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Connectionist Models and Figurative Speech

Susan Hollbach-Weber

Abstract

This paper contains an introduction to connectionist models. Then we focus on the

ques-tion of how novel figurative usages of descriptive adjectives may be interpreted in

a structured connectionist model of conceptual combination. The suggestion is that

infe-rences drawn from an adjective's use in familiar contexts form the basis for all

possible interpretations of the adjective in a novel context. The more plausible of the

possibilities, it is speculated, are reinforced by some form of one-shot learning,

rendering the inter-pretative process obsolete after only one (memorable) encounter

with a novel figure of speech.
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Part 1: A Tutorial Introduction to Connectionist Models.

1 Introduction and Overview

Connectionist models are the first attempt to provide a computational model of
the human brain. Historically, the subfield of computer science known as arti-
ficial intelligence has been inspired and motivated by the performance of the
human brain. The computational characteristics of the brain are very different
from those of computers however. Where computer processors are very fast,
measurable in nanoseconds, the processors used in the brain (neurons) are very
slow, with response times on the order of several milliseconds. Communication
channels between computer processors are typically restricted, and of course in
a single processor architecture nonexistent. Neurons, however, are intercon-
nected with each other by tens of thousands of communication channels, known
as dendrites and axons.

The fact that the processing speed of neurons is so slow has something inte-
resting to say about the computational style of neural systems. The human brain
can perform such complex tasks as object recognition in a matter of a few
hundred milliseconds. This means that entire complex behaviors are carried out
in about one hundred time steps, an observation known as Feldman's 100 step
rule. This implies that neural computation is massively parallel and organized
into relatively shallow computation trees.

The attempt to model biological neural systems raises two distinct questions.
One question is how the neural signals are generated and transmitted: neu-
robiology supplies the answer to this question. The second question is what
algorithm is used in neural computation, that is, what function is computed by
an individual neuron in response to its inputs. This second question is very
difficult to answer. The approach adopted by connectionist models is to run
simulations of networks whose units execute user-supplied functions, an
approach which completely begs the question.

Since connectionist models are neurally inspired, an understanding of neural
mechanics helps provide a basis for understanding connectionist models.
Neurons are a biological cell, whose walls extend in long filiamentary processes
known as dendrites. Dendrites are used to both transmit and receive signals to
and from other neurons. A specialized form of dendrite is the axon; wrapped in
myelin for insulation and equipped with nodes of Ranvier for amplification, the
axon is used to transmit signals over long distances. The point at which the tip
of an axon or dendrite makes contact with the dendrite of another neuron is
called the synapse.

Neurons transmit electrical pulses of varying rates, where the rate of trans-
mission is a function of the inputs currently being received by the neuron. A
mechanical analogy to help explain the notion of neural computing is to imagine a
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neuron to be a tub, with water spouts draining into it, and an output valve at the
bottom of the tub. The output valve is regulated by a float mechanism, so that
when the water level in the tub rises to the level of the float the value opens,
draining the tub. The output thus generated is transmitted to any number of
other such tubs by means of branching drainage channels.

A refinement to this model takes into account the notion of inhibitory inputs.
Certain neural inputs tend to block the activity of a neuron rather than
stimulating it. These inhibitory signals can be modelled by a moveable dam
across the input channels, whose position is regulated by the inhibitory input. If
the inhibitory input is very strong, it will cut off all other inputs to the tub; if it
is only moderately strong, it will merely reduce the input flow.

The water-and-tub analogy completely breaks down with respect to network
topology. Neural systems have no inherent restrictions on the pattern of
connectivity between units; the tub analogy only permits downhill flow of
signals, a restricted form of topology known as the feedforward network.

Having now obtained an intuitive grasp of how neural computations behave, we
can focus on the classification of neural models. Neural models can be coarsely
divided into two camps: analytical models and empirical models.

Relatively little work has been done on developing analytical approaches to
neural modelling, in part due to the analytic complexity of neural systems. A
realistic model of the biological neuron has twenty or more parameters; this fact,
coupled with the high degree of connectivity between neurons, leads to a dearth
of analytical models of completely general neural systems. In order to develop an
analysis, the system must be modellable with a very small number of
parameters, enforcing a degree of simplification that necessarily leads to a loss
of generality. Accordingly, a greater emphasis is placed in the literature on
empirical models of network behavior. Empirical models are used not as formal
analyses of system performance characteristics, but rather as existence proofs
for a specific capability. The idea is to simulate the operation of a working neural
network, be it by direct implementation in VLSI circuits, the hardware
approach, or indirect implementation on existing computers, the software
approach. To date, although the hardware option seems to afford the most
speed and accaracy, it is still a premature solution. The problem is that very
little light has been shed as yet on the actual algorithms used by neurons in
their various computations, so the designer of a neural model is forced to choose
them almost arbitrarily. Until more is known about the interaction between
network computing characteristics and choice of activation functions, the greater
flexibility afforded by software simulations of network activity more than
compensates for the reductions in speed.

At this point in the discussion we are finally in a position to define the term
"connectionist models”. A connection model is the empirical simulation on a
(serial) computer of a neural network. The simulation need not be on a serial
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architecture machine, but for reasons of availability and ease of programming
they generally are. The two elements that are invariant across all connectionist
models are units, computational simulations of neurons, and links, the
communication channels corresponding to dendrites and axons. Connectionist
units compute a specified activation function of their input values, generating a
single positive output value for the given time. As this output value is propagated
across all outgoing links from the unit, this value may be modified by the weight.
A positive link weight greater than 1 amplifies the signal, a positive weight
between O and 1 attenuates signal, and a negative link weight transforms the
signal into an inhibitory one.

At the level of the operating environment, that is, the external context
surrounding and imparting meaning to the computation of the connectionist net,
there are input and output patterns. Input patterns are a function not only of
the network architecture and semantics but also of the environmental
constraints on the function being computed. For example, a connectionist
network in the form of an retinotopic map of the visual field would have
individual input units corresponding to positional points in the visual field, much
like pixels in a digitized camera image. The input to these units would depend on
the visual scene being looked at, that is, input is environmentally determined.
One can also imagine a network to compute a partial function on its input field,
that is, not all input patterns are “valid", since not all input patterns have a
corresponding known output. For such functions a popular approach is to "train"
the network by presenting it with sequences of valid inputs accompanied by the
expected output pattern, having first specified a learning rule for link weight
adjustment to minimize the difference between the function actually computed
by the network and the desired function. Network output, like network input, is
a function of the design choices made by the architect of the network. One
popular convention is to keep three distinct populations of units,

• input units,

• “hidden” units receiving input from the input units and sending output to
other hidden units or to output units, and

• output units. In this case, system output is defined to be the activation of
the output units. Output can also be defined to be the activity of the 
entire network, in which case some measure of stability or convergence is
required before the output can be sampled.

