
Monitoring and explaining reasoning processes
in a dialogue system’s input interpretation step

Daniel Sonntag and Christian Schulz

German Research Center for AI (DFKI),
Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany

sonntag@dfki.de

christian.schulz@dfki.de

Abstract. We implemented a generic speech-based dialogue shell that
can be configured for and applied to domain-specific dialogue applica-
tions. A toolbox for ontology-based dialogue engineering provides a tech-
nical solution for the two challenges of engineering domain extensions
for new question and answer possibilities and debugging functional mod-
ules. In this paper, we address the process of debugging and maintaining
rule-based input interpretation modules. While supporting a rapid im-
plementation cycle until the dialogue systems works robustly for a new
domain (e.g., the dialogue-based retrieval of medical images), produc-
tion rules for input interpretation have to be monitored, configured, and
maintained. We implemented a special graphical user interface to mon-
itor and explain reasoning processes for the input interpretation phase
of multimodal dialogue systems. A particular challenge was the presen-
tation of the software system’s ontology-based interaction rules in a way
that they were accessible to and editable for humans for maintenance,
and, at the same time, allowed a real-time monitoring of their application
in the running dialogue system.

1 Introduction

Dialogue systems combine many individual natural language processing compo-
nents into a single, complex, artificial intelligence system. Because of the com-
plexity, these systems cannot easily be constructed and maintained. Over the last
several years, we therefore build up a new discourse and dialogue infrastructure
to ease the task of dialogue construction for a specific domain thereby allowing
for a rapid dialogue system engineering process. A dialogue runtime environ-
ment, the ontoogy-based dialogue platform (ODP) framework and its platform
API (the DFKI spin-off company SemVox, see www.semvox.de, offers a commer-
cial version), translates between the speech user input/output and conventional
query/answer data structures in ontology-based representations (in the case of,
e.g., a SPARQL backend repository) [16]. In order to create the needed inter-
action rules in ontological form for processing user requests, we implemented
an integrated toolbox which builds upon the industry standard Eclipse and also
integrates other established open source software development tools to support

dialogue application development, automated testing, and interactive debugging.
The main challenges we encountered in supporting a rapid dialogue system en-
gineering process, i.e., implementing a new dialogue for a new domain, can be
summarised as follows:

– Engineering ontological domain extensions;
– Debugging functional modules such as natural language understanding (NLU),

input fusion, dialogue management, and external text-to-speech (TTS) syn-
thesis.

In this paper, we discuss the input fusion step in particular and show how
the production rules that are used for input interpretation can be monitored,
configured, and maintained. We basically provide two new contributions. First,
we discuss a graphical user interface to monitor and explain reasoning processes
for the input interpretation phase of multimodal dialogue systems. Second, we
show the usefulness of the interface by a demonstration of its usage in a particular
real-world industrial application example, the dialogue-based access to medical
image data.

2 Background and Related Work

We use a distributed, ontology-based dialogue system architecture, where every
major component can be run on a different host, increasing the scalability of the
overall system. In earlier projects [20,10] we integrated different sub-components
to multimodal interaction systems which we then extended to the consistent us-
age of ontology data structures [5]. Thereby, the dialogue system also acts as the
middleware between the clients and the backend services that hide complexity
from the user by presenting aggregated ontological data. Prominent examples of
integration platforms include OOA [7], TRIPS [1], and Galaxy Communicator
[12]; the W3C consortium also proposes inter-module communication standards
like the Voice Extensible Markup Language VoiceXML1 or the Extensible Mul-
tiModal Annotation markup language EMMA2, with products from industry
supporting these standards3. We will use an EMMA-related XML format we
called PreML which is also used throughout the examples in [14]. A comprehen-
sive overview of ontology-based dialogue processing, which is the basis of our
integration platform, can be found in [13], pp.71-131. Figure 1 shows the ontol-
ogy components the user works with. The graphical user interfaces (GUIs) for
editing ontologies, speech recognition grammars, and interaction rules are imple-
mented as Eclipse plugins in the ODP workbench (see screenshots in [17]) using
the open source toolkit JUnit. The results of the interactive processes where the
dialogue engineers are involved, are stored in RDF repositories as ontology data,
domain-dependent specifications, and ontology-based rules sets for interaction
and input interpretation rules of the specific application domain.

