
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-97-01

Analogical Transfer of Verification Proofs for
State-Based Specifications

Erica Melis and Claus Sengler

January 1997

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Analogical Transfer of Verification Proofs for State-Based Specifica-
tions

Erica Melis and Claus Sengler

DFKI-RR-97-01

This work has been supported by the Deutsche Forschungsgemeinschaft, Son-
derforschungsbereich SFB-378 and by the NATO grant CRG950405.

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1997
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946-008X

Analogical Transfer of Veri�cation Proofs for State�Based

Speci�cations

Erica Melis

Universit�at des Saarlandes� FB Informatik

D������ Saarbr�ucken� Germany	 melis
cs	uni�sb	de

Claus Sengler

DFKI Saarbr�ucken

D������ Saarbr�ucken� Germany	 sengler
dfki	uni�sb	de

Abstract

The amount of user interaction is the prime cause of costs in interactive pro�
gram veri�cation� This paper describes an internal analogy technique that reuses
subproofs in the veri�cation of state�based speci�cations� It identi�es common
patterns of subproofs and their justi�cations in order reuse these subproofs� thus
signi�cant savings on the number of user interactions in a veri�cation proof are
achievable�

�

� Introduction

Software veri�cation is the job of taming complexity� in order to verify� say one hundred
thousand lines of source code� several ten thousands of proof obligations have to be
shown� some of which may require formal proofs of up to eight or ten thousand steps�
Usually these long proofs consist of a considerable number of relatively simple subproofs
to be established� Even for a small percentage of interactive steps� i�e�� those steps
the user has to supply as opposed to those steps that are generated automatically by
the system �in the VSE system ��	 currently about �
 to �
� are user supplied� the
interaction amounts to quite an e�ort for proofs with ten thousands of proof steps�
Consequently� a major problem in software veri�cation is the tremendous amount of
user interaction needed that causes costs and a long development time� To minimize
user interaction� is therefore a primary goal in order to reduce the cost of veri�ed
software� Again� from the experience with industrial applications of the VSE system�
the cost of veri�ed code may be between twice and ten times the costs of ordinary
software� The reuse of user�guided subproofs can contribute to that goal�
An important class of real world software veri�cation problems have state�based spec�
i�cations� State�based means that an invariant� e�g� a reliability statement� has to be
proved for an initial state p� and for all states that can be reached by certain �admis�
sible state transitions Ti� Put formally� the theorem to be proved is

Inv�p�
�
i

�Inv�p� Inv�Ti�p� ��

where usually� the invariant Inv�X is a conjunction of many conjuncts and the proof of
Inv�p� Inv�Ti�p may be similar for the di�erent state transitions Ti� Therefore� a
decomposition of the theorem leads to many similar proof obligations for one veri�cation
task and naturally suggests a reuse of these subproofs�
Reusing proofs has been addressed in di�erent settings� A reuse of proofs in program
veri�cation after slightly changing the program �e�g�� after a bug has been �xed is
addressed in ��
	� External analogy� i�e�� analogy between proofs of di�erent theorems
has been described in ��	 and reuse of generalized rewrite proofs is described in ��	� As
far as we know� internal analogy for verifying state�based speci�cations has not been
tackled before�
This paper is organized as follows� First we describe the internal analogy paradigm
suitable for reusing subproofs within the same large proof attempt� In particular� the
reuse in verifying state�based speci�cations is addressed� Then we illustrate the usage
of internal analogy with an example that is taken from a case study that� among others�
veri�ed the state�based speci�cation of a communication �lter�

Notation

We work with a sequent calculus� for other calculi we believe the procedure can be
adapted appropriately� H�� � � � �Hn � C�� � � � � Cm abbreviates the sequentH��� � ��Hn �
C��� � ��Cm� A normal form �NF of this sequent is the set fH�� � � � �Hn��C�� � � � ��Cmg�
Note that this normal form does not distinguish between variants having�e�g�� H as hy�
pothesis and having �H in the conclusion� respectively� A proof obligation is provable

if H and �H belong to its NF for some formula H� Variables are ��quanti�ed if not
stated otherwise�

�

� Internal Derivational Analogy in the Veri�cation of State�

Based Speci�cations

Problem solving by analogy transfers the solution or the problem solving experience of
a source problem to guide the search for a problem solution of a similar target problem�
In general� the process of reasoning by analogy can be described as follows� A case
base is kept of previously solved problems with accompanying solutions� When a new
target problem is encountered� a similar problem is retrieved from this case base and
its solution is used as a guide to the solution of the new problem by analogical replay�
Analogy requires �i to map� and sometimes to reformulate� the source problem to the
target problem� �ii to extend the mapping and reformulation to the solutions� �iii to
replay� and �nally to adapt the solution to the requirements of the target�
Derivational analogy ��	 guides the target solution by replaying decisions of the source
problem solving process� and it uses information about reasons for the decisions �justi�
�cations�
Internal analogy ��� �	 is a process that transfers experience from a completed subgoal
�source in the same problem solving process to solve a current subgoal �target� That
is� in internal analogy the source and the target are subproblems of a single problem�
Therefore� this technique does not require the e�ort to set up a permanent case base
and needs relatively little search for the retrieval of a source� as opposed to analogy
in general� Furthermore� little or no e�ort at all is required for the mapping because
corresponding subgoals in one proof are very similar�
Still� internal analogy needs some extra e�ort for storing the justi�cations and for the
mapping and hence� internal analogy pays in particular when it replaces search�intensive
subtasks or interaction�intensive subtasks� see ��	�

��� Internal Analogy for State�Based Veri�cation

Internal analogy in software veri�cation can sometimes be used to replace interaction�
intensive subtasks� The accumulation of a library of cases is not required in our internal
analogy� Usually� the subproofs need only to be cached� and often the source terms
need not to be mapped into di�erent target terms�
The internal analogy has two steps� retrieval and replay� Two modes of the retrieval
are possible for the internal analogy as described in this paper�

� The retrieval of a source is done automatically�

� The source is provided interactively�

In the �rst case� the analogy procedure includes searching for a source which is left to
the user in the second case� The automated retrieval searches for �source nodes in the
proof plan the proof obligations of which are proved already and that have justi�ca�
tions holding in the current �target node� For instance� as described in sections ���
and �� the search for a reusable subproof automatically compares the essence justi��
cation of source nodes with the NF of the target problem� An e�cient retrieval can be
achieved by �lexicographically ordering the formulae in the justi�cations and in the
NFs� Henceforth� we use �NF� for ordered NF�
The analogical replay is an automated one in any case� It is given in a nutshell in
Table �� The justi�cations are checked in order to perform a warranted analogical
transfer only� Its check of justi�cations is also simpli�ed by ordering the formulae in
the NF� The replayed subplan � may consist of a single step ci� of several steps� or

�

input� source goal� guiding source subplan� target goal
output� �partial target plan

�� Let C be the guiding subplan and ci the current step in C�

�� Terminate if the target goal is proved�

�� Check of justi�cations� If the justi�cation of ci that corresponds to a subplan �
holds in the target� then replay ��

�� Advance the case C to the next usable step cj � i� j� goto ��

Table �� Outline of the analogical replay

even of the whole source subplan� The �next usable step� depends on the satis�ed
justi�cation j of ci in C� All the steps that belong to the subproof corresponding to j
are skipped� A generalization of the retrieval and the replay to multiple source subplans
is possible�
In order to use internal derivational analogy� we have to store justi�cations of the source
proof plan steps which we are going to replay�

��� Justi�cations

Justi�cations represent reasons for proof decisions� It is a non�trivial task to select ap�
propriate justi�cations in a proof planning environment� For inductive theorem proving
this task and a set of appropriate justi�cations are described in ��	 and ��	�
Our justi�cations are represented in a data structure attached to the proof plan nodes�
This justi�cation structure has di�erent slots that store di�erent kinds of justi�cations�
as explained below� The justi�cations are checked during the replay� Only if at least
one justi�cation holds� the corresponding step or the subplan can be replayed�
For the veri�cation of state�based speci�cations we analyzed the most common proof
patterns and associated them with appropriate justi�cations� Frequent proof patterns
are� �i the reduction to small essential proof obligations by extracting relevant subfor�
mulae� �ii the use of derived lemmata� and �iii term generalization� These patterns
can be combined in a proof�
In order to make the e�ort for the proof by analogy that includes checking the justi��
cations as small as possible� we need to

� store all the information relevant for the replay but not more�

� store it in a form that is available during the source solution process and that can
be easily interpreted in the target�

Taking into consideration the two requirements� we identi�ed the following justi�cations
for state�based speci�cations�

�� The user reduces the problem to essential proof obligations� If a proof obligation
at a root node N�

H�� � � � �Hn � C�� � � � � Cm

is reduced to a proof of a sequent

Hi� � � � � �Hil � Cj� � � � � � Cjk

�

for i�� il 	 f�� � � � � ng and j�� jk 	 f�� � � � �mg� then the NF of the reduced sequent�
called essence� is stored as a justi�cation in the essence slot� e�g�� �essence�
fHi� � � � � �Hil ��Cj� � � � � ��Cjkg� essence contains all the relevant subformulae�
Note that essence is a justi�cation for a whole subproof rather than for single
proof steps� Therefore� this justi�cation is stored after the subproof has been
completed� It is computed by goal regression ��	 over the whole subproof�

For a new subproblem in a node N it can be checked automatically whether its
NF is a superset of N��s essence� That is� it is checked whether the source and
the target problem di�er in irrelevant subformulae only� If yes� the subproof at N�

can be fully replayed� In a target node� the essence is the justi�cation checked
�rst�

Example� The essence of ���� below is a subset of the NF of ���� The rest of
the proof obligation does not matter� and so the subproof of ���� can be
completely replayed�

Interpretation� If the NF of a target proof obligation is a superset of the NF in
the justi�cation slot essence� then this justi�cation holds� and the source
subproof can be replayed�

Even in cases where no reduction was performed in the source� it is reasonable to
store the essence of a subproof in order to be able to discover a similar essence of
a target problem later on�

�� The user provides a lemma in the source that enables or considerably simpli�es
the proof� For instance in the subproofs of the example below� the lemma x 	
insert�Y�Z � x �	 Z
 x � Y is provided� that helps to complete several
subproofs� The subset of �generalized elements of the source NF that is needed
to apply the lemma is stored as a justi�cation in the lemma justi�cation� lemma
is computed by goal regression �backward from the lemma application node Nl�
The current value of the regressed goal is stored as lemma justi�cation at each
node visited by the goal regression�

Example� In example ���� below� the lemma justi�cation at node N� is� fx 	
err� err � insert�next�in�� err����x 	 err�g because the goal regression
yields fx 	 insert�next�in�� err����x 	 err�g in the �rst step and fx 	
err� err � insert�next�in�� err����x 	 err�g in the second step�

Interpretation� If the NF of the target problem is a superset of the source
node�s lemma justi�cation� then the justi�cation holds� and the lemma can
be applied in the target�

lemma is a justi�cation for several steps rather than for a large subproof�

�� An extended form of the justi�cation check does not require the source essence
to be an exact subset of the target NF but additionally allows for a substitution
of variables or even a mapping of terms� This more general g�lemma justi�cation
is produced by

�a in lemma replacing the substitution terms by the variables of the lemma they
are substituted for and

�b replacing other constants not occurring in the lemma by variables�

�The semantics of the functions does not play a role at this moment� It will be explained in section ��

�

When we replace the lemma subset by the g�lemma subset in essence� we also
obtain a more general g�essence�

Example� From the lemma justi�cation above and from the substitution �Y �
next�in�� Z � err�	� the g�lemma justi�cation fx 	 B�B � insert�Y�Z�
��x 	 Zg is produced�

Interpretation� If g�lemma of a source node matches a subset of the NF of the
target problem� then the justi�cation holds and the lemma can be applied
in the target node again� If the g�essence of a source matches a subset of
the NF of the target problem� then the justi�cation holds and the source
subproof can be replayed�

�� Often� the theorem provers of a veri�cation system are not able to prove a proof
obligation without a user supplied generalization� Automated generalization is a
very di�cult task and� therefore� most often left to the user�

The justi�cations gen�essence and gen�lemma� stored at a generalization node
NG of a plan� is produced by computing the essence and lemma of the generalized
goal� respectively�

Example� The proof of ���� in section � includes at node NG the term general�
ization max value�sender�next�in�� clients� to X and of value�next�in�
to Y � The gen�essence for the node is f�X � Y ���Y � Xg� Note that
this is a justi�cation for the subplan with root NG�

Interpretation� If a subset of the NF of a target goal matches the gen�essence
of a source node N � then the substitution provided by the match is used
for the term generalization in the target� and the subproof for the goal at
N can be replayed� If a subset of the NF of a target goal �node matches

the gen�lemma of a source node only� then the substitution provided by the
match is taken for a generalization� and then the lemma application can be
replayed�

� Example� Proofs of Invariants

The following example stems from a case study performed with VSE� a veri�cation
support environment ��	 at the DFKI in Saarbr�ucken� The goal of this case study is to
model a communication �lter� From an input queue a message is checked for certain
properties� If these properties hold� the message is sent to an output queue� In case
the properties do not hold� it is sent to an error queue�
A message is a compound object of several components� the addressee� the sender� the
subject� and the message text� The input queue �in� the output queue �out� as well
as the error queue �err are �rst�in��rst�out queues with the following functions�

� nil �� queue generating the empty queue�

� insert � message� queue� queue inserts a message into a queue�

� 	� message � queue � bool determining whether a message is contained in a
queue�

� next � queue� message returning the message from the queue which is handled
next� and

�

� rest � queue � queue deletes the message that is handled next from the queue
and leaving all other entries unchanged�

In addition� for the communication system there is a data base �base of all clients�
The check whether a message can pass the �lter is done in two steps� First� it is checked
whether the sender is a legal client� A function known � name � data base � bool
returns true if for the name there is an entry in the data base� Secondly� the message is
evaluated� and a natural number is computed� value � message � nat� Moreover� for
each client in the data base there is a maximal value� max value � name�data base�
nat� If the value of a message does not exceed the maximal value associated with the
sender� then the respective message is allowed to pass� As values one could imagine�
for instance� the allowed lengths of a message text�
For this scenario a state�based speci�cation ���� �	 was used� We have several state
variables for the di�erent queues and for the client data base� Furthermore� some
state transitions were speci�ed for the insertion operation on queues� and for the check
whether a message can pass the �lter� Each state transition is speci�ed by the details
of the changes they produce� i�e�� by de�ning the precondition and the postcondition
of a state transition� In these pre� and postconditions a state variable prior to the
execution of the state transition is quoted as opposed to the state variable after the
transition has been performed� For example� in� denotes the input queue before the
transition has been performed� and in is the input queue afterwards�
A state�based speci�cation is called correct� if a �rst�order formula � the invariant �
holds for all reachable states� Hence� this invariant has to be proved for the initial
state� and for all states that can be reached from the initial state� The invariant from
our case study is�

x 	 out �

�
known�sender�x� base�

value�x max value�sender�x� base

�
�

x 	 err �

�
�known�sender�x� base�

value�x � max value�sender�x� base

�

During the veri�cation process the original large proof obligation has been decomposed
into seven smaller proof obligations denoted by proo�nv�i for i � �� � � � � �� By simpli�
�cations and equation applications each proo�nv�i is decomposed into several simpler
proof obligations� For instance� proo�nv��� proo�nv��� proo�nv�� are each reduced to
eight subgoals� We shall have a look at the proofs of these subgoals� In the following
examples the shaded parts of the proof obligations indicate the relevant parts of the
proof obligations� Note� how these relevant parts occur in several proof obligations
giving rise to a reuse of proofs�
proo�nv�� is a rather large proof obligation�

in� �� nil� x 	 out� � known�sender�x� base� �
value�x max value�sender�x� base��
x 	 err� � �known�sender�x� base�
� value�x � max value�sender�x� base���known�sender�next�in�� base�
err � insert�next�in�� err� � out � out� � in � rest�in� �
�x 	 out� known�sender�x� base� �
value�x max value�sender�x� base� � �x 	 err �
�known�sender�x� base� � value�x � max value�sender�x� base��

All but the resulting third and eighth subgoal can easily be simpli�ed and proved�
Originally� for the �� proof steps of proo�nv�� �
 user interactions were needed � By
internal analogy approximately �
� of the interactions can be saved�

�

���� known�sender�x� base�� x 	 err� err � insert�next�in�� err��
out � out�� in � rest�in� �
value�x � max value�sender�x� base�� x 	 err� � x 	 out��
known�sender�next�in�� base�� in� � nil
is proved by

� manually suggesting the lemma

x 	 insert�Y�Z � x �	 Z
 x � Y� ��

With the substitution �Y � next�in�� Z � err�	 the application of this
lemma gives

x � next�in�� ��

� By simpli�cation with �� we obtain a subgoal � � � �H� � � � � � � � �H� � � � where
H abbreviates known�sender�x� base��

The justi�cations at the root node of ���� look as follows�
essence made up from all the shaded formulae�
lemma� fx 	 err� err � insert�next�in�� err����x 	 err�g is constructed from
x 	 err� err � insert�next�in�� err� at the left hand side of the proof obligation
and x 	 err� at the right hand side� lemma provides the elements of the essence
relevant for the lemma application� The other shaded formulae are relevant for
the remaining proof steps�
g�lemma� fx 	 B�B � insert�Y�A���x 	 Ag�

���� known�sender�x� base�� x 	 err� err � insert�next�in�� err�� out � out��
in � rest�in�� known�sender�x� base��
value�x max value�sender�x� base� �
value�x � max value�sender�x� base�� x 	 err� �
known�sender�next�in�� base�� in� � nil
can be proved by analogy to proof obligation ���� because the essence of ���� is
a subset of the NF of ���� as well�

proo�nv�� is decomposed into eight proof obligations� All but the resulting third
and eighth subgoal can be immediately simpli�ed and proved automatically� The more
complicated subproofs are outlined below� Originally� for the �� proof steps of proo�nv�
� �� user interactions were needed � By internal analogy approximately �
� of the
interactions can be saved�

���� known�sender�x� base�� x 	 err� out � out�� in � rest�in�
max value�sender�next�in�� base� � value�next�in� �
known�sender�next�in�� base�� err � insert�next�in�� err���
value�x � max value�sender�x� base�� x 	 err� � x 	 out�� in� � nil�
is proved by

� reusing the lemma application from ���� because the lemma justi�cation holds
in ���� The rest of the subproof di�ers though�

� Then interactively generalizing max value�sender�x� clients� to X and
value�x to Y at node NG results in the problem � � � � X � Y� � � � � � � � � Y �
X� � � �� This goal can be proved automatically�

� This subproof automatically uses the lemma X � Y � Y � X�

�

essence at the root node of ���� is provided by all the shaded formulae�
gen�essence at NG is fX � Y���Y � Xg�

���� known�sender�x� base�� x 	 err� in � rest�in�� known�sender�x� base��
max value�sender�next�in�� base� � value�next�in� �
known�sender�next�in�� base�� err � insert�next�in�� err�� out � out��
value�x max value�sender�x� base� �
value�x � max value�sender�x� base�� x 	 err� � in� � nil�
is proved by reusing the proof of ���� because essence of ���� is a subset of �����s
NF�

Only the third and eighth subgoal of proo�nv�� can be simpli�ed and proved imme�
diately� The other goals are proved by analogy� Originally� for the �
 proof steps of
proo�nv�� �� user interactions were needed � By internal analogy approximately �
�
of the interactions can be saved�

���� x 	 out� known�sender�next�in�� base�� err � err��
out � insert�next�in�� out�� in � rest�in� �
known�sender�x� base�� x 	 err�� x 	 out�

max value�sender�next�in�� base� � value�next�in�in� � nil
is proved by reusing the subproof of ����

���� x 	 out� known�sender�next�in�� base��
err � err�� out � insert�next�in�� out�� in � rest�in� �
value�x max value�sender�x� base�� x 	 err�� x 	 out� �
max value�sender�next�in�� base� � value�next�in�in� � nil

The lemma application of ���� is reused�
Then at NG� interactive generalization yields � � � � � � � � X Y� Y � X� � � � which
can be proved automatically�
This provides the gen�essence f��X Y ���Y � Xg for �X � value�x� Y �
max value�sender�x� base�	�

���� For x 	 out� known�sender�next�in�� base�� err � err��
out � insert�next�in�� out�� in � rest�in� �
known�sender�x� base�� known�sender�x� base�� x 	 out� �
max value�sender�next�in�� base� � value�next�in�� in� � nil�

the subproof of ��� can be reused�

���� For x 	 out� known�sender�next�in�� base�� err � err��
out � insert�next�in�� out�� in � rest�in� �
value�x max value�sender�x� base�� known�sender�x� base��
x 	 out� �max value�sender�next�in�� base� � value�next�in�� in� � nil�

the subproof of ��� can be reused�

���� For x 	 out� value�x � max value�sender�x� base��
known�sender�next�in�� base � err � err�

out � insert�next�in�� out�� in � rest�in� �
known�sender�x� base�� x 	 out� �
max value�sender�next�in�� base� � value�next�in�in� � nil�

the subproof of ��� can be reused�

�

���� x 	 out� value�x � max value�sender�x� base��
known�sender�next�in�� base�� err � err��
out � insert�next�in�� out�� in � rest�in� �
value�x max value�sender�x� base�� x 	 out� �
max value�sender�next�in�� base� � value�next�in� � in� � nil�

The lemma application of ���� can be reused�
Then the resulting subgoal is proved by automatically applying the lemma
X � Y � ��X Y � The �rst step of ���� can be replayed because its lemma
justi�cation holds�

� Conclusion and Future Work

Since user interaction accounts for the lions share of the costs for the formal proofs in
program veri�cation� there is every incentive to reduce these costs by a higher degree
of automation� This paper has addressed the problem of saving user interaction in the
veri�cation of state�based speci�cations�
From the given examples it is clear that and how whole subproofs� generalizations� and
lemma applications can be reused if the same justi�cations hold for the target subprob�
lem� In our example the savings of user interactions achieved by internal analogy sums
up to about �
��
Our technique is based on the general idea of internal analogy that transfers source
subproofs to target subproofs in the same proof attempt� It turns out that state�
based speci�cations give rise to many similar proof obligations in their veri�cation�
We identi�ed common patterns of subproofs and their justi�cations in order to employ
them for the reuse of subproofs and proof steps�
The presented techniques are just a beginning� More elaborate justi�cations and map�
ping techniques will be explored in the future in order to reuse more and even larger
proofs� In particular� retrieval and replay have to be extended to handle multiple
sources�

References

��� J�G� Carbonell� Derivational analogy	 A theory of reconstructive problem solving and ex�
pertise acquisition� In R�S� Michalsky
 J�G� Carbonell
 and T�M� Mitchell
 editors
 Machine
Learning� An Arti�cial Intelligence Approach
 pages ������� Morgan Kaufmann Publ�

Los Altos
 �����

��� Angela K� Hickman
 Peter Shell
 and Jaime G� Carbonell� Internal analogy	 Reducing
search during problem solving� In C� Copetas
 editor
 The Computer Science Research
Review ����� The School of Computer Science
 Carnegie Mellon University
 �����

��� Dieter Hutter
 Bruno Langenstein
 Claus Sengler
 J�org H� Siekmann
 Werner Stephan

and Andreas Wolpers� Deduction in the Veri�cation Support Environment �VSE�� In
Marie�Claude Gaudel and James Woodcock
 editors
 Proceedings of the Third International
Symposium of Formal Methods Europe
 pages ������
 Oxford
 England
 �����

��� Th� Kolbe and Chr� Walther� Reusing Proofs� In Proceedings of ��th European Conference
on Arti�cial Intelligence �ECAI��	

 Amsterdam
 �����

��� E� Melis� Analogy in CLAM� Technical Report DAI Research Paper No ���
 University
of Edinburgh
 AI Dept
 Dept� of Arti�cial Intelligence
 Edinburgh
 ����� available from
http	��jswww�cs�uni�sb�de��melis��

��� E� Melis� A model of analogy�driven proof�plan construction� In Proceedings of the �	th
International Joint Conference on Arti�cial Intelligence
 pages ������
 Montreal
 �����

�

��� E� Melis and C� Sengler� Analogy in veri�cation of state�based speci�cations	 First results
Seki report
 SR������
 ����� available from http	��jswww�cs�uni�sb�de�pub�seki��

��� E� Melis and J� Whittle� Internal analogy in inductive theorem proving� In M�A�McRobbie
and J�K� Slaney
 editors
 Proceedings of the ��th Conference on Automated Deduction
�CADE���

 Lecture Notes in Arti�cial Intelligence
 ����
 pages �����
 Berlin
 New York

����� Springer�

��� T�M� Mitchell and R�M� Keller and S�T� Kedar�Cabelli� Explanation�based generalization	
A unifying view� Machine Learning �
 pages ����
 �����

���� W� Reif and K� Stenzel� Reuse of proofs in software veri�cation� In R�K� Shyamasun�
dar
 editor
 Proc ��th Conference on Foundations of Software Technology and Theoretical
Computer Science
 volume ��� of LNCS� Springer
 �����

���� J� Rushby
 F� von Henke
 and S� Owre� An Introduction to Formal Speci�cation and
Veri�cation using EHDM� Technical report
 SRI International
 March �����

��

A
n

al
o

g
ic

al
Tr

an
sf

er
o

f
V

er
ifi

ca
ti

o
n

P
ro

o
fs

fo
r

S
ta

te
-B

as
ed

S
p

ec
ifi

ca
ti

o
n

s

E
ri

ca
M

el
is

an
d

C
la

u
s

S
en

g
le

r

R
R

-9
7-

01
R

es
ea

rc
h

R
ep

or

