �C�D�" �� The level gives us the number of quanti�ers
in the scope of which D is located�

We obtain $SC by modifying the construction of SC in ��
��� We do not need the
names A
� A�� but choose concept names A�� � � � � Ak� where k � �C���� Steps ���
to ��� remain exactly as they are for SC � However� instead of the axioms added in
step ���� we enter the following axioms into $SC �

��� AD v �P �Ak for all P 	 PC � if D � �Q���

��� Ak v �P���Ak��� � � � � A� v �P���A� for all P 	 PC �

To explain the underlying intuition� we need some de�nitions� If I � ��I � �I� is
an interpretation� we say that a sequence d�� � � � � dn of elements of �

I is a chain of
length n from d� to dn if there are roles P�� � � � � Pn 	 PC such that �di��� di� 	 P I

i

for i 	 ���n� We say that dn is reachable from d� if there is a chain from d� to dn�

In Section ��
��� for an interpretation I to be an SC�model� it is crucial that
elements of AI

D� D � �Q��� do not have P ��llers for any P 	 PC � Now� $SC is
de�ned in such a way that for I to be an $SC�model where AC is not interpreted as
a subset of A�� I has to satisfy two properties� �i� there is some element d 	 AI

C

�since otherwise AI
C � � is a subset of any set�� and �ii� no element d� 	 AI

D which
is reachable from d by a chain of length k � � has a P ��ller for any P 	 PC �since
otherwise the axioms in ���� and ���� force d to be an element of AI

� �� Thus� in both
cases it is important that elements of AI

D do not have any P ��llers�

Lemma ���� Let C be a restricted ALE�concept� Then $SC j� AC v A� if and only
if C is unsatis�able�

Proof� �See Appendix�

Theorem ���� Subsumption of concept names with respect to SLinv�schemas is
NP�hard�

Proof� The claim follows by the preceding lemma because unsatis�ability of re�
stricted ALE�concepts is NP�hard �see ��
����


�



����� Finite Model Reasoning

For SLdis�schemas� it does not make a di�erence if we de�ne satis�ability or sub�
sumption of concept names with respect to all interpretations or with respect to
�nite interpretations� i�e�� interpretations with �nite domains�

However� in an SLinv�schema S there may be concepts A� B such that AI � BI

for all �nite models of S� but not for all models� To see this� observe that S may
require every model to interpret A as a set of cardinality at least as great as the
cardinality of B� For example� consider the schema

S � f Manager v � � boss����

Manager v �boss���Employee�

Employee v �� � boss�g�

saying that every manager is the boss of at least one person� and that all persons
a manager is the boss of are employees� Moreover� every employee has at most one
boss� As a consequence� in any model one can map injectively every manager to some
employee� Thus� in any �nite model� the number of managers does not exceed the
number of employees� If we add the axiom Employee v Manager� then for any �nite
model I we have EmployeeI � ManagerI� This need not be true in in�nite models�
Consequently� in every �nite model I of S � �� S � fEmployee v Managerg we have
ManagerI � EmployeeI� which need not hold in an in�nite model� Reasoning about
schemas w�r�t� �nite models has been investigated in �Calvanese � Lenzerini� �����
Calvanese� Lenzerini� � Nardi� ������ We will not study �nite model reasoning in
this paper� since this requires di�erent techniques�

� Case Studies

In this section� we study some illustrative examples that show the advantages of the
architecture we propose� We extend three systems by the language SL for cyclic
schemas� The view languages are derived from three implemented systems described
in the literature� namely kris �Baader � Hollunder� ������ classic �Borgida et al��
����� and ConceptBase �Jarke� Gallersdoerfer� Jeusfeld� Staudt� � Eherer� ������

For the extended systems� we study the complexity of the reasoning services�
where� in particular� we obtain the following results�

� combined complexity is not increased by the presence of terminological cycles
in the schema�

� reasoning with respect to schema complexity is always tractable�

The second result can intuitively be interpreted as stating that in all cases the
complexity of inferences is due to the view language alone�
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In this section� we assume that the view taxonomy is cycle�free� We also assume
that no view names occur in the right�hand sides of view de�nitions or in the world
description� In fact� this can be achieved by iteratively substituting every view name
with its de�nition� which is possible because of our acyclicity assumption �see Nebel�
�����b� for a discussion of this substitution and its complexity�� In practice� this is
equivalent to assuming that the view taxonomy is empty� Therefore� from this point
on we do not take into account the view taxonomy� and we assume the knowledge
base  to be simply a pair hS�Wi�

The three systems stand for three di�erent design paradigms �see Baader and
Nutt� ����
��� Thus each case study emphasizes a di�erent aspect of the bene�ts
that can be gained from our proposal�

The system kris is built at DFKI and used in several applications as the knowl�
edge representation component �see e�g�� Wahlster� Andr&e� Finkler� Pro�tlich� and
Rist� �������� The designers wanted to provide complete reasoning for a language
which is so rich that no polynomial inference procedures are feasible �if P �� NP��
The concept language of kris is closed under propositional connectives and it pro�
vides universal and existential quanti�cation over roles� For this reason� subsump�
tion and instance checking are PSPACE�hard �Baader � Hollunder� ������ Since
kris also provides number restrictions on roles� it is a proper extension of SL�
Hence� the aspect in which our architecture goes beyond that of kris is that it
allows for cycles going through schema concepts� We show that� for this extension�
both view subsumption and instance checking remain in PSPACE� As a byproduct�
we give for the �rst time a proof that instance checking in kris �without cyclic
schemas� is in PSPACE�

The classic system has been developed at AT�T Bell Laboratories� where it
is applied in a number of projects �see e�g�� Wright� Weixelbaum� Vesonder� Brown�
Palmer� Berman� and Moore� �������� Its language has been designed with the
goal to be as expressive as possible while still admitting polynomial time inferences�
So it provides intersection of concepts but no union� universal but not existential
quanti�cation over roles� and number restrictions over roles but no intersection of
roles� since each of these combinations is known to make reasoning NP�hard �Donini�
Lenzerini� Nardi� � Nutt� ������ Similarly to kris� the concept language of classic
extends SL� so that the novelty of our approach is in the cycles in the schema� Here
we show that in the extended architecture view subsumption and instance checking
can be computed in polynomial time� As a special case we give a proof for the
polynomiality of classic that uses a technique di�erent from the one in �Borgida
� Patel�Schneider� ������

ConceptBase is a deductive object�oriented database system� which is under
development at the University of Aachen� In ConceptBase there is a distinction
between classes in the schema and classes that de�ne queries� The former correspond
to schema concepts and the latter to view concepts in our framework� Class descrip�
tions in ConceptBase consist of two parts� a structural part� where essentially
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V� � Researcher u �has�degree�Engineering
V� � Employee u �has�degree�Engineering

Figure �� ALCNR�Views

isa�relationships and restrictions on attributes are expressed� and a nonstructural
part where additional membership conditions can be expressed with �rst�order for�
mulas� The language in which the structural part of schema classes is speci�ed
coincides with SL� The view language we consider has been proposed in �Buchheit
et al�� ����� as an extension of the structural part of query classes� In this case
study the view language is not an extension of the schema language as in the previ�
ous cases� Instead� each of the two o�ers constructs that do not occur in the other�
The design is such that all inferences are polynomial while combining the constructs
in the schema and the view language would make reasoning intractable� Therefore�
this case study illustrates that with our architecture one can reach a better compro�
mise between expressivity and tractability than with the homogeneous traditional
one�

��� The Language of kris as View Language

The system kris provides as its basic language ALCNR� which is de�ned by the
following syntax rules�

C�D �
 A j � j � j C uD j C tD j �C j �R�C j �R�C j � nR� j �� nR�

R �
 P� u � � � u Pk

The language ALCNR� �rst introduced in �Hollunder� Nutt� � Schmidt�Schau%�
������ allows one to express intersection� union� and complement of concepts� uni�
versal and existential quanti�cation on roles� number restrictions and role conjunc�
tion� Figure � contains some examples of ALCNR�views� View V� denotes the
researchers only having degrees in engineering� View V� denotes the employees who
have a degree in engineering� Without any schema information there is no subsump�
tion relationship between V� and V�� But given the schema of Figure 
� ��� every
researcher is an employee� and �
� every researcher has some degree� Hence� view
V� is subsumed by V�� An ALCNR�knowledge base is a pair hS�Wi� where S is
an SL�schema and W is an ALCNR�world description� respectively� Throughout
Section ���� by knowledge base we always mean ALCNR�knowledge base�

We study the complexity of reasoning for both view subsumption C vS D and
instance checking hS�Wi j� a�D� where C�D are ALCNR�concepts� For the com�
plexity analysis� we assume that numbers in number restrictions are represented
with unary encoding �i�e�� a number n is represented as a string of n equal sym�
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bols�� Alternatively� the analysis holds also if numbers cannot exceed a constant
bound�

Reasoning in ALCNR�knowledge bases can be done using a calculus similar to
the tableaux calculus with equality in �rst�order logic� Schmidt�Schau% and Smolka
������ �rst used such a calculus for the language ALC which is a sublanguage of
ALCNR that allows neither to express number restrictions nor role conjunction� In
the next subsection we introduce the calculus for ALCNR� and in the following one
we study the complexity of reasoning by means of the calculus�

����� Completion Rules of the ALCNR�Calculus

Our calculus operates on knowledge bases� it starts from the given knowledge base�
called the initial knowledge base� and adds assertions to the world description by
suitable completion rules� Before describing how assertions are added� we need to
expand the syntax and the de�nitions in a suitable way�

We assume that there exists an alphabet of new individuals� which are denoted by
the letters x� y� z� and w� possibly with subscript� Individuals initially present in the
knowledge base are called old individuals� We use the term individual for old and new
individuals� and use s� t� u to denote individuals� Unlike the old individuals� which
are always interpreted as di�erent elements �recall the Unique Name Assumption
in Section 
���� two �or more� new individuals might be interpreted as the same
element� to enforce a di�erent interpretation for two individuals s and t� we add the
following new type of assertion in the world description�

s �
�
� t

Formally� let I be an interpretation� We say that I satis�es the assertion s �
�
� t if

sI �� tI � The de�nition of a model remains the same�

To make the interpretation of old and new individuals homogeneous� we drop the
UNA from the de�nition of interpretation of old individuals� and we assume that a
world description contains the assertion a �

�
� b for every pair a� b of old individuals

appearing in W�

The following proposition is an immediate consequence of the above de�nitions�

Proposition ��� Let C�D be ALCNR�concepts� let hS�Wi be an ALCNR�know�
ledge base� x a new individual and a an old one� Then


�� C vS D if and only if the knowledge base hS� fx�C u �Dgi is unsatis�able�

� hS�Wi j� a�D if and only if the knowledge base hS�W � fa��Dgi is unsatis�
�able�
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S� hS�Wi � hS� fsA� tBg �Wi

if �� sP t is in W � and
�� P v A�B is in S

S� hS�Wi � hS� fsPyg �Wi

if �� s�P �C is in W �
�� sA is in W �
�� A v �� � P � is in S� and
�� y is a new individual� and
�� there is no t such that sP t is in W

S� hS�Wi � hS� ftBg �Wi

if �� sA is in W �
�� sP t is in W � and
�� A v �P �B is in S

S� hS�Wi � hS� fsBg �Wi

if �� sA is in W � and
�� A v B is in S

S� hS�Wi � hS� fs �� �P �g �Wi

if �� sA is in W � and
�� A v �� �P � is in S

Figure �� The schema rules for ALCNR

Concepts are assumed to be in negation normal form� i�e�� the only complements
they contain are of the form �A� where A is a concept name� Arbitrary ALCNR�
concepts can be rewritten in linear time into equivalent concepts in negation normal
form �Donini et al�� ������

The ALCNR�calculus is described by a set of ALCNR�completion rules� which
are divided into two subsets� the schema rules and the view rules� If it is clear
from the context� we omit the pre�x ALCNR� Completion rules add assertions to
a world description W of a knowledge base hS�Wi until either a contradiction is
generated or the knowledge base is recognized to be satis�able�

The schema rules are presented in Figure �� A completion rule is said to be
applicable to a knowledge base  if  satis�es the conditions associated with the rule
and if  is altered when transformed according to the rule� The second requirement
is needed to ensure termination of our calculus� As an example� Rule S� is applicable
to hS�Wi if sP t is in W� P v A � B is in S� and if s�A and t�B are not both in
W�

Note that the schema rules treat the axioms of the form A v � � P � and
A v �P �C di�erently from the others� The corresponding rules �S
 and S�� do not
add the right�hand side of the axiom to W� but only the logical consequences of
the axiom� In this way� schema rules never add to a world description assertions
of the form s� �P �C or s� � � P �� this is done for termination and complexity
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V� hS�Wi � hS� fsC�� sC�g �Wi

if �� sC� u C� is in W

V� hS�Wi � hS� fsDg �Wi

if �� sC� t C� is in W �
�� neither sC� nor sC� is in W � and
�� D 	 C� or D 	 C�

V� hS�Wi � hS� ftCg �Wi

if �� s�R�C is in W � and
�� t is an R�successor of s

V� hS�Wi � hS� fsP�y� � � � � sPky� tCg �Wi

if �� s 	R�C is in W �
�� R 	 P� u � � � u Pk� and
�� y is a new individual�
�� there is no t such that t is an R�successor of s

in W and tC is in W

V� hS�Wi � hS� fsP�yi� � � � � sPkyi j i 
 ���ng � fyi �
�
	 yj j i� j 
 ���n� i �	 jg �Wi

if �� s �� nR� is in W �
�� R 	 P� u � � � u Pk� and
�� y�� � � � � yn are new individuals�
�� there do not exist n R�successors of s in W

V� hS�Wi � hS�W �y�t�i

if �� s �� nR� is in W �
�� s has more than n R�successors in W � and
�� y� t are two R�successors of s which are not separated

Figure �� The view rules for ALCNR

considerations �see Section ����
��

Before providing the view rules� we need some additional de�nitions� which are
related to considering individuals in a world description as nodes in a graph� and
constraints sP t as labeled arcs in this graph� Let W be a world description and
R � P� u � � � u Pk �k  �� be a role� We say that t is an R�successor of s in W if
sP�t� � � � � sPkt are inW� We say that t is a direct successor of s inW if for some role
R� the individual t is an R�successor of s� If W is clear from the context we simply
say that t is an R�successor or a direct successor of t� Moreover� we call successor
the transitive closure of the relation �direct successor�

We say that s and t are separated in W if the assertion s �
�
� t is in W�

Let W be a world description� x a new individual� and s an individual� with
W'x�s( we denote the world description obtained by replacing each occurrence of x
in W by s �observe that we never replace an old individual��

The view rules are presented in Figure �� We call the rules V
 and V� non�
deterministic rules� since they can be applied in di�erent ways to the same world
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description� All the other rules are called deterministic rules� Moreover� we call the
rules S
� V� and V� generating rules� since they introduce new individuals into the
world description� All other rules are called nongenerating�

If  � � are two ALCNR�knowledge bases� then  � is said to be directly derived
from  if it is obtained from  by the application of an ALCNR�completion rule�
and  � is said to be derived from  if it is obtained from  by a sequence of
applications� A knowledge base is complete if no completion rule applies to it� Any
complete knowledge base derived from  is called a completion of  �

We now prove some properties of the knowledge bases obtained by the completion
rules� It can be proved by induction that the �successor relation restricted to new
individuals forms a tree� More formally�

Proposition ��� In any knowledge base derived from an initial one by the comple�
tion rules� no new individual is a direct successor of two di�erent individuals�

It can be shown that both schema and view rules do not add unnecessary contra�
dictions� that is� starting from a satis�able knowledge base there is always a way of
applying the rules which leads to a satis�able knowledge base again �multiple ways
of applying rules are possible� since the rules V
 and V� are nondeterministic��

Theorem ��� �Invariance� Let  be an ALCNR�knowledge base�

�� Let  � be directly derived from  � If  � is satis�able then  is satis�able�

� Conversely� if  is satis�able and a rule is applicable to  � then there exists a
satis�able knowledge base  � directly derived from  using that rule�

The proof is mainly a rephrasing of the soundness of tableaux rules in �rst�order
logic� A similar theorem was proved in �Buchheit et al�� ����� with ALCNR as
a language for expressing schema axioms between concepts �i�e�� statements of the
form C v D�� The only kind of schema statements not considered in the cited paper
is P v A�B� whose corresponding rule is obviously sound�

We call clash a set of assertions of the following form�

� fs��g

� fs�A� s��Ag� where A is a concept name�

� fs� �� nR�g � fsP�ti� � � � � sPkti j i 	 ���n" �g
� fti �

�
� tj j i� j 	 ���n" �� i �� jg�

where R � P� u � � � u Pk�
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A clash is evidently an unsatis�able set of assertions� hence any world description
containing a clash is obviously unsatis�able� The last case represents the situation
in which it is asserted that an individual has at most n R�successors� and at the
same time it has more than n R�successors� none of which can be identi�ed with
another� because the successors are pairwise separated�

A knowledge base  � hS�Wi contains a clash ifW contains a clash� Whenever
a knowledge base  contains a clash� it is obviously unsatis�able� From Theo�
rem ���� we know that if  is satis�able then there exists a complete knowledge base
derived from  which contains no clash� We prove now that a complete clash�free
knowledge base is always satis�able� To this end� we de�ne the following particular
interpretation�

Given a complete knowledge base  � hS�Wi� we de�ne the canonical interpre�
tation I� as follows�

�I� �� fs j s is an individual in Wg � fug

sI� �� s

AI� �� fs j s�A is in Wg � fug

P I� �� f�s� t� j sP t is in Wg � f�u� u�g

� f�s� u� j there is no sP t in W� but for some A�
s�A is in W and A v � � P � is in Sg�

where u is a new individual not appearing in W� Note that the canonical inter�
pretation uses all the individuals of the knowledge base� plus the special individual
u which appears in the interpretation of every primitive concept and is related to
itself by every role P � The purpose of this special individual is to satisfy all axioms
A v � �P � for those individuals s such that s�A is inW� but having no P �successor
in W�

Proposition ��� A complete� clash�free ALCNR�knowledge base is satis�able�

Proof� �See Appendix�

The above theorem shows that if the calculus reaches a complete knowledge base
 without clashes� then  is satis�able� and hence also the initial knowledge base
�contained in its completion� is satis�able� However� to prove that completions are
actually reached one should prove that the calculus can be applied so as to terminate�
Instead of proving termination by itself� we prove the stronger result that there is
a way of applying completion rules such that they always terminate and use just
polynomial space�

����� Termination and Complexity of the ALCNR�Calculus

In this section we will show� that with SL as schema language and ALCNR as view
language� view subsumption and instance checking are
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� PSPACE�complete problems w�r�t� combined complexity and

� PTIME problems w�r�t� schema complexity�

In order to prove this� we have to provide the adequate machinery� The calculus
proposed in the previous section requires to compute all the completions of an initial
knowledge base  � Unfortunately� such completions may be of exponential size w�r�t�
the size of  � hence that nondeterministic calculus requires exponential space�

To obtain a polynomial�space calculus� it is therefore crucial not to keep an entire
complete world description in memory� but to store only small portions at a time�
We modify the previous completion rules� so that they build up only a portion of a
complete knowledge base and we call the modi�ed rules trace rules�

The trace rules consist of the rules presented above� but adding to the application
conditions of the generating rules S
� V�� V� the following further condition�

� For all assertions tP �z in W� either t is a predecessor of s or s � t

We label S
�� V��� V�� these modi�ed rules�

Let T be a knowledge base obtained from  by application of the trace rules�
We call T a trace of  if no trace rule applies to T �

A preliminary de�nition� Completion rules and trace rules are always applied to
a knowledge base hS�Wi because of the presence in W of a given assertion s�C� or
sP t �condition � of all rules�� We exploit this property to say that a rule is applied to
the assertion s�C� or applied to the individual s �instead of saying that it is applied
to the knowledge base hS�Wi��

The trace rules exhibit the following behavior� Given an individual s� if at least
one generating rule is applicable to s� all of s#s successors y�� � � � � yn are introduced�
Then� after nongenerating rules are applied to s� one new individual yi is �non�
deterministically� chosen� and all successors of yi are introduced� Unlike normal
completion rules� no successor is introduced for any individual di�erent from yi�
Then� one individual is chosen among the successors of yi� only its successors are
added to the world description� and so on�

The reason why we introduce all the successors of the �chosen individual is the
following� For every chosen individual s all direct successors of s must be present
simultaneously at some stage of the computation� since the number restrictions
force us to identify certain successors� This is important because� when identifying
individuals� the constraints imposed on them are combined� which may lead to
clashes that otherwise would not have occurred�

Trace rules for ALC were de�ned in �Schmidt�Schau% � Smolka� ������ and
were extended to more expressive languages in �Hollunder et al�� ����� Hollunder
� Nutt� ����� Donini et al�� ������ A polynomial�space algorithm that checks the
satis�ability of an ALCNR�concept C by generating all complete world descriptions
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derivable from an initial world description fx�Cg� while keeping only one trace in
memory at a time� was given in �Donini et al�� ������

We now adapt those previous results to the presence of a schema� The union of
two traces T� � hS�W�i� T� � hS�W�i is de�ned as T� � T� � hS�W� �W�i�

We call depth of a concept D� written depth�D�� the maximal sequence of nested
quanti�ers in D �including also number restrictions as quanti�ers�� More precisely�
depth�A� �� depth��� �� depth��� �� �� where A is a concept name� Furthermore�
depth� nR� �� depth�� nR� �� �� and depth��C� �� depth�C�� If D is of one
of the forms D � D� u D� or D � D� tD� then depth�D� �� max�depth�Di��� If
D � �R�D� or D � �R�D� then depth�D� �� depth�D�� " ��

The following proposition collects a number of properties that will be used in
the next proposition to state the complexity of view subsumption�

Proposition ��� Let C be an ALCNR�concept� x a new individual� and W �
fx�Cg the corresponding world description� let S be an SL�schema� and  � hS�Wi
the corresponding knowledge base� Then


�� For every chain of direct successors x� y�� � � � � yh in a knowledge base derived
from  � if yi�D is in W� and D is a subconcept of C then depth�D� �
depth�C�� i�

� For every chain of direct successors x� y�� � � � � yh in a knowledge base derived
from  � the length of the chain h is bounded by jCj �the size of C��

�� Let N be the maximal number of direct successors of an individual in a trace�
Then N is bounded by jCj�

�� The size of a trace issuing from  is polynomially bounded by jCj and linearly
bounded by jSj�

�� Every completion of  can be obtained as the union of �nitely many traces�

�� Suppose  � � hS�W �i is a complete knowledge base derived from  and T is
a �nite set of traces such that  �

S
T�T T � Then  � contains a clash if and

only if some T 	 T contains a clash�

Proof� �See Appendix�

Proposition ��
 Let S be an SL�schema� and C� D be ALCNR�concepts� Then


�� Checking C vS D can be done in polynomial space w�r�t� jSj� jCj� and jDj�

� Checking C vS D can be done in polynomial time w�r�t� jSj�
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Proof� Combining Proposition ��� with Point � of Proposition ���� one directly
proves that view subsumption can be checked in nondeterministic polynomial space
w�r�t� combined complexity� In fact� in order to check that hS� fx�C u �Dgi is
satis�able� one generates a clash�free completion keeping in memory only one trace
at a time� A deterministic check keeps in memory also the choice points for possible
backtracking� Since these points are as many as the assertions of the form s�C�tC�

and s� �� nR� �polynomially many in each trace�� the entire method is in PSPACE�
This proves Point � of Proposition ����

The result on schema complexity of view subsumption �Point 
 of Proposi�
tion ���� is proved in two steps�

First� we prove that both the number of traces in a completion of hS� fx�C u
�Dgi� and the number of completions depend only on jCj and jDj� Observe that
the number of traces in a completion depends on the number of applications of
generating rules� while the number of di�erent completions depends on the number
of choices of applications of nondeterministic rules� All these rules require �condition
� of all mentioned rules� the presence of assertions which are not added by schema
rules� except for an assertion of the form s� �� �P �� which can be introduced by
Rule �� However� this assertion leaves no choice to Rule V� but leads it to identify
all direct P �successors of s� Hence the presence of this assertion does not lead
to multiple completions� Moreover� the number of di�erent applications of rule
V� depends on the number of direct successors of an individual� Hence� both the
number of traces in a completion and the number of possible completions depend
on the number of individuals generated� Since the successor relation restricted to
new individuals forms a tree �see Proposition ��
�� the number of individuals can be
estimated by Nh� where N is its branching factor�the number of direct successors
of an individual�and h is its depth� From Points 
 and � in Proposition ���� both
h and N are bounded by jCj" jDj� which proves the claim�

Second� observe that� since the number of traces in a completion and the number
of completions depend only on jCj and jDj� schema complexity can be computed
from the maximal size of a single trace� This size is linear in jSj� as proved in Point �
of Proposition ���� Therefore� schema complexity is in PTIME� and more precisely
in O�jSj��

We now turn to instance checking� Traces developed so far deal only with satis�
�ability of concepts �and hence subsumption�� and not with instance checking�

The trace algorithm for subsumption of �Schmidt�Schau% � Smolka� ����� in
ALC was extended by �Baader � Hollunder� ����� to solve instance checking in
ALC�world descriptions� Following similar ideas �see also Donini et al�� �������� we
reformulate the trace calculus given above to instance checking�

A knowledge base is said to be a precompletion of another knowledge base  if
it is obtained from  by applying the completion rules only to old individuals� as
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far as possible� Intuitively� only properties of old individuals are made explicit in
precompletions�

Proposition ��� Every precompletion of a knowledge base  � hS�Wi has polyno�
mial size w�r�t�  � and the number of individuals in it does not depend on jSj�

Proof� �See Appendix�

Let hS�Wi be a precompletion and x a new individual in W� The projection of
W along x� denoted as Wx� is the world description formed by all assertions x�C
that are inW� In other words�Wx represents all the information about the concepts
which x is an instance of� according to W�

Recall that to perform instance checking one has to verify whether a knowledge
base  is unsatis�able �Proposition ����� The notions of precompletion and projec�
tion are useful to perform the latter task� In fact� one can examine each clash�free
precompletion  � � hS�W �i of  � extract the various world descriptionsW �

x� and in�
dependently check them for unsatis�ability� The correctness of this method follows
from the following propositions�

Proposition ��� A knowledge base  � hS�Wi is satis�able if and only if there
exists a precompletion  � � hS�W �i of  that is satis�able�

Proof� �See Appendix�

Intuitively� the above proposition proves that one can always build a clash�free
completion by �rst computing a precompletion� and then applying rules to new
individuals� The next proposition shows that rules can be applied to new individuals
independently for each individual x�

Proposition ��	 A precompletion  � � hS�W �i of  is satis�able if and only if it
is clash�free� and for each new individual x in W �� the knowledge base hS�W �

xi has
a clash�free completion�

Proof� �See Appendix�

Proposition ���� Let S be an SL�schema� W an ALCNR�world description� a
an individual� and D an ALCNR�concept� Then


�� Checking hS�Wi j� a�D can be done in polynomial space w�r�t� jSj� jWj� and
jDj�

� Checking hS�Wi j� a�D can be done in polynomial time w�r�t� jSj�

�Notice that this notion of precompletion is di�erent from the one given in �Donini et al�� ������
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Proof� It is now easy to prove Point � of Proposition ����� To check whether
hS�Wi j� a�D� compute �nondeterministically� a clash�free precompletion  � of
hS�W � fa��Dgi �this needs polynomial space by Proposition ����� then� for each
new individual x in  �� check whether there is a clash�free completion of hS�W �

xi
using the trace calculus developed for satis�ability and subsumption �again� this
needs polynomial space�� if the nondeterministic method fails� return true� otherwise
return false� The deterministic version just keeps track of all backtracking points in
applications of nondeterministic rules�

We now turn to the last point of Proposition ����� namely� PTIME schema
complexity of instance checking� Let  � hS�Wi be a knowledge base� We prove
the point in four steps�

Step � � The number of individuals in a precompletion does not depend on jSj� by
Proposition ���� Call this number I�

Step  � For each assertion of the form s�C�tC�� there are two di�erent applications
of rule V
 to the assertion� hence there are at most 
I di�erent applications� for
each concept C� t C� in W� Therefore� the total number of di�erent applications
of rule V
 is O�jWj � 
I�� which does not depend on jSj� Similarly� the number of
di�erent applications of rule V� to the assertion s� �� nR� is bounded by I and n
�by a binomial coe�cient�� and the total number of di�erent applications of rule V�
does not depend on jSj�

Step � � Since the number of possible precompletions depends only on the number
of di�erent applications of nondeterministic rules� such a number is O��� w�r�t� jSj�

Step � � The schema complexity of the entire method is the product of the following
factors�

� maximal number of precompletions �a constant w�r�t� jSj�

� time to compute a precompletion �linear in jSj from Proposition ����

� number of new individuals in a precompletion �I� a constant w�r�t� S��

� schema complexity of the trace calculus applied to hS�W �
xi �again� linear in

jSj�

Therefore� the schema complexity of instance checking is in O�jSj���

We conclude the section by summarizing and commenting the main result�

Theorem ���� With SL as schema language and ALCNR as view language� view
subsumption and instance checking are PSPACE�complete problems w�r�t� combined
complexity and PTIME problems w�r�t� schema complexity�
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Compare this result with the fact that using ALCNR also as the schema lan�
guage� combined complexity is EXPTIME�hard �Schild� ����a�� while subsumption
between ALCNR�concepts �without any schema� is already PSPACE�complete�
Hence� we can conclude that simple inclusion axioms with cycles can be added
to systems like kris without changing substantially the complexity of reasoning
services� whereas adding full cyclic de�nitions increases signi�cantly the complexity�

It is important to note that the results on schema complexity can be extended
to other languages �e�g�� ALC plus inverse roles�� In fact� the schema rules are valid
independently of the view rules and they can be applied a polynomial number of
times with respect to the size of the schema� still independently of the view rules�
The key point is that schema rules create new individuals only if an assertion of the
form x� �R�C is present� and schema rules themselves never add such assertions to
a world description� Hence� the number of applications of the schema rules is �xed
by the size of the knowledge base generated by the view rules and by the number of
assertions of the form x� �R�C the view rules can generate� This is a constant with
respect to the size of the schema �unless the view contains some constructors that
can trigger in�nite applications of the rules� like the transitive closure construct��

��� The Language of classic as View Language

The view language we study in this section is the concept language of the classic
system�� Here� we only consider the constructs that can be given a declarative se�
mantics while we ignore those which allow one to make use of the host programming
language�

The classic language has several constructs that are not contained in Tables �
and 
� First� there is the construct ONE�OF�a�� � � � � ak�� which intuitively stands
for the set of individuals a�� � � � � ak� Second� classic distinguishes two kinds of
roles� usual roles �denoted as P � and functional roles� called attributes �denoted as
F �� Both kinds of roles can be employed in expressions of the form FILLS�P� a�
and FILLS�F� a�� which intuitively describe the set of objects having the individual
a as a �ller of the role P or the attribute F � respectively� Finally� attributes can
be combined into chains F� � � � � � Fn �denoted as p� q�� Such chains can appear
in concepts of the form SAME�AS�p� q�� which are interpreted as the set of objects
such that the chain p leads to the same object as the chain q��

The declarative core of classic#s concept language can be captured by the fol�
lowing syntax rules�

C�D �
 A j ONE�OF�a�� � � � � ak� j FILLS�P� a� j FILLS�F� a� j

C uD j �P �C j �F �C j �� nP � j � nP � j SAME�AS�p� q�

�For a description of classic see �Borgida et al�� ����� Borgida � Patel�Schneider� ������
	Only chains of attributes are allowed as arguments to SAME�AS��� �� in order to keep reasoning

in classic decidable�

�




V� � works�for � fSALESg u �� �works�for�
V� � Employee u �works�for�fSALES�MARKETING�PERSONNELg

Figure �� CL�Views

p� q �
 F j p � q�

The semantics is as one would expect� except for the constructs ONE�OF and FILLS�
that allow one to refer to individuals� Individuals appearing in these expressions have
a semantics di�erent from individuals in �rst order logic� They are interpreted as
primitive disjoint concepts �see Borgida � Patel�Schneider� ������ i�e�� as subsets of
the domain� instead of as single elements of it�

In order to capture correctly how classic treats individuals� we use the following
syntax and conventions� Each occurrence of an individual a appearing in a concept
expression is replaced with an individual concept Ia� Individual concepts are pairwise
disjoint concept names �i�e�� for every interpretation I� we have IIa�I

I
b � � for a �� b��

Individual concepts can appear neither in the schema nor on the left�hand side of
a de�nition� Furthermore� the assertion a� Ia is added to the world description for
each a appearing in the knowledge base�

An expression ONE�OF�a�� � � � � ak� is represented as a set of individual concepts
fIa� � � � � � Iakg� written for simplicity fI�� � � � � Ikg� We interpret it as the disjunction
of individual concepts I� t � � � t Ik� For sets of individual concepts we use the
operations of intersection and union with their usual meaning�

The FILLS�P� a� construct is now a particular case of existential quanti�cation�
written as P � Ia or P � I for simplicity� where I is an individual concept� and inter�
preted similarly as �P �fIg�

We capture attributes by usual roles for which we enforce functionality by the
two SL�schema axioms P v AP �A�

P and AP v �� �P �� where AP � A
�
P are concept

names appearing only in these two axioms�

In addition� the SAME�AS�p� q� construct is expressed by the existential agree�
ment of role chains �Q

�
� R� where we assume that every chain consists of roles

whose functionality has been stated in the schema�

We call CL the resulting language� whose syntax is the following�

C�D �
 A j S j P � I j C uD j �P �C j �� nP � j � nP � j �Q
�
� R

Q�R �
 P j R �Q�

where S denotes a concept of the form fI�� � � � � Ikg�

Examples of CL�views are given in Figure �� View V� denotes people working
only in the SALES department� View V� denotes the employees working in one of
the three listed departments� Given the domain restriction of role works�for in the
schema of Figure 
� view V� is subsumed by V��
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A CL�knowledge base is a pair hS�Wi� such that S is an SL�schema�W is a CL�
world description and for each role P occurring in an existential agreement �Q

