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Abstract This paper presents a study conducted to evaluate and optimize
the interaction experience between a human and a 9DOF arm-exoskeleton by
the integration of predictions based on electroencephalographic signals (EEG).
Due to an ergonomic kinematic architecture and the presence of three contact
points, which enable the reflection of complex force patterns, the developed
exoskeleton takes full advantage of the human arm mobility, allowing the oper-
ator to tele-control complex robotic systems in an intuitive way via an immer-
sive simulation environment. Taking into account the operator’s percept and
a set of constraints on the exoskeleton control system, it is illustrated how to
quantitatively enhance the comfort and the performance of this sophisticated
human-machine interface. Our approach of integrating EEG signals into the
control of the exoskeleton guarantees the safety of the operator in any working
modality, while reducing effort and ensuring functionality and comfort even in
case of possible misclassification of the EEG instances. Tests on different sub-
jects with simulated movement prediction values were performed in order to
prove that the integration of EEG signals into the control architecture can sig-
nificantly smooth the transition between the control states of the exoskeleton,
as revealed by a significant decrease in the interaction force.
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1 Introduction

Teleoperated robotic systems are without a doubt powerful tools to conduct
exploration and perform manipulation tasks in a wide range of hazardous
environments. However, such systems, their action spaces as well as missions
nowadays reached a level of complexity which makes it increasingly difficult for
human operators to control them. Therefore, it is imperative that more intu-
itive human-machine interfaces, which make this job easier and more efficient
are developed. Thus, we developed a teleoperation system that encompasses an
arm exoskeleton, a brain-reading interface, and visual immersion environment
to support Man-Machine Interaction.

When developing the system we focused on improving the exoskeleton con-
trol by biosignals, i.e. electroencephalographic signals, that allow insights into
the user’s intentions to improve the overall interaction. Such an improvement
would not be achieved without the knowledge gained from analyzing the elec-
troencephalogram (EEG). This is most important since it is well known, that
the analysis and classification of EEG, as done in many brain-computer inter-
faces (BCIs) requires a high effort, e.g. setting up an electrode cap, recording
training data and training time for the classifier. The positive effect of the
integration of EEG signals has to outweigh the effort required to introduce
the EEG based modification.

Since during motion the control system of the exoskeleton can be optimized
using sensors information and accurate models to compensate for dynamic and
nonlinear friction effects [10], the integration of biosignals in this specific case
would probably not significantly improve the situation. However, a prediction
of movement onset of a subject out of a rest position is, just by the analysis of
the behavior of the operator or the interaction with the system not possible and
can therefore not be integrated into the control of the exoskeleton to improve
its behavior. We therefore introduce EEG based predictions about movement
onset to prepare the exoskeleton for lock out, i.e. to smooth the transfer from
rest (full user support mode) to free movements (transient mode) [19] (see
Figure 1).

With the work presented here, we show that by integrating biosignals, the
responsiveness of the interface and comfort of interaction could be enhanced
without compromising the overall system safety. Hence, this adaptation of the
exoskeletons control results in an effortless and seamless integration of human
and exoskeleton. We focus on measuring this improvement of the interaction
between man and exoskeleton by the integration of EEG signals and render
a novel framework to overcome current issues in the literature (see below) by
following basically two principles: First, the biosignal (EEG) is integrated in
a way that is not directly controlling the exoskeleton, but instead influenc-
ing parameters of the exoskeleton’s control. More specifically, with the help
of movement prediction the exoskeleton is able to prepare for a movement,
thereby reducing the effort of the user for its initiation. Further, we made
sure that the exoskeleton is behaving optimally with respect to the control
based purely on force sensor data (i.e. without EEG based movement predic-
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Fig. 1 Adaptation of the control of the exoskeleton by Brain Reading (BR): The exoskeleton
is supporting the user while he is moving. In case the user stops moving, the exoskeleton will
lock in to support the arm in mid air. For lock out the user has to press against sensors. To
support lock out, movement predictions made by BR are used to modulate the exoskeleton
control. High prediction scores result in low effort for the user to lock out. Pressure against
the sensors is always required for lock out, minimizing the risk of false lock out in case of
false movement prediction made by BR.

tion). Second, we adjust the effect of this integration according to the user
and evaluate the benefit. Since the integration of the biosignal is indirect, i.e.
not controlling the exoskeleton, it is not immediately clear that there is in-
deed a benefit for the user due to some biosignal-based modification. Following
these principles, this investigation and adjustment of the effect is essential for
the proposed procedure, because the overall goal is to achieve a perceptual
improvement for the human. This improvement is technically realized by re-
ducing the time threshold the exoskeleton needs for switching between full
user support and transient mode (see Figure 1 and more details in Section
2.2) whenever a movement is predicted. One major advantage here is that
the user maintains the executive power in every situation. If the system cor-
rectly predicts a behaviour, the exoskeleton can prepare for it resulting in
improved transition from one exoskeleton modality to another. Moreover, if
no or a wrong prediction is made, most likely nothing noticeable for the user
will happen.

Here, we use simulated classifier output by determining three levels of
prediction certainty in order to evaluate the benefit for the user independently
of the applied classifier. EEG data comprise high noise levels and our prediction
is achieved in real time (i.e. based on single trials), which would yield in
fluctuations in prediction scores making a systematic evaluation more difficult.

In the following we will deal more specifically with existing exoskeleton
systems and approaches to make use of biosignals.
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Requirements for Exoskeletons: Among the possible solutions, ex-
oskeletons represent a category of devices that can effectively increase the
immersion of the operator into the work scenario [5,41,46,49]. According to
[42], the performance of a teleoperation session is directly correlated with the
quality of the telepresence, thus with the feeling of being present at the re-
mote site. Here, it is of particular importance to have an interface which is
able to transfer as realistically as possible all the relevant information regard-
ing the remote scenario [29]. An exoskeleton, like any other human-machine
interface, has to fulfill specific requirements regarding safety, comfort and us-
ability. Among these three, safety is undoubtedly the most important one [21].
In any working modality the system must not harm the user. This can be as-
sured implementing different levels of safety mechanisms both in the hardware
and in the software. Backdrivability and compliance in the actuation system
is also highly desirable [52,51], meaning that the user, at any event and dis-
regarding any possible failure, has the option to move the interface according
to his will. The comfort in wearing and using the interface depends on differ-
ent factors and has a strong influence on the execution of the task at hand
[48]. Considering that in a tele-operation session the exoskeleton is worn for
a prolonged period of time, it has to be as light as possible. Furthermore, its
kinematics should be configured in a way to avoid restriction of the user’s mo-
bility, while at the same time maximizing the reachable workspace [37,16]. In
addition to that, the interface should be transparent for the user. This means
that the effort to operate it has to be minimized, namely, its mass and inertia
should be compensated by the control system. The interaction forces, when no
feedback is required, have to be kept as low as possible. In this way the fatigue
of the operator will be also minimized. Finally, usability in this specific case
means easiness to wear and intuitiveness in the usage. The exoskeleton has to
be designed in a way that the wearing and calibration procedures do not take
too long. Furthermore, its operation should be intuitive, not requiring long
training sessions.

