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Abstract

In this paper we give a formalisation of con�guration as the task to construct for
a given speci�cation	 which is understood as a �nite set of logical formulas	 a model
that satis�es the speci�cation� In this approach	 a speci�cation consists of two parts�
One part describes the domain	 the possible components	 and their interdependencies�
The other part speci�es the particular object that is to be con�gured� The language
that is used to represent knowledge about con�guration problems integrates three
sublanguages that allow one to express constraints	 to build up taxonomies	 and to
de�ne rules�

We give a sound calculus by which one can compute solutions to con�guration
problems if they exist and that allows one to recognize that a speci�cation is incon�
sistent� In particular	 the calculus can be used in order to check whether a given
con�guration satis�es the speci�cation�
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� Introduction

In recent years con
guration problem solving has become an established 
eld of applica�
tion of knowledge�based systems� There are mainly two aspects which contributed to this
development� On the one hand the great potential of application this results in a grow�
ing interest in knowledge�based techniques by customers who expect signi
cant support in
solving their con
guration problems� On the other hand� a main characteristic of con
gu�
ration problems is their well�structuredness� which provides much better opportunities for
an adequate description with AI techniques available today than there are in many other

elds�

Nevertheless� we are still lacking a comprehensive theory of con
guration problem solving�
There are some approaches� emphasizing this or another aspect� and there is a certain
number of implemented systems �Hei��� CGS��� CG���� The main problem with these
approaches and systems seems to be the missing �global� problem solving paradigm�

Con
guration problem solving is basically a synthetic or constructive activity �Kle���� The
solution to a given problem has to be synthesized in such a way that it ful
ls the prob�
lem speci
cation and that it is in accordance with certain constraints� The synthesis of
a solution includes di�erent problem solving activities object selection and creation ��in�
stantiation��� specialization� parametrization� hierachical re
nement� etc� These operations
have to be performed in such a way that they are consistent with the constraints governing
the application domain�

The resulting knowledge representation and problem solving can be very complex� Up to
now many application�oriented AI con
guration systems have been developed that tried to
meet these demands with more or less ad�hoc techniques �and in some cases are used in
practice with considerable success�� But sooner or later�due to the missing global problem
solving paradigm�such systems run into di�culties comparable to those encountered in
traditional software applications problems of maintenance� of extendability� of re�usability
etc�

Compared with traditional software techniques� the main advantages of knowledge�based
approaches are in declarative representation languages together with inference rules that
re�ect the declarative semantics �Kow��� Llo���� Con
guration problems seem to be well�
suited for the development of declarative problem solving techniques for the following rea�
sons

� Since the objects involved are technical in nature� their properties are well�de
ned�
and their relationships are governed by precise constraints� In problem speci
cations�
implicitness� ambiguities� and vagueness play a much less prominent role than in many
other 
elds�

� Con
guration problems do not include any notion of belief� of time� or of changing
worlds�

� The meta�assumptions underlying a problem speci
cation can often be represented
explicitly�

Other problem classes of synthetic or constructive character� like design� planning� speech
synthesis� explanation generation� etc�� are complicated by the presence of vague or un�
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certain information� Thus� many aspects which in other areas make formally well�founded
knowledge representation and inferencing techniques complicated are not present in con
g�
uration problems� However� the demands for knowledge representation� problem solving�
and control in this problem class still make it a challenging task to develop a comprehensive�
adequate� and formally well�founded approach�

The goal of this paper is to give a formal description of a declarative problem solving
paradigm that integrates techniques which have proved to be essential for solving con
gu�
ration tasks� Three kinds of formalisms can be distinguished that seem to be essential for
representing knowledge about con
guration problems�

First� one needs a language that allows one to represent taxonomies� Families of technical
devices are usually described as hierarchies� where the concrete objects show up at the
minimal positions� and also systems to be con
gured can be represented by a taxonomy�
Representing knowledge about devices and systems in this way allows one to build up
a con
guration by stepwise re
nement� pushing an object through the hierarchy until it
reaches a minimal position� In addition� one can use inheritance in order to represent
properties of objects in a structured way� Due to the nature of the domain� inheritance is
monotonic�

Languages of the kl�one family �also called concept languages or description logics� have
been designed as a tool for representing knowledge and to reason about taxonomies �see
KRIS �BH��c�� classic �BBMR���� kripton �BPGL���� loom �MB���� back �QK�����
These languages have been given a formal semantics that identi
es them as a fragment
of 
rst order predicate logic� Based on this semantics� recent research in algorithms for
such languages and in the complexity of the inferences they perform has led to a thorough
understanding of this kind of formalism �see �SSS��� DLNN��a� DLNN��b���

Second� languages to express constraints and to propagate them are indispensable� In AI�
constraint propagation and satisfaction is an active research area and a substantial body
of results are available ��Van��� Mac�����

Third� relations and rules are necessary in order to describe how a speci
cation of the
function of a system can be transformed into a structural description� Moreover� rules can
describe how abstract relationships between objects can be re
ned to more concrete ones�
that can be technically realized�

Several attempts have been made to integrate the above formalisms� For instance� con�
straint logic programming combines constraints and rules ��JL��� HS����� Recently� Baader
and Hanschke have developed a schema for the integration of constraint languages and
kl�one like taxonomic languages� provided the constraint language satis
es certain re�
quirements ��BH��a��� For clausal logic and several restricted forms of taxonomies calculi
have been designed that are based on the idea of order�sorted uni
cation ��Wal��� SS�����

We will apply these ideas to our framework as guidelines to the integration of its com�
ponents� In particular� we will use the Baader�Hanschke approach for the integration of
taxonomies and constraints� Taxonomies and constraints together will form a �constraint
language� in the sense of H�ohfeld�Smolka� for which there is a canonical way to extend it
by rules to a constraint logic programming language�

As mentioned above� con
guration problems are of a constructive nature and solutions are
descriptions of technical systems� We will capture this constructive aspect by formalizing

	



a con
guration problem as the task to generate a model for a given speci
cation� Thus�
our approach to con
guration is not a deductive one but can rather be understood as an
abductive one�

The rest of the paper is organized as follows� In Section � we present in more detail the
basic idea to view con
guration as a model generation problem and introduce the di�erent
components a problem speci
cation consists of� In Section � we de
ne the three kinds
of knowledge representation languages that we are going to use� namely languages for
constraints� for taxonomic descriptions� and for relations and rules� In Section 	 we say
how these languages are used on the one hand to express de
nitional knowledge� integrity
constraints� and speci
cations of systems� and on the other hand to describe models� In
Section � we give a calculus that computes a model for a given problem speci
cation�
Section � concludes�

� Con�guration as Model Construction

We will now outline the basic idea underlying our formalization of con
guration� In this
and the following sections we assume that the reader is familiar with some logical and model
theoretical background as provided by textbooks on mathematical logics� e�g� �Sho����

The basic idea can be described as follows a con
guration problem solver gets as input a
set of logical formulas that speci
y the system to be con
gured and produces as output a
model of this speci
cation� Of course� this idea needs some re
nement in order to be useful�

We suppose that we are given a logical language� with signature �� that allows us to talk
about the systems we are interested in� In addition we assume that there is a sublanguage�
called the basic language��whose signature �� is a subsignature of ��that gives us the
vocabulary to name the technical devices by which a concrete system is built up as well as
their relationships� For instance� one can imagine that the names of the technical devices
as they show up in a catalogue are part of ��� We assume that the basic language is rich
enough to describe concrete systems� We distinguish between the two languages because
the speci
cation of a system to be con
gured will be given using the overall language�
whereas descriptions of models that satisfy the speci
cation consist only of basic formulas�

The representation of knowledge about technical systems will consist of two parts� First�
there will be de�nitional knowledge� that relates the abstract notions� i�e�� the elements
of � n ��� to the basic language� The de
nitional knowledge will be represented by a set
D consisting of taxonomic hierarchies and rules� By means of D one can extend every
���structure C to a ��structure �C in a unique way� Second� there will be a set I of integrity
constraints that express necessary conditions which the components of a con
guration have
to satisfy or rule out certain combinations of components as impossible� We call D and I
together domain knowledge� The speci�cation of a system to be con
gured will be given as
a 
nite set S of formulas of the general language� In order to de
ne more precisely which
structures are solutions to such a speci
cation we need some technical de
nitions�

Let C be a ���structure� If F is a set of ��formulas we write

C j�D F

in order to express that F holds in the extension �C of C� which is de
ned by D� Intuitively�
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this means that F holds in C if we use the de
nitional knowledge D to translate arbitrary
��expressions into the basic language�

Now suppose that D and I are given and that S is a speci
cation� Then a con�guration C
is a 
nite ���structure such that the following holds