1 http://www.w3.org/TR/voicexml20/
2 http://www.w3.org/TR/emma/
3 http://www.voicexml.org

ODP Monitoring and

Explanation-based

Processing

Ontology

Data

Rule

Sets

Specifications

ODP

Workbench

Open Source

Tools

eTFS-aware

Java Debugger

Semantic Models

& Processing Logic

Explain

Reasoning

Fig. 1. Ontology components the user works with for explaining reasoning processes.

In [18], we tackled the challenge of how an application backend can automat-
ically infer previously unknown knowledge (facts) and provide explanations for
the inference steps involved. (Proper explanations are a main factor for increas-
ing the level of user trust in end-to-end human-computer interaction systems.)
In the medical application domain [16], we use a medical backend database sys-
tem that stores RDF image meta data, e.g., patient names, dates of issue, and
the like. The dominant query language for these RDF4 repositories is the W3C
recommendation SPARQL5. Examples of how SPARQL can be used in the con-
text of integrating Linked Data for semantic dialogue and backend access can
be found in [15]. A Java debugger has also been implemented; under the hood,
it uses an application programming interface for the efficient representation of
ontology-based data using extended typed feature structures (eTFS). As de-
scribed in [11], the eTFS API is tightly integrated into a production rule system
which enables a declarative specification of the processing logic in terms of pro-
duction rules. This is the precondition for the ODP monitoring and explanation
capabilities for internal, component-based, reasoning steps as described in the
rest of the paper. Figure 2 provides rough sketch of the basic processing chain
within the typical interaction cycle. The dialogue manager uses reasoning pro-
cesses at each of the prominent processing stages, namely input interpretation,
dialogue interaction, data requesting, the provision of answers in the application
backend, the retrieval of data, and its presentation (which normally incorporates
a NLU generation step [4]). In the context of explanations and production rule

4 See http://www.w3.org/TR/rdf-primer/ and http://www.w3.org/TR/rdf-schema/.
5 See http://www.w3.org/TR/rdf-sparql-query/.

reasoning for dialogue systems, in this contribution, we will focus on the input
interpretation step which is highlighted in figure 2.

Retrieve

DataPresentation

Inter-

action

Dialogue System
Multimodal

Client

Application

Backend

System

Output

User

Input

Input

Interpretation

Request

Data

www

Fig. 2. Typical interaction cycle.

3 Explanation-based Interface for Production Rules

In this section, we explain the technical background of a GUI to monitor and
explain reasoning processes for the input interpretation phase of multimodal dia-
logue systems. Essentially, the explanation-based GUI helps to deal with complex
rules in a production rule system.

The production rule system provides rule-based fusion of different input
modalities such as text, speech, and pointing gestures, and allows us to solve am-
biguities in co-references. For example, when the user opens the patient records
of several persons and utters “also the latest CT images” later in the dialogue,
the production rule system is used to reason about the correct patient instance
the user is referring to. We use the production-rules-based fusion and discourse
engine which follows the implementation in [8].

Within the dialogue infrastructure, this component plays a major role since it
provides basic and configurable dialogue processing capabilities. More processing
robustness is achieved through the application of a special robust parsing feature
in the context of RDF graphs as a result of the input parsing process and through
the possibility to debug, edit, and maintain the production rules in a specific
GUI. In addition, the semantic relationships between several catchwords from
the spoken user input can be guessed (following [19]) according to the ontological
domain model of the industrial (medical) application domain. For example, the
query “any experts available?” searches for other radiologists with a specific
portfolio that matches with the semantic disease annotation on the radiology
images.

4 An Application Scenario for Explanations

In this section, we will describe an application scenario where the dialogue engi-
neer can use our GUI to edit input fusion rules in a medical application scenario.
The rules can be inspected and maintained because the engineer gets many ex-
planations about how new rules behave in the running dialogue system. We focus
on the aspect that the presentation of the software system’s ontology-based in-
teraction rules is in a way that they are accessible to humans for maintenance,
and, at the same time, allow a real-time monitoring of their application in the
running dialogue system.

4.1 Dialogue Example

Consider a radiologist who treats a patient which suffers from a specific type of
cancer, e.g., lymphoma. The treatment of such severe diseases requires a lot of
follow-up examinations where previous diagnoses have to be taken into account.
The dialogue engineer has to provide the domain user, i.e., a radiologist in the
medical domain, with the desired dialogue competence (also cf. the THESEUS
MEDICO use case) to access the desired patient records, the corresponding
image data, and comparative cases. In addition, the doctor should be able to
complete a new finding while interacting with a multimodal dialogue system.

The following medical dialogue illustrates the doctor’s practical interest in
using a dialogue interface on top of an ontology-based search database for med-
ical images. The dialogue concentrates around the questions of this user (U)
about the media contents, i.e., the body parts and the anatomy shown in com-
puter tomography (CT) picture series (also see DICOM, medical.nema.org) and
magnetic resonance (MR) videos, and the the answers of the system (S).

Figure 3 shows the medical dialogue example and multiple CT image results
which are displayed on an iPad. The user can freely speak to the iPad which
is used as the interaction device in the distributed dialogue system architecture
(also cf. http://www.dfki.de/RadSpeech).

4.2 Exploring Multiple Applicable Rules

We chose the OWL formalism recommended by W3C and identified a subset
that suits the underlying eTFS representation for the specification of the input
fusion ontology. The eTFS format unifies the properties of RDF/RDFS [6] and
typed feature structures [3].

For the runtime knowledge processing step, we have implemented an eTFS
API that provides useful methods to compare two types and access related con-
cepts within the inheritance hierarchy quickly.

The API is essential for the reasoning engine of the ontology-based produc-
tion rule system (PATE) [9]. PATE’s architecture is centered around the idea of
three separated data storage facilities: (i) the goal stack, (ii) the working mem-
ory, and (iii) the long-term memory. The working memory is responsible for the
activated instances, the so-called working memory elements (WMEs), which are

1 U: “Show me the patient file, last

examination, Gerda Meier.“

2 U: “Also the images, … CT”

3 S: “Shows the patient file and

corresponding patient CT studies in

DICOM pictures.“

4 U: “Show me the internal organs:

lungs, liver, then spleen and colon."

5 S: Shows corresponding patient

image data according to referral

record.

6 U: “Summarise the patient's

findings."

7 S: Synthesises a summary of the

patient's findings.

Fig. 3. Medical dialogue and system results on an iPad.

accessible for applying production rules. The long-term memory is responsible
for the persistent storage for all instances of the type hierarchy the system has in
the background. The purpose of the goal stack is to mimic the attentional focus
during the dialogue process that is inspired by the cognitive models introduced
in [2]. On which of the three stacks mentioned above the current WMEs are
put, is determined by an activation value (which can also change after a rule has
fired). In every processing state, there is always one single WME in focus (which
has an impact on the rules accessible for firing). Only rules whose goal condi-
tion matches the pattern of the WME on top of the goalstack have a chance to
fire. Without such editor functionalities, dialogue engineers would have to edit
complex OWL files manually which is impractical.

Rule Inspection The background knowledge of the dialogue system determines
the relations of different concepts within the hierarchy. Our ontology says that
the main condition in the rule represented by the concept comet#QueryTask
subsumes the concept medico#RetrievePatientImages, which represents the on-
tological concept for the task in the second turn of the dialogue example in 3.
If the dialog state has the attentional focus on an that eTFS structure, then
the condition is sufficient to cause the rule to fire, because the unification would
succeed in this constellation.

Further refinements of rule firing is provided by the possibility to involve
the unification of side conditions in the rule with structures located inside the

working memory. This mechanism is especially beneficial in the context of tuning
and debugging rules at runtime, which we will illustrate in more detail.

We implemented a rule inspector, a tool that provides debugging options
along the process pipeline from the interpretation of an utterance to the adaption
of ontological representations of commands, to actual retrieval actions in the
backend, to the reallocation of the retrieved results in the presentation step. The
main view of the rule inspector GUI (figure 4) shows the state of the production
rule system after the calculation of the firing rule before applying the actions
coded in the head of the production rule (action part). The two lists, the working
memory contents and the goal stack that correspond to the working memory box
and the goal stack box of the upper part in figure 4, respectively, show the rule’s
basic type and activation score. Additionally, a syntax-highlighted XML viewer
allows us to inspect the WMEs during the dialogue process by clicking on the
entries in the list, see the wme inspector in 4. The same debugging support is
provided in the lower part of the GUI, where matching rules indicated in the
conflict set’ box, once selected, are displayed in an XML format together inside
the rule inspector box with their probabilities to fire successfully. Rule firing can
be invoked manually by the dialogue engineer while clicking on the Step! button.

New Rule Creation and Debugging Moreover, rule inspection is supported
for all (other) production rules assigned to a processing module that are listed
in the Rule base box in figure 4. This is crucial when the dialogue engineer adds
a new rule to the already existing collection of rules. In this specific scenario,
the engineer expects to enrich the existing interaction possibilities covered by
the dialogue application.

However, often the expected behavior at a target state along the dialogue
process fails to appear. At this point, the dialogue engineer can invoke in the
rule inspector to get support in the process of finding out why a certain rule,
here the newly created rule, does not fire.

The rule inspector performs the reasoning step to deduce and display the
conflicting part of the new rule that does not semantically fit to the set of valid
rules with regard to the current state of dialogue process.

Figure 4 captures the state where the dialogue process step shifts to ’request
data’ in the backend system after successful interpretation. This snapshot shows
the “pause” in the processing stage after the utterance “Also the images” (cf. the
example dialogue in figure 3) when the radiologist requests the patient’s image
data. The modality fusion component keeps track of the ongoing discourse con-
text and resolves the correct patient reference ’Gerda Meier’ shown in the WME
inspector box of figure 4. The ontological concept medico#RetrievePatientImages
represents the system task to be executed on the backend service, this means, the
query instance will be transformed into the corresponding SPARQL query. In
this particular case, however, the rule which would trigger the request to the de-
sired backend service, is not an option for the rule engine because the conditions
do not match. Here, the developer has the opportunity to navigate and select the
desired rule and receive the information where unification fails, indicated in the

Working memory Goal stack Wme inspector Step

button

Rule base Conflict set Rule inspector

 <object type="http://www.dfki.de/ontology/medico#RetrievePatientImages">

 <slot name="http://www.semvox.de/ontology/odp#hasContent">

 <object type="http://www.dfki.de/ontology/medico#Patient">

 <slot name="http://www.semvox.de/ontology/odp#hasRefProp">

 <object type="http://www.semvox.de/ontology/odp#RefProp">

 <slot name="http://www.semvox.de/ontology/odp#type">

 <value type="String"><![CDATA[def]]></value>

 </slot>

 </object>

 </slot>

 <slot name="http://www.semvox.de/ontology/odp#surname"/>

 <slot name="http://www.semvox.de/ontology/odp#firstname">

 <value type="String"><![CDATA[Gerda Meier]]></value>

 </slot>

 <weighting> 0.5 </weighting>

 <conditions>

 <goal name="goal" method="restricted">

 <object type="http://www.dfki.de/ontology/comet#QueryTask">

 <slot name="http://www.semvox.de/ontology/odp#hasContent"/>

 <slot name="http://www.semvox.de/ontology/odp#hasResult">

 <empty/>

 </slot>

 </object>

 </goal>

 <condition name=“service” method=restricted”>

 <object type=“http://www.dfki.de/ontology/radspeech#RapService”/>

 </condition>

 </conditions>

task-processing::task-execution::exec

WME5 [http://www.dfki.de/ontology/m

WME-1 [http://www.semvox.de/ontolo

Condition service did not apply!

Unification failed at:

<object type=“http://www.dfki.de/ontology/radspeech#RapService“/>

<object type=“http://www.dfki.de/ontology/medico#RetrievePatientImages“>

<slot name=“http://www.semvox.de/ontology/odp#hasContent“>

<object type=“http://www.dfki.de/ontology/medico#Patient“>

<slot name=“http://www.semvox.de/ontology/odp#hasRefProp“>

<object type=“http://www.semvox.de/ontology/odp#RefProp“>

<slot name=“http://www.semvox.de/ontology/odp#type“>

<object type=“http://www.dfki.de/ontology/medico#RetrievePatientImages“>

<value type=“String“><![CDATA[def]]></value>

</slot>

</object>

</slot>

<slot name=“http://www.semvox.de/ontology/odp#surname“>

<slot name=“http://www.semvox.de/ontology/odp#firstname“>

<value type=“String“><![CDATA[Gerda Meier]]></value>

</slot>

</object>

</slot>

</object>

input-processing::not-understood[1]

input-processing::speech-too-early[1]

task-processing::task-execution::execute-task[0.5]