Benefit of Biosignals Integration: In order to further improve interac-
tion we make use of the close coupling between exoskeleton and human by uti-
lizing biosignals to influence the exoskeleton’s control. Although appealing, the
integration of biosignals always comes with some pitfalls regarding the user’s
safety and comfort. Both aspects are largely affected by the fact that biosig-
nals inherently include a lot of noise making misclassification likely. Therefore,
when developing applications based on automatic classification of biosignals
one has to deal with the problem of imperfect classification rates caused by
the high noise and high dimensionality of the signal, see e.g. [3] for monitoring
attention and [53] for classifying moods or emotions. A classical approach to
use biosignals with machines is the implementation of brain-computer inter-
faces (BCIs) [55,6], which usually classify data from the electroencephalogram
(EEG) in order to control a device, e.g. a wheelchair [34]. For active and re-
active BCIs [56], where the user (which is often a patient) is really controlling
a device, misclassification directly causes bad functioning of the system and
might also have fatal consequences for the user. The introduction of certain
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safety mechanisms is of critical importance here. When voluntary control is
not intended, the BCI is of a passive type [56] which is the approach we follow
with the Brain Reading component in our system.
BCIs are often used in the context of rehabilitation (for an overview see [38]),
a field where exoskeletons are also applied (for an overview see [22]). For ex-
oskeletons that are used for rehabilitation, muscular activity is often used to
control the exoskeleton in order to restore the full mobility of the patient.
Therefore, when the aim is to control the exoskeleton, the typical biosignal
used is the activity in the electromyogram (EMG) [14,44,20,45]. Similar EMG
based predictions can be performed for the interface with a prosthetic wrist
[39]. In the present study, we are aiming at movement prediction just before
the onset of muscular activity, so we use the preceding brain activity, i.e.,
EEG. The idea of EEG based movement classification or prediction is again
widely used: A lot of different approaches exist comprising different tasks like
voluntary wrist extension [4,24], cued hand, tongue or foot movements [35] or
left versus right finger movement [8]. Further, different signals have been used
for classification, i.e. event-related potentials [8,54] or frequency components
[4,24,35,50].
To summarize, a high number of different systems and approaches exist to
integrate biosignals to enhance man-machine interaction, but the literature is
extremely diverse: there is no clear unified methodology of how to integrate
a biological signal and, as for movement classification or prediction, it is also
debated which signal serves best for the purpose at hand. Since there is a
common goal, namely improving the interaction for the user it is essential to
evaluate the benefit of this integration. The latter issue, in particular, remains
often disregarded, although it is most important to show a measure of the
user’s and the system’s benefit. When a suitable user is not present, some
studies use simulations [39] to evaluate the modifications in their system, but
in principle one should use experimental data from the user and the robotic
system, as was recently done with a one-arm exoskeleton [44] and a commer-
cial haptic interface [36]. The calibration procedure proposed in the present
study can be performed before each teleoperation session, is independent of
the classifier (see Figure 7) and guarantees a baseline behavior of the whole
system, maximally adapted to the current user. Further, we eliminate differ-
ences between sessions and users (e.g. how the exoskeleton fits, how well the
user is trained) and finally evaluate improvements by the integration of EEG
into the calibrated and therefore already optimized system.
The organization of this paper is as follows: next section briefly introduces the
overall human-machine interface and more in detail the components involved
in this study, Section 3 explains the methods and the experimental setup whose
results are presented in Section 4, finally, Section 5 draws the conclusions and
indicates possible future developments.
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2 VI-Bot Multimodal Teleoperation Interface

The human-machine interface considered in this study [19] encompasses: an
arm exoskeleton, a brain-reading interface, and an immersion environment
composed of a head-mounted display (HMD), a data glove and a motion-
tracking system (see Figure 2). In this Section we will describe the control
mechanism of the developed exoskeleton and how biosignals, i.e., EEG signals,
are integrated to increase comfort by the means of reducing interaction force
(see Section 2.1.2) while ensuring that safety mechanisms are never affected.

Fig. 2 A teleoperation scenario involving the VI-bot multimodal teleoperation interface.

The developed exoskeleton consists of 9 DOF, seven of which are actu-
ated and two purely passive. In order to deliver a proper force feedback and
to distribute the weight of the system over the body, different contact points
have to be defined between the limb and the exoskeleton. The interfacing sur-
faces have to be rigid and well fixed to transfer properly the forces, but at
the same time they have to be soft to avoid excessive stress on the body [43].
Therefore, a good balance between stability and ergonomics has to be found.
In the developed exoskeleton three contact points with the human arm were
chosen: shoulder, upper-arm, and forearm (wrist proximity). The kinematics
is configured according to the human anatomy in order to maximize the usable
workspace [16,15] while, at the same time, to minimize the restrictions to the
user’s movements. The system is actuated via a relative low-pressure hydraulic
circuit operating at 25bar [17,18]. In comparison to standard industrial sys-
tems, which normally work in a range of 120−400bar, a low operative pressure
is chosen in order to increase the safety of the interface and to allow the usage
of lighter hydraulic components. Additionally passive and active safety fea-
tures are integrated within the mechanical, electric, and software components
of the system, Table 1 resumes the most important ones.

Each joint is equipped with position and torque sensors. In addition to
that, at each contact point with the limb, namely acromion (shoulder), distal
parts of the humerus (upper arm), and ulna-radio bones (forearm), the inter-
action forces can be measured via dedicated force/torque sensors. On the one
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Table 1 Safety Features of VI-Bot Exoskeleton System

PASSIVE SAFETY ACTIVE SAFETY
Mechanical Design Electronic Software

• mechanical limitation
of joint angles

• actuation system
dimensioned accord-
ing to max. human
strength

• max. joint torque lim-
ited via security-valve
in the actuator

• system pressure lim-
ited to 28bar by blow-
off valve

• 3 separate emergency
buttons to switch off
hydraulic power

• low voltage compo-
nents max 24V −DC

• hydraulic power limi-
tation max. 100W

• system supervision via
Graphical User Inter-
face

• automatic system
shutdown in case of
failure

• saturation function in
each torque controller

• actively regulated sys-
tem pressure

hand, these sensors allow to control the force feedback, giving the possibility
to display complex force patterns. On the other hand their influence on the
control system can be modulated and allow the integration of biosignals. In the
control of the exoskeleton we make use of EEG signals for online modulation
by means of machine learning approaches.

