
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

TM-92-08

Realization of Tree Adjoining Grammars
with Unification

Anne Kilger

September 1992

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341



Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which
was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, and Siemens. Research projects
conducted at the DFKI are funded by the German Ministry for Research and Technology, by the share-
holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Computer Linguistics
Programming Systems
Deduction and Multiagent Systems
Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.
From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland

Director



Realization of Tree Adjoining Grammars
with Unification

Anne Kilger

DFKI-TM-92-08



This work has been supported ba a grant from The Federal Ministry for Research and
Technology (ITWM-8901 8).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1992
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy in whole
or part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole
or partial copies include the following: a notice that such copying is by permission of the Deutsche Forschungszen-
trum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors
and individual contributors to the work; all applicable portions of this copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a licence with payment of fee to Deutsches Forschungszentrum für
Künstliche Intelligenz.



Realization of Tree Adjoining Grammars
with Uni�cation

Anne Kilger

Abstract

The syntactic generator of the WIP system is based on the representation formalism
�Tree Adjoining Grammars� �TAGs�� We have extended the formalism by associating
elementary rules of the grammar �trees� with feature structures� leading to �Tree Adjoining
Grammars with Uni�cation� �UTAGs�� The extended formalism facilitates a compact and
adequate representation of complex syntactic features�

The contradiction between the monotonic operation of uni�cation and the combination
operation for trees 	 adjunction 	 that is nonmonotonic in a way can be solved by several
di
erent approaches to realization� Two of them are presented in this report and compared
with respect to the restrictions that are given by the system� i�e�� the adequacy of the
realization for incremental and parallel generation�

It can be shown that UTAGs are subsumed by FTAGs �Feature Structure based TAGs�
that have been de�ned by Vijay�Shanker and Joshi� That is why the results for realization
can be applied to both UTAGs and a restricted version of FTAGs�

Contents

� Introduction �

� TAGs with Uni�cation �

��
 Tree Adjoining Grammars � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Uni�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� TAGs with Uni�cation �UTAGs� � � � � � � � � � � � � � � � � � � � � � � � �

� Two Approaches for the Realization of TAGs with Uni�cation �

��
 Structure�Sharing Uni�cation � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Uni�cation with Bidirectional References � � � � � � � � � � � � � � � � � � � 








� Using UTAGs for Incremental and Parallel Generation ��

��
 Incremental Generation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� Parallel Generation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Comparison of UTAGs and FTAGs ��

��
 Feature Structure based TAGs �FTAGs� � � � � � � � � � � � � � � � � � � � �

��� Comparison of UTAGs and FTAGs � � � � � � � � � � � � � � � � � � � � � � ��

�



� Introduction

The WIP�system �see �Wahlster et al� �
�� �Wahlster et al� ���� automatically and dynam�
ically creates a multimodal presentation on the basis of given information and generation
parameters� Up to now there are two modes integrated� i�e�� text and graphics� A pre�
sentation planner decides which piece of information should be realized in form of text or
graphics� It hands over the respective data to the two cascades of the mode speci�c gen�
erators� Each cascade consists of a �Design��module developing the rough structure of the
presentation and a �Realization��module for the �nal construction of a text or a picture�
The Text Design component designs the text structure and computes word choice� The
Text Realization component is a syntactic sentence generator� part of which is examined
in this work�

The Text Realization component is based on a multi�level� description�directed ap�
proach �see �McDonald ����� The input is transformed across two levels into resulting
sentences� At the �rst level� the underlying hierarchical structure of the sentence is con�
structed� At the second level� word order is computed and the result is uttered� At
both levels� the existence of structures triggers their computation� They are represented
with the help of a descriptive representation formalism� �Tree Adjoining Grammars with
Uni�cation� �UTAGs� see �Buschauer et al� �
���

In the next section� the formalism of UTAGs is de�ned� Section � contains the descrip�
tion of two possible methods for a realization of UTAGs� In Section �� they are compared
with each other thereby evaluating the speci�c demands and design principles underly�
ing the syntactic generator� In Sectionsec�comp�incr UTAGs are compared with Feature
Structure based TAGs �FTAGs�� another approach to the combination of TAGs and uni�
�cation by �Vijay�Shanker � Joshi ���� �Vijay�Shanker ��� already described UTAGs as
a special case of FTAGs� This section will lead to another view of UTAG that eases
understanding this relationship� Because of the close relation of UTAGs and FTAGs� the
two forms of realization can be used for both formalisms�

� TAGs with Uni�cation

��� Tree Adjoining Grammars

The formalism �Tree Adjoining Grammar� has been introduced by ��Joshi et al� ����� It
is a tree generating system� Its elementary rules consist of a set of trees which is divided
into two classes� The initial trees correspond to context�free derived trees as their root
is labelled with the grammar�s start symbol� their internal nodes with nonterminals� and
their leaves with terminals �see the left tree in Figure 
�� Auxiliary trees have a speci�c
form that enables them to substitute internal nodes of initial �or already modi�ed initial�

�WIP is the acronym for �Wissensbasierte Informationspr�asentation� which means knowledge�based
presentation of information� The WIP project is supported by the German Ministry of Research and
Technology under grant ITW ��	
 ��

�



trees� They look like initial trees except for one leaf called foot node� The foot node and
the root node of an auxiliary tree are associated with the same label� The combination
operation which combines two trees by substituting an internal node of the �rst by the
whole second tree is called adjoining or adjunction� The foot node of the second tree
becomes the new father of the subtree of the substituted node� An auxiliary tree and
the result of an adjunction are illustrated in the middle and in the right of Figure 
�
Each auxiliary tree must have at least one terminal leaf in order to prevent an inde�nite
repetition of adjunctions without expansion of the terminal string�

�
�
�
�
�
��

�
�
�
�
�
��T

T
T
T
T
TT

T
T
T
T
T
TT

S S

X X

�� ���� ��

� �

�
��

�
��

A
AA

A
AA

��

�
�
�
�

�
�
�
�

A
A
A
A

A
A
A
Av�

v�
X

X

v�
v�

X� � ��
Adjunction

��

Figure 
� Elementary Trees and the Adjunction Operation in a TAG

In our generator� we use a version of TAGs that is extended by another combination
operation for trees� TAGs with Substitution allow elementary trees to have leaves labelled
with nonterminals� In order to distinguish them from foot nodes� these so	called substi�
tution nodes are marked with a downward arrow as can be seen in Figure �� Substitution
is de�ned as replacing a substitution node by an initial tree whose root is labelled with
the same nonterminal �that doesn�t have to be the start symbol of the grammar�� An
example for a substitution is shown in Figure ��

S S

�
��

�
���

��

�
��r

X�
��

��
��

��

X
X

��Substitution

Figure �� The Substitution Operation in a TAG

An important advantage of TAGs 	 in comparison with Context�Free Grammars 	 is
their extended domain of locality that makes it possible to represent syntactic properties
such as cooccurrence restrictions locally within single trees� This extension makes TAGs
more powerful than CFGs� They are mildly context�sensitive �cf� �Joshi ���� �Weir ����
and probably well�suited for the representation of natural language �see �Joshi ����� But
there exists 	 for CFGs as well as for TAGs 	 a well known disadvantage� The encoding
of complex syntactic features into the labels of grammar rules �e�g�� �V�
�sg� for a verb in
�rst person singular� leads to a combinatory explosion of the grammar� The problem has