� C j�D �
S� where �
S is the existential closure of S

� C j�D I�

The two conditions simply say that C has to satisfy on the one hand the speci
c require�
ments expressed by S and on the other hand the general requirements that are imposed on
all systems�

Following this schema� we will formally introduce in the next chapters the languages that
we want to use for describing con
guration problems�

� The Knowledge Representation Languages

As mentioned in the Introduction� the language that we want to use for the description of
con
guration problems consists of three components one for expressing constraints that
can be propagated and solved by special purpose algorithms� another one by which we can
describe classes with attributes that are organized as a taxonomy� and 
nally a general
language for relations and rules�

In our approach we will assume that constraints are handled by a kind of black box� An
appropriate abstraction of such a component is to conceive it as a �concrete domain� as
de
ned by Baader and Hanschke �BH��b�� In ��� we brie�y review this concept and discuss
which aspects of an application can be covered by it�

Next we devise a language that allows one to describe classes of objects using constructs
that are known from kl�one�like description logics� This language incorporates concrete
domains as proposed in �BH��b�� It can be seen as an extension of the concrete domain
language to a more general constraint language�

Finally� we extend the general constraint language by relations along the lines of the con�
straint logic programming scheme described in �HS����

General Assumption
 All languages share one set of variables and one set of constants�

There are no terms other than variables or constants� Variables are denoted by the letters

x� y� z� constants by a� b� c� and terms by s� t� u�

��� Concrete Domains

The notion �concrete domain� has been introduced by Baader and Hanschke in �BH��b�
in the context of kl�one like concept languages� A drawback of such languages is that
all terminological knowledge has to be de
ned on an abstract logical level� In many ap�
plications� however� one would like to refer to 
xed domains and predicates when de
ning
concepts� Examples of such domains are the real numbers� integers� 
nite domains that
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are explicitly given by an enumeration of their elements etc� The 
xed predicates could
be equality� inequality� extensionally de
ned predicates or other more complex predicates�
Especially in the context of con
guration one needs the integers or the reals in order to
express relations between �concrete valued� features�

Technically� one can see a concrete domain as a black box� The input�output behaviour
of this black box will be described below� The following de
nition formalizes the notion
�concrete domain� �see �BH��b���

A concrete domain D consists of a set dom �D�� the domain of D� and a set pred�D�� the
predicate names of D� Each predicate name P is associated with an arity n and an n�ary
relation PD � dom �D�n� Each element of dom �D� is named by a unique constant� Such
constants are called concrete constants�

As an example� the integers or reals form concrete domains Z or R� respectively� if we
take as predicates all formulas which are built by 
rst order means from equalities and
inequalities between polynomials like� for instance� �y
��x� y � z� � y � x��

If we want to combine inference algorithms for concept languages with reasoning algorithms
for the concrete domain then the concrete domain must satisfy some additional properties�

A set of predicate names of a concrete domain D is closed under negation� if for each
predicate P of arity n in pred�D� there exists some  P in pred�D� with the same arity such
that  PD � dom �D�n n PD�

Let P�� � � � � Pm be m �not necessarily di�erent� predicate names in pred�D� of arities
n�� � � � � nm� We consider the conjunction

m�

l��

Pl��t
�l���

Here �t�l� stands for an nl�tuple �t
�l�
� � � � � � t

�l�
nl
� where each t

�l�
i is either a variable or a concrete

constant� Note that neither the terms in one tuple nor those in di�erent tuples are assumed
to be distinct� Such a conjunction is said to be satis�able i� there exists an assignment
that maps each variable to an element of dom �D� such that the conjunction becomes true
in D�

A concrete domain D is called admissible i� �i� the set of its predicate names is closed under
negation� and �ii� the satis
ability problem for 
nite conjunctions of the above mentioned
form is decidable�

Reconsidering our previous examples Z and R� we 
nd that in both cases the set of pred�
icates is closed under negation� but Z is not admissible because of the undecidability of
Hilbert!s Tenth Problem �Mat���� whereas R is admissible because of Tarski!s decidability
result for real arithmetic� If one transforms Z into ZP which is obtained by taking as predi�
cates only formulas that have been built up using linear polynomials� the resulting concrete
domain is again admissible� since Presburger Arithmetic is decidable�

The examples that we have given up to now suggest that a concrete domain has to be
somewhat homogeneous in nature� like the integers or reals� but this need not necessarily
be the case� The domain can consist� e�g�� of the union of all integers with the booleans
and with an enumeration of colours like fred� blue� greeng� and there may be predicates
that relate numbers� booleans� and colours in various fashions� In particular� the notion of
admissible concrete domains allows one to capture collections of several constraint solvers�
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��� Descriptions and Taxonomies

Our aim in this subsection is to de
ne a description language that is based on sorts� fea�
tures� and concrete domains� We will use this language to build up taxonomies by which we
describe the sorts of the objects that our domain consists of� The language we propose takes
up ideas that have emerged on the one hand from the research in kl�one and its descen�
dants and on the other hand from the development of feature descriptions that are used in
computational linguistics� The main characteristic of these languages is that descriptions of
classes of objects are given in terms of superclasses and attributes�� The main inferences for
descriptions are to decide whether a description is consistent�i�e�� satis
able�and whether
one description is more general than another one�i�e�� whether it subsumes the other�

The language we propose is such that it combines maximal expressivity with a complexity
as low as possible� In particular� it is chosen in such a way that the above mentioned
inferences are decidable� Moreover� we have to take into account requirements that are due
to the structure of our application� It seems that in order to give sensible descriptions of
technical objects one needs attributes that take values in concrete domains and has to be
able to say that chains of attributes have di�erent or identical 
llers�

Throughout this subsection we assume that D is a concrete domain with set of predicates
pred�D��

�
�
� Descriptions with Sorts and Features

We assume that in addition to the symbols in pred�D� two more sets of symbols are given
a set of sorts �denoted by the letter S� and a set of features �denoted by the letters f � g��

A path �denoted by the letters p� q� is a�possibly empty�sequence f� � � � fn of features�
The empty path is denoted by ��

Using concrete predicates� sorts� and features as building blocks� we form descriptionsD� D�

according to the following syntax rules

D�D� �� � j �top sort�
	 j �bottom sort�
S j �sort�
D uD� j �intersubsection�
D tD� j �union�

D j �complement�
p� j �unde
nedness�
f 
D j �selection�
p
�
� q j �agreement�

p � �� q j �disagreement�
P �p�� � � � � pk� �concrete predicate��

Next� we give a semantics for these expressions in the usual way� An interpretation is a
pair I � �"I� �I�� where "I is a nonempty set that is disjoint from dom �D� and �I is a
function that maps sorts to subsets of "I and features and paths to partial functions from

�Attributes are called �roles� in the kl�one context and �features� in linguistics�
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"I to "I dom �D� such that the following equations are satis
ed �by dom we also denote
the domain of partial functions�

�I�a� � a for every a � "I � i�e� �I is the identity function on "I

�pf�I�a� � fI�pI�a�� for every a � "I

�I � "I

	I � �

�D uD��I � DI �D�I

�D tD��I � DI D�I

�
D�I � "I nDI

�p��I � "I n dom pI

�f 
D�I � fa � domfI j fI�a� � SIDg

�p
�
� q�I � fa � dompI � dom qI j pI�a� � qI�a�g

�p � �� q�I � fa � dompI � dom qI j pI�a� �� qI�a�g

�P �p�� � � � � pk��
I � fa � dompI� � � � � � dompIk j �p

I
� �a�� � � � � p

I
k �a�� � PDg�

For computations with sort expressions it is often convenient to assume that they are in a
certain normal form� It is easy to see that every expression of our language is equivalent
to an expression where the complement sign shows up only in front of sort symbols� Such
an expression is said to be in negation normal form� One readily veri
es� that every
expressions can be rewritten in linear time to an expression in negation normal form �see
also �SSS��� DLNN��a���

�
�
� Constraint Systems

We augment our description language in such a way that we can make statements about
individuals� A constraint is a piece of syntax of one of the following forms

sD� spt� s
�
� t� s �

�
� t� P �s�� � � � � sk��

Let I be an interpretation� From now on we assume also that I maps constants to elements
of "I  dom �D� in such a way that names of elements of dom �D� are mapped to the
corresponding elements and that all other constants are mapped to elements of "I in such
a way that aI �� bI for distinct constants a� b� An I�assignment is a function � that maps
a constant a to aI and a variable to an element of "I  dom �D�� We say that � satis�es

sD� if ��s� � DI

spt� if ��s� � dom pI and pI���s�� � ��t�

s
�
� t� if ��s� � ��t�

s �
�
� t� if ��s� �� ��t�

P �s�� � � � � sk�� if ���s��� � � � � ��sk�� � PD�

�



A constraint system is a nonempty 
nite sets of constraints� An I�assignment � satis�es a
constraint system C if � satis
es every constraint in C� A constraint system C is satis�able
if there is an interpretation I and an I�assignment � such that � satis
es C�

Proposition �
� �Decidability�

�� It is decidable whether a constraint system is satis�able�

�� Independently of the particular concrete domain� satis�ability of constraint systems is

an NP�hard problem�

	� Satis�ability of constraint systems not involving concrete predicates is NP�complete�

Proof� The claims follow from results in �Smo���� �HN���� and �BH��b��

�
�
� Descriptions and Taxonomies

As said before� we want to use our description logic to describe taxonomies� We will do
so by augmenting the language by axioms that allow us to specify inclusion of sorts� Our
taxonomies will have the property that every sort is the union of its subsorts� This is a
property of technical domains where we have complete information about the existing ob�
jects and the classes they form� In addition� sorts will be described by necessary conditions
that their elements have to satisfy� and sorts can be declared to be disjoint�

In order to express this kind of statement� we provide three kindes of axioms� A cover

axiom has the form
S�

�
� S� t � � � t Sn�

An inclusion axiom has the form
S v D�

A disjointness axiom has the form
S� k S��

Let I � �"I� �I� be an interpretation� The Interpretation I satis
es the cover axiom
S�

�
� S� t � � � tSn if SI� � SI�  � � � S

I
n � We say that I satis
es the inclusion axiom S v D

if SI � DI � We say that I satis
es the disjointness axiom S� k S� if SI� � SI� � �� An
interpretation is a model of a set of axioms A if it satis
es every axiom in A�

Let A be a set of axioms� A sort S directly depends on a sort S� if A contains an axiom of
the form S

�
� D or S v D such that S� occurs in D� We say that S depends on S� if S is

related to S� by the transitive closure of the relation �directly depends�� A set of axioms
is cycle free if no sort depends on itself�

Let A be a 
nite set of axioms that is cycle free and contains for every sort S at most one
cover axiom S

�
� D� We transform A into a set A� by repeatedly performing the following

operation� We take an inclusion S v D from A such that a sort S� occurs in D for which
there is a cover axiom S�

�
� D� and replace the occurrence of S� in D by D�� Since A is

cycle free� this process eventually halts and we end up with a new set of axioms which we
call A��

A 
nite set of axioms A is admissible if the following holds

��



�� for every sort S there is at most one cover axiom S
�
� D in A

�� A is cycle free

�� A� is cycle free�

Without loss of generality we can assume that an admissible set of axioms contains for
every sort S at most one inclusion of the form S v D� since we can combine two inclusions
S v D and S v D� into one axiom S v D uD� without changing the semantics�

Proposition �
� Every admissible set of axioms has a model�

It might be the case that some sorts are interpreted as the empty set in every model of an
admissible set of axioms�

Next� we turn to the satis
ability of constraint systems w�r�t� to sets of axioms� Let A be
a set of axioms and C be a constraint system� We say that C is satis�able w�r�t� A if there
is a model I of A and an I�assignment � such that � satis
es C�

A sort S is basic if there is no cover axiom of the form S
�
� D� Satis
ability w�r�t� admissible

sets of axioms can be reduced to satis
ability of constraint systems alone� This can be seen
as follows� Let A be admissible� Thus we can transform A into a set A� as described
before� Note that in A� the only sort symbols occurring in the right hand side of inclusions
are basic symbols� Then we perform the following steps

�� Eliminate the disjointness axioms by introducing dummy sorts �see e�g� �Neb�����

�� Expand left hand sides of inclusions by means of the cover axioms# this leads to
inclusion axioms of the form S� t � � � t Sn v D� where S�� � � � � Sn are basic sorts�

�� Now� each such inclusion axiom is equivalent to the inclusions Si v D for i � �� � � � � n#
we therefore replace the former by the latter and end up with inclusion axioms only
for basic sorts�

	� Transform inclusion axioms into equalities using the technique of dummy sorts �see
e�g� �Neb�����

�� At this stage� we can expand the cover axioms� using the cover axioms themselves
and using the basic axioms in order to replace basic sorts�

�� We call the resulting set of axioms A��� In A��� there