It is worth to mention at this point that, in this study, only the wrist contact
point was considered. There are mainly two reasons for it. First the sensor that
equips this part of the interface (see Section 2.1), compared to the sensors in
the other two contact points, is more precise, more reliable, and capable to
detect the interaction force in all directions. This is important to evaluate
correctly the effort made by the user during the interaction with the interface.
Furthermore, in the first instance we preferred to keep the experimental setup
and methods as simple as possible. To this end, e.g. we avoided the usage of
the kinematic/dynamic model to map the forces from the Cartesian workspace
to the joint workspace. Nevertheless, we are aware about the fact that in this
latter case a more precise analysis can be conducted, and that therefore the
topic deserves further consideration.

To support the control of the exoskeleton by the integration of EEG signals it
must be ensured that classification errors will not disturb, while correct clas-
sification will clearly support the system. To allow this, several requirements
for the successful usage of EEG signals have to be fulfilled. First, the inte-
gration of the predictions regarding the cognitive state of the operator should
not disturb the action of the operator. To achieve this, EEG signals should
be used passively such that the operator’s active behavior is not required and
his natural behavior is not disturbed, e.g., by forcing him to produce certain
brain activity. This requirement is fulfilled by brain reading, a method that
passively analyses the operator’s EEG to draw conclusions about his cognitive
state which can be used in general to improve robot-machine interaction [26,
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25]. Second, the outcome of the prediction based on the EEG analysis is inte-
grated into the exoskeleton control in a way that the effort (see definition in
Section 3) of the user to switch between the operational states is reduced while
the control of the exoskeleton still assures that possible misclassifications very
likely have no impact and leave the exoskeleton and tele manipulated robot
under full control of the user. In Section 2.2 we will describe our EEG based
approach.

2.1 Exoskeleton Control Modalities

The control system of VI-Bot exoskeleton is organized in a hierarchical way.
At the lowest level, the torque of each joint is regulated via a dedicated
µController. At the middle level, a set of modules implementing position con-
trol, impedance regulation, and gravity compensation are operating in parallel.
Finally, at the top level, a bi-directional mapping enables the connection be-
tween the target robot and the exoskeleton. It is at this level that the LOCK
GUARD module is also integrated. This is one of the core control elements
relevant for this study, taking care of the transition from one control modality
to the other.

More specifically there are three possible states the exoskeleton can change
between: “teleoperation mode”, “transient mode” and “full user support mode”.
Those three modes are chosen to allow the operator to control a robot (tele-
operation mode), to interact with the virtual environment without influencing
the robot’s state (transient mode) and to rest the arm in a comfortable posi-
tion (full user support mode). This last modality is particularly advantageous
in case the operator wants to keep fixed the position of his arm and doing
some other tasks (e.g. monitoring the state of the exoskeleton on a screen).

The switch from “full user support mode” to “transient mode” is triggered
by the interaction force measured at forearm contact point. This naturally
makes sense, having in mind that movement patterns for grasping objects or
manipulating things are executed by humans in an endeffector based way [13,
1]. In particular the focus of this study is to prove that the usage of EEG signals
can improve this transition (see Figure 3). This, reducing the interaction force
and consequently decreasing the effort required to the user to change from one
control mode to the other.

To measure the interaction forces, at the forearm contact point, a six axes
force/torque sensor from ATI series Nano25 is integrated into the mechanical
structure of the exoskeleton. The Nano25 is capable of measuring forces up
to ±250N in x- and y-direction and forces up to ±1000N in z-direction with
a resolution of 1

24N (x,y) and 1
8N(z) respectively. The two additional contact

points, at the upper arm and shoulder respectively, are also equipped with
single axis force sensors from SMD series S420. Nevertheless, although these
sensors are generally important to detect the interaction forces between ex-
oskeleton and arm, they are not used in this study.
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Figure 3 shows a schema of the exoskeleton’s operational modes which are han-
dled by the LOCK GUARD module. Starting from the last item, the “tele-

Fig. 3 The three possible exoskeleton states: Teleoperation Mode, Transient Mode, Full
User Support Mode.

operation mode” describes the modality where the exoskeleton is following
the movements of the user, while at the same time it actively compensates
for gravitational effects on the mechanical structure. Only in this mode, the
operator is able to control the robot which is intended to be telemanipulated.
This mode is initiated by the operator clenching the fist and recognized by the
system using a gesture recognition algorithm. If the user teleoperates a robot,
the exoskeleton additionally provides a directional force feedback in case the
user drives the target system into a contact situation with the environment.
This enhances the immersion of the user into the telemanipulation scenario.
As soon as the fist is re-opened, the teleoperated system is released from op-
erator control and force feedback is switched off. In case the user does not
want to control another robot, it is possible to change the operational state of
the exoskeleton to “transient mode”. This is done by pressing a button on a
remote control. As soon as the system enters the “transient mode”, the user is
absolved from being able to pilot the teleoperated robot even if he clenches his
fist. The re-entering to “teleoperation mode” is only possible by pressing the
button on the remote again. Generally, in “transient mode” the haptic device
only compensates for gravitational effects on the mechanical structure without
delivering any force feedback, which means that the user can move the limb
freely being unrestricted by the exoskeleton, have a closer look at warnings,
and interact with real and virtual interfaces.
During this state, the LOCK GUARD is permanently checking the activity
level Alevel of the user (Equation 1) . If it falls under a certain value, which
can be arbitrarily chosen by the user himself, the exoskeleton changes its state
to “full user support mode”. In this case, the control system of the exoskele-
ton activates the joint position controllers which keep the system in the last
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known pose before the user support mode was activated, enabling the opera-
tor to completely rest his arm in a desired pose. The transfer from “transient
mode” to “full user support mode” is done if the “Lock-in” condition is ful-
filled. The change from “full user support mode” back to “transient mode”
is induced if the “Lock-out” condition is fulfilled. This causes the control
system to switch off the position controllers which releases the user arm. Both
cases are described more precisely in the following two sections.