The details of the internal structure and operation of connectionist units are the
most discretionary, as they are determined neither by the strictures of the
model nor by the environmental constraints on the functions being computed.
For any given function to be computed, there exist an infinite number of
connectionist architectures to compute it. One possible metric to choose
between this infinity of options is minimality, but as there are so many variables
interacting that minimizing one will always tend to maximize others. Different
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minimization metrics like biological accuracy, computational efficiency or analytic
simplicity all lead to different minimal models.

The two principal variables at the level of the connectionist unit are the pattern
of connectivity and the activation function. For a fixed activation function,
different patterns of connectivity compute different functions, and for a given
pattern of connectivity, different activation functions, obviously enough, compute
different functions. The fundamental question to be explored by connectionist
models is the interaction between these two variables.

To specify the architecture and operation of a connectionist network, one must
tabulate the pattern of connectivity and the individual link weights, and provide
the activation function for each unit in the network. Exploiting the fact that a
link weight of O is functionally equivalent to having no link at all (assuming the
multiplicative application of link weights to signals), a convenient notation for
specifying pattern of connectivity is the weight matrix. Activation functions
operate on the inputs to the units, inputs which have been optionally prepro-
cessed by one or more site functions. The result of an activation function is a
single positive value known as the activation value or unit potential. This value is
then optionally transformed into a distinct output value by the output function.
These multiple functions lead to a certain redundancy in specifying the ope-
ration of a unit. Suppose the unit is to compute the binary threshold of the sum
of its inputs. One approach would be to have the sum of inputs computed by a
site function, and the thresholding operation performed by the activation func-
tion; the output function is then simply the identity function. Alternatively, the
activation function could compute the sum of inputs, obviating the need for a
site function, and the output function could be the thresholding operation. A
third alternative is to compress

both the summation and thresholding into the activation function, leaving both
the site and output functions transparent (the identity function). If biological
plausibility is a design factor, the electrical capacitance of the neuron is model-
led by the activation value and the firing rate by the output value, with the
preprocessing of inputs performed in the dendritic trees captured by various
site functions. If biological plausibility is not a factor, and the connectionist
model is seen merely as a vehicle for exploring massive parallelism in compu-
tation, then any function at all can be chosen for the site, activation and output
functions, including probabilistic functions where the binary output of the unit is
specified probabilistically with respect to the activation value.

Given this plethora of choice in specifying a network, it is clear that network
semantics can be difficult to define. Since the function computed by a network
depends primarily on the pattern of connectivity but also on link weights and
activation functions, one possible grounding for network semantics is in the
semantics of the individual connectionist units. For example, one popular
interpretation of a unit's function is as a feature detector. If the unit is on, the
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feature is present in the environment. If it is off, the feature is either absent or
simply has not been detected. Intermediate levels of activation correspond to
degrees of belief in the presence of the feature. If two such feature detectors
form a conjunctive input to a third node, then the semantics of this node is the
conjunction of the two features in the environment. Thus node semantics can be
used to recursively determine network semantics.

A final element of connectionist models that has nothing to do with the modelling
constraints imposed by biological neural systems but is purely an artifact of the
empirical simulation on conventional computers is the choice of simulation
strategy or update rules. One option is to enforce global synchro-nization of all
units by sequentially updating all units at each clock tick. This imposes uniform
propagation delay (equal link lengths) among all units, and can lead to deadlock
in cases where two equally valid network states are in oppo-sition and must be
chosen between. Another option, less commonly used, is to update only a
certain percentage of the units in a given simulation step. This necessitates
certain fairness guarantees, guaranteeing that a given unit will have been
updated by a fixed number of simulation steps, lest a unit get "unlucky" and
never be updated. Although this approach solves the potential problem of
systemwide deadlock, it implements random and variable length propagation
delays between units, to sometimes curious computational effect. The extreme
form of this algorithm is to update only one unit per Clock tick, again with
fairness guarantees that every unit will eventually be updated.

This concludes the introduction to and overview of the general principles
underlying neural networks in general and connectionist networks in particular.
Neurally inspired networks can be classified with respect to each other along
three mutually orthogonal axes. Two have already been mentioned: degree of
biological plausibility and mode of analysis (empirical v. analytical). The third
axis, the origin of network structure, or whether the network is pre-structured
or self-structuring, forms the basis for the rest of this discussion of connec-
tionist networks.

2 Self-Organizing nets: the PDP approach

The PDP ("Parallel Distributed Processing") research group at the University of
California, San Diego have popularized and advanced the connectionist paradigm
now known as the PDP model. In a PDP network, structure is initially uniform,
with complete connectivity between units or layers of units, small random
weights on the links, and one common activation function for all units. The
network is then ”trained” to compute the desired function by supplying it with a
learning rule to alter link weights and optionally a teaching signal, or the expected
output for the function to be learned. Thus the network is in some sense self-
structured, since the learning process eventually produces structural
differentiation from the initially uniform state. The positive side to this approach
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is that a network can be trained on any one-to-one function whose input and
output pattern are reasonably orthogonal. The drawbacks are that the resultant
structure can be quite opaque and difficult to assign a semantics to, and the
learning algorithms currently employed are biologically implausible in their
behavior. Nevertheless, it is a rich and promising paradigm, and one that has
recently generated considerable interest in the research community.

Historically, the PDP approach is based on the simple linear models of the
1950's. The structural characteristics of a simple linear model include a two
layer feedforward (no feedback links) architecture whose layers are fully
connected with initially small random weights. The link weight on a link
connecting unit A to unit B multiplied with the output signal of A being
propagated along the link to produce the modified signal received as input by B.
The activation function sums these weighted inputs, and the output value is
equal to the activation value.