�
� R

occurring in W� there is a pair of axioms in S stating that P is functional�

We now prove that the combined complexity of reasoning in our architecture
is PTIME� and therefore that a limited form of cycles can be added to classic
without endangering the tractability� which was one of the main concerns of the
classic designers �see Borgida et al�� ������ In the next subsection we introduce a
calculus for reasoning about CL�knowledge bases� and in the following one we study
the complexity of reasoning by means of the calculus�

����� Completion Rules of the CL�Calculus

Since the original algorithm for subsumption between CL�concepts is based on
a normal�form transformation to so�called description graphs �Borgida � Patel�
Schneider� ������ it is not easily extensible so as to deal with schema axioms� There�
fore� we employ again a tableaux�like calculus for reasoning with CL�concepts and
SL�schemata� However� some optimizations are needed in order to keep the reason�
ing process tractable� Among others� a control structure is needed for the treatment
of the construct P � I� In fact� being similar to a quali�ed existential quanti�ca�
tion of the form �P �C� a non�optimized calculus would create world descriptions of
exponential size �as shown in Donini et al�� ���
� see also Subsection ��
����

As a side result of our work� we have a tableaux�like algorithm for reasoning in
pure classic�

We consider both view subsumption C vS D and instance checking hS�Wi j�
a�D� where C�D are CL�concepts and hS�Wi is a CL�knowledge base�

Let C� D be CL�concepts� Using the equivalence ��P �C��u ��P �C�� � �P ��C�u
C��� every concept D can be transformed into an equivalent concept D� u � � � uDn�
where each Di is a conjunction�free concept� Then� C vS D if and only if for every
conjunct Di we have C vS Di� Similarly� hS�Wi j� a�D i� for every conjunct Di

we have hS�Wi j� a�Di� Thus� without loss of generality� from this point on we
assume D to be conjunction�free�

Proposition ��� holds for CL accordingly� Therefore� both view subsumption and
instance checking are reduced to the satis�ability of a knowledge base that contains
a concept of the form �D�

As in the previous section� we rewrite the concept �D into negation normal form
by �pushing the negation inside the concept� In particular� the concept ��P � I��
being equivalent to ��P �fIg� is rewritten as �P ��fIg� However� notice that the
result of rewriting �D is not always a CL�concept� For example� the negation of
universal quanti�cation introduces quali�ed existential quanti�cation� which is not
a CL construct�

Therefore� our calculus must cope not only with the constructs of CL� but also
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with the constructs obtained by rewriting negated conjunction�free CL�concepts�

Looking at the syntax of CL� we see that the negation of a conjunction�free
CL�concept has always the following form

�P���P�� � � � �Pn�E�

where n  � and E is the �rewritten� negation of a conjunction�free CL�concept with�
out universal quanti�cation� Hence� it is a concept of the form �A� �S� �P ��fIg�
�� nP �� � nP �� or ��Q

�
� R�

As in the previous section� the CL�calculus is speci�ed by a set of CL�completion
rules� which are divided into schema rules and view rules� Since the schema language
SL is the same as in the previous subsection� the schema rules are the same as in
Section ���� The view rules for CL are presented in Figure ��

Rule V� deals with the assertion s� �P���P�� � � � �Pn�C� which is present in the
initial knowledge base� The repeated applications of rule V� to the assertion of that
form would generate �among others� a set of assertions of the form

fsP�x�� x�P�x�� � � � � xn��Pnxn� xn�Cg�

We call such a set of assertions a thread� the individuals s� x�� x�� � � � � xn the thread
individuals� and n the size of the thread� Notice that� since the concept D is
conjunction�free� there exists at most one thread in a knowledge base�

Observe also that rule V� introduces a concept fIg� with a singleton set of in�
dividual concepts� This is to provide a correct interaction between the individual
concept I appearing in P � I and individual concepts present in concepts of the
form fI�� � � � � Ing� In fact� remember that individual concepts are interpreted as
disjoint sets and therefore no object can be in the interpretation of two di�erent in�
dividual concepts� For example� the calculus must detect that the world description
fa� �P �fI�� I�g� a� �P � I��g is unsatis�able�

The notions of directly derived� derived� complete� and completion for the CL�
calculus are de�ned analogously to the corresponding de�nitions for the ALCNR�
calculus in Section ����

Theorem ��� �Invariance� holds accordingly for the CL�calculus�

As in the previous section� the calculus is nondeterministic� In fact� rule V� is
nondeterministic� and therefore there can be more than one knowledge base directly
derived from a given knowledge base� This is dealt with in Point 
 of the Invariance
Theorem�

A clash is a world description of one of the following forms�

� fa� �� nP �g � faPb�� � � � � aP bn
�g� where a� b�� � � � � bn
� are old individuals�

� fs� � mP �� s� �� nP �g with m 	 n

� fsP t� s� �� �P �g
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V� hS�Wi � hS� fsC�� sC�g �Wi

if �� sC� u C� is in W

V� hS�Wi � hS� ftCg �Wi

if �� s�P �C is in W � and
�� t is a P �successor of s

V� hS�Wi � hS� fsPy� yCg �Wi

if �� s 	P �C is in W � and
�� y is a new individual

V� hS�Wi � hS�W �y�t�i

if �� s �� nP � is in W � and
�� s has more than n P �successors in W �
�� y� t are two P �successors of s that are not separated

V� hS�Wi � hS� fsSg �Wi

if �� sS��� � � � sSn are in W and S 	 S� �    � Sn

V� hS�Wi � hS� fsPyi j i 
 ���ng � fyi �
�
	 yj j i� j 
 ���n� i �	 jg �Wi

if �� s �� nP � is in W � and
�� y�� � � � � yn are new individuals�
�� there do not exist n pairwise separated P �successors of s in W

V� hS�Wi � hS� fsPy� y fIgg �Wi

if �� s �P  I� 
 W

V� hS�Wi � hS� fsP�y�� � � � � yn��Pnwg � fsQ�z�� � � � � zk��Qkwg �Wi

if �� s 	R
�
	 Q is in W � and

�� R 	 P� �    � Pn� and Q 	 Q� �    �Qk�
�� y�� � � � � yn��� z�� � � � � zn��� w are new individuals

Figure �� The view rules for CL

� fs�A� s��Ag

� fs�S�� s��S�g with S� � S�

� fs� �g

� fs���R
�
� Q� sP�t�� � � � � tn��Pnv� sQ�u�� � � � � uk��Qkvg

with R � P� � � � � � Pn� and Q � Q� � � � � �Qk�

Note that clashes involving number restrictions and new individuals are treated
di�erently in this setting than in Section ���� Dealing only with atomic roles� in order
to detect a clash involving an assertion of the form s� �� nP � it is not necessary to
look for sets of pairwise separated P�successors of s� instead� we look only for an
assertion of the form s� � mP � with m 	 n�

Conversely� the clashes involving old individuals are treated as in Section ����
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This is done so as to detect contradictions explicitly present in the original knowledge
base� e�g�� fa� �� �P �� aP b� aPcg�

As usual� we show that the completion rules always detect a clash in an un�
satis�able world description� by proving the converse� A complete� clash�free world
description has a model� hence is satis�able�

Let  � hS�Wi be a CL�knowledge base� We de�ne the canonical interpretation
I� in the same way we did in Section ��� �we add the interpretation of individual
concepts��

�I� �� fs j s is an individual in Wg � fug

sI� �� s

AI� �� fs j s�A is in Wg � fug

II� �� fs j s� I is in Wg

P I� �� f�s� t� j sP t is in Wg � f�u� u�g

� f�s� u� j there is no sP t in W� but for some A�
s�A is in W and A v � � P � is in Sg�

Theorem ���� A complete clash�free CL�knowledge base is satis�able�

Proof� �See Appendix�

����� Termination and Complexity of the CL�Calculus

In this section we will show that with SL as schema language and CL as view
language� the combined complexity of view subsumption and of instance checking
is PTIME� The above correct and complete calculus can be turned into an actual
procedure for view subsumption and instance checking� However� it may produce
several completions� each one of exponential size� For example� if the knowledge
base contains an assertion of the form

a� �P � I�� u �P � I�� u
�P ���P � I�� u �P � I�� u

�P ��� � � �P � I�n��� u �P � I�n� u �P �A� � � ��

the corresponding completion would have O�
n� new variables and O�
n� assertions
on such variables� In order to have one completion of polynomial size� we modify
rules and add a suitable strategy�

Given a new individual x� we say that y is a sibling of x in a world description
W if there exists a role P and an individual s such that both sPx and sPy are in
W�

The rules responsible for the exponential size of a completion are the generating
rules V� and V�� Rule V�� instead� is applied only a number of times equal to the
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S�� hS�Wi � hS� fsPyg �Wi

if �� s�P �C is in W �
�� sA is in W �
�� A v �� � P � is in S�
�� y is a new individual and
�� neither s nor any sibling of s has a P�successor in W

V�� hS�Wi � hS� fsPyg �Wi

if �� s �� nP � is in W �
�� y is a new individual� and
�� neither s nor any sibling of s has a P�successor in W

V�� hS�Wi � hS� fsPy� y fIgg �Wi

if �� s �P  I� 
 W �
�� there is no t such that both sP t� t fIg are in W � and
�� if s is a new individual� no sibling of s has a P�successor in W

Figure �� The modi�ed schema and view rules for CL�queries�

size of the thread of the knowledge base� Hence� we modify rules V� and V� as in
Figure �� For uniformity reasons� we modify in the same way also Rule S
� All the
other rules are left unmodi�ed�

The completion rules we obtain this way are called quasi�completion rules� A
knowledge base to which no quasi�completion rule is applicable� is a quasi�completion�

The basic idea of rules V�� and V�� is that when we have two siblings we gen�
erate the successors of only one of them� This is possible because �as proved later�
the successors of the second sibling would have exactly the same properties as the
corresponding successors of the �rst one� Therefore� their creation is useless� in the
sense that the clashes they lead to would be detected anyway�

Observe that the additional condition about siblings is just a condition that
possibly prevents the application of the rule� Also� observe that the assertion added
by Rule V�� is one of those added by Rule V�� Hence� a world description obtained
applying quasi�completion rules is always a subset of a world description obtained
applying CL�completion rules� Therefore� the Invariance Theorem still holds for the
quasi�completion rules�

The mechanism of quasi�completions is similar to the mechanism of traces intro�
duced in the previous section� In fact� they are both meant to reduce the complexity
by blocking the application of some generating rules� However� there are two main
di�erences between the two mechanism� First� trace rules create one piece of the
world description at a time� and so they are used only to save working space and
not computing time� Conversely� quasi�completions completely disable the applica�
tion of certain rules� and thus they allow for polynomial computation time� Second�
quasi�completions deal with each role separately� in the sense that the presence of
an assertion on a role does not a�ect the applicability of a rule involving a di�erent
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role� The trace rules instead allow for the generation of the R�successor of a new
individual for just one R at a time�

Observe that there can be several di�erent quasi�completions� due to alternative
applications of Rule V�� To obtain only one quasi�completion� we suitably drive the
application of this rule� We impose the following strategy�

�� Rules applied to thread individuals have precedence over any other rule appli�
cation�


� If not applied to thread individuals� Rules S
� and V�� have lower priority than
any other rule�

�� When alternative applications of Rule V� are possible� making di�erent substi�
tutions between the direct P �successors of an individual s� if there is a thread
individual t� then �rst substitute another individual with t� if� in addition�
t��S 	 W� and if there is an individual z such that the assertions s� �P � I��
sPz and z� fIg are inW� and I �	 S� then substitute z with t� otherwise� make
any substitution�

From this point on� we assume that the quasi�completion rules are applied ac�
cording to the above strategy� The following proposition states a key property of
quasi�completions� which clari�es the role of the condition about siblings in the
modi�ed rules of Figure �� The intuition of the proposition is that non�thread indi�
viduals have the same membership assertions �i�e�� assertions of the form x�C� as
their siblings except for assertions of the form x� fIg� which come from the construct
FILLS�

Proposition ���� Let  � � hS�Wi be a quasi�completion� let x be an individual
in W that is not a thread individual� and let C be a concept that is not of the form
C � S� If the assertion x�C is in W and if there is a sibling y of x� then y�C is in
W�

Proof� �See Appendix�

Notice that for a single knowledge base we can still have several quasi�completions�
However� the next proposition ensures that the alternative possible applications all
lead to the same result�

Proposition ���� Let  be a knowledge base and let  � be a knowledge base directly
derived from  according to the above strategy� Then  is satis�able if and only if
 � is satis�able�

Proof� �See Appendix�

We now prove that quasi�completion can detect unsatis�able knowledge bases�
by showing that a clash�free quasi�completion can always be turned into a clash�free
completion� and then by exploiting Theorem ���
�
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Proposition ���� Let  be a clash�free quasi�completion� Then there exists a clash�
free completion that extends  �

Proof� �See Appendix�

We now prove that the size of the quasi�completion is polynomial w�r�t� the size
of the initial knowledge base�that is� hS� fx�C u �Dgi for view subsumption� and
hS�W � fa��Dgi for instance checking�

First we observe a simple property� For every role P let NP be the number
of concepts of the form �P � I� occuring in the initial knowledge base� and let
N �� max�NP �� Then for every new individual x in a quasi�completion� and for
every role P � there are at most N assertions of the form xPyi� Obviously� N is
greater or equal than the number of assertions of the form x� �P � I�� plus one
possible assertion of the form x� �P �C� Observe that we can ignore assertions of the
form x� � nP �� since all these assertions create no successors if there is at least one
assertion of the form x� �P � I� or x� �P �C� and one successor �in total� otherwise�
We can also ignore the assertions of the form x� �R

�
� Q� since in this case the roles

are functional� and so only one successor is possible�

This means that there are at most N direct P �successors of x in the quasi�
completion� Moreover� only one of these N direct successors has itself successors�
This is obvious from the application conditions of generating rules in Figure �� and
from the strategy�

Similarly to the previous subsection� denote with depth�D� the depth of a concept
D� i�e�� the maximum sequence of nested quanti�ers in D� including also number
restrictions and P � I as quanti�ers� and letting the depth of a concept �R

�
� Q be

the length of the longest �between R and Q� chain of roles� Consider any chain of
direct successors s� y�� � � � � yh in a quasi�completion� By induction on the application
of rules� it can be proved that if yi�D is in W� and D is a subconcept of a concept
C occuring in the world description�then depth�D� � depth�C� � i� Then� using
the fact that depth�C� � jCj� one can prove that the number h is bounded by
jCj� that is� the length of any chain of direct successors in a quasi�completion is
bounded by the size of the CL�concepts involved� hence by the size of the world
description� In addition� due to the condition on siblings� we see that for every
concept �including subconcepts� appearing in the initial knowledge base� we have
that at most N individuals are instances of it in the quasi�completion� where N is
the upper bound on the number of successors of an individual introduced above�
Since N is bounded by the size of the initial world description� we conclude that
the number of new individuals of a quasi�completion is polynomial in the size of the
initial knowledge base�

We now estimate the size of the quasi�completion of an initial knowledge base
hS�Wi� The number of assertions of the form a�C� where a is an old individual�
is bounded by the number of old individuals times the number of subconcepts in
S � W� hence is polynomial� Also the number of assertions of the form aPb is
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obviously polynomial in W� The number of assertions of the form x�C� where x is
a new individual is polynomial� since the number of new individuals is polynomial�
and C is a concept appearing in S or in W� Similarly� the number of assertions of
the form sPy is polynomial� Therefore� the size of the quasi�completion of hS�Wi
is polynomial w�r�t� jSj " jWj�

The time spent to build a quasi�completion is polynomially related to its size� In
fact� the application of a rule takes polynomial time� In addition� all rules adding
assertions cannot be applied more times than the size of the quasi�completion itself�
Rule V� does not add assertions� but it cannot be applied more times than the
number of possible direct successors of each individual� hence a polynomial number
of times�

Finally� clash detection in a quasi�completion can be done in polynomial time
w�r�t� the size of the quasi�completion� This is obvious for the usual clashes� which
can be detected in linear time� For the clash involving two sets of individual concepts�
observe that it can be detected by testing set containment� which again can be done
in polynomial time�

Therefore� we have proved the following theorem�

Theorem ���
 With SL as schema language and CL as view language� view sub�
sumption and instance checking are problems in PTIME w�r�t� combined complexity�

We conclude that adding �possibly cyclic� schema information does not change
the complexity of reasoning with classic�

Note that adding the SAME�AS construct to SL would make view subsumption
undecidable �Nebel� ������

��� The Language of ConceptBase as View Language

In �Buchheit et al�� ����� the query language QL was de�ned� which is derived
from the ConceptBase system� In QL� roles are formed with all the constructs
of Table 
 on page �� That is� roles can be primitive roles P or inverses P�� of
primitive roles� Furthermore� there are role restrictions� written �R�C�� where R is
a role and C is a QL�concept� Intuitively� �R�C� restricts the pairs related by R
to those whose second component satis�es C� Roles can be composed to so�called
paths� R� �R� � � � � �Rn� In QL� concepts are formed according to the rule�

C�D �
 A j � j fag j C uD j �R�C j �Q
�
� R�

Observe that concepts and roles can be arbitrarily nested through role restrictions�
All concepts in QL correspond to existentially quanti�ed formulas� We feel that
many practical queries are of this form and do not involve universal quanti�cation�

Figure � contains some examples of QL queries� Suppose we are given the
schema of Figure 
� Query Q� denotes all the managers and Q� all the employees
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Q� � Manager

Q� � Employee u �salary�HighSalary
Q� � Researcher u �lives�in

�
� works�for � situated

Q� � Employee u ��works�for�ResearchDept�
�
� lives�in � hosts

Figure �� QL Queries

that get a high salary� Then query Q� is subsumed by Q� since every manager is an
employee and salaries of managers must be high salaries� Query Q� denotes all the
researchers that live in the town in which the department they are working for is
situated� Query Q� denotes all the employees that work for a research department
that the city they are living in is hosting� With hosts being the inverse of situated�
query Q� is subsumed by Q�� This is because every researcher is an employee and
any department he works for is a research department�

For the combination of SL and QL in our architecture� we have the following
results�

Theorem ���� With SL as schema language and QL as view language� view sub�
sumption and instance checking are in PTIME w�r�t� combined complexity�

The result on instance checking is an easy consequence of the one on view sub�
sumption observing that� by means of singletons� a world description can be com�
pletely described by means of concepts so that instance checking can then be reduced
to subsumption checking �as shown in Schaerf� �������� Intuitively� the assertion a�C
corresponds to the concept faguC and the assertion aRb to the concept fagu�R�fbg�
More precisely� the transformation ) of a world description into a concept is de�ned
as follows� Let W be a world description� C a concept� and a� b two individuals�
then�

)�W� �� u���W�)�
�

)�a�C� �� �Q��fag u C�

)�aRb� �� �Q��fag u �R�fbg��

where Q does not appear in W� Intuitively� ) �encodes the world description W
in the implicit assertions of the concept )�W�� The following proposition states the
relation between the W and )�W��

Proposition ���� Given a schema S� a world description W� an individual a� and
a concept C then


�i� W is satis�able i� )�W� is satis�able�

�ii� hS�Wi j� C�a� i� )�W� u fag vS C�
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D� hS�FihGi � hS� fsC� sDg � FihGi

if �� sC uD is in F

D� hS�FihGi � hS� fsPy� yCg � FihGi

if �� s 	P �C is in F �
�� there is no t such that sP t and tC are in F � and
�� y is a fresh individual

S� hS�FihGi � hS� ftA�g � FihGi

if �� sA� and sP t are in F � and
�� A� v �P �A� is in S

S� hS�FihGi � hS� fsPyg � FihGi

if �� there is an A such that sA is in F �
�� A v �� � P � is in S�
�� there is no t such that sP t is in F � and s 	P �C is in G� and
�� y is a fresh individual

G� hS�FihGi � hS�FihG � fsC� sDgi

if �� sC uD is in G

G� hS�FihGi � hS�FihG � ftCgi

if �� s 	P �C is in G� and
�� sP t is in F

C� hS�FihGi � hS� fsC uDg � FihGi

if �� sC and sD are in F � and
�� sC uD is in G

C� hS�FihGi � hS� fs 	P �Cg � FihGi

if �� there is a t such that sP t and tC are in F � and
�� s 	P �C is in G

Figure ��� The decomposition� schema� goal� and composition rules

Proposition ���� can be proved analogously to Lemma ��� of �Schaerf� ������

A detailed proof of the view subsumption part of Theorem ���� can be found
in �Buchheit et al�� ������ But� since the proof requires techniques quite di�erent
from the ones used in the preceding case studies� we will demonstrate the main
characteristics of these techniques for a restricted schema and query language� The
restricted query language SL� is de�ned by the rule

D �
 �P �A j � � P ��

An SL��schema contains only inclusions of the form A v D� In the restricted
query language QL� there are no role forming operators and concepts are formed
according to the following syntax rule�

C�D �
 A j C uD j �P �C�
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The basic idea for deciding subsumption between views C and D is as follows�
We take an object o and transform C into a prototypical knowledge base where o
is an instance of C� We do so by generating objects� entering them into concepts�
and relating them through roles� Then we evaluate D over this knowledge base�
If o belongs to the instances of D then C is subsumed by D� If not� we have an
interpretation where an object is in C but not in D and therefore C is not subsumed
by D� The next proposition gives the formal justi�cation for this idea�

Proposition ���	 Let S be an SL��schema� C� D be QL��concepts� and o be an
individual� Then

C vS D i� hS� fo�Cgi j� o�D�

The transformation and evaluation process is speci�ed by a calculus� the QL�
calculus that features four kinds of rules� decomposition� schema� goal� and compo�
sition rules� The rules work on a knowledge base that consists of the schema S and
a world description F�called the facts�and on a second world description G called
the goals� The knowledge base and the goals together are called a pair hS�FihGi�
In order to decide whether C vS D� we take an individual o and start with the
knowledge base hS� fo�Cgi and the goal fo�Dg� Applying the rules� we add more
facts and goals until no more rule is applicable� Intuitively� C is subsumed by D i�
the �nal knowledge base contains the fact o�D� This is a di�erence to the refutation
style calculus of the �rst two case studies� where we start with the knowledge base
hS� fo�C� o��Dgi and check the completions for clashes� In the case of QL as view
language this would lead to an exponential number of possible completions� All rules
of this calculus exploit the hierarchical structure of concepts� which is the basic rea�
son for the polynomiality of the procedure� The rules are presented in Figure ��� A
rule is applicable to a pair if it satis�es the conditions associated with the rule and
if it is altered when transformed according to the rule� The second requirement is
needed to ensure termination of our calculus� As an example� Rule D� is applicable
to a pair hS�FihGi if F contains a fact s�C uD and if s�C and s�D are not both
in F �

The decomposition rules �D�� D
� work on facts� They break up the initial fact
o�C into facts involving only primitive concepts and primitive roles�

The schema rules �S�� S
� also work on facts� They add information derivable
from the schema and the current facts� The �rst rule is simple� It adds membership
assertions for individuals in F � Rule S
� however� which might create a new indi�
vidual� is subject to a tricky control that limits the number of new individuals� it
is only applicable if it creates a role �ller that is required by a goal� This control is
comparable to the control of the corresponding rules in the preceding case studies�
There the application is restricted to universally constrained individuals �see rule
S
 in Figure ��� Note that an existential quanti�cation in a goal would give rise to
a universal quanti�cation in the refutation style calculus� Without this control� an
exponential number of individuals could be introduced in the worst case�
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The goal rules �G�� G
� work on goals� They guide the evaluation of the concept
D by deriving subgoals from the original goal o�D� The interesting rule is G
� since
it relates goals to facts� if the goal is to �nd s� �P �C� then only individuals t are
tested which are explicitly mentioned as P ��llers of s in the facts�

The composition rules �C�� C
� compose complex facts from simpler ones di�
rected by the goals� This can be understood as a bottom up evaluation of concept
D over F �

Both the decomposition rule D
 and the schema rule S
 can introduce individ�
uals� Since the individuals introduced by D
 carry more speci�c information than
the ones created by S
� decomposition rules receive priority� i�e�� a schema rule can
be applied only if no decomposition rule is applicable� This strategy contributes to
keeping the whole procedure polynomial�

In �Buchheit et al�� ����� one can �nd the full calculus and a proof that for
QL�concepts C�D and an SL�Schema S� we have that C vS D if and only if o�D
is in the completed facts�

The complexity result is based on the observation that the number of individuals
in the completion hS�FCihGDi of hS� fo�Cgihfo�Dgi is polynomially bounded by the
size of C and D� For every individual introduced by a decomposition rule� there
is an existentially quanti�ed subconcept of C� Hence� the number of individuals
generated by decomposition rules is less or equal to the size of C� Let us call these
individuals primary individuals� Then� since the introduction of individuals by the
schema rule S
 is controlled by the structure of D� one can show that for every
primary individual the number of nonprimary successors is bounded by the size of
D� Summarizing� we get a polynomial upper bound for the number of individuals�
One can show that the number of rule applications is polynomially bounded by
the number of individuals and the size of the schema S� Thus� the completion of
hS� fo�Cgihfo�Dgi can be computed in time polynomial in the size of C� D and S�
This yields our claim�

Theorem ���� illustrates the bene�ts of the new architecture because by restrict�
ing universal quanti�cation to the schema and existential quanti�cation to views
we can have both without losing tractability� Note that in the language ALE �cf�
Subsection ��
��� which contains both universal and existential quanti�cation� sub�
sumption checking is NP�hard� even for cycle�free terminologies�

� Conclusion

We have proposed to replace the traditional TBox in a terminological system by two
components� a schema� where primitive concepts describing frame�like structures
are introduced� and a view part that contains de�ned concepts� We feel that this
architecture re�ects adequately the way terminological systems are used in most
applications�
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We also think that this distinction can clarify the discussion about the semantics
of cycles� Given the di�erent functionalities of the schema and view part� we propose
that cycles in the schema are interpreted with descriptive semantics while for cycles
in the view part a de�nitional semantics should be adopted�

In three case studies we have shown that the revised architecture yields a better
tradeo� between expressivity and the complexity of reasoning�

The schema language SL we have introduced might be su�cient in many cases�
Sometimes� however� one might want to impose more integrity constraints on prim�
itive concepts than can be expressed in it� We see two solutions to this problem�
either we enrich the language and have to pay by a more costly reasoning process�
or we treat such constraints in a passive way by only verifying them for the objects
in the knowledge base� The second alternative can be given a logical semantics
in terms of epistemic operators �see Donini� Lenzerini� Nardi� Nutt� and Schaerf�
����
���
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Appendix

Proof of Proposition ����
Let S be an SLdis�schema� Obviously� S is locally valid if it is valid� To prove the
converse� it su�ces to show that for any concept names A�� A�� given two models
I� and I� of S with AI�

� �� � and AI�
� �� � we can construct a model I of S such

that AI
� �� � and AI

� �� ��

Without loss of generality� we can assume that the domains �I� and �I� are
disjoint� We then de�ne I on the domain �I �� �I� ��I� by AI �� AI� � AI� for
every concept name A� P I �� P I� � P I� for every role name P � and aI �� aI� for
every individual a�

It is easy to verify that in the language SLdis for every concept C we have
CI � CI� � CI�� We conclude that an axiom satis�ed by I� and I� is also satis�ed
by I� Hence� I is a model of S� By construction� both A� and A� are interpreted
under I as nonempty sets�

Proof of Lemma ����
�� Suppose SC is valid� There is an interpretation J � ��J � �J � such that
AJ
C �� �� We modify J so as to yield an interpretation I with CI �� �� We de�ne I

as equal to J for every symbol occurring in SC and put Q
I ��

S
P�PC P

J � Since J
is a model of SC � so is I� and AI

C �� �� We will show by induction over the structure
of concepts that AI

D � DI for every subconcept D of C� This implies that AI
C � CI

and� since AI
C �� �� the claim follows�

Base case� If D � �� then AI
D � �J � �I � Suppose that D � �Q��� The schema

SC contains the axiom A
 v �A�� and for every P 	 PC the axioms AD v �P �A


and AD v �P �A�� Thus� if d 	 AI
D� then d has no �ller for any of the roles

P 	 PC � Otherwise� such a �ller would be an element of �A

�I and of �A��I � which

is impossible� because these sets are disjoint� This proves that AI
D � ��Q���I �

Inductive case� If D � D� u D��� then SC contains the axioms AD v AD� and
AD v AD�� � By the induction hypothesis we know that AI

D� � D�I and AI
D�� � D��I�

Hence� AI
D � AI

D� � AI
D�� � D�I �D��I � DI�

If D � �Q�D�� then SC contains the axioms AD v � �PD� and AD v �PD�D��
This implies that for any d 	 AI

D there is some d� with �d� d�� 	 P I
D and d� 	 AI

D��
Then� by de�nition of Q� we have �d� d�� 	 QI � and by the induction hypothesis we
have AI

D� � D�I � Hence� d 	 ��Q�D��I � This shows that AI
D � ��Q�D��I �

If D � �Q�D�� D� �� �� then SC contains for every P 	 PC the axiom AD v
�P �AD� � Let d 	 AI

D and �d� d�� 	 QI� By de�nition of Q we have �d� d�� 	 P I

for some P 	 PC � From the axioms it follows that d� 	 AI
D�� which together

with the induction hypothesis AI
D� � D�I implies that d� 	 D�I � This shows that

AI
D � ��Q�D��I�

�� Suppose C is satis�able� We construct an interpretation I such that AI
C �� ��
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The concept C has a model J � We extend J to an interpretation I by de�ning
�I �� �J � fd
� d�g� where d
� d� are two distinct objects that are not elements
of �J � The interpretation of the symbols in SC is given by AI

D �� DJ for every
subconcept D of C� �A
�I �� fd
g� �A��I �� fd�g� and� for D of the form �Q�D��
P I
D �� f�d� d�� j d 	 AI

D� d
� 	 AI

D� � �d� d�� 	 QJ g for every P 	 PC �

We check that I satis�es every axiom in SC � For any D � D� uD��� SC contains
the axioms AD v AD� and AD v AD��� which are satis�ed� since by de�nition of I�
we have AI

D � �D
� uD���J � D�J �D��J � AI

D� � AI
D�� �

If D � �Q�D�� then SC contains the axioms AD v � �PD� and AD v �PD�D��
Since AI

D � ��Q�D��J � for every d 	 AI
D � DJ there is some d� 	 D�J such that

�d� d�� 	 QJ � which implies that �d� d�� 	 P I
D� Thus� the �rst axiom is satis�ed� By

de�nition of P I
D� every �ller for PD is an element of A

I
D� � Thus� the second axiom is

satis�ed�

If D � �Q�D�� then SC contains for every P 	 PC the axiom AD v �P �AD� � By
de�nition� we have AI

D � DJ � AI
D� � D�J � and P I

D � QJ � This implies that all such
axioms are satis�ed�

IfD � �Q��� then there are axioms A
 v �A�� and AD v �P �A
� AD v �P �A�

for every P 	 PC � By construction� �A

�I and �A��I are disjoint� Thus� the �rst

axiom is satis�ed� Moreover� since DI � ��Q���J and P I � QJ for all P 	 PC �
it follows that elements of AI

D do not have a �ller for any role P 	 PC � Thus� the
latter axioms are satis�ed�

This proves that I is a model of SC � Also� we have that AI
C � CJ �� �� However�

it might be the case that AI
D � � for some proper subconcept D �� � of C� Since

such a subconcept D is satis�able� it has a model from which we can construct in
a similar way as above a model of SC that interprets AD as a nonempty set� This
proves that SC is locally valid� By Proposition ���� SC is valid�

Proof of Lemma ����
�� Suppose there is a path C�� C�� � � � � Ck in GS from C � C� to some con�ict node
Ck� Then there are roles P�� � � � � Pk such that Pi is necessary on some concept in
Ci��� and Ci � range�Pi� Ci���� Obviously� Ci �� � for every i 	 ���k�

Assume that A� u � � � u Am is S�satis�able� Then there is a model I � ��I � �I�
of S with an element d 	 �I such that d 	 AI

� � � � � � AI
m� We show by induction

that for every i 	 ���k we have
T
A�Ci A

I �� �� The claim for i � � coincides with our
assumption� Suppose that di�� 	 AI for every A 	 Ci��� Since Pi is necessary on
some A 	 Ci��� there exists an element di such that �di��� di� 	 P I

i � Moreover� for

every B 	 Ci we have di 	 BI � since there is a transition A
Pi�
SB for some A 	 Ci���

It follows that dk 	
T
B�Ck B

I� which is impossible because Ck is a con�ict node�

�� Suppose that no con�ict node is reachable by a path issuing from C� We
construct a model I of S such that AI

� � � � � � AI
m �� �� We de�ne �I as the set of

all nodes in GS that are reachable by a �possibly empty� path issuing from C� For a

��



concept name A we de�ne

AI �� fC � 	 �I j A� 	 C � for some A� �S Ag�

For a role P we de�ne

P I �� f�C �� range�P� C ��� j C � 	 �I and P is necessary on some A� 	 C �g�

We have to check that I satis�es every axiom in S�

Suppose that P v A � B 	 S� Let �C �� C ��� 	 P I� Then there is some A� 	 C �

such that P is necessary on A�� Thus� there is some A�� with A� �S A�� such that
A�� v � �P � 	 S� Since S is isa�complete� we have A�� �S A� Hence� A� �S A�

which implies C � 	 AI� Also� there is a transition A� P
�
SB� which implies that

B 	 C ��� Hence� C �� 	 BI�

We now show that I satis�es all axioms of the form A v C in S� Consider a
concept name A and some C � 	 AI � Then there exists some A� �S A with A� 	 C ��

Suppose that A v B 	 S� Then C � 	 BI� since A� �S B�

Suppose that A v � �P � 	 S� Then P is necessary on A�� With C �� ��
range�P� C �� we have �i� �C �� C ��� is an edge in GS � �ii� C