2.1.1 Lock-in Condition

In “transient mode”, the user has the chance to change the working modality
of the exoskeleton to “full user support mode”, in which the haptic device fully
supports the weight of the operator’s arm. The transfer to this support mode
is done automatically by the supervisor (LOCK GUARD) integrated into the
control environment. This supervisor is permanently checking the activity level
of the user according to the amount of the accumulated Cartesian velocity in
a floating window of fixed size which is defined as:

Alevel =

n∑
i=0

|vx(t− iT )|+ |vy(t− iT )|+ |vz(t− iT )| (1)

with T representing the sampling time of the control loop, n representing
the window size to be monitored, and vx,vy and vz the Cartesian velocities,
respectively. In our case, velocity checking is done in a floating window of 2s,
i.e., the activity level represents the overall movement of the operator during
the last n = 200samples of the control system which is running at T = 10ms.
If Alevel falls under a certain free definable threshold Ath, the LOCK GUARD
activates the “full user support mode” (see Figure 4). This causes the system to
switch ON the joint position controllers which afterwards hold the exoskeleton
in the pose where the user left the device. Generally, the assumption is valid
the smaller the threshold, the longer the user has to stay in one place to
activate the transition from “transient mode” to “full user support mode”.

For the presented scheme, a sharp threshold Ath for the “Lock-in” con-
dition can be used. Only requirement for the value of Ath is that it is to be
chosen larger than the noise level of the position sensors. On the other hand by
choosing the threshold small enough, false detection of a wanted ”Lock-in“
can be avoided, because the user has to stay quite calm in his movements to
keep the activity level under a certain value.

2.1.2 Lock-out Condition

Changing the operational state from “full user support mode” back to “tran-
sient mode” is possible if the user interacts with the position-controlled haptic
device. In case a physical interaction takes place between the operator and
the wrist contact point of the exoskeleton system, the LOCK GUARD checks
whether the so-called “Lock-out” condition (see Figure 5), which is described
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in the following, is fulfilled. Generally, all forces exerted by the user to the hap-
tic interface points are permanently measured and evaluated . This facilitates
a continuous monitoring of the energy dissipated by the system.

The lock-out mechanism is based on the measurement of interaction forces
and time resulting in the idea of detecting a movement intended by the user.
Figure 5 shows the general working principle. If the contact force between the
user and the exoskeleton exceeds a certain defined threshold Fth, a counter
(CNT) starts measuring the time. As soon as the counter value defined by
the lockout time-frame reaches the specified value Tth, the LOCK GUARD
transfers the exoskeleton control system from “full user support mode” back
to “transient mode” by switching off the joint controllers which kept the hap-
tic device in the rest pose. Afterwards the user is free to move.

The presented lock-out scheme demands adjustments due to some system
limitations. The main factors influencing the behavior of the presented mech-
anism are: force sensor noise, disturbances forces generated by movements of
the user body, change in the rest pose. The first point is solved by using a
counter in up/down-counting mode, i.e. up-counting is performed as long as
the interaction force is larger than the threshold while it counts back to zero if
the contact force falls under the threshold level before the final counter value
was reached. The following equations show the counting modes:

upcounting , F ≥ Fth and 0 ≤ CNT ≤ Tth (2)

downcounting , F < Fth and 0 < CNT ≤ Tth (3)

This avoids counter saturation in case the force value oscillates around
the force threshold due to the noise, furthermore unwanted peak forces are
rejected due to the filter characteristics of the counter.
The second problem is solved via a proper choice of the force and time thresh-
olds, this in order to avoid transitions in the operational state of the exoskele-
ton due to movements of the body (see Section 3.1). The last point implies
the fact that for different resting poses of the operator, the force sensors at
the contact points are pre-loaded with different values. To have a unified force
threshold for all rest positions in the overall workspace, the LOCK GUARD
offsets the force sensor measurements 3 seconds after the user was transfered
from “transient mode” to “full user support mode” (Lock-in). This nulls the
force sensors, assuming that the user really rests his arm during this initial
delay time of 3 seconds and improves robustness and response time of the
mechanism described.

Finally, it is worth to stress the fact that the time threshold Tth is not
static, but modulated by the brain reading interface. It is in the scope of this
paper to understand the benefits of integrating biosignals within the control
scheme of the exoskeleton. Next section is dedicated to better explain this last
point.
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2.2 Integration of a Brain Reading Interface for the Prediction of Movements

In the following we will describe our EEG based approach of improving the
control of the developed exoskeleton by modulating the lock out mechanism.

2.2.1 Lateralized Readiness Potential and other Movement Related Activity

Moving one’s arm to a desired position, as it is the case while controlling an
exoskeleton, is a directed movement and planned by the brain, involving the
primary motor cortex contralateral to the side of movement. A differentiation
between body parts to be moved is possible, since the primary motor cortex
is somatotopically organized such that certain areas are directly mapped to
certain body parts, e.g., hand or arm [40]. Therefore, by detecting EEG ac-
tivity produced by these parts of the primary motor cortex during movement
planning, it is generally possible not only to predict the execution of move-
ments but also which side (right or left body side) and part of the body will
be moved.

EEG activity of brain areas involved in motor planning of the right hand
and arm can be recorded with electrodes C3 and FC3 (extended international
10-20 system electrode placement [23], see Figure 6) placed over the hand
and arm area of the primary motor cortex. The recorded negative activity at
these electrodes is an event related potential (ERP) called lateralized readiness
potential (LRP) [27,47] (see Figure 6). Since in our application a movement
is planned out of a complete rest situation it is also possible to use the Be-
reitschaftspotential (BP) [27,47] for movement prediction. The non lateralized
BP can be detected before the LRP with onsets of one to 2 seconds before the
start of a movement [47]. According to the way the classifier is trained [19],
the prediction of movement preparation in the situation where the user is in
a full rest position, i.e. fully supported by the exoskeleton, is therefore based
on real-time single trial detection of both the BP and LRP.

The utilized data processing for ERP detection (see Section 2.2.2) needs
only information in the very low frequency range (below 4 Hz), rigorous filter-
ing can be applied that eliminates or at least strongly reduces the artifacts that
are pronounced in our application, i.e., muscle artifacts and noise induced by
the exoskeleton itself. However, eye artifacts contribute to the recorded signal
in the very low frequency range and can therefore not be completely removed
by the applied filtering methods explained below. To avoid eye artifacts in
general, subjects have to fixate a target location in the training sessions while
being in the rest condition. With this approach we try to maximally reduce
the occurrence of eye artifacts during training, so that the classifier cannot re-
liably base its prediction on these. These experimental conditions were applied
in earlier experiments [19] and should help to avoid eye artifacts.
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2.2.2 Signal Processing and Classification Procedure

The challenge of our approach is the detection of a rather weak signal of short
duration at an unknown time point. Both, BP and LRP are about 10 to 100
times smaller in amplitude than the superimposed brain activity and can nor-
mally only be detected in average analysis (enhancing time-triggered ERP
activity and reducing so-called activity-unrelated noise). For our approach,
single trial EEG analysis in real time is needed that has to be fast to allow
multiple testing for the occurrence of ERPs before the movement. For this
discrimination of movement preparation and rest state signal processing tech-
niques and machine learning are used.