�



been solved for CFGs by combining them with uni�cation rules� leading to Uni�cation
Grammar� The same can be done for Tree Adjoining Grammars�

��� Uni�cation

Uni�cation is introduced here according to the PATR	II formalism �see �Shieber et al� ����
on the basis of Context�Free Grammars� It allows to specify complex data within feature
structures �here abbreviated as FSs�� The connection of context�free rules and FSs is
speci�ed in PATR	II by two lists� The constituent list de�nes the constituents of a context�
free rule in their order from left to right �e�g�� �S NP VP� for S�NPVP�� The speci�cation
list describes the associated FS using pairs of the form �path path� or �path value�� A path
consists of an attribute list� The attributes are roots of substructures within the FS� The
path starts with a number uniquely referring to a constituent of the associated rule 	 � for
the left�hand side� 
 for the �rst son� � for the second and so on� Either it is uni�ed with
another path 	 which means that the two substructures which are reached via traversing
the paths are combined 	 or it leads to an atomic value� FSs are often represented
as DAGs �directed acyclic graphs�� Common pre�xes of substructures are represented
only once� di
erent sons become adjacent edges in the graph� The speci�cation list in
Figure � de�nes the value �sg� �for singular� behind the path �� syntax num�� that means

constituent list speci�cation list as DAG

�NP DET N� ���� syntax num� sg�
��
 syntax� �� syntax���

���HHj


� �
�

syntax
syntax HHj

��� num � sg

Figure �� Constituent List� Speci�cation List and DAG

as number	value for the noun� The speci�cation rule ��
 syntax� �� syntax�� claims that
noun and determiner must reach the same value or subdag via the attribute �syntax��
This rule either means a test 	 if values or subdags were previously de�ned at both places
	 or the inheritance of a value� which is the case in this example� In the resulting DAG
the num�subdag can be reached via the paths �
 syntax� and �� syntax� as was speci�ed
in the rule� This joint of the values of several subdags is further called �uni�cation point��

Finally we present the formal de�nition of uni�cation� The result of unifying of two
DAGs d� and d� is a DAG d� with


� d � d�� if d� � d��

�� d � d�� if d� consists of a value and d� is empty�

�� d � d�� if d� is empty and d� consists of a value�

�� if neither d� nor d� consist of a value� then�
� attributes l� with� l � n� � d�� l� n� � d� �common path pre�xes�� there is l �

�



Uni�cation�n�� n�� � d and
� attributes l� with� l � n � �d� � d�� n �d� � d�� �i�e�� path starting in exactly one
DAG�� there is l � n � d�

�� otherwise the uni�cation fails�

There are at least two ways to associate TAG trees with feature structures� First� we
can use the unique reference numbers to identify single nodes of the trees� Then each
tree can be associated with one speci�cation list that describes the FSs of all nodes and
relations between them� These relations need not be limited to father�son relations but
they can link FSs of nodes� that are not immediately related� Obviously� this kind of
de�nition results in rather small FSs because there is no need for inheritance of values
over a whole path of direct ancestors and descendants� as is in uni�cation grammars �e�g��
the number	value of the noun must be inherited from N via NP and VP to V� because
there is no direct connection between N and V�� The dependencies among the nodes can
be stated directly� This is the way� FTAGs are de�ned �see Section ��
��

The second way to associate feature structures with TAG trees is to use the close
relation between trees and context�free rules� The father�son relations inside TAG trees
can be interpreted as context�free rules with the father node on the left and the sons on the
right side� This approach associates each node with a single feature structure� Obviously�
this leads to more redundant structures but it allows to adapt directly a PATR�style
uni�cation to TAG trees as has been done for UTAGs �see Section �����

A short discussion about the di
erent properties that result from the de�nitions is
given in Section ����

��� TAGs with Uni�cation �UTAGs�

The basic idea of UTAGs is to break the trees into CFG�rules and to associate these
rules with speci�cation lists that can be compiled into �local� feature structures� The
example in Figure � shows how the agreement between a verb and a noun can be de�ned
by use of FSs within one single elementary rule �an initial TAG tree�� This is not possible
for Context�Free Grammars� The left part of the �gure shows that the nodes of the
elementary tree are associated with speci�cation lists which describe FSs according to the
PATR�II	notation� In the right part the same tree is shown with local FSs that result
from compiling the given speci�cations� The arrows behind the syn�attributes point to
common subdags that are locally empty� i�e� that don�t have a value yet� The inheritance
of the syn�subdag of the noun from N via NP� S and VP to V is guaranteed because
of the meaning of the di
erent FS�parts� Each i	subdag �each subdag that starts with
the reference number i� of a node refers to its i	th son� At a point in time when no
adjunction takes place any more the local FSs are uni�ed� This uni�cation corresponds
to the combination operation for PATR	II	rules� The i	subdag of a node is uni�ed with
the �	subdag of its i	th son�

�



S S

NP NP

N N

VP VP

V V

�
�
�

�
�
��

�
�

�
�
����� syn�

�� syn���

���� syn num�

sg��

���� syn�

�� syn���

���� syn�

�� syn���

tree with speci�cation lists

����� synnumsg

HHY��	�

��
�

syn

syn
��	
HHY

���HHj
�
��
�

syn

synHHj
���

���HHj �

�
�
�

syn

syn HHj
���

� �

tree with DAGs

Figure �� TAGs with Uni�cation

While it is easy to combine the structures of the TAG formalism with feature struc�
tures� it is hard to rede�ne the adjunction operation� There is a problem with adjunction
that forbids to directly unify the local FSs of the single nodes� Such a destructive uni��
cation would lead to one global FS where the original local parts cannot be identi�ed any
more� But during adjunction� the local FS of the node of adjunction must be identi�ed�
removed from the global FS and substituted by the FS of the auxiliary tree� The need for
identifying local knowledge con�icts with building a global FS by destructive uni�cation�
That is why the locality of single FSs must be preserved in our approach in order to de�ne
adjunction with uni�cation�

It can be stated in an additional way what is problematic about this de�nition� Uni�
�cation is a monotonic operation because it always enlarges structures instead of really
modifying them� In contrast to this� adjunction can be viewed as nonmonotonic in the
following sense� By substituting a whole tree for an internal node the former relations
between father and sons of the node of adjunction are changed and so are the relations
between the associated feature structures� E�g�� a value that was de�ned in a son of the
node of adjunction X and inherited through the feature structure of X to its father� might
not be inherited any more after an adjunction in X� This depends on the feature structures
and connections inside the inserted auxiliary tree�

It is clear that adjunction with uni�cation does not only mean to substitute a tree
for an internal node� but also to transfer the neighborhood relations of this node to the
auxiliary tree� These relations include the edges in the tree to father and sons of the node�
which must be linked to the root and foot of the auxiliary tree respectively� Furthermore�
the feature structure of the node of adjunction is related with the feature structures of
the surrounding nodes� These relations must also be retained� In order to transfer them
to the auxiliary tree they �rst have to be identi�ed� This task is eased by the PATR	style
organization of feature structures that we use in our de�nition of UTAGs� Each node that
has a father in the tree� is represented in the FS of the father node as i	subdag �if it is
the i	th son�� Therefore� the FS relation between a node and its father �which we call �X
for a node with label X� is speci�ed locally within the FS of the father� The FS of the