These simple linear models can “learn” according to Hebb's rule, which states
that when input unit A and output unit B are simultaneously excited, the
strength of their interconnection increase. Training a simple linear model in this
fashion involves clamping on the input units for a given input pattern and the
output units in the pattern expected for the given input, and applying Hebb's
rule. This process is repeated many times for all possible input patterns. This
model, known as a linear assoCiator, can learn multiple pattern associations if
the pattern are orthogonal. If the patterns are overlapping, learning perfor-
mance can be improved by using the delta rule, where rather than clamping the
output units on to the expected pattern, the expected values are supplied to the
output units as a distinct signal and they are allowed to compute the function of
their inputs (the actual output). The difference between the actual output and
expected output is used to determine the change in link weight on all incoming
links.

Two useful applications of the simple linear model are pattern association, for
example mapping upper case letters to lower case letters, and pattern retrieval,
where the network is trained to auto associate patterns (i. e. the input and
expected output are identical), a function useful in retrieving known exemplars
from degraded representations. Pattern retrieval can be seen as a form of
content addressable memory.

A third application of the model can be developed by installing mutual inhibition
links between all units in the output layer, and adopting the learning rule that if
an output unit wins the competition on a given input, each of its input links
gives up some proportion of its weight, and that weight is then distributed
equally among its active input lines. The weights of all links coming in to a unit
must sum to 1. This algorithm for competitive learning is a form of unsupervised
learning, as there is no explicit teaching signal, no particular expected output.
The task that such a network performs is pattem classification, where the
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population of input patterns is broken down into n or fewer classifications,
where n is the number of competitive output units. If structural clustering exists
within the input population, the network will find it; if the population is more
evenly distributed, however, the classification will be arbitrary and possibly non-
optimal.

Simple linear models are limited to computing linear functions, that is, functions
whose outputs increase in direct proportion to their inputs. Feedback links and
hidden or multiple layer architectures do not add to the power of these models.
Accordingly, the next stage in the historical development of the PDP paradigm
was to introduce non-linearities into the model.

The linear threshold model possesses the same structural characteristics as
simple linear models, namely, a two layer feedforward architecture with full
connectivity, but the activation functions changes from a weighted sum of inputs
to a binary thresholded weighted sum of inputs. That is, if the weighted sum of
inputs is less than the threshold, the output is 0, and if it is greater than the
threshold, the output is 1. Such networks can compute any boolean function,
including non linear functions such as exclusive-or. This model is also known by
the name of perceptron.

The Hebbian learning rules and the delta rule can both be applied to the
perceptron, as can the competitive learning rule, leading to both supervised and
unsupervised learning. The interesting feature of this model, however, is that
adding "hidden~~ layers of units between the input and output layers actually
increases the power of the network, due to the non-linearity of the activation
function. For example, while it is still impossible to compute exclusive-or with a
two layer perceptron, it can be computed by any number of three-layer (one
hidden layer) linear threshold networks. For twenty years, from the late 1 950~s
to the late 1 970's, interest in multi-layered perceptrons atrophied since there
was no known way to apply the delta rule to these networks, thus enabling them
to learn. The delta rule is only directly applicable to the layer of links coming in
to the output units, since these units receive the training signal needed to
compute the change in weight.

The generalized delta rule, appearing in the early 1980´s, revitalized interest in
multilayer feedforward networks. By adopting a differentiable approximation to
the linear threshold function called a quasi-linear threshold function, an algo-
rithm, popularly known as error backpropagation, was devised to recursively
compute the change in link weights for hidden layers from the basis provided by
applying the delta rule to the output layer. Unfortunately the resulting training
algorithm is very slow, requiring thousands of presentations of each inputoutput
pair.

At about the same time that the generalized delta rule for error backpropagation
was invented, a unique and somewhat offbeat model known as the Boltzmann
machine was devised. Inspired by the physical systems known as "spin
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glasses", a Boltzmann machine has binary unit output and symmetric links, so
that if unit A is linked to unit B with weight w, then unit B must also be linked
to unit A with the same weight w. The activation functions are probabilistic, that
is, the inputs determine the probability with which the output of the unit will be
O or 1. The goal of the learning algorithm is to minimize global system energy,
where energy is a function of the sum of all link weights connecting two active
units plus the total number of active units. The algorithm, starting with initially
random activations, is to sequentially update units to locally minimize the global
energy. In order to overcome the problem of local minima endemic to all gradient
descent algorithms, the gimmick known as simulated annealing is used. A
parameter known as the temperature is introduced into the probabilistic
activation function such that at higher temperatures the unit will turn on and off
more or less randomly, while at lower temperatures the probability of the unit
turning on becomes more strongly associated with the amount of input to the
unit. At high temperatures the system is unstable and will never converge to a
solution. At low temperatures the system is too stable and local minima in the
energy space become a problem. Thus in simulated annealing the temperature of
the system is initially high, and as the temperature is gradually lowered, the
optimum point of balance between instability and stability is crossed, thus
usually ensuring that a global minimum will be found. The learning algorithm
cumbersome and slow, requiring tens of thousands of simulation "sweeps", or
annealings in order to collect the statistics needed to approximate the
implemented probabilities. Boltzmann machines are highly implausible,
biologically speaking, and are currently regarded as more of a curiosity than a
useful connectionist model.

There are certain drawbacks to the PDP approach. The approach sheds no light
on the question of the tradeoffs between patterns of connectivity and choice of
activation functions, since one activation function is generally shared by all units
in the network. The structure that arises from applying a given learning algo-
rithm can be quite obscure, with no readily derived semantics, particularly for
multiple layers of units. But the compensations are impressive: PDP networks
can be trained on any of a large class of functions, and the typically highly
parallel and redundant computations that emerge from such training leads to
graceful performance degradation on incomplete or erroneous input.

3 Structured connectionist networks

The structured approach to connectionist models differs from the PDP approach
in that the pattern of connectivity is specified by the network designer, rather
than emerging incrementally through some training procedure. This approach
leads to greater design flexibility and clearer network semantics, but also tends
to produce network designs of a less robust nature. The highly distributed
computational style of PDP networks with their resultant obscure semantics are
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difficult to design by hand, so the tendency is often to adopt a somewhat more
localist style of network design. Interestingly, structured networks are the
favored medium for cognitive scientists building computational models of their
favorite cognitive phenomenon, particularly low level perceptual tasks like vision,
speech and hearing.

One of the commonest design rule adopted by the architects of structured
networks is the unit-value principle, which states that a separate unit exists for
each distinct value of a feature. This principle leads to clear node semantics, but
can also lead to crosstalk, if two concepts with overlapping feature sets are
considered concurrently. It is not yet clear how to dynamically associate a value
with a variable, a technical difficulty known as the binding problem. One way to
circumvent the binding problem in the case of potential crosstalk is to allocate
nodes to explicitly represent the conjunction of two feature values. This
simplistic approach has the obvious disadvantage of being combinatoric. Another
possible solution to the binding problem is to allocate distinct time slices of the
simulation to each object under consideration, thus adopting a temporal, rather
than a spatial, metric of separation between the two feature spaces. This idea
has promise, but the details are still being worked out, and it is too early to tell
if it presents a viable solution.
The semantics of a connectionist network can be defined recursively with res-
pect to the semantics of its component units. If a node is regarded as a feature
detector, then binary output values have obvious truth value mappings and
continoous values can represent degrees of belief in the proposition represented
by the unit. In general, multiple unit activation is considered to be conjunctive,
so that explicit mechanisms to represent disjunctions are needed.

One disjunctive mechanism is the mutual inhibition subnet. In such a structure,
there are inhibitory links fully connecting every unit in the subnet. Then
concurrent activation of units results in the suppression of all units but the
strongest, whose activation is dampered somewhat but not extinguished.
Another mechanism is the winner-take-all subnet, in which an auxiliary node
computes the maximum of the values in the subnet. This maximum value is
transmitted back to each participant in the winner-take-all competition, and on
receiving a value greater than its own, a node voluntarily turns itself off.

The Rochester Connectionist Simulator, soon to be acquired by DFKI, presents a
useful tool for simulating structured connectionist networks. It runs on a Sun
Workstation under both Suntools and X, and is written in the C programming
language. It has a powerful graphics interface with iconic representation of
network units that can be selected by mouse clicks. Once a unit has been
selected, information about the unit can be displayed, information such as
incoming and outgoing links, and the values of all local variables such as state,
potential and output. To program an application on the Simulator, the user
writes a subroutine in C with appropriate calls to predefined functions such as
MakeUnit and MakeLink. This subroutine is linked at compile time to the



11

simulator, creating an application specific executable. Running the executable
creates a graphics window for the application from which you can run the
network, display individual nodes, and alter node parameters.
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Part II: A structured connectionist model of figurative 
adjective-noun phrases

1 Introduction

This section of the report focuses on the question of how novel figurative usages
of descriptive adjectives may be interpreted in a structured connectionist model
of conceptual combination.  The suggestion is that the inferences drawn from an
adjective’s use in familiar contexts form the bases for all possible interpretations
of the adjective in a novel context.  The more plausible of the possibilities, it is
speculated, are reinforced by some form of one-shot learning, rendering the
interpretive process obsolete after only one (memorable) encounter with a novel
figure of speech.

What interpretive mechanisms are used in the attempt to understand a figure of
speech for the first time?  More specifically, what mechanisms are used to
determine the meaning of a figurative adjective-noun phrase?  A figurative
interpretation of an adjective-noun phrase is required when the adjective names
a property or a property value not possessed by the noun, as in, for example,
the expressions ‘green idea’ or ‘blue tree’: ideas do not have colors, and trees are
not naturally colored blue.  Since it is safe to assume that a speaker (or writer)
will not intentionally employ phrases that are meaningless to the listener (or
reader),  a figurative interpretation for such apparently anomalous phrases must
somehow be found. The successful interpretation of a novel adjective-noun
phrase hinges on selecting plausible values for the salient properties of the
noun.  It is argued here that the connotations of the adjective in previously
encountered contexts supplies a basis for any such interpretation.

In order to define what is meant by adjectival connotations, it is first necessary
to devise a model of category representation.  The model’s design is constrained
by the choice of a connectionist implementation.  Assuming that a connectionist
unit can represent feature values, a category is incarnated as varying degrees of
concurrent activation of a subset of its allowable feature values.  In a literal
adjective-noun phrase, the descriptive adjective names a property value of the
category denoted by the noun, eg. ‘green peach’ or ‘novel idea’; in other words, it
indexes a feature value unit associated with the noun.  As correlations often
exist between feature values, indexing one will tend to excite others, thus
supplying the adjective with characteristic connotations, known as direct
inferences.  For example, while a (ripe) peach is normally pink on the outside
and juicy and sweet on the inside, a green peach is unripe: dry and sour in
addition to being green in color.  These direct inferences suggest themselves so
strongly that perceptual values are often used metonymically to stand for certain
(non-observable) functional or constitutive property values.  For example, unripe
is an extended sense of the adjective ‘green’.

When the modifying adjective indexes a feature value not possessed by the noun,
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however, the semantics of the situation are more complex.  The idea is to indi-
rectly index feature values of the noun by establishing a mapping from feature
values associated with the adjective in literal noun contexts.  For instance, since
green is so commonly associated with the notion of unripeness in the domain of
fruits, it seems plausible that a ‘green idea’ is one that is somehow premature, or
not fully developed.  This interpretation hinges on finding mappings not only
between the properties of fruit maturity and idea development, but also between
their respective values, immature and underdeveloped.

These ideas have been implemented in a structured connectionist knowledge
representation and inferencing system.  The implementation, written in the C
programming language, runs on a Sun™ Workstation as an application of the
Rochester Connectionist Simulator, the results of which are represented as
graphical icons by the Graphics Interface for the Simulator [Goddard et al.,
1988].  The resulting system is known as DIFICIL, for Direct Inferences and
Figurative Interpretation in a Connectionist Implementation of Language
comprehension.

The basic building block of a connectionist net is the unit.  For each unit in the
network the simulator keeps track of the activation function used and the
connectivity to other units, unidirectional links coming into and going out of the
unit from and to other units in the network.  The activation function typically
computes unit potential from the input values coming in across the links from
other units.  This potential is sent as the unit’s output across the outgoing links.

The units in a connectionist network, like atoms in LISP, have no integral
semantics apart from the function they compute.  The labels they carry have
meaning only for the human observer of the network’s operation.  Labels
nevertheless serve a useful function in keeping track of the real-world
constraints that exist between the concepts being represented.  Accordingly,
certain nodes of the network are named for the known nouns and adjectives
(categories and property values respectively), and others are named for the
properties implied by the property values named by adjectives.  The category
and property value nodes serve as input nodes: an adjective-noun phrase is
input to DIFICIL by pegging the activation values of the relevant category and
property value nodes to their maximum value.  All nodes in the network serve as
output nodes, in the sense that the pattern of activation over all nodes defines
the state of the network.  However, the property values are usually of greatest
interest, so they are the best candidates for the title of output units.  For
example, if the input phrase is ‘green peach’, then the expected output will
include the values dry, sour, hard and unripe.  These distinctions are more
suited to layered feedforward networks than to structured nets with feedback: a
given property value node will be an input node in one network run, an output
node in another, and a ‘hidden’ unit in a third.  These operational characteristics
of a DIFICIL network will become clearer as the discussion of network
architecture unfolds.
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A widely accepted model of metaphor interpretation is to establish a mapping
from a source domain to a target domain.  For example, in the metaphor
“marriage is a zero-sum game” the source domain is games, the target domain
marriage, and the mapping to establish correspondences between contestants
and spouses, winning and personal fullfillment, and so on.  In accordance with
this view, the process of interpreting a novel figurative adjective-noun phrase in
DIFICIL occurs in three phases.  First the need for a figurative interpretation is
signalled by literal semantic anomaly.  Then all the literal connotations of the
adjective are primed to establish a source field of property values.  Finally,
mappings are established from values in the source domain to values in the
target domain, namely, permissible values of category denoted by the noun.
This requires not only establishing mappings between source properties and
target properties, but also between the relevant property values.  Before
considering the form taken by these interpretive mechanisms, however, the
prior question of how to interpret a literally intended adjective-noun phrase must
be addressed.

2 Preamble: a functional aspect model of category representation

The interpretation of novel figurative adjective noun phrases in DIFICIL is based
on the behavior of the system when presented with literally interpretable
adjective-noun phrases.  When an adjective modifies a noun in a literal context,
the category denoted by the noun is cast in a new light.  Sometimes the shift in
perspective is a minor one: the phrase ‘green car’ carries little additional
information over the selection of a specific color.  The phrase ‘green banana’,
however, entails a significant modification to the default values of bananas: in
addition to the color changing from yellow to green, one also infers that a green
banana is unripe, dry, bitter, difficult to peel, and so on.  Since it seems
untenable that this (completely different) view of the property values of bananas
constitutes a proper subcategory, this information must exist within the category
itself.

This habit of inferring changes in property value settings from the knowledge of
one property value is called direct inferencing.  Direct inferences can be either
immediate or mediated.  Immediate inferences are the direct inferences
available at the level of the category under consideration.  They are performed
quickly, in a few hundred milliseconds, and without conscious thought.  These
immediate inferences must reflect the structure of stored knowledge, as they
are available too quickly and effortlessly to involve any complex form of infor-
mation retrieval.  The argument is that the patterns of immediate inferences
reflect the structure of connections in the underlying spreading activation model,
implemented here as a structured connectionist network.  Mediated inferences
are the second form of direct inference, where knowledge about a more abstract
category is used to supply the information necessary to understand discourse.
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Mediated inferences take somewhat longer than immediate inferences, as they
require chaining up the subcategorization (or ‘property inheritance’) hierarchy.
Mediated inferences are not exploited in the figurative interpretation process,
however; only the immediate inferences available for a category are used.

At the heart of the proposed model of figurative adjective-noun interpretation lies
a functionally organized context sensitive model of the internal structure of
categories. Given that physical objects possess certain properties with charac-
teristic values, the question is how the correlations between values is represen-
ted.  Functional properties of the object supply the necessary organizational
structure, as each value of a functional property participates in a distinct
aspect, or informal coalition of property values, of the category.  For example,
the functional property ripeness of fruit motivates three distinct aspects of
bananas: unripe bananas are green, hard, dry and bitter, while ripe bananas are
yellow, soft, moist and tangy-sweet, and rotten bananas are black, mushy, wet
and sickly-sweet.
The choice of functional properties as the organizing principle of the internal
structure of categories is based on the assumption that categories, as mental
constructs of active agents, are inseparably linked with the agent’s goals.  To a
watchmaker, it is the extreme hardness of diamonds that is of paramount
importance, while to a socialite it is their more intangible property of conferring
status on the wearer that governs the representation. The two representations of
the category, although based on the same external substance, are quite
different. Diamonds to a watchmaker are very hard and durable. Diamonds to a
socialite are brilliant, clear and expensive. The two sets of properties both hold
true of diamonds, but their relevance is contextually determined. As well as
determining relevance, context can also actively determine the property values
themselves; an industrial diamond is generally tiny and hence relatively cheap,
while an ornamental diamond is much larger and more expensive (see Figure 1).

diamond

ornamentindustrial

hard
durable
tiny
cheap

brilliant
clear
large
expensive

Figure 1: Two competing aspects of the diamond category.



16

Aspects of a category can be established by several mechanisms.  The direct
approach is to name a property value participating in the aspect.  For example,
the phrase ‘tiny gem’ supplies evidence for the relevance of the industrial
aspect.  A similar effect is achieved by actually naming the aspect (eg. ‘industrial
gem’), as the motivating functional property value which gives the aspect its
name also participates in the coalition.  Sometimes one aspect will be subsumed
by another, as, for example, when one planning goal is a subgoal of a higher
level goal.  When this happens, invocation (by whatever means) of the high level
goal supplies activation to the subgoal, thus indirectly exciting the subordinate
aspect.  Property inheritance can also supply indirect activation to an aspect.  If
a category happens to excite a property value that also participates in an aspect
of a superordinate category, then when activation propagates up from the
category to the super-category, that aspect will be preferred.  Finally, an aspect
can be established by default; in the absence of information to the contrary, the
most typical aspect of the category will predominate.
Knowledge bases in DIFICIL are not built by hand; an input language exists with
which to specify information to be incorporated into the system. The relation-
ship between a category, a property and relevant property values is given by

hasslot (category: property; value1, ..., valuen).

The internal structuring of property values into aspects are established with

aspect (category: goal [default]; value1, ..., valuen).

Property inheritance and abstraction hierarchies are specified respectively by

subcat (category: subcategory1, ..., subcategoryn)

and

abstracts (property: subproperty1, ..., subpropertyn).

A new network unit is allocated and appropriately named on first reference to a
term, and is indexed by subsequent references.  For example (refer to the key
appearing in Figure 2), the DIFICIL network fragment built by the statements

hasslot (gem: cost; cheap, expensive)

hasslot (gem: look; ugly, pretty)

hasslot (gem: function; industrial, ornament)

aspect (gem: ornament [default=] TRUE; expensive, pretty)

is shown in Figure 3.  Details of the mapping from this simple input language to
the connectionist structures of a DIFICIL knowledge base appear in [Weber
1989].
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category

property

property value

misc. control node

gated binder

two/three binder

inertial binder

scalar position designator

2/3

excitatory link

inhibitory link

mutually
excitatory links

Figure 2: Key to symbols used to depict the various units in network structure

diagrams.  All category,  property  and  value  nodes  set  their  potential

and output equal to the sum of their inputs,  unless  wired  high  externally,

in which case output is set to the given potential, and further inputs (or

lack thereof) are ignored until reset.  This latter case arises when a category

or value is being used as an input node.

gem

diam-
ond

cost

cheap

expen-
sive

hub

ugly

pretty

indus-
trial

orna-
ment

func-
tion

look

default

Figure 3:  Connectionist structures implementing the ornamental  aspect of gems.

3  Detecting Semantic Anomaly

When thinking about physical objects, the mental representation of the object
includes various properties with associated property values.  For example,
beans can be either green or yellow in color. Thus the phrase ‘green beans’ has
a readily available semantic interpretation. But what about the phrase ‘green
recruit’ or, even odder, ‘green idea’? It is assumed (see Section 7) that both



18

adjectives and nouns have only one word sense; in this case, ‘green’ is used
exclusively in the color sense. Object properties can be organized into a
hierarchy of applicability whose structure is isomorphic to the structure of the
agent’s ontological knowledge, in much the same spirit as Keil’s hierarchy of
predicability.  Keil defines predicability to be the knowledge of which predicates
can be combined with which terms in a natural language. A predicate is said to
span a term when the predicate can meaningfully be applied to the term and the
resulting phrase can be assigned a truth value, be it true or false. A category
error occurs when a predicate is used in conjunction with a term it does not
span.  For example, ‘green idea’ is a category error, since only physical objects
can have color as a property.  Thus it is neither true that the idea is green nor
that it is not green, since the latter statement implies that the idea has a color,
the value of which is something other than green.

The phrase ‘green recruit’ also involves a form of semantic anomaly, again
assuming that the adjective ‘green’ is used to denote color.  People, as physical
objects, can take on various colors, so there is no category error.  The anomaly
occurs instead at the level of an unexpected property value: people are not
naturally colored green. This is an example of an expectation violation, the
second form of semantic anomaly exploited in this study.

The mechanisms to detect the need for a figurative interpretation currently
implemented in DIFICIL are limited to category error and expectation violation
detection, although nothing precludes the possibility of eventually incorporating
other signals of figurative usage, such as contextual cues.  Category errors are
detected on a property-by-property basis.  A detection node is created for each
new property named in the database.  This node receives excitation from the
property-value nodes and inhibition from the category, so if a property value
should be activated while the category is inactive, a semantic anomaly will be
reported as required.  For example, in the DIFICIL network fragment created by
the statements

hasslot (diamond: size; tiny, small)

hasslot (desk: size; large, enormous)

and

hasslot (idea: novelty; novel, familiar),

the phrase ‘large idea’ raises a category error.  Excitatory links are established
by the first two hasslot statements from the various size values to the size
category error node, as well as two inhibitory connections, one from diamond,
the other from desk.  So any phrase utilizing a size value such as ‘large’ in the
context of any noun other than ‘diamond’ or ‘desk’ will raise a size category
error.

Expectation violations are detected at the level of the category-property
conjunction.  A key element of the network’s structure is the binder unit, a
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connectionist unit that represents the semantic association (binding) of a set of
other units.  The gated binder, which requires that each of a distinguished set of
inputs be active before summing and broadcasting all other inputs, is used to
establish the association of a property and one of its values with a category.
Only if both the category and the property are activated will this gated binder
node compute the sum of its inputs.  The detection node receives inhibition from
the property-value binders, and excitation from the property, so if any property
value not possessed by the category is named, an expectation violation results.
Thus for the (somewhat unrealistic) network fragment given above, the phrases
‘large diamond’ and ‘tiny desk’ both result in expectation violations.

These semantic anomaly detection structures are depicted in Figure 4.  The
category error detection mechanism shown works for all references to size in
any noun context, while the expectation violation mechanism works exclusively
for the size of diamonds.  Both forms of semantic anomaly, when detected,
transmit their activation to the global metaphor control node.  When all possible
immediate and mediated inferences have been drawn, if there is still an anomaly
being reported, the metaphor node is activated, signalling a network-wide
change of state, from literal interpretive mechanisms to figurative.

diamondsmall

size

diamond size
expectation violation

size
category error

tiny

Figure 4: category error and expectation violation detection structures

4  Priming the Source Field

Once a semantic anomaly has been detected, signalling the need for a figurative
interpretation of the adjective noun phrase, a source domain for possible
meaning mappings must be established.  This domain consists of the adjective’s
connotations in all allowable literal contexts.  The connotations of an adjective
arise from its associations within the literally allowable noun contexts.  The
connotations considered by DIFICIL for the purposes of figurative interpretation
are the immediate inferences arising from the modification of an arbitrary noun
by the given adjective.  For any category known to the system, if the adjective
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names a property value that participates in an aspect of that category, then it
will trigger a characteristic set of immediate inferences, as activation spreads
from the named value to the aspectual hub and from there propagates to all
related property values.

This idea is implemented by a special purpose node, call it the priming node,
that is connected to all concepts in the knowledge base.  On the rising edge of
the metaphor detection signal, that is, when semantic anomaly is first detected,
the priming node is enabled.  The activation of this node decays linearly and
fairly rapidly, so that after fewer than 10 time steps the excitatory (or priming)
signal has changed to an increasingly inhibitory one (see Figure 5).  (Actual
inhibition is required because the local feedback within an aspect gives it
stability; this stable coalition must then be actively defeated.)

excitation

inihibition

0

t
Figure 5: Activation function of the concept priming node.  This unit is linked to 

all concepts in the knowledge base.