As outlined above, the LRP prediction was simulated in the present study
(see also Figure 7). In the final application, data is acquired as follows (com-
pare [19]): EEG is recorded with a 128-channel actiCap system using an ex-
tended 10-20 system referenced at FCz with electrode impedances below 5 kΩ.
Data are digitized with 5000 Hz by four 32-channel BrainAmp DC amplifiers
(Brain Products GmbH, Munich, Germany). The continuos EEG stream is
segmented into windows of 1000 ms length. To train the classifier and evaluate
experimental results, a movement marker is written in the EEG whenever the
subject moves his arm 5 cm out of the position during full user support, i.e.
the exoskeleton is locked out. Differences between training and testing ses-
sions are described in [19]. While in the full user support mode, windows are
cut and classified every 50 ms. Before classification, the data are preprocessed
to increase the signal-to-noise ratio. Data from each electrode channel are
standardized (mean is subtracted and divided by standard deviation). After
decimating the data to 20 Hz using a finite impulse response (FIR) filter, a
FFT band-pass filter with a passband of 0.1 to 4 Hz is applied. This rigorous
filtering is useful to focus just on the important frequency components (BP
and LRP are slow shift potentials) and has been applied also elsewhere [7,
30,19]. Then, data from each channel are scaled with a cosine function of the
form s(n) := 1− cos(n·π20 ) for n = 0, . . . , 20 as proposed by Blankertz et al. [9].
Classification is based on all electrode channels, i.e. we use the last 4 values of
each channel (total number of features: 128 ·4 = 512). Each feature dimension
is linearly mapped between 0 and 1, treating 10 % of the training examples as
outliers. We use a linear Support Vector Machine (SVM) implemented in the
LIBSVM software [11]. In order to integrate the SVM prediction back into the
exoskeleton control, the unlimited SVM prediction score is mapped linearly
to a value between 0 and 1 and integrated in the exoskeleton’s control (these
values were simulated within this range in the current study).

The Brain Reading Interface has already been tested on real data [19]
and achieved a correct LRP-prediction rate of 0.76 ± 0.08 at −200 ms before
the actual movement onset (movement marker).1 The overall accuracy was

1 recomputed from pseudo-online results of 2 subjects presented in [19])
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0.70±0.07 for the distinction between no movement preparation and movement
preparation.2

2.2.3 Integration of Movement Prediction into the Exoskeleton Control

In the VI-Bot system, the normalized movement preparation score is used to
reduce the time that is needed to change from “full user support mode” to
“transient mode” (see Figure 3 and 5). By reducing the time the operator has
to press against the exoskeleton, we enhance the comfort of the user interacting
with the exoskeleton by reducing the effort required to leave a rest position (to
exit “full user support mode”, see Figure 3). To ensure the overall safety and
to safely integrate a biosignal that inheres uncertainties, two mechanism were
implemented and will be explained here in more detail. i) The positive predic-
tion of movement preparation by detecting the BP and LRP only has impact
on the control system in case that the user presses against the exoskeleton
meaning that he tries to leave the “full user support mode”. ii) During rest
situations the operator is not connected to the robot (see Section 2 and Figure
3) and any possible false lock out will not harm the robot or environment
either.

Due to the quality of the EEG signal with low signal to noise values (see
Section 2.2.2) and overlaying activity induced by cognitive activity that takes
place in parallel, single trial EEG classification cannot be 100 percent correct
and is prone to classification errors. Two kinds of classification errors are pos-
sible: false negative ones - the classifier did not predict a movement though
there was movement planning and false positive ones - the classifier did predict
a movement though there was no movement planning. Both types of errors
have different influence on the overall system. In case of false negative predic-
tions the user can still lock out but needs to apply a force as if no biosignal
is improving the control. This means that the control of the exoskeleton will
not be improved, but the system will still work under conditions optimized for
a classical approach without worsen it. In case of false positive classifications
the time required to press against the sensors of the exoskeleton for lock out
will be reduced and a lock out is more easily possible (see Section 2.1.2). How-
ever, in most cases a lock out of the exoskeleton, i.e., to leave the rest state, is
unlikely since the operator is not moving and will not press against the sensors
to release the exoskeleton. One could imagine that in case of coincident sensor
noise it might be possible that the exoskeleton does lock out. By choosing an
appropriate threshold (see Section 2 and 3.2) this situation of coincidence will
be covered by our approach.

There are two other issues that have to be addressed when implementing
the integration of EEG activity related to movement preparation. i) A sub-
ject, who is operating the exoskeleton, could for different reasons imagine to
move his arm without executing the movement. In this case very similar brain

2 trials from −1000 to −850 ms are considered as no movement preparation and trials
from −300 to −150 are considered as movement preparation.
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activity can be recorded in comparison to movement planning which would ac-
tually lead to a movement [47]. Therefore, the classifier will detect movement
planning and the exoskeleton control will be adjusted regarding the normal-
ized prediction value of the class movement preparation. However, since the
operator is only imagining the movement, he will in the end not move his arm
and therefore will not press against the sensors integrated into the exoskeleton
which is required to unlock it. ii) A subject might for different reasons move
his whole body massively while in the rest position. In such case strong motor
movement planning is involved, that will very likely be detected and lead to a
mode change. However, in such situations the exoskeleton would, due to the
movement induced forces against the sensors, in most cases also lock out with-
out any modulation by the biosignal, though a lock out is more likely when
it is integrated. Hence, to cover any case of unwanted lock out and to ensure
safety, the exoskeleton is never attached to the robot right after leaving the
rest position (“full user support mode” see Figure 3).

2.2.4 Measuring Reduction of Effort by Movement Prediction

For the analysis presented in this paper, we simulated the detection of move-
ment related ERPs and transferred three representative prediction values into
three values for the time threshold Tth. This was done in order to allow a sys-
tematic and comparable analysis and to mimic uncertainties in the movement
prediction and its impact on the control of the exoskeleton. The time thresh-
olds directly correspond to different classifier outputs: While a minimal time
threshold corresponds to perfect BP/LRP detection, the maximal threshold
represents the situation where no BP/LRP has been detected. Therefore, we
represent maximum movement prediction impact with a time threshold (TMin

th )
corresponding to the exoskeleton’s control frequency (i.e., with 100 Hz every
10 ms) in samples and no movement prediction impact with a time threshold
(TMax
th ) experimentally determined as minimal time needed to avoid unwanted

lock out. Further, we use a realistic movement prediction impact with a mid-
dle time threshold (TMid

th ) corresponding to a situation where the classifier
predicts an upcoming movement with a normalized score of 0.75 (see Section
3).

3 Experimental Setup and Methods

In order to decrease the user’s effort required to switch from the “full user
support mode” to the “transient mode” and therefore to improve the respon-
siveness of the system and the user experience in interacting with the interface,
we conducted a series of tests on different subjects. The general flow of the ex-
periments conducted inclusive preparation is shown in Figure 7. In the context
of this paper we define the effort as the integral over time of the interaction
force (see Equation 6) at the wrist contact point during the switch phase. In
general the bigger is this integral, the larger is the momentum that the user
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Table 2 Anatomical parameters of the five subjects involved in the experiment.

Subject Height[m] Weight[Kg] Upper-Arm L.[m] Forearm L. [m] Shoulders Dist.[m]
Subj. 1 1.80 78 0.3 0.3 0.38
Subj. 2 1.79 85 0.33 0.28 0.43
Subj. 3 1.86 85 0.32 0.27 0.44
Subj. 4 1.85 84 0.3 0.29 0.39
Subj. 5 1.70 64 0.26 0.23 0.42

needs to transfer to the interface in order to initiate the movement. This is
clearly related with the energy that the user have to spend to change control
modality, therefore has also significant influence on the fatigue and comfort
feeling in using the interface.

More in specific our main goals were:

• to find the minimal Fth and Tth thresholds that avoid the occurrence of a
lock-out due to the eventual interaction forces generated at the wrist by a
rotation of the upper body,

• to find the optimal Fth and Tth for different users,
• to demonstrate that the usage of the LRP gives us the possibility to de-

crease these thresholds (e.g. Tth) in order to minimize the effort of the user
during the lock-out phase.

Experiments were performed on five males having different anthropomet-
ric characteristics. Table 2 reports for each subject: height, weight, upper-arm
length, forearm length, and distance between the shoulders. To avoid addi-
tional stress to the subject due to weight of the interface, a special tutor was
developed that allows sustaining the exoskeleton without sacrificing the mo-
bility of the body (see Figure 8 a).

3.1 Exoskeleton Calibration Procedure

The first experiment is intended to discover a proper set of parameters that
avoid an unwanted transition from the “full user support mode” to the “tran-
sient mode” due to an eventual movement of the upper body. More specifically,
the minima for both the force (Fth) and time threshold (Tth) are identified for
each subject with an iterative method.

The experimental protocol was designed in order to have a unified calibra-
tion procedure that applies to different users, but a the same time that avoids
complicate or too restrictive operative conditions. This with the idea in mind
that in a real application we have to perform the calibration procedure in a
reasonable amount of time. It is worth to notice that the selected procedure
was guided by empirical considerations, therefore there is still room for im-
provements. Nevertheless, thanks to its iterative nature, it guaranties that the
minimal thresholds are correctly identified.

In the experiment the user is asked to perform a predefined rotational
movement of the upper-body keeping the lower extremities fixed. In order
to have the same experimental conditions in different sessions, a prerecorded
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movie was displayed to the user that shows the exact movement sequence and
timing. In particular we chose a movie as conditioning method, in alternative
to other possible approaches, due to the fact that human beings are prone
to learn new motor skill faster by imitation [32]. In the starting position, the
forearm is completely extended (see Picture 8 (a)) and the shoulder is flexed
forward in order to bring the third joint of the exoskeleton in an angular range
between 15 − 20◦. The user is then asked to repeat an oscillatory movement
of about 90◦ with a regular speed (see Picture8 (b)). This simulates the case
were the user, during a resting phase, is involved in monitoring activities that
requires a reorientation of the upper body. At the beginning of each session,
the force threshold is set to a maximum value FMax

th and the time threshold
to a minimum value TMin

th , this in oder to assure that no movement can cause
the system to lock-out The user is asked to perform the rotational movement
10 times. If the lock-out does not occur, Fth is decreased for about 10% and
the experiment is repeated. This goes on until the user locks-out due to the
movement. At this point, the force threshold is kept constant while the time
threshold is increased until the perturbation movement is not anymore able
to cause the lock-out event. The so found values are in the rest of the paper
refereed as FMin

th and TMax
th , respectively.

3.2 Lock-out Experiment

In the second experiment, the user is first asked to bring the arm in a starting
configuration (arm parallel to the body) and keep it till the exoskeleton enters
in the “full user support mode” due to a decrease in the activity level of the
device. In the following, a signal is presented to the subject which advises him
to initiate an extension movement of about 90◦. During the movement, the
interaction force between the exoskeleton and the user’s wrist is measured via
a 6-axis force/torque sensor (ATI nano 25). The subject is asked to do 30
lock-out trials. Within each attempt, the time threshold is changed randomly
in the background between three different possible values:

Tth ∈
{
TMin
th , TMid

th , TMax
th

}
(4)

with

TMid
th =

TMax
th − TMin

th

2
(5)

In this way, the user is not aware of the policy adopted to regulate the lock-
out mechanism. This is particularly important to avoid that a priori movement
preparation affects the amount of force delivered by the user to the exoskeleton.
Due to the fact that we are interested in calculating the effort required to pass
from the lock-in to the lock-out state, we integrated the force according to
equation 6.
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Table 3 Optimal lock-out parameters for five subjects.

Parameter Subj-1 Subj-2 Subj-3 Subj-4 Subj-5 Average Std. Dev

TMax
th 0.3 0.2 0.3 0.3 0.3 0.28 0.04

FMin
th 8 10 5 4 4.5 6.3 2.59

I =

∫ TLout

T0

Fint(t)dt (6)

Where T0 is the time when the force starts to rise due to the limb move-
ment, and TLout is the time where the transient that brings the system back
to the lock-out state is terminated. To demonstrate the advantages of the in-
tegration of the movement prediction in controlling the device, it is necessary
to verify the disequation 7, where IMin, IMid, IMax correspond to TMin

th , TMid
th ,

and TMax
th , respectively.