task-processing::task-execution::execute-task(query)[0.5]

task-processing::task-execution::execute-task(RapService

task-processing::task-execution::execute-task(UserTaskW

task-processing::task-execution::execute-task(GuiTaskWit

task-processing::task-execution::execute-task(maximizeSp

task-processing::task-execution::execute-task(minimizeSp

task-processing::task-execution::execute-task(normalizeSp

task-processing::task-execution::execute-task(zoomSpotl

task-processing::task-execution::handle-select(setFocus)[

task-processing::task-execution::remove-empty task[1]

task-processing::task-execution::process-task(integrate)[

available rules applicable rules rule inspector

WME inspector goal stack workin

System Working Memory Rules Step! Recalculate!

Restart

Add Goal

Add WME

Load State File

Save State File

Delete WME/Pop Goal

1

2

Fig. 4. Display, explanation, and editing in case of a unification conflict.

lower box in figure 4. Therein the dialogue engineer may consult the rule inspec-
tor for individual parts of the eTFS structures that collide. In particular, the
newly added rule requires an instance of the concept radspeech#RapService on
the working memory in order to match the current configuration of the dialogue
state, indicated by the arrow (1). The GUI support of detecting the conflicting
parts during unification provides the necessary explanations to the developer
about the changes in the dialogue state and the actions he or she can perform
(at runtime!) in order to cause the newly added rule to fire.

In addition to the functionality to give advice to the developer at runtime,
the rule inspector offers the opportunity to add the required instance on the
working memory manually. Thus, by adding the radspeech#RapService instance
to the working memory, see arrow (2), the debugging process will be resumed
towards the newly created and correct interaction possibility. Previously, the

new backend for the query “also the images” could not be accessed because the
rule for the RapService did not fire. Instead, we inspected the more general rule
(executeTask(query)) to fire (with the help of the GUI) and successfully adapted
the conditions to rerank the firing rules so that the desired rule is included and
the RapService could be accessed in this dialogue state. In the course of adding
this new behaviour to an already existing dialogue application, the explanation
possibilities of the inspection editor offer powerful support to view low-level data,
and edit/reason about new rules which can be done at runtime with the help of
only one graphical user interface tool.

5 Conclusion and Future Work

Based on an integration platform for off-the-shelf dialogue solutions and inter-
nal dialogue modules (ODP platform), we described the parts of the discourse
and dialogue infrastructure that allow for a explaining reasoning processes in the
(ontology-based) input interpretation step. We focussed on a medical application
scenario where we demonstrated how to maintain rules, explore multiple appli-
cable rules, inspect rules, and create new rules that can be reasoned about and
therefore explained at runtime. In this way, we provided a solution to the partic-
ular challenge to present ontology-based interaction rules in a way that they are
accessible to and editable for humans for maintenance, and, at the same time,
allow a real-time monitoring of their application in the running dialogue system.
In future work, we plan to include reasoning processes that suggest rules to the
user in addition to explaining why user-generated rules do not behave correctly.

Acknowledgements Thanks go out to Robert Nesselrath, Yajing Zang,
Markus Löckelt, Matthieu Deru, Simon Bergweiler, Alassane Ndiaye, Norbert
Pfleger, Alexander Pfalzgraf, Jan Schehl, Jochen Steigner and Colette Weihrauch
for the implementation and evaluation of the dialogue infrastructure. This re-
search has been supported by the THESEUS Programme funded by the German
Federal Ministry of Economics and Technology (01MQ07016).

References

1. Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A.: An Ar-
chitecture for a Generic Dialogue Shell. Natural Language Engineering 6(3), 1–16
(2000)

2. Anderson, J.R., Lebiere, C.J. (eds.): The Atomic Components of Thought.
Lawrence Erlbaum Associates, Mahwah, NJ (1998)

3. Carpenter, B.: The Logic of Typed Feature Structures. No. 32 in Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge, UK
(1992)

4. Engel, R.: SPIN: A Semantic Parser for Spoken Dialog Systems. In: Proceedings
of the 5th Slovenian and First International Language Technology Conference (IS-
LTC 2006) (2006)

5. Fensel, D., Hendler, J.A., Lieberman, H., Wahlster, W. (eds.): Spinning the Seman-
tic Web: Bringing the World Wide Web to Its Full Potential. MIT Press (2003)

6. Manola, F., Miller, E.: RDF primer. W3C recommendation, W3C (February
2004), published online on February 10th, 2004 at http://www.w3.org/TR/2004/

REC-rdf-primer-20040210/
7. Martin, D., Cheyer, A., Moran, D.: The Open Agent Architecture: a framework

for building distributed software systems. Applied Artificial Intelligence 13(1/2),
91–128 (1999), citeseer.ist.psu.edu/martin99open.html

8. Pfleger, N.: FADE - An Integrated Approach to Multimodal Fusion and Discourse
Processing. In: Proceedings of the Dotoral Spotlight at ICMI 2005. Trento, Italy
(2005)

9. Pfleger, N., Schehl, J.: Development of advanced dialog systems with PATE. In:
Proceedings of Interspeech 2006—ICSLP: 9th International Conference on Spoken
Language Processing, Pittsburgh, PA, USA. pp. 1778–1781 (2006), http://www.
isca-speech.org/archive/interspeech_2006/i06_1598.html

10. Reithinger, N., Fedeler, D., Kumar, A., Lauer, C., Pecourt, E., Romary, L.: MI-
AMM - A Multimodal Dialogue System Using Haptics. In: van Kuppevelt, J.,
Dybkjaer, L., Bernsen, N.O. (eds.) Advances in Natural Multimodal Dialogue Sys-
tems. Springer (2005)

11. Schehl, J., Pfalzgraf, A., Pfleger, N., Steigner, J.: The BabbleTunes System. Talk
to Your IPod! In: Proceedings of the 10th International Conference on Multimodal
Interfaces (ICMI) (2008)

12. Seneff, S., Lau, R., Polifroni, J.: Organization, Communication, and Control in
the Galaxy-II Conversational System. In: Proceedings of Eurospeech’99. pp. 1271–
1274. Budapest, Hungary (1999)

13. Sonntag, D.: Ontologies and Adaptivity in Dialogue for Question Answering. AKA
and IOS Press, Heidelberg (2010)

14. Sonntag, D., Deru, M., Bergweiler, S.: Design and Implementation of Combined
Mobile and Touchscreen-Based Multimodal Web 3.0 Interfaces. In: Proceedings of
the International Conference on Artificial Intelligence (ICAI). pp. 974–979 (2009)

15. Sonntag, D., Kiesel, M.: Linked data integration for semantic dialogue and backend
access. In: AAAI Spring Symposium on Linked Data Meets Artificial Intelligence
(2010)

16. Sonntag, D., Möller, M.: Unifying semantic annotation and querying in biomedi-
cal image repositories. In: Proceedings of International Conference on Knowledge
Management and Information Sharing (KMIS) (2009)

17. Sonntag, D., Sonnenberg, G., Nesselrath, R., Herzog, G.: Supporting a rapid dia-
logue engineering process. In: Proceedings of the First International Workshop On
Spoken Dialogue Systems Technology (IWSDS) (2009)

18. Sonntag, D., Theobald, M.: Explanations in dialogue systems through uncertain
RDF knowledge bases. In: Roth-Berghofer, T., Tintarev, N., Leake, D.B., Bahls, D.
(eds.) Proceedings of the Fifth International Workshop on Explanation-aware Com-
puting (ExaCt 2010). CEUR Workshop Proceedings, vol. 650, pp. 1–12. CEUR-
WS.org, Lisbon, Portugal (2010)

19. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k Exploration of Query Candi-
dates for Efficient Keyword Search on Graph-Shaped (RDF) Data. In: ICDE ’09:
Proceedings of the 2009 IEEE International Conference on Data Engineering. pp.
405–416. IEEE Computer Society, Washington, DC, USA (2009)

20. Wahlster, W.: SmartKom: Symmetric Multimodality in an Adaptive and Reusable
Dialogue Shell. In: Krahl, R., Günther, D. (eds.) Proceedings of the Human Com-
puter Interaction Status Conference 2003. pp. 47–62. DLR, Berlin, Germany (2003)

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
citeseer.ist.psu.edu/martin99open.html
http://www.isca-speech.org/archive/interspeech_2006/i06_1598.html
http://www.isca-speech.org/archive/interspeech_2006/i06_1598.html

	Monitoring and explaining reasoning processes in a dialogue system’s input interpretation step