�� 	 �I � and �iii� �C �� C ��� 	 P I�

Suppose that A v �P �B 	 S� Let �C �� C ��� 	 P I� Then B 	 C ��� since C �� �
range�P� C ��� which implies that C �� 	 BI �

Suppose that A v �� �P � 	 S� This axiom is satis�ed because� by construction
of I� every role is interpreted as a partial function�

Suppose that A v �B 	 S� Assume that C � 	 BI� Then there is some B� �S B
with B� 	 C �� This implies that C � is a con�ict node� which is impossible� since �I

contains only nodes reachable from C� and no con�ict node can be reached from C�

Proof of Lemma �����
�� Suppose there is a path C�� C�� � � � � Ck in GS from C� � fA�� � � � � Amg to some
con�ict node Ck� Then Ck contains names Bk� *Bk such that there are B�

k� *B
�
k

with Bk �S B�
k� *Bk �S

*B�
k� and B�

k v � *Bk 	 S� Thus� fBk� *Bkg is a con�ict
node in DS � For some Bk��� *Bk�� 	 Ck�� and a role Pk there are Pk�transitions

Bk��
Pk�
SBk� *Bk��

Pk�
S
*Bk� Also� the role Pk is necessary on some $Bk�� 	 Ck� Since

S is dichotomic� Pk is necessary on dom�Pk�� Thus� there is a Pk�edge in DS from
fBk��� *Bk��g to fBk� *Bkg�

Going on this way� we �nd for any l 	 ���k names Bl� *Bl 	 Cl and edges from
fBl��� *Bl��g to fBl� *Blg in DS � Thus� for some Ai� Aj 	 C� there is a path in DS

from fAi� Ajg to the con�ict node fBk� *Bkg�

�� Suppose there is a path fB�� *B�g
P��
fB�� *B�g� � � � � fBk��

*Bk��g
Pk�
fBk� *Bkg in

DS from fB�� *B�g � fAi� Ajg to some con�ict node fBk� *Bkg� We inductively de�ne
C� �� fA�� � � � � Amg and Cl �� range�Pl� Cl��� for i 	 ���l� Obviously� fBl� *Blg � Cl
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for any l 	 ���k� Moreover� since each Pl is necessary on its domain� Cl�� and Cl
are linked in GS by an edge with label Pl� Since Bk� *Bk 	 Ck� we have that Ck is a
con�ict node in GS �

Summarizing� we have exhibited a path in GS that connects fA�� � � � � Amg to the
con�ict node Ck�

Proof of Lemma �����
�� If C is satis�able� then by Lemma ��� there is a model J � ��J � �J � of SC
such that AI

C �� �� We modify J to a model I of $SC with AI
C �� � and AI

� � ��

Let I have the same domain as J � We de�ne AI
i �� � for i 	 ���k� On the other

concept and role names� �I coincides with �J �

Obviously� I satis�es every axiom in $SC that occurs in SC � Also� every axiom
Ai v �P���Ai�� for i 	 ���k is satis�ed by I because AI

i � �� Finally� we consider
the case of the subconcept D � �Q��� Since J is a model of SC � no element of A

J
D

has a �ller for any role P 	 PC � This shows that every axiom AD v �P �Ak with
P 	 PC is satis�ed�

Summing up� we have shown that there is a model I of $SC such that AI
C �� AI

� �
We conclude that $SC �j� AC v A��

�� Suppose that $SC �j� AC v A�� Then there is a model J � ��J � �J � of $SC and
an element d� 	 �

J such that d� 	 AJ
C � but d� �	 AJ

� � We construct a model I of
SC such that d� 	 AI

C � With an argument as in the proof of Lemma ��� this implies
that SC is valid and hence that C is satis�able�

Given an interpretation �I � we say that an element d� 	 �I is reachable from
d 	 �I if the pair �d� d�� is in the transitive�re�exive closure of the union of all role
interpretations�

Let �I be the set of elements of �J that are reachable from d�� We de�ne
�A
�I �� �A��I �� �� For the other concept and role names A and P we put
AI �� AJ ��I and P I �� PJ � ��I ��I��

It is an easy task to check that every axiom of the form AD v AD� or AD v
�P �AD� is satis�ed by I if it is satis�ed by J � Suppose that $SC contains some axiom
AD v � �P � and that d 	 AI

D� Then d 	 AJ
D and there is some d

� 	 �J such that
�d� d�� 	 PJ � Since d is reachable from d�� so is d

�� and it follows that �d� d�� 	 P I�
This shows that every axiom AD v � �P � is satis�ed by I�

Finally� we consider the case of the subconcept D � �Q��� We show that no
element of AJ

D that is reachable from d� has a �ller for any role P 	 PC � +From this
it follow that every axiom AD v �P �A
 and AD v �P �A� with P 	 PC is satis�ed
by I�

Assume� on the contrary� that there is an element d 	 AJ
D reachable from d��

and a role P 	 PC such that �d� d
�� 	 PJ for some d� 	 �J � Since J is a model of

$SC � it follows from the axiom AD v Ak that d
� 	 AI

k �

We have ���� � k� which implies ��D� � k � �� Since d is reachable from d��

��



and ��D� � k� �� we conclude that there is a chain d�� d�� � � � � dk��d of length k� �
from d� to d� This chain can be extended to a chain of length k from d� to d

�� Now�
the axioms Ai v �P���Ai�� imply that d 	 Ak��� dk�� 	 AJ

k��� � � � � d� 	 AJ
� � which

contradicts our initial assumption that d� �	 AJ
� � Thus� no element of A

I
D has a �ller

for any role P 	 PC in J �

Proof of Proposition ����
Suppose  � hS�Wi is a complete clash�free ALCNR�knowledge base� We show
that the canonical interpretation I� is a model of  � The assertions of the form sP t�
and s �

�
� t in W are obviously satis�ed by I�� The assertions of the form s�C can

be proved to be satis�ed based on known results for �analogous� constraint systems
�see e�g�� Buchheit et al�� �������� the proof is by induction on the structure of C�

For the axioms of the form A v C� we have to prove that for every d 	 �I� � if d
is in AI� then d is in CI� � Based on the de�nition of I�� the domain element d can
be in AI� in two cases� either d � u or d � s and s�A is in W�

In the �rst case� from the de�nition of I�� we see that u is in the extension of
every SL�concept� thus u is in CI�� too�

In the second case� if C is of one of the forms B or �� �P � then the axiom
is satis�ed based on the following line of reasoning� Since s�A is in W and  is
complete� based on the schema rules S� and S�� s�C is in W too� and therefore
s 	 CI��

Suppose now that A v �P �B is in S and s�A is inW� We have to show that for
all d such that �s� d� 	 P I�� we have that d 	 BI� � From the de�nition of I�� for
any such d either d � u or there exists t such that d � t and sP t is in W� In the
�rst case� u is in BI� because of the de�nition of I�� In the second case� since  is
complete� for the rule S�� t�B is in W and thus t 	 BI� by de�nition of I��

Consider now the case that A v � �P � is in S and s�A is in W� If there exists
an individual t such that sP t is in W� then �s� t� is in P I�� and therefore s is in
� � P �I�� In case there is no t such that sP t is in W� then based on the de�nition
of I�� �s� u� is in P

I�� and thus s 	 � � P �I� again�

One can prove that the axioms of the form P v A� � A� are satis�ed by I��
using similar arguments�

Proof of Proposition ����
Point � � By induction on the application of rules� The induction is obvious for

schema rules� which never add assertions involving subconcepts of C� For view
rules� the induction is straightforward� e�g�� if rule V�� is applied because yi� �R�D
is in W �condition ��� it adds the new assertion yi
��D� By the induction hypoth�
esis� depth��R�D� � depth�C� � i� For the new assertion� the claim holds since
depth�D� � depth��R�D�� � � depth�C�� �i" ���

Point  � Suppose no� Then� there is a direct successor yk
� of yk� with k � jCj�
But such a successor has been introduced by the application of a generating rule�
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requiring the presence in W of an assertion of the form yk�D� where either D �
�P �E �rule S
��� or D � �R�E �rule V���� or D � � nR� �rule V���� Observe
that all the concepts involved are subconcepts of C� hence Point � above applies�
depth�D� � depth�C� � k � depth�C� � jCj� However� depth�C� is obviously less
or equal than jCj and therefore depth�D� � �� Since depth�D� is at least �� a
contradiction follows�

Point � � The number N is bounded by the sum of all numbers n in concepts of the
form � nR�� plus all concepts of the form �R�D� both appearing in C� plus all
concepts of the form �P �D appearing in C �condition � of the generating rule S
��
Hence� N � jCj� if numbers are coded in unary notation�

Point � � The individuals in a trace are a chain x� y�� � � � � yh plus all their direct
successors� Therefore the total number of individuals in a trace is bounded by
�h " �� � �N " �� � �jCj" ��� which is in O�jCj��� The number of assertions of the
form s�D is then O�jCj� � �jCj" jSj�� �each subconcept of either C or S� times the
number of individuals�� Given that in assertions s �

�
� t the individuals s� t must be

both direct successors of the same individual� generated by the application of a rule
V�� the number of assertions s �

�
� t is O�N� �jCj� � O�jCj��� Finally� in the assertions

of the form sP t the individual t must be a direct successor of s� hence their total
number is O�jCj � N� � O�jCj��� We conclude that the number of assertions in a
trace �hence its size� is polynomial in jCj and linear in jSj�

Point � � A proof for a similar problem is given in �Hollunder � Nutt� ����� by
showing that each rule application in  can be transformed into a trace rule appli�
cation in a set of traces� By Proposition ��
 the �successor relation restricted to
new individuals forms a tree� Hence� every completion can be decomposed into as
many parts as there are branches in the successor tree� No assertion is lost� since
the conditions of application of each rule are local� i�e�� they depend only on an
individual and �possibly� its direct successors�

Point � � The claim follows from the locality of clashes� All two types of clash depend
on an individual s� and on constraints involving either s alone ��rst type of clash�
or both s and direct successors of s �second type of clash�� If  � contains a clash�
consider the trace in which the successors of s�if any�are generated �there always
must be such a trace� from the previous point�� That trace contains the same clash
as  ��

Proof of Proposition ����
Let N be the maximal number of direct successors of an old individual in a pre�
completion� similarly to the Point � of Proposition ���� N is bounded by the sum
of all numbers n in concepts of the form � nR�� plus all concepts of the form
�R�C� plus all concepts of the form �P �C� all appearing in W� Hence� N � jWj� if
numbers are coded in unary notation� Call � the number of old individuals� The
total number of individuals in the precompletion is then � old individuals� plus as
many new individuals as N times �� in total O�� � �N " ��� which is in O�jWj���
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This proves that the number of individuals does not depend on jSj�

The number of possible �sub�concepts is O�jSj " jWj�� hence the number of
assertions of the form s�C is bounded by the number of individuals times the number
of possible concepts� that is O�jWj� ��jSj"jWj��� Similarly� the number of assertions
s �
�
� t is bounded by �� �UNA on old individuals� plus � �N�� that is O�jWj��� The

number of assertions of the form sP t is bounded by �� � jWj relations between old
individuals plus � � N � that is O�jWj��� Summing up all assertions� the size of a
precompletion is O�jWj� � �jSj" jWj���

Proof of Proposition ����
�� Each precompletion is derived from  using completion rules� If  itself is not
a precompletion� then a rule is applicable to an old individual� If  is satis�able�
Point 
 of Theorem ��� says that there exists a satis�able knowledge base directly
derived from  by applying that rule� If the new knowledge base is not a precomple�
tion� one can repeat the same argument� and so on until a satis�able precompletion
is reached� This calculus for obtaining a satis�able precompletion eventually ter�
minates� because it is just a restricted version of the general calculus�i�e�� the
condition of application of the rules are more restrictive�

�� By induction on the number of rule applications needed to obtain  � from  �
The base case is trivial� while in the inductive case Point � of Theorem ��� proves
the claim�

Proof of Proposition ��	�
�� Obviously� a precompletion must be clash�free to be satis�able� For each
new individual x� let Cx be the conjunction of the concepts D such that x�D is in
Wx� Obviously� the knowledge base hS� x�Cxi is satis�able if and only if hS�W �

xi is
satis�able �it is su�cient to apply Rule V� as many times to decompose again Cx��
Combining Propositions ��� and ���� we know that hS� x�Cxi is satis�able if and
only if there exists a �nite� clash�free completion of it� Such a clash�free completion
contains a clash�free completion of hS�W �

xi�

�� Suppose there exists a clash�free precompletion  � � hS�W �i such that for each
new individual x in W �� the knowledge base hS�W �

xi has a clash�free completion�
then one can compute a clash�free completion of  � as the union of  � and� for each
x� the clash�free completion of hS�W �

xi �up to renaming of new individuals�� Recall
that all application conditions of each completion rule are local� i�e�� whether or not
a rule is applied depends on assertions about one individual s� and possibly its direct
successors� Hence� a completion of  can actually be constructed from  � and from
separate completions of hS�W �

xi� since each rule application in one completion does
not need to check for assertions from other completions� Since also clash conditions
are local� such a completion is clash�free� and by Proposition ����  � is satis�able�

Proof of Theorem �����
Suppose  � hS�Wi is a complete clash�free CL�knowledge base� We show that the
canonical interpretation I� can be extended to a model of  � The assertions of the
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form sP t� and s �
�
� t in W are obviously satis�ed by I�� The assertions of the form

s�C can be proved to be satis�ed by induction on the structure of C�

Base cases� Assertions of the form s�A are satis�ed by de�nition of I�� and asser�
tions of the form s��A are satis�ed because  is clash�free� hence it does not contain
the complementary assertion s�A� Given an individual s� all assertions of the form
s�S��� � � �s�Sh� with Si � fIi�� � � � � Iikg� can be satis�ed because  is complete� hence
there is an i such that Si �

Th
j�� Sj� and Si �� � because  is clash�free� Assertions

of the form s� � nP � are satis�ed because  is complete� hence n P �successors of
s were generated by an application of Rule V�� and they were not identi�ed by an
application of Rule V�� since they are pairwise separated� On the other hand� asser�
tions of the form s� �� nP � are satis�ed because  is complete� hence there cannot
be more than n P �successors of s in  � unless they are pairwise separated� but since
sets of pairwise separated individuals are introduced only because of the presence
of an assertion of the form s� � mP � �condition � of Rule V��� with m 	 n� this
would mean that  contains a clash� contradicting the hypothesis of the theorem�

Induction cases� Assertions of the form s�C and s��C� where C is a concept in
CL� can be shown to be satis�ed based on a straightforward induction� since  is
complete�

It can be proved that the inclusion axioms contained in S are satis�ed by I��
analogously to the proof of Proposition ����

Proof of Proposition �����
The assertion x�C must have been introduced by the application of some rule� By
inspection of all rules� Rules V�� V
� V�� and the schema rules are the only rules
which can add an assertion of the form x�C�

Regarding the schema rules� they add an assertion of the form x�C only if there
exists inW an assertion 
 of the form x�A or sPx� The assertion 
� on its turn� can
have been added either by a schema rule or by a view rule� If 
 has been added by
a schema rule there exists another assertion on x� say 
�� that allows the application
of the rule that created 
� Again� 
� has been added either by a schema rule or
by a view rule� Continuing this argument� we see that there must have been an
application of a view rule on x that has generated the �rst assertion on x�

Rule V� is applied only to thread individuals� therefore the assertion x�C cannot
have been added by the application of this rule�

Regarding Rule V�� it adds an assertion of the form x�C only if there exists in
W an assertion 
 of the form x�C u E� Following the same line of reasoning for
schema rules� we reach the conclusion that there must have been an application of
Rule V
 on x that has generated the �rst assertion on x�

Conditions ��
 of Rule V
 require the existence of an individual v and a role Q
such that the assertions v� �Q�C� vQx are in W� We can therefore conclude that
such assertions are in W�
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Furthermore� we know that y is a sibling of x� hence there is an individual u and
a role R such that uRx� uRy are in W� Hence� x is both a direct Q�successor of v
and a direct R�successor of u� If v and u are di�erent� this can happen only because
u� v� x were generated by an application of Rule V��by inspection of all rules� Rule
V� is the only one which can force a new individual to be a direct successor of two
di�erent individuals� But this rule requires the functionality of R� hence x would
have no sibling� Therefore� u and v are the same� and �using the same reasoning�
also R and Q are the same�

In conclusion� we have that the assertions v� �Q�C� vQx� vQy are in W� It
follows that� due to the strategy� the assertion y�C has been added by Rule V
�
This proves the claim�

Proof of Proposition �����
The theorem is trivially true if the rule applied is any rule but Rule V� due to
Theorem ����

We therefore assume that the rule applied is Rule V�� according to the strategy�

We �rst show that in the �otherwise case of Point � of the strategy� W is
unsatis�able� If there is more than one P �successor of s� then they have been
generated by the applications of Rules V��� V� and V�� since from the strategy they
are applied before Rules S
� and V��� and once they are applied� Condition � of Rule
V�� and Condition � of Rule S
� are not ful�lled any more� We do not consider the
case in which Rule V� has been applied� since this rule deals with functional roles�
hence all P �successors will be eventually identi�ed� and all alternative substitutions
between them lead to the same knowledge bases �up to renaming of new individuals��
Hence we can concentrate on the case where all P �successors have been introduced by
Rules V�� and V�� If there is no thread individual t� then two individuals generated
by the application of Rule V� must be identi�ed� which will lead to a clash of the
form fy� �g� Also� if there is such a t� C is of the form �S� but any other individual
z is such that z� fIg is in W� and I 	 S� then the substitution leads to a clash of
the form ft�S�� t��S�g� with S� � S��

Therefore� alternative substitutions in the �otherwise case all lead to a clash�
However� there are alternative substitutions also in the case the conditions in the
strategy are ful�lled� in what follows we show that these alternatives all lead to a
satis�able knowledge base� if the original knowledge base was satis�able�

We now show that in the other cases all the alternative applications of the Rule
V� lead to the same result� Suppose there are two di�erent individuals x� y that
can be substituted with the same thread individual t� By inspection of the rules� we
know that x and y have been generated because of the presence of two assertions
of the form s� �P � I�� and s� �P � I��� Therefore� the variables x and y are included
in the assertions sPx� x� fI�g� sPy� and y� fI�g� By Proposition ���� any other
assertion on x and y is common to the two individuals�

Hence� the only assertions that distinguish x from y are the assertions regarding
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the concepts I� and I�� If we are not in the �otherwise case� then both these
assertions do not lead to a clash with the assertions on t� therefore the fact that we
substitute x or y with t does not a�ect the satis�ability of the knowledge base�

Proof of Proposition �����
Let  � � hS�W�i be a quasi�completion� since we know that  � is contained in a
completion hS�Wi� we add missing assertions to  � to obtain it� then we prove that
it does not contain a clash�

Note that the only assertions which were not fully analyzed are assertions of the
form s� �P � I�� and s� � nP �� We divide the addition process in three steps�

Step � � We consider assertions of the form x� �P � I�� such that  � does not contain
the assertions xPz� z� fIg� for any z� Consider Rule V��� Conditions ��
 are ful�lled�
hence� if the rule is not applicable� Condition � is not ful�lled� that is� x has a sibling
y such that yPz is in W� for some z� Hence� from Proposition ����� we know that
there is an individual v and a role Q such that the assertions v� �Q��P � I�� vQx�
and vQy� are in W� Since  � is quasi�complete� also the assertion y� �P � I� is
in W� In this case Condition � of Rule V�� is ful�lled �in fact� due to Rule V���
no sibling of y can have P �successors�� hence the assertions yPu� u� fIg for some
new individual u are in W� Now add to W the assertion xPu� Observe that if W
contains an assertion of the form x� �P �C� then by Proposition ���� also the assertion
y� �P �C is inW� hence u�C is inW� Hence the added assertion does not cause Rule
V
 to be applicable� However� schema Rule S� could now be applicable� and its
application could �re other schema rules� Apply these rules� with the exclusion of
generating rules� and observe that for each added assertion involving x� there is a
corresponding assertion involving y �since yPu was already in W� schema Rule S�
was already applied to y��

After doing that for all x� the resulting knowledge base  � � hS�W�i is complete
w�r�t� Rule V� �the rule of Figure ���

Step  � Consider assertions of the form s� � nP �� such that s has k direct P �
successors in W� with k � n�

First consider the case k 	 �� Take n � k new individuals y�� � � � � yn�k �not
appearing in W��� and for i 	 ���n � k add the assertion sPyi� After doing that�
Rule V� is not applicable� however� Rule V
 could be� because of the presence in
W� of an assertion s� �P �C� If so� apply the rule and add the assertions yi�C� Apply
also schema Rule S�� and possibly other rules� but no generating rule�

Suppose now k � �� By Condition � in Rule V��� the individual s has a sibling
x such that x� � nP � is in W� and x has h 	 � P �successors� Applying the above
procedure to x� we have that x has n P �successors yi for i 	 ���n� Then for each
P �successor yi of x we add the assertion sPyi�

After this step� for all s� the resulting knowledge base  � � hS�W�i is com�
plete w�r�t� all rules but the generating ones �because the added individuals may
themselves require the existence of some direct successors��
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Step � � Consider assertions of the form x� � nQ�� x�A� together with a schema
axiom of the form A v � �Q�� where x is a new individual with no successor
�i�e�� either it has been added in Step 
� or it was an individual already without
successors in Step 
�� Observe that from Condition � of Rule V�� and Condition �
of Rule S
��which were not applicable to s in  �� since  � is quasi�complete�there
is a sibling z of x having a Q�successor� Due to the strategy� x cannot be a thread
individual �the Rule V�� would have been applied to it in that case�� Moreover� since
x and z are siblings� from Proposition ����� for any assertions of the form x� � nQ��
x�A there is in  � a corresponding assertion z� � nQ�� z�A� and from Steps ��

of this construction� all successors of z required by such assertions have been added
in W�� Then� for each role Q and individual u� if zQu is in W� then add to W� the
assertion xQu�

After adding all assertions of the form xQu� one obtains a knowledge base  � �
hS�W�i� which is complete and clash�free� Completeness follows from the fact that
the new individuals added have the same successors of previously present individuals�
to which rules were already applied� The fact that  � is clash�free can be shown
by enumeration of all possible clashes� One proves that each clash requires the
presence of assertions that could have been added �by Proposition ����� only if
similar ones�for a di�erent individual�were already present in  �� However� this
is impossible since� by hypothesis�  � is clash�free� For example� suppose that  �

contains a clash of the form fyi�A� yi��Ag� where yi is an new individual introduced
in Step 
 because of the presence of the assertion s� � nP � such that s has k direct
P �successors x�� � � � � xk in W� with k � n� Obviously� the presence of the assertions
on yi must be caused by the presence of the assertions s� �P �A and s� �P ��A �or
the single assertion s� �P ��A u �A��� This implies that xi�A and xi��A must be in
 �� This lead to a contradiction� since  � is assumed to be clash�free�
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