IMin < IMid < IMax (7)

Doing that we can state that a decrease in the threshold Tth, due to a
correct movement prediction, will also bring a decrease in the correspondent
I and therefore a reduction of the user’ effort needed to change the control
modality.

4 Experimental Results

As introduced in Section 3.1, the first set of experiments is meant to calibrate
the parameters of the Lock-in/out mechanism on the basis of requirements in
terms of robustness against occurring noise forces. The determined set of opti-
mal thresholds are resumed in Table 3, where each column is representing one
of the five subjects. Figure 9 (a) reports an exemplary trajectory of the wrist
movement recorded during the experiment together with the corresponding
velocity (Figure 9 (b)) projected on the transversal plane. Note that the trend
is quite regular showing a good repeatability in performing the experiment.

In total the calibration procedure required an average of 63 movements for
each subject. Each movement lasted an average of 2.6 seconds.

Results of the Lock-out experiment relative to Subject-5 are presented
in Figure 10. The upper graph reports the normalized values (0 to 1) for the
chosen Tth threshold, the lower one indicates the integral of the force calculated
among the interval [T0 TLout]. In detail, each line represents an exemplary
instance of the Lock-out experiment, in total 30 values are reported. The
additional three horizontal lines indicate the averages of a set of 10 trials that
share the same time thresholds. Note that there is a clear distinction between
the three cases. This confirms the fact that the time threshold has a strong
impact on the interaction force and therefore on the effort the user needs to
apply to pass from one control modality to the other.
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As a further comparison Figure 11, reports the experimental data relative
to Subject-3. It can be be observed from the figure that the three lines rep-
resenting the force integral averages are distinct again, however, this time the
distances between the three appears reduced. Comparing the two subjects it
can also be observed that the average relative to the TMid

th classes are not
centered between TMin

th and TMax
th , but are shifted toward the bottom. This

is generally confirmed by the data of the other three subjects, too, showing a
non-linear dependence between the threshold value and the force integral (see
Figure 16). Figure 12 shows the wrist trajectory generated by the user during
the Lock-out experiment.

Table 4 and 5 reports in detail the results of this experiment for all subjects.
The average of the force integral is indicated for each threshold class together
with other descriptive measures. On one hand, the descriptive measures in
Table 4 are summarized in Figure 13 which depicts the average of the force
integral calculated by averaging the means of 5 subjects across 10 measured
movements for each time threshold to show the subject-specific differences in
threshold values (e.g. high standard deviation). On the other hand, the average
of the force integral is calculated by averaging the means of 10 measured
movements across 5 subjects to show the difference in values between threshold
classes (Table 5 and Figure 14).

Table 4 Descriptive Measures regarding the force integral for 5 subjects across 10 Move-
ments. (SD: standard deviation, SE: standard error)

Force Integral [Ns] TMax
th TMid

th TMin
th

Subject-1 Mean 32.59 26.21 17.84
Standard Deviation 2.20 4.32 3.23

Subject-2 Mean 26.09 20.35 15.98
Standard Deviation 5.10 3.69 3.60

Subject-3 Mean 30.24 24.70 21.25
Standard Deviation 1.39 2.01 2.93

Subject-4 Mean 28.00 19.19 14.64
Standard Deviation 2.37 1.85 3.39

Subject-5 Mean 25.34 14.82 9.68
Standard Deviation 5.53 1.73 1.74

Mean across 5 subjects 28.45 21.05 15.87
SD across 5 subjects 2.99 4.55 4.26
SE across 5 subjects 1.34 2.03 1.91

Since the three different classes of time threshold were repeatedly measured
within each subject, the data were analyzed by repeated measures ANOVA
with time threshold (3 levels: TMin

th , TMid
th , TMax

th ) and subject (5 levels: 5
subjects) as within-subjects factors. For pairwise comparisons, the Bonferroni
correction was applied.
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As expected (see Figure 14), the force integral were significantly affected by
the time threshold [main effect of time threshold : F (2, 18) = 280.13, p < 0.001].
As shown in Figure 15, the force integral associated with both the middle and
lowest time threshold were significantly distinguished from the force integral
associated with the highest time threshold [TMax

th vs. TMin
th : mean difference

= 12.57 standard error = 0.63 p < 0.001; TMax
th vs. TMid

th : mean difference =
7,39 standard error = 0.49 p < 0.001]. Also, there was a difference between the
measured force integrals associated with the middle and lowest time threshold
[TMid
th vs. TMin

th : mean difference = 5.17 standard error = 0.45 p < 0.001].

Further, we found that the threshold values have different impact on the
different subjects [main effect of subject : F (4, 36) = 34.37, p < 0.001]. Mea-
sured differences in force integral for each threshold value among the subjects
are due to different reasons. At first, for a fixed limb trajectory, the interaction
force is strongly depending on the dynamics of the combined arm-exoskeleton
system. This in turn depends on the physical properties of the limb (e.g. mass,
geometry) as well as the way the exoskeleton is worn by the user. Indeed, the
contact points between the limb and the interface may change from user to
user affecting the force distribution. Furthermore, the force applied by the
subject together with the level of muscle coactivation may also influence the
amount of energy exchanged during the movement.

Table 5 Descriptive measure regarding the force integral for 10 Movements across 5 Sub-
jects. (SD: standard deviation, SE: standard error)

Force Integral [Ns] Mean TMax
th Mean TMid

th Mean TMin
th

Movement 1 30.51 21.50 15.51
Movement 2 29.29 19.84 14.78
Movement 3 28.57 21.18 17.29
Movement 4 28.51 21.77 16.21
Movement 5 28.55 21.35 15.13
Movement 6 29.07 21.06 16.49
Movement 7 25.26 19.95 17.46
Movement 8 28.58 19.48 14.92
Movement 9 27.82 20.92 15.33
Movement 10 28.39 23.57 15.70

Mean across 10 movements 28,46 21.05 15.87
SD across 10 movements 1.33 1.17 0.95
SE across 10 movements 0.42 0.37 0.30

Although the threshold values were different among the subjects, all sub-
jects showed the same pattern regarding the effect of time threshold on the
force integral [interaction between time threshold and subject : F (8, 72) =
27.88, p < 0.02]. This is obviously shown in Figure 16 which illustrates the
pattern of time threshold for each subject.

Our results indicate the advantages of using the movement prediction to
modulate the transition from “full user support mode” to “transient mode”.
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This advantages were shown for all subjects. As mentioned earlier, the
threshold value itself is subjects-specific (i.e. different threshold values are
measured depending on subject). However, all subjects showed the same pat-
tern of threshold value (i.e. the effect of time threshold on the force integral
was observed for all subjects). This facts suggest that the exoskeleton and its
modulation by movement prediction works very stable for individual subjects.
Further, as can be seen in Figure 15 the impact on the reduction of the time
threshold does not seem to linearly modulate the force integral, meaning that
a reduction of the time threshold value might have an overproportional effect
on the force integral. However, further investigations with more fine-grained
levels of time threshold have to be conducted to analyze which range of the
modulation of time threshold is mostly affected. This would be most interest-
ing, since this fine-grained modulation of the time threshold would occur when
using real LRP detections.

5 Conclusions and Future Work

The presented work aims at evaluating and improving the interaction experi-
ence between a user and a multi-modal interface intended for teleoperation.
More in detail, the studied system is composed of a 9 DOF arm exoskeleton
integrated with a brain-reading interface. A series of experiments conducted
on five subjects are meant to discover the best set of control parameters that
guarantee the minimal effort for the user to pass from a resting to an operative
modality. Results clearly demonstrate how the usage of the movement predic-
tion has the potential to improve the comfort for the user and to increase the
responsiveness and safeness of the overall interface.

Our results show that the users of our system used similar forces to achieve
the transition from lock-in to lock-out mode in each experimental condition.
This implies that an overall force and time threshold may be sufficient for
all subjects. However, the fit of the exoskeleton as well as the handling can
be differing between sessions, even when the same user is teleoperating. Such
differences may then influence the perceived effect of the movement prediction,
because the same force and time threshold lead to a different percept, e.g.
due to training effects in the handling of the exoskeleton. If such effects are
concerned, a short calibration session using the setup presented in this study
guarantees maintenance of the fine calibrated level of interaction.

The integrated biosignal comes from the users brain activity that is mea-
sured via surface EEG and analyzed by the brain-reading interface allowing
to predict certain cognitive states. This prediction is based on a continuously
classification of single-trial EEG windows using time optimized signal process-
ing and machine learning techniques. However, the predictions are not used
to directly control the exoskeleton, as it would be the case in an active brain-
computer-interface (BCI), instead the gained knowledge about the cognitive
state of the operator is used to improve its control. By using this architecture,
we improve the whole system while avoiding malfunction in case of misclassi-
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fications. Such integration of the biosignal is meant to enhance the comfort of
the subject and by this the man-machine interaction.

Our approach presented here requires short calibrations per session, i.e.,
each time an operator is putting on the exoskeleton a new, at most. After-
wards, the only changes can be introduced during the session which is highly
unlikely since the exoskeleton fits in the same way, the EEG electrodes stay
in position. We assume that training effects are minimal within one session
regarding the use of the lock-out mechanism. However, further experiments
will have to verify this assumption. We will have to investigate how easily
we could transfer determined optimal sets of parameters between session and
whether it would be possible to decide on some standard parameter sets de-
pending on, e.g., physiological measures of the subject, e.g. arm length to
partly avoid calibration. Alternatively further developments can be focused
on the automization of the optimization phase described in Section 3.1. In
a possible scenario, the user may be asked to perform a certain task where
his/her arm is fully sustained by the exoskeleton while the system performs
the parameter’s adaptation. A more precise and faster calibration can also be
achieved by using kinematic measurements (e.g. body velocity and accelera-
tion) to directly modulate the step size of the parameter’s adaptation. This
will have the advantage of better tailoring the control system on the base of
the user’s biophysical characteristics.

However, due to the integration of movement prediction even a sub optimal
parameter set could be used since the integration of the movement prediction
does reduce the effort significantly as could be show with this study. Experi-
ments to integrate movement prediction online and measure the effect on the
exoskeleton control, as done here in simulation by using three fixed values for
a normalized movement preparation score, are planned to prove our results for
online modulation of the exoskeleton control. Besides the optimization of the
control parameter of the exoskeleton the movement prediction requires train-
ing for each session as well. As in any BCI application classifier are not easily
transferable between session but training time and required training data can
be reduced by different methods [28,12,2,31]. First results on reducing train-
ing time and amount of training data required for classifying ERP signals are
promising [33], but have further to be improved to allow easy application of
complex support systems for rehabilitation or in daily life.
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Fig. 4 Lock-in mode activation diagram with an exemplary activity level curve and a free
definable threshold Ath.

a) b)

Fig. 5 (a) Lock-out mode activation diagram, (b) Counting diagram according to interac-
tion force measurement.
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Fig. 6 Left: Electrode position of extended international 10-20 system (128 electrodes).
Right: average EEG activity of one subject before arm and hand movement (movement
marker); Lateralized readiness potential: defined as a difference in EEG activity between
signal recorded at electrode positions over the primary motor cortex contra- and ipsilateral
to the side of movement (LRP difference between C3 and C4, see above). Bereitschaftspo-
tential: defined as central non lateralized negative activity recorded at electrode over the
supplementary motor area (SMA) (BP at Cz, see below).

Fig. 7 Preparation required for the usage of the exoskeleton with adaptation by movement
prediction and experimental procedure performed in this work. Here, EEG was not recorded
and analyzed (marked as grey box). To measure the effect of modulating the exoskeleton
control by integrating biosignals we used fixed values for movement prediction (simulated
classifier output) representing certainty of prediction (see text).
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a) b)

Fig. 8 (a) The weight of the exoskeleton is sustained via a cable connected to a tutor. (b)
The user is rotating the upper body of 90◦.

a)

b)

Fig. 9 (a) Wrist trajectory projected on the transversal plane (b) Velocity trend along the
X,Y,Z coordinates.
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Fig. 10 Lock-out experimental data for Subject-5. The upper graph shows, for each of
the 30 trials, the chosen time threshold among the three possible values {0, 0.5, 1}. The
lower graph reports the module of the correspondent interaction force measured at the wrist
contact point.

Fig. 11 Lock-out experimental data for Subject-3.

Fig. 12 Wrist trajectory of a subject acquired during the Lock-out experiment.
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Fig. 13 Descriptive measures: Average and standard deviation of the means of 5 subjects
across 10 measured movements at different normalized time thresholds.

Fig. 14 Descriptive measures: Average and standard deviation of the means of 10 measured
movements across 5 subjects.
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Fig. 15 Mean difference and standard error for each pairwise comparison. Note: mean dif-
ference is calculated by averaging the difference between two different levels of time threshold
(so-called time threshold-pair) within the subject.

Fig. 16 Pattern of time threshold for each subject.
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