Thus for a short time following the detection of semantic anomaly all the
categories in the knowledge base are stimulated.  In this state the system is
effectively consi-dering the combination of the currently active adjective with
every known noun in parallel.  This state is maintained long enough for
activation to propagate to any relevant conceptual aspects.  For example,
suppose the input phrase was ‘aggressive diamond’.  On detection of the
semantic anomaly in this phrase, the system briefly considers (in parallel) all
possible additional phrases involving ‘aggressive’, such as ‘aggressive fruit’,
‘aggressive weapon’, ‘aggressive person’, ‘aggressive flower’, and so on.  Not all
of these phrases convey literal meaning of course, but those that do, such as
‘aggressive weapon’ and ‘aggressive person’, establish the relevant aspect of the
category.  The property values participating in these aspects form the
interpretive basis, or source field, for the eventual figurative interpretation of the
target phrase.

5  Establishing the property and value mappings

The final stage in the process of figuratively interpreting an adjective noun
phrase involves setting up mappings from the values primed by the literal
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connotations of the adjective in various contexts (the source domain) to values of
the category denoted by the noun (the target domain).  The set of all values
activated in this manner form the interpretive basis for understanding a
figurative usage.  Semantic correspondences must somehow be established
between the anomalous property value denoted by the adjective and property
values belonging to the category denoted by the noun.  There are two corres-
pondences to be established, the first being property to property, the second,
value to value.  For example, when interpreting the phrase ‘green idea’, one
must not only establish that the color property in fruit corresponds somehow to
development in ideas, but also that the value green maps to underdeveloped.
This holds true not only in the case of category errors, where the property
implied by the value does not belong to the category, but also for expectation
violations, where it does: the phrase ‘green recruit’ requires mappings between
the properties color and experience and the values green and experienced.

These mappings are discovered by two interlocking interpretive processes, one
to establish all property to property mappings, the other to set up the value to
value correspondences within related properties.

In order to establish a semantic correspondence between the property named by
the adjective (eg. ‘green’ names a color) and properties of the noun (eg. the
experience of recruits), a property abstraction hierarchy relates all the
properties in the knowledge base.  As soon as the need for a figurative inter-
pretation has been recognized, activation is permitted to spread throughout the
abstraction hierarchy from the property named by the adjective.  Activation will
eventually spread to every property in the knowledge base, so in some sense the
hierarchical arrangement is unnecessary: one could simply stimulate all proper-
ties in parallel, and achieve the same end result.  But with the hierarchical
spread of activation the timing delays between the various meaning hypotheses
reflect their plausibility: later suggestions are increasingly implausible, as the
semantic distance between the properties increases.

Thus the real interpretive work is done at the level of the value to value map-
pings.  There are three methods used to establish semantic correspondences:
(direct) value transference, (indirect) scalar correspondence, and (very indirect)
qualitative correspondence.

The most straightforward interpretations arise when a property value of the
target category is made available through an immediate inference associated with
another category.  For example, suppose it was ‘known’ to the system that
aggressive people are also large in size, i.e. large and aggressive both participate
in the same aspect of person, then the unfamiliar figure of speech ‘aggressive
diamond’ would be interpreted as denoting a large diamond (see Figure 6).  This
form of mapping value-to-value mapping, known as property value transference,
is applicable when a property value (and hence its associated property) is
common to both the source and target fields.
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diamond

person
aggres-
sive

large

Figure 6: Direct value transference: the phrase ‘aggressive diamond’ is interpreted
to mean a large diamond, due to the correlation of aggressive and large within an
aspect of the category person.

To establish correspondences in the non-overlapping areas of the source and
target fields, however, more indirect mappings must be resorted to.  One
possible indirect mapping exploits the scalar nature of many properties,
particularly properties of physical objects.  Properties that are quantitative in
nature, such as size, weight, density, malleability and so on, tend to impose a
natural scalar ordering on their values.  Thus assuming that two such properties
have somehow been placed in correspondence, the value mappings become
obvious.  For instance, if size in the source field corresponds to weight in the
target field, then small maps to lightweight, large to heavy, and so on.  This
method of value mapping is called scalar correspondence.

This approach is based on the intuition that quantitative physical property values
tend to be scalar in nature, that is, the allowable values for a given property can
be strictly ranked with respect to each other, from least to greatest.  One
example of this behavior is the temperature property, whose values range from
freezing through cold, cool, warm, hot and finally to boiling/burning/blistering
etc.  There will generally be two values that typify the positive and negative
extremes (eg. hot and cold) with a third value typifying the neutral setting.  For
example, the intensity scale may have the positional designators +, 0 and –.
Unranked but mutually exclusive properties are handled in the same way, as
there is no attempt to actually impose the scalar ordering implied by the choice
of designators.  There are many possible scales to choose from, the most
obvious of which is the intensity scale: temperature ranges from cold (–) to hot
(+), size from small (–) to large (+), hydration from dry (–) to juicy (+).  Another
common scale is the emotional connotations scale: anger is negative,
reasonableness positive; sadness (–) opposes happiness (+), and so on.  As a
property value can participate in any number of scales, it is necessary to
distinguish the scales by their scalar position designators.  The various scales
are considered to be incomparable, so no contradiction is perceived by the
system with the assignment of anger, for example, to the positive end of the
intensity scale as well as to the negative end of the emotions scale.
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Figure 7: Control structures for scalar correspondence established by the 
statement hasslot (diamond: size; small (–), large (+)).

The scalar positions of property values are established by a binder node known
as a two/three node [Shastri 1987] that links the value–property–category
binder to the position designator.  The third input to the two/three binder is
supplied by the metaphor global control node (see Figure 7).  A two/three node
becomes active when two of its three inputs are significant.

As one of the three inputs to a two/three binder, the input from the scalar
position designator, can only become active via input received from a two/three
binder, the first such binders to be activated will be those receiving activation
from a gated (value–property–category) binder as well as from the metaphor
node.  This includes all property–value pairs activated by immediate inferences
during the initial priming of the network for figurative interpretation when all
categories are briefly stimulated.  The positional designators thus activated will
then transmit their activation to all attached two/three binders.  Activation then
spreads from these binders to all gated binders affiliated with the positional
designator, thus implementing the notion of scalar correspondence.

As shown in Figure 7, mutual inhibition is enforced between competing posi-
tional designators.  All designators on a given scale participate in a winner-take-
all competition, to suppress any potential inconsistencies arising from having
two values with contradictory scalar positions participating in the same aspect.

Properties that are more qualitative in nature, such as shape, color, texture and
their ilk, are not so readily compared.  The best one can do is to group similar
values with a given property, a process known as qualitative correspondence.
For example, a marquise cut diamond, with its two pointy ends can be
(imaginatively) classified along with certain tools and weapons as objects having
a ‘pointy’ shape.  This is the loosest and most tenuous form of property value
mapping, and leads to the most imaginative (and least defensible!) figurative
interpretations.

Qualitative correspondence is implemented in DIFICIL exactly in the same
manner as scalar correspondence.  Rather than having scalar designators such
as + and –, shape designators such as pointy and sharp are used, but the end
result is indistinguishable at the implementation level.
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6 An example of figurative interpretation

The way in which all these mechanisms interact is best brought out in an
extended example.  Given the database established by the input file containing
(in part) the following statements:

hasslot (diamond: size; tiny (-), small (0), large (+))

hasslot (damond: shape; marquise (pointy), diamond-cut (round))

hasslot (diamond: cost; expensive (+), cheap (-))

aspect (diamond: ornamental [default=]TRUE; brilliant, diamond-cut, 
expensive, small)

aspect (diamond: industrial [default=]FALSE; cheap, cloudy, tiny)

hasslot (person: aggression; aggressive (+), passive (-))

aspect (person: aggressive [default=]FALSE;  hostile, is-threat)

hasslot (weapon: shape; sharp (pointy), blunt (round))

aspect (weapon: aggresive [default=]TRUE; sharp, large)

A schematic of the network structures built by these statements appears in
Figure 8.  The hasslot statements create the gated binders linking the categories
with their property values, and the two/three binders linking the gated binders
to the named scalar position designator (eg. +, pointy).  Each two/three binder
has an additional input, not shown in the figure, from the global metaphor
control node.  All gated binders occuring in the same hasslot statement are
placed in a winner-take-all competition with each other, depicted as mutual
inhibition in the figure.  This implements the intuition that values at different
points on the same scale are mutually contradictory.  The aspect statements
create the inertial binders (shown as pentagons in the figure) linking the
correlated category-value binders.
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Figure 8: Simplified schematic of network structures built by the example input 
file pertinent to the figurative interpretation of the target phrase ‘
aggressive diamond’.  Property nodes are not shown, nor is the metaphor 
control node with its links to all two/three binders.

This example traces the interpretation of the phrase ‘aggressive diamond’.  The
expression is input to DIFICIL by setting the outputs of the diamond category
node and the aggressive property value node to their maximum value.  The
excitation provided to diamond is sufficient to establish the default aspect of
diamonds, namely, small, diamond-cut, expensive and brilliant.  However, the
fact that aggressive is active in conjunction with diamond will eventually cause a
category error to be reported: aggression is not one of the listed properties of
diamonds, so there is no inhibitory link from diamond to the aggression category
error detection node to overcome the activation supplied by the excitatory link
from aggressive.

When a category error is reported, the metaphor node is activated.  This
prompts the brief stimulation in parallel of all categories in the knowledge base.
The default aspects of person and weapon, and all other known categories, are
established at this time.  The feedback within an aspect lends it stablility, so the
irrelevant aspects must be actively defeated.  This is accomplished by the linear
decay of the stimulation signal: after a relatively short time all the categories in
the network are receiving active inhibition, which is eventually sufficient to
defeat these default aspects, leaving only the diamond category active.  At an
intermediate state of the network, the aggressive aspects of weapon (large and
sharp) and person (hostile and is-threat) are active as well as a partial figurative
interpretation of ‘aggressive diamond’.

This partial interpretation is due to direct value transference and scalar
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correspondence.  Since aggressive people are large and large is one of the
allowable values of diamonds, activity can flow directly from the large-people
binder to the large-diamond binder, mediated only through the property size and
the value large.  This is an example of direct transference. Scalar corres-
pondence operates similarly: since aggressive people are large and large in the
context of people is considered to be a positive scalar value (it is associated with
the scalar position designator ‘+’), activation flows from the large-person binder
to its dedicated two/three binder.  All two/three binders are by this time
receiving input from the global metaphor node, so this two/three binder now
has the requisite two inputs, and fires, transmitting activation to the ‘+’
designator node.  The ‘+’ designator node in turn supplies a second input to all
two/three binders associated with it, triggering the eventual transmission of
activation to such positive scalar values as brilliant and expensive.

Qualitative correspondence also occurs in this example.  As aggressive weapons
are sharp, and sharp in the context of weapons is considered to be of a pointy
nature, the qualitative designator pointy is established in the same fashion as
the scalar designator ‘+’.  However, the expected effect, to select the value
marquise-cut over the default diamond-cut, is not evident in the partial inter-
pretation available midway through the interpretation.  The explanation for this
lies with the organization of values into aspects of the category’s representation.
The effect of stimulating the brilliant and expensive values of diamonds is to
establish anew the ornamental aspect of diamonds, namely, small, diamond-cut,
expensive and brilliant.  The value small, however, is being actively defeated not
only by scalar correspondence but also by direct transference, so is readily
suppressed.  The value diamond-cut is also receiving some inhibition from its
competitor marquise-cut, but only through scalar correspondence, so at the
intermediate stage shown the excitation of diamond-cut from the ornamental
aspect of diamonds still outweighs the excitation of marquise-cut from scalar
correspondence.

The final figurative interpretation is available after a total of 40 simulation steps.
All concepts but the target diamond have been inhibited, shutting down all
value–property pairs not directly associated with the target category.
Conversely, all properties in the knowledge base are active to varying degrees
due to the spread of activation through the abstraction hierarchy, but as
properties are incidental to their values, this is unimportant.  The relevant
output values are: large, expensive, brilliant and marquise-cut.  The ornamental
aspect of diamonds is still partially active, due to the activation of two of its four
component values, but two “free floating” property values, namely large and
marquise-cut, are also active.  It is easy to imagine that some form of node
recruitment could organize these four values into a new aspect of diamonds,
called the aggressive aspect, thus learning the new figure of speech.
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