�



node itself represents the relation to the sons �called �X� by referring to them via unique
reference numbers� An example for this identi�cation is shown in Figure �� Some of the
rules at the nodes S and X do not only belong to �X and �X but also to the respective
neighbored nodes �e�g�� to �S�� because they describe relations between a node and its
sons�

S
��� attribute� �
 attribute��
��
 attriute� value�

�X

X
��� attriute
� val�
��� attribute
� �
 attribute
��

�X






Z

Z
Z

Figure �� The Separation of Speci�cation Lists at the Node of Adjunction

What happens with the feature structures during adjunction� �X and �X must be
brought into relationship with the FSs of the root and the foot node of the auxiliary
tree� respectively� According to our de�nition of TAGs with uni�cation this means that
nothing has to be done for �X because it is part of the father of X which becomes the
father of the root node now� A �real� uni�cation with structure�sharing of the FSs of the
foot node and the node of adjunction directly transfers the relation between the node of
adjunction and its sons to a relation between the foot node and those sons�

An example for adjunction with uni�cation is shown in Figure �� The auxiliary tree
in the middle of the �gure is to be adjoined in the node with label X in the left tree� All
subdags that have to be transferred from the node of adjunction to the auxiliary tree are
marked by a bold face�

S S

X

a

a

��� ���HHj HHj
� �

 


� �n nHHj HHj
��� ���

���

���

HHj

HHj

�

�

�

�

�

�

n

n

HHj

HHj

���

���
�

�

�

�

�

�

value

value

X

Xa

a

X

X

�
�
�

�
�
�

�
�
�

�
�
�

���

���

�

�

��R

��R

�

�







�

�

�

�

n

n

��R

��R

��
���


��
���
� �

��
Adjunction

Figure �� Adjunction with Uni�cation

At this point� it is necessary to refer to our former de�nition of UTAGs
�see �Buschauer et al� �
��� We examined the FS associated locally with a node of ad�
junction� While our de�nition of �X was the same as described above� �X was further

�



split into �the old �X� and 	X� Thereby� 	X meant all value de�nitions �e�g�� ��� attribute�
value�� that are made for X� �the old �X� meant all rules describing the relation of X to
its sons� Since we meant 	X to consist of local value de�nitions that neither refer to the
supertree nor to the subtree we claimed that they had to be transferred to the inserted
auxiliary tree in a way� which would allow this tree to play the part of X with respect to
the surrounding nodes� A complicated inheritance examination was de�ned to compute
the node�s� of the auxiliary tree where the value de�nitions should be de�ned�

A detailed comparison with the motivation and the de�nition of FTAG �see below�
made us see the value de�nitions in X from another perspective� With respect to FTAG
and the original PATR	II de�nition it is more senseful to say that all uni�cation rules
that are associated with X describe the relation of X to its subtree� All value de�nitions
that are de�ned for X therefore have to be transferred to the foot of the auxiliary tree�
This does not mean� that there can never be value de�nitions associated with the root of
the auxiliary tree� because these kinds of de�nitions may be made with the father of X
�e�g�� ��
 attribute� value�� X be the �rst son of its father�� They always stay associated
with the father node of X� even if X is substituted by an auxiliary tree during adjunction�
Thereby� they become valid for the root of the inserted tree� This new de�nition is more
direct and easier than the old and therefore has to be preferred�

� Two Approaches for the Realization of TAGs with

Uni�cation

The following basic realization technique is underlying both approaches for the implemen�
tation of UTAGs� The nodes are associated with feature structures which are speci�ed
in form of speci�cation lists� In order to realize a more compact representation� they are
compiled into directed acyclic graphs �DAGs� cf� Section ����� In the next two sections�
the term �DAG� is used whenever we refer to the compiled form of feature structures�

��� Structure�Sharing Uni�cation

We �rst tried to implement our former de�nition of UTAGs during a graduate course
�see �Buschauer et al� �
��� We didn�t intend to produce software for a new�style uni�ca�
tion� but we wanted to use the PATR implementation that was available �a COMMON
LISP version of D	PATR� cf� �Karttunen ����� Therefore� we had no means to realize FSs
which at the same time could be used globally and were separated from all other FSs in
the tree� Instead we had to use structure�sharing of feature�structures and recompilation
to simulate the separation�

Obviously� structure�sharing violates the locality of the feature structures associated
with single nodes� Following �Vijay�Shanker ��� the initial uni�cation of top� and bottom�
structures re�ects the default assumption that no adjunction will take place in the re�
spective nodes �here all nodes of all elementary trees�� Therefore� uni�cation must be

�



withdrawn if adjunction is initiated nevertheless� Since structure�sharing leads to one
connected feature structure for the whole tree� the parts of which cannot be assigned to
single nodes any more� the underlying �local� speci�cation lists must be stored in addition
to the DAGs and are used during adjunction as the basis for rebuilding the global feature
structure�

Adjunction with recompilation is shown in Figure �� The feature structures of the left
tree with the node of adjunction X must be thrown away� They cannot be transformed

S
���� n� �
���

���HHj
�



� n �����	��R

X
���� n� �
���

���HHj
�



���
� n �
�

�
�

��
J
JJ�

a
����� value��

� � �
��
� value

X
���� n� �����

����
��R

�


�

� n �
�
�
��

Z
Z
Z�

a
� � �

X � � �
����

�
��

�
�

�

S
���� n� �
���

���HHj
�



� n �����	
PPPPPq

X
���� n� �����

����
��R

�


�

��
���


� n ��
�
�
�
���

PPPPPq

�
�
��

�
�

a
� � �

X
���� n� �
���

���HHj
�



�
���
� n �
�

�
�

����R

a
����� value��

� � �
���
� value

Figure �� Adjunction with Recompilation of FSs

in a way� that allows to �t in the feature structures of the auxiliary tree correctly because
structure	sharing makes it impossible to identify the local parts �X and �X of the node of
adjunction� The auxiliary tree is inserted into the left tree� thereby the speci�cation lists
of the foot node and the node of adjunction are combined� The speci�cation of the relation
between the node of adjunction and its father needs not to be explicitly transferred to the
root of the auxiliary tree� because it is de�ned locally with the father which automatically
becomes the father of the root node �see Figure ��� Then the local DAGs are compiled
using a function from the PATR package� Finally� their i�subdags �i be a reference number


�



as introduced in Section ���� and ��subdags are uni�ed leading to a new global DAG with
structure�sharing� The resulting tree in Figure � shows that the insertion of an auxiliary
tree can lengthen a path of attributes� In the initial tree� the value �value� could be read
from the root node with category S via the path �� n n�� In the resulting tree the path is
�� n n n��

The realization of TAGs using uni�cation with structure�sharing seems to be very
expensive since during adjunction all DAGs are thrown away and rebuilt� The next
section will show whether a new implementation using an explicit link between local FSs
is more e�cient�

��� Uni�cation with Bidirectional References

We made a second approach to the realization of TAGs with uni�cationysince we had the
impression that the direct implementation of separated DAGs conncected with so	called
bidirectional references could be suitable for using the formalism within an incremental
syntactic generator�

Bidirectional references need not be realized directly� They only encode our knowledge
about the points inside the FSs where uni�cation has to take place at the end of a
derivation� Either this knowledge is used implicitly and procedurally during computation
or links are explicitly de�ned between the respective subdags� We preferred the latter
approach because it eases the design and the explanation of the algorithms�

Bidirectional references are realized by associating each node of a DAG with a list of
pointers to the respective nodes of other DAGs� Figure � shows two trees that illustrate
this approach� The nodes are associated with local DAGs� The subparts of the DAGs that
would have been uni�ed in the �rst approach are the i	subdag of a node and the �	subdag
of its i	th son� respectivly� They are connected by bidirectional references� represented as
links in the �gure�

S

X

Y

���

���

HHj

HHj

�

�







�

�

�

�

a

a

a
HHj

HHj

���

���


�
�
x�
�� �

Y

A

���HHj
�



�
�

x
u
HHj
����

�� � �� u 


Figure �� UTAGs with Bidirectional References

For uni�cation with bidirectional references� adjunction seems to be cheaper in prin�
ciple� Only the references must be cut o
 and rebuilt� not the whole DAG structure� But
we must not forget that a test for compatibility must take place before di
erent DAGs

ySpecial thanks to Peter Poller� who had a lot of work with the implementation�







are combined because this combination operation substitutes real uni�cation� whereby
the compatibility of the respective FSs is the precondition for success� If we postpone
this test until all adjunctions have been made and the uni�cation of local FSs starts� we
eventually �nd out that some uni�cations fail� When this happens at the end of a long
derivation� it is very hard to detect the reason for the fail� This approach is not suitable
for incremental processing where intermediate results are produced as soon as possible�
In such an application it is no good idea to proceed with building a syntactic structure
on the basis of trees the combination of which is forbidden�

In the previously described approach to realization� the test for compatibility is done
implicitly during structure�sharing� For uni�cation with bidirectional references� this test
must be made explicitly in addition to the computation of references� Therefore� the costs
for such compatibility tests must not be neglected for a comparison of the two approaches�

The function �compatible� tests two DAGs for contradictions for reasons of di
erent
values� The rough algorithm illuminates how costly the test is�

compatible �dag� dag��

� hdag� that are connected with dag� via references and or uni�cation points
�except those which have already been visited�
� hdag� that are connected with dag� via references and or uni�cation points
�except those which have already been visited�
compare the subdags of hdag� and hdag� by recursive calls of �compatible� or
compare the de�ned valuesz

It becomes clear that often the whole tree must be traversed during this process� not
only because of the recursion but also as a consequence of the two universal quanti�ca�
tions� The two trees of Figure � can be used as an example for input structures to the
compatibility test� In order to test the two nodes with label Y� both trees must be fully
traversed before it is found out that the same value can be read via references in both
DAGs� So the result of this test is that both DAGs are compatible� The realization of
this kind of traversing of trees made it necessary not only to store references with the
respective DAGs but also to realize bidirectional pointers between the nodes of the DAGs
�e�g�� to come from �
 x� to �� a� in the DAG associated with the X�node��

On the basis of this discussion it comes to no surprise that adjunction is at least as
costly for uni�cation with bidirectional references as for uni�cation with structure�sharing
if we assume that the adjunction operation must not be destructive� The DAG structures
must be rebuilt for both approaches� If we assume similar costs of this computation� the
higher costs of the compatibility test for uni�cation with bidirectional references are the
reason for longer running times�

In the destructive version� uni�cation with references should be cheaper because the
only things that have to be done are the compatibility test and a transfer of some bidirec�

zThe values may be �NIL
 for �not speci�ed
 or a disjunctive list of atomic values� e�g� ��
 � ��
� A list
with one atomic value is often abbreviated in the �gures by leaving out the parenthesis�


�



tional references to new FSs in the auxiliary tree� In contrast with this� uni�cation with
structure�sharing makes it necessary to build up the whole DAG structure again�

The costs for uni�cation with bidirectional references do not only come up with ad�
junction but also at the times when the value is to be computed which can be read in a
DAG via a speci�ed path� The algorithm for �get�path� is brie�y described here because
it also shows what happens during the computation of the two universal quanti�cations
in �compatible��

get�path �dag path�


� mark dag as �visited�
�� � dag� that are connected with dag via references and that are not yet marked as

visited� �get�path dag� path�
�� � dag� that point to the same subdag as dag �sisters� and that are not yet marked as

visited� �get�path dag� path�
�� � dag� that point to dag as their subdag �ancestors� and that are not yet marked

as visited� �get�path dag� path��� with path� �� path enlarged by the attribute of the
root of dag

�� search for value in dag
path 
� NIL � if � dag� that is subdag of dag �descendant� behind the �rst attribute

speci�ed in path� and that is not yet marked as visited�
�get�path dag� path��� with path� �� path shortened by the �rst
attribute

path � NIL � dag is one of the results

The result of �get�path� consists of a list of subdags �with values realized as a special kind
of DAG� that can be reached behind path in dag� thereby examining all references and
uni�cation points� Figure � shows how the di
erent parts of the algorithm are used for the

dag


dag�

��
��

HHHj

�




�

�

a

x

�

� y �
�
��

NIL
��

���
j ��j

�
�
�R
�j

�
�j�

�j�

��
�j
� � � �� x y value� �

� �j j

Figure �� The Function �get�path�

total traversing of connected DAGs� The function is called for dag� and the path �� a	�
First� the DAG is traversed according to the given path �Step � of the algorithm�� When
the node with attribute a is reached� the �rst result is found in form of the NIL�subdag
�representing that any value is possible because no explicit value has been speci�ed yet��


�



Following Step � of the algorithm and searching for another ancestor of the NIL�subdag�
the y�node is reached� As pointed in Step � the DAG is traversed in backward direction�
Since the ��node is connected with the ��subdag of dag� via a bidirectional reference�
another call of the algorithm is made for the ��subdag �Step ��� During the backward
traversal in dag�� a new path �x y	 has been computed that is now used in dag� to �nd
another result� Indeed� a subdag is found representing the value �value�� The �nal result
of the algorithm is a list of the two found value DAGs�

Another approach to non�destructive uni�cation has been suggested by �De Smedt �
��
He deals with the problem of backtracking for ��at� uni�cation �uni�cation without reen�
trancy� with disjunctive values� Destructive uni�cation makes it impossible to recompute
the original values for two feature structures which have been combined during uni�ca�
tion� During non�destructive uni�cation� there is no new feature structure created but
the access to the original structures is �ltered� Each feature structure is associated with
a set of companions serving as �lters� During each uni�cation both feature structures
become companion at their respective partner� The �nal result is then computed by an
intersection over the sets of disjunctive values� The costs are moderate because uni�cation
is �at and not recursive�

Our approach to non�destructive uni�cation is similar to that of De Smedt� We use
references instead of companions to connect the feature structures which would have
been combined during destructive uni�cation� But the process of virtual combination
�remember the function �compatible�� is much more expensive for recursive �reentrant�
than for �at uni�cation� If we could show that �at uni�cation in combination with
Tree Adjoining Grammars is su�cient for the description and incremental processing
of natural language� then the realization of UTAG with bidirectional references would
become cheaper� Furthermore� this could change the valuation of the two approaches to
the realization of TAGs with uni�cation that is presented in the next section�

The result of this section is that a direct implementation of our de�nition of TAGs with
uni�cation is possible but seems to be ine�cient in comparison with structure�sharing�
Since the two approaches to realization have di
erent advantages and disadvantages� their
�nal evaluation depends on their use�

� Using UTAGs for Incremental and Parallel Gener�

ation

	�� Incremental Generation

We want to use TAGs with uni�cation within the WIP project for an incremental natural
language generator� Incremental generation means for the syntactic level of processing
that the construction of a complete sentence tree has to be done by combining �adjunction
and substitution� partial trees on the basis of each part of the stepwise given input� Since
we want to generate incremental output �cf� �Finkler � Schauder ���� and we use feature


�



structures to realize inheritance and tests between syntactic features of distinct nodes
it is necessary to have connected FSs in the derived tree at every time when a part of
the output is to be produced� For example� a verb cannot be in�ected before it inherits
values for number and person from its subject� Immediate inheritance of information
is possible for both approaches for the realization of TAGs with uni�cation� For TAGs
with bidirectional references� values can be read dynamically via the references� But this
reading operation is much more expensive than for uni�cation with structure�sharing�

On the other hand� the problem with the realization of adjunction by means of
structure�sharing is that adjunctions at internal nodes trigger the rebuilding of the global
feature structure� As long as adjunction is realized as a destructive operation� uni�ca�
tion with bidirectional references is cheaper� if it is non�destructive it is more costly �see
Section �����

The answer to the question which approach to use depends on the design of the sur�
rounding system� We will discuss next what parallelism means for TAGs with uni�cation�

	�� Parallel Generation

We use a distributed parallel model of active communicating objects to support incremen�
tal generation� The task of the objects is to build the syntactic structure of a sentence
from their local knowledge that is speci�ed in the input� Thereby� they exchange copies
of their local information in order not to loose their independence which would be the
case if they would combine their structures� Are there di
erences in the suitability of the
two approaches to realization with respect to parallel generation�

Parallel Substitution

Figure 
� shows schematically how �parallel� substitution is realized using uni�cation with
bidirectional references� The large oval boxes represent objects of the distributed parallel
system� each managing one TAG tree� Again� the small boxes associated with the trees
represent subdags� the links represent bidirectional references� The pair of objects in
the left of Figure 
� shows the initiation of a substitution� Message passing is controled
within our generator by the principle that dependent objects are in most cases active and
initiate communication with their regents� The object with the substitution tree sends a
copy of relevant parts of its DAGs to the goal object� Relevant are all subdags that can
be read directly by structure�sharing or via bidirectional references from the ��subdag of
the root� They form exactly that piece of knowledge that NP� should know about its
subtree� The function which computes these structures is called �global�rule�� The parts
of the DAG are sent in their uncompiled form as speci�cation lists because this form is
both well suited for message passing and useful for the test for compatibility with the
respective DAGx� Again� it is possible that the whole subtree must be traversed during the

xA test for compatibility is rather cheap if one of the DAGs is given in uncompiled form as speci�cation
list� The speci�ed pairs can be used for direct tests in the DAG� e�g�� ��	 attribute� value� triggers the


�



� � �

� � �

� � �

� � �

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�r r r

NP� NP� NP�� � �� � �
��R ��R� �

�
	

�
	

�
global�rule���dag�NP��

�
global�rule���dag�NP���� � �

� � �

� � �

� � ��
��

�
��

�
���

��
�
��

�
��

NP NP NP� � �
��R ��R ��R

� � �

� � �
� � � � � � � � �

���
� �	

Figure 
�� Parallel Substitution using Uni�cation with Bidirectional References

computation of these lists �compare the function �get�path�� Page 
��� In the next step of
�parallel� substitution� the goal object receives the message� compiles the sent rule into a
DAG and tests for the compatibility of this DAG with the ��subdag of the substitution
node� In case of success� it sends a copy of relevant parts of its DAGs �all that can be
read via the ��subdag of the substitution node� back to the initiator of the substitution�
It connects the new DAG �the so�called �partner�dag�� with the ��subdag of NP� by a
bidirectional reference� Each further �ow of information from the subtree just leads to
changes in the partner�dag� never in an original DAG of the tree� The same 	 except for
the test for compatibility 	 is done within the object with the substitution tree�

�Parallel� substitution using uni�cation with structure�sharing is shown in Figure 

�
It is very similar to substitution using uni�cation with bidirectional references� The
computation of the rule that represents the DAG at the root node of the substitution tree
is cheaper because the basis is a compact DAG with structure�sharing within the whole
tree� But lateron it is more expensive to keep the original rules of an object separated
from the rules that are sent by other objects� Each mixing of rules is problematic because
it is important that rules can be associated with the individual nodes in an unambiguous
way if adjunction changes the global DAG structure�

Since the speci�cation lists �or �rules�� are stored at the nodes as the basis for rebuilding
the global FS the same is done for the sent rules� They are stored as �partner�rules�� are
compiled into DAG�form and are uni�ed with the ��subdag of the substitution node �in
the middle of the �gure� or the root node �in the right of Figure 

��

The costs for parallel substitution using uni�cation with bidirectional references and
using uni�cation with structure	sharing are summarized in the following table�

test� whether �value
 can be found in the DAG behind �attribute
�


�



� � �

� � �

� � �

� � �

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�r r r

NP� NP� NP�� � �� � �

NP��rule ��� � ��� NP��rule ��� � ��� NP��rule ��� � ���

partner�rule ��� � ��� partner�rule ��� � ���

�
rule���dag�NP��

�
rule���dag�NP���� � �

� � �

� � �

� � ��
��

�
��

�
���

��
�
��

�
��

NP NP NP� � �� � �

NP�rule ��� � ��� NP�rule ��� � ��� NP�rule ��� � ���

partner�rule ��� � ���

Figure 

� Parallel Substitution using Uni�cation with Structure�Sharing

Costs for parallel substitution using
uni�cation
with bidirectional
references

uni�cation with
structure	sharing

computation of rules via references � �

computation of rules via structure	sharing � �

compatibility test with structure	sharing � �

setting new references � �

uni�cation of subdags � �

While the computation of rules is cheaper in the realization of uni�cation with
structure	sharing� the uni�cation of subdags is more expensive than setting references�
It seems that it depends on the internal structure of the DAGs and their relations which
of the two possible realizations is the better one� The larger the DAGs are and the more
they are distributed over the tree� the stronger are the advantages of uni�cation with
structure�sharing�

As long as uni�cation is used during the monontonic operation substitution� uni��
cation with bidirectional references seems to be slightly worse than the other approach�
But for adjunction 	 especially for a quasi�destructive realization of adjunction� i�e� with�
out copying the trees 	 uni�cation with bidirectional references is better suited� because
adjunction was one of the motivations for this realization�

Parallel Adjunction

Interestingly� we found it necessary to use a concept similar to �quasi�nodes� when we
de�ned �parallel� adjunction �adjunction in a parallel system�� even before we knew


�



about �Vijay�Shanker ���� Remember the idea of parallel substitution� The substitu�
tion node and the root node of the substitution tree are locally associated with DAGs
that represent the sub� or supertree from the partner� respectively �called partner�dags
or partner�rules�� This can easily be realized because all nodes that are involved in sub�
stitution are either leaves or root nodes� In contrast with this� nodes of adjunction are
often internal nodes� In order to represent the inserted auxiliary tree 	 without really
combining the two trees� i�e� the two objects 	 the node of adjunction must be associated
with two partner�dags� The �rst represents the view to the auxiliary tree from the top and
must be connected with the FSs in the supertree of the node of adjunction� the second
represents the view from the bottom and must be connected with the FSs in the subtree�

Figure 
� shows how parallel adjunction using uni�cation with bidirectional references
can be realized� During the �rst step �in the left of the �gure� the two FSs that are
associated with the node of adjunction X are transformed into speci�cation lists and sent

� � �

� � �

� � �

� � ��
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��B

B
B
B
B
B
B
BB

B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
BB

X X� �� �

HHj HHji i�	 X

X

HHj i
� �

�
	

XR

� �
��R �

�	
XF

�

global�rule�i�dag�

global�rule���dag�

�
global�rule���dag�XR�ni�dag�X��

global�rule���dag�XF �n��dag�X��� � �

� � �

� � �

� � �
�
�
��

�
�
��

�
�
��L

L
LL

L
L
LL

L
L
LL

XR XR XR

XF XF XF

� �

� �

��� ���HHj HHj
� �

� �

�	 �	i i

��� ���HHj HHj
� �

� �

�	 �	� �

Figure 
�� Parallel Adjunction using Uni�cation with Bidirectional References

�as two di
erent rules� to the object that selected the auxiliary tree� They represent
the future relation of the root of the auxiliary tree XR to the supertree of X and the
relation of XF to the subtree of X� The second step can be seen as a sequence of two
substitutions� The DAG of XR is connected with the DAG� that represents the top�FS of
X� then the DAG of XF with the bottom�FS of X� If both pairs of DAGs are compatible
then the insertion of the FS of the auxiliary tree between the top� and bottom�FS of X
has succeeded�

The resulting new structures must also be represented in the upper object at the
node X� Therefore� two speci�cation lists are computed� The �rst represents the view
to the auxiliary tree from the top �from XR�� including all FSs that can be reached


�



via uni�cation points and bidirectional references within the auxiliary tree but without
the top�FS of X because this information came from the upper object� If all DAGs are
connected information from all FSs of the auxiliary tree can be read including the FSs of
the former subtree of X that is now connected with the foot node� The second speci�cation
list is computed for the foot node in the same way� They are sent to the upper object
where in the third step the node of adjunction is split and each part is associated with
the respective DAG� The top X�node is associated with the DAG that is compiled out
of the speci�cation list of XR� In this way� the supertree of X can have access to the
knowledge in the inserted auxiliary tree and the former subtree of X� The bottom X�node
is associated with the DAG that is compiled out of the speci�cation list of XF � So the
other way round� the subtree can have access to the knowledge in the inserted auxiliary
tree and the supertree� The FSs of the inserted auxiliary tree are represented in two parts
because then each further �ow of information through the auxiliary tree into the X�node
or the other way round can be handled in exactly the same way as if two substitution
nodes were de�ned there�

Any further auxiliary tree that is to be adjoined in X in the upper object is now
forwarded to the object with the auxiliary tree and there can be adjoined in the root
node or the foot node� respectively�

For uni�cation with structure�sharing it is not possible to insert feature structures
just by cutting and setting bidirectional references� As motivated in Section ��
� adjunc�
tion using uni�cation with structure�sharing can only be realized on the basis of locally
associated speci�cation lists� All DAGs of the resulting tree must be rebuilt� using the
speci�cation lists that are associated with the nodes� Figure 
� shows what parallel
adjunction means for uni�cation with structure�sharing� Similar as for uni�cation with
bidirectional references� the �rst step of parallel adjunction consists in computing the
speci�cation lists that represent �X and �X of the node of adjunction X in the upper
object� They are sent to the object with the auxiliary tree where they are associated as
partner�rules with the root and the foot node� They are compiled into feature structures
and uni�ed with the global DAG of the auxiliary tree� Then the new view from the top
and from the bottom to the auxiliary tree is computed and sent to the upper object�
There the node of adjunction is doubled� all feature structures of the tree are thrown
away and rebuilt for two separated parts of the tree� The �rst part consists of FSs of the
supertree of X uni�ed with the DAG representing the view to the inserted auxiliary tree
from the top including the former subtree of X� The second part consists of the FSs of
the subtree of X uni�ed with the DAG that represents the view to the inserted auxiliary
tree from the bottom including the former supertree of X�

A rough comparison of the two approaches shows that parallel adjunction tends to be
cheaper for uni�cation with bidirectional references than for uni�cation with structure�
sharing� While it is more expensive to compute the global copies of FSs for uni�cation
with bidirectional references� the �virtual� insertion of the auxiliary tree in the goal tree is
muchmore cheaper because it just consists of setting two references� When realizing TAGs
using uni�cation with structure�sharing� all FSs of the tree with the node of adjunction


�



� � �

� � �

� � �

� � ��
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��C

C
C
C
C
C
C
C
C
C
CC

C
C
C
C
C
C
C
C
C
C
CC

C
C
C
C
C
C
C
C
C
C
CC

X X

X�rule X�rule

� �� �

HHj HHji i

X

X

partner�rule�R�

partner�rule�F�

X�rule

�

rule�i�dag�

rule���dag�

�
rule���dag�XR�ni�dag�X��

rule���dag�XF �n��dag�X��� � �

� � �

� � �

� � �

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�

XR XR XR

XR�rule XR�rule XR�rule

XF XF XF

XF �rule XF �rule XF �rule

partner�rule�i� partner�rule�i�

partner�rule��� partner�rule���

Figure 
�� Parallel Adjunction using Uni�cation with Structure�Sharing

have to be rebuilt� Even worse is the fact that these kinds of nonmonotonic changes in
local trees can trigger a ��ow of nonmonotonically changed information� through a set of
connected objects� If an object receives a new partner�rule from its partner object that
has been changed nonmonotonically� then it can only include the new information into
its global feature structure in the same way as if an adjunction would take place� It has
to throw away all FSs and rebuild them using the new partner�rule� The reason for this
is the same as for adjunction� The parts of the DAG that have been nonmonotonically
changed and that must be replaced cannot be identi�ed because of structure�sharing�

This observation brings the two approaches to realization into balance again�

	�� Conclusion

The consequence of comparing the two approaches to realization is that TAGs using
uni�cation with structure�sharing seem to be better suited for substitution and TAGs
using uni�cation with bidirectional references seem to be better suited for adjunction� So
it depends on the design of the grammar and on the statistical occurrence of the respective
forms in natural language� which of the two approaches is to be preferred� Much more
work in the linguistic part of our project must be done and more detailed benchmarks
measuring the run time have to be made in order to answer this question�

��



While the two described approaches to realization are rather contrastive it is possible
to imagine some solution in between� One alternative would be to associate parts of
feature structures with information about their origins� In this way� it would be possible
to identify and delete speci�c parts of FSs during adjunction� Another idea is to use more
links at deeper parts of FSs in order to ease the access to connected FSs and or to associate
links with information about the connected FSs� This could help to guide the access to
parts of FSs in a more speci�c way� Perhaps it would be possible to adapt some algorithms
for uni�cation that allow to recompute the original FSs for TAGs with uni�cation �e�g��
see �Tomabechi �
��� Searching for a better realization for non�destructive uni�cation for
UTAGs is an interesting problem for which no satisfying solutions exist�

� Comparison of UTAGs and FTAGs

�Vijay�Shanker � Joshi ��� de�ned another kind of combination of TAGs and uni�cation
within the FTAG formalism that will be described and compared with our de�nition of
UTAGs in the next two sections�


�� Feature Structure based TAGs �FTAGs�

Vijay�Shanker and Joshi motivate their approach with the following observation� Each
�internal� node of a TAG tree serves at the same time as a father and as a son for the
surrounding nodes� These distinct relations to the subtree and the supertree are re�ected
in a basical separation of the feature structures associated with each node� Feature
structures at TAG nodes consist of a t� �for top� and a b� �for bottom� part representing
the relation to the supertree and the subtree� respectively�

Figure 
� shows how feature structures are handled during adjunction� The FS parts
of the node of adjunction are called t and b� the equivalent parts of the root node of the
auxiliary tree tr and br� the parts of the foot node tf and bf � When the auxiliary tree
substitutes the node of adjunction during adjunction� its t� and b�parts are transferred
to nodes of the auxiliary tree� Those nodes can directly be found� Since t re�ects the
relation of the node of adjunction to its supertree it is transferred to the root node and
uni�ed with tr� b is transferred to the foot node and uni�ed with bf �

A prerequisite for this kind of adjunction is that the t� and the b�part of a FS are
separated �and not uni�ed�� because they have to be transferred to two di
erent nodes�
Since it is not known which nodes of the elementary trees will serve as node of adjunction�
the t� and b�part of the FSs of all nodes must not be collapsed before all adjunctions have
been made! and after the uni�cation has taken place no further adjunction is possible�
We had to integrate the same constraint into the de�nition of UTAGs�

�




X

����
� � �

��HH
t
b

X
X

X
X

�
�
�

�
�
�

S
S
S

S
S
S

��
��HH HH

��
��HH HH

tr
br

tf
bf

��
Adjunction

����
� � �

tr t t
br

tf
bf t b

Figure 
�� Adjunction with FTAGs


�� Comparison of UTAGs and FTAGs

As mentioned at the end of Section ���� FTAGs associate elementary trees with feature
structures whereas UTAGs divide the trees into a CFG�like rule based system� UTAGs
necessitate more elements in the speci�cation lists compared to FTAGs to obtain in�
heritance of values in a tree� For FTAGs it is possible to refer directly to structures
at di
erent nodes� Therefore� UTAGs are more redundant and ine�cient than FTAGs�
In spite of these disadvantages� we use this limited formalism because it gives a better
intuition about the �ow of information in an elementary tree and about what happens
during adjunction just because of its close relation to CFGs� Since we use the formalism
in an incremental natural language generator 	 where the number of fails and revisions
is expected to be rather high 	 it is important for us that the formalism facilitates the
localization of reasons for fails� It is easier to follow a �ow of information along the arcs
of a tree than to check feature structures that may point to arbitrary nodes within a tree�
Furthermore� we do not really loose the property of speci�ying dependencies which use a
whole elementary tree as domain of locality when we only allow to specify father�son re�
lations� We can use the trees to precompile the DAGs that are associated with the nodes�
thereby realizing direct connections between FSs that would not have been possible with
a CFG�based system such as PATR	II�

In order to have a common basis for the further comparison we presuppose that FTAGs
are restricted to father�son or brother�brother relations in the de�nition of uni�cation
constraints�

This restricted de�nition of FTAGs can best be compared with the de�nition of
UTAGs on the basis of a generalized de�nition of FTAGs that has been introduced by
�Vijay�Shanker ���� He states that it is useful not to assume that the building blocks of
an FTAG are trees but that they are some tree�like structures� i�e�� partial descriptions
of trees� This idea can directly be used for the de�nition of a new and more general for�
malism� using so�called �quasi�nodes� that are pairs of nodes� Thereby� a top quasi�node
dominates a bottom quasi�node� The domination relation is de�ned to be re�exive� so the
two quasi�nodes can either be identi�ed �if no adjunction takes place� or their dominance
relation is further speci�ed by the insertion of an auxiliary tree �adjunction�� Both nodes
are associated with one feature structure� the top�node with the t�part and the bottom�

��



node with the b�part� In this way� the idea of the �rst de�nition of FTAGs is just set into
a more general context�

Interestingly� the de�nition of UTAGs 	 that has been strongly in�uenced by the
PATR	formalism and not by the idea of explicitly doubling nodes 	 �ts into the same
generalized formalism� This has already been mentioned by �Vijay�Shanker ���� The
notion of �X and �X is very similar to the t� and the b�part of a FS at a node in FTAG�
Figure 
� illustrates this similarity� The left tree shows nodes with feature structures

S S��� ���HHj HHj
�

�








m

mX X��� ���HHj HHj�

a
a

� � �m

UTAG

t

t

t

b

b

b

��m
m
�

��m
m�����HHj

FTAG

Figure 
�� Comparison of UTAG and FTAG trees

according to UTAG� Each feature structure contains n"
 top�level branches �n be the
number of sons of the node� whose attributes are reference numbers� The subdags reached
via the reference numbers are combined by structure�sharing which is illustrated by boxes
in the �gure� For the i�th son of a node� the i�subdag of the node is related with the
��subdag of the son� Depending on the kind of realization they are connected by a
bidirectional reference or destructively uni�ed�

The right tree corresponds to the �original� FTAG de�nition� Each node is associated
with two FSs� called t� and b�part� While the t� and b�part of the FS at each single node
must be kept separated in order to allow the insertion of FSs by adjunction� each b�FS of
a node may be uni�ed with the t�FSs of its sons� leading to the boxes shown on the right
side of the tree�

The boxes are associated with numbers �i for UTAGs and i� for FTAGs� which illustrate
corresponding FSs� This correspondence will become more clear in the next �gure�

Transferring the example to the generalized de�nition of TAGs with quasi nodes leads
to Figure 
�� The di
erences between the two trees diminish� First� there is a rule 	
which is either realized procedurally or declaratively by using the bidirectional references
	 that describes the fact that the each i	subdag of a node and the �	subdag of its i	th
son should be uni�ed� This uni�cation is forbidden because of the well�known reasons�
at least as long as adjunctions are allowed� For FTAGs� there exists a similar statement�
when no more adjunction is to be done� the t� and b�FSs of all nodes may be uni�ed�
Again� the structures are identi�ed� that are to be combined �this relation is illustrated
in Figure 
� by double lines��

��



S S

S S

X X

X X

a a

a a

�

�

�

J
JJ�

J
JJ�

�

�

�







UTAG

�

�

�

�

�

�

t

t

t

b

b

b

FTAG

Figure 
�� UTAG and FTAG with Quasi Nodes

Second� regarding the distribution of the boxes in both trees� the main di
erence
seems to be the place �the node� where feature structures are de�ned� For UTAGs� each
node is associated with its own bottom�FS and additionally with all top�FSs of its sons�
For FTAGs� each node is associated with its own top� and bottom�FSs� For both trees�
bottom�FSs are uni�ed with the top�FSs of the sons� But for UTAGs this leads to compact
feature structures associated with each node �which was the aim of our de�nition�� for
FTAGs compact feature structures are shared by di
erent nodes �father and sons� of the
tree� which corresponds to the principle of uni�cation grammar �father and sons represent
a contextfree rule��

There remains one di
erence that becomes visible in Figure 
�� Since 	 for UTAGs
	 the top�FS of a node is de�ned with its father� there is no top�FS of the root node
of a tree� That is why� an adjunction in a root node may lead to qualitatively di
erent
results for UTAGs and FTAGs �see Figure 
��� In FTAG�trees the root node can be seen
as quasi�node with a top� and a bottom�FS� This holds for auxiliary trees as well as for

SR SR

SR SR

SF SF

SF SF
� � � � � �

�
�
�
��

�
�
�
��J

J
J
JJ

J
J
J
JJ

�

�

�

�

��R i

UTAG

�

�

�

�

tR t t

bR

tF

bF t b

FTAG

Figure 
�� Adjunction in a Root Node for UTAG and FTAG

initial trees� Therefore� adjoining an auxiliary tree into the root node of an initial tree
leads to a resulting tree with a root node FSs of which are computed from the FSs of

��



the two original root nodes� Following the de�nition of adjunction� the top�FS of the
root node of the auxiliary tree �tR in Figure 
�� is uni�ed with the top�FS of the node of
adjunction �t in the �gure�� In this way� parts of the FS that is speci�ed at the node of
adjunction �which is a root node� can move to the root of the resulting tree�

This doesn�t hold for UTAG�trees as neither for auxiliary nor for initial trees there
can be t�FSs de�ned in root nodes because there are no ancestors where the i�subdag
could be de�ned� It is not clear whether this property facilitates the representation and
computation of structures during the processing of natural language�

Does the same hold for substitution� While in the FTAG formalism the root node of
a substitution tree can be associated with a top�FS for its future supertree� this cannot
be done for UTAGs� But the other way round� in UTAGs a substitution node can be
associated with t� and b�FSs� since it has a father node� in FTAG this separation is
not realized� because no adjunction may take place in a substitution node� So the only
di
erence seems to be the place� where the pair of feature structures can be speci�ed�

�
�
�
��

�
�
�
��J

J
J
JJ

J
J
J
JJ

S� S�

S�

S

S S

�
��

�
��J

JJ
J
JJ

�

�
�

�

J
JJ�

�

tS�

bS� t bS

� bS

UTAG

�fS� t tS

�

�

tS

bS

FTAG

Figure 
�� Substitution in UTAG and FTAG

The comparison of UTAGs and FTAGs does not lead to a clear result for the question
which formalism should be preferred� It seems to strongly depend on the taste of the
grammar designer if he likes PATR�style notation more than top down separation of
feature structures and if he wants to de�ne constraints directly between arbitrary nodes
of elementary trees�

Because of the close relation of the two formalisms the possible realizations for TAGs
with uni�cation that have been described in the last chapter can be applied to both of
them�

References

�Buschauer et al� �
� B� Buschauer� P� Poller� A� Schauder� and K� Harbusch�

��



Tree Adjoining Grammars mit Uni�kation� Technical Memo TM��
�
�� DFKI�
Saarbr#ucken� FRG� 
��
�

�De Smedt �
� K� De Smedt� Revisions during Generation using Non�destructive Uni�
�cation� In� Proceedings of the Third European Workshop on Natural Language
Generation� 
��
�

�Finkler � Schauder ��� W� Finkler and A� Schauder� E
ects of IncrementalOutput on
Incremental Natural Language Generation� In� Proceedings of the 
�th European
Conference on Arti�cial Intelligence� pp� ���	���� Vienna� Austria� August 
����
Wiley�

�Joshi et al� ��� A� Joshi� S� Levy� and M�Takahashi� Tree Adjunct Grammars� Journal
of Computer and Systems Science� 
��
��	
��� 
����

�Joshi ��� A� Joshi� How much context�sensitivity is required to provide reasonable struc�
tural descriptions
 tree adjoining grammars� In� D� Dowty� L� Karttunen� and
A� Zwicky �eds��� Natural Language Processing� Psycholinguistic� Computational
and Theoretical Perspectives� Cambridge� Cambridge University Press� 
����

�Karttunen ��� L� Karttunen� D�PATR
 A Development Environment for Uni�cation�
Based Grammars� Technical report� SRI International and Center for the Study
of Language and Information� Stanford� 
����

�McDonald ��� D� McDonald� Natural Language Generation
 Complexities and Tech�
niques� In� S� Nirenburg �ed��� Machine Translation� Cambridge� Cambridge Uni�
versity Press� 
����

�Shieber et al� ��� S� Shieber� H� Uszkoreit� F�C�N� Pereira� J�J� Robinson� and
M� Tyson� The Formalism and Implementation of PATR�II� In� B� Grosz and
M� Stickel �eds��� Research on Interactive Acquisition and Use of Knowledge� Menlo
Park� California� Arti�cial Intelligence Center� SRI International� 
����

�Tomabechi �
� H� Tomabechi� Quasi�Destructive Graph Uni�cation� In� ��th Annual
Meeting of the ACL� University of California� Berkeley� California� 
��
�

�Vijay�Shanker � Joshi ��� K� Vijay	Shanker and A� Joshi� Feature Structure based
Tree Adjoining Grammars� In� Proceedings of the 
�th International Conference
on Computational Linguistics �COLING����� Budapest� 
����

�Vijay�Shanker ��� K� Vijay	Shanker� Using Descriptions of Trees in a Tree Adjoining
Grammar� Computational Linguistics� 
���� to appear�

�Wahlster et al� �
� W� Wahlster� E� Andr
e� W� Graf� and T� Rist� Designing Illus�
trated Texts
 How Language Production is in�uenced by Graphics Generation� In�
Proceedings of the EACL��
� Berlin� FRG� 
��
�

��



�Wahlster et al� ��� W� Wahlster� E� Andr
e� W� Finkler� H��J� Pro�tlich� and T�
Rist� Plan�based Integration of Natural Language and Graphics Generation� Ar�
ti�cial Intelligence Journal� 
���� to appear�

�Weir ��� D�Weir� Characterizing Mildly Context�Sensitive Grammar Formalisms� PhD
thesis� Department of Computer and Information Science� University of Pennsyl�
vania� 
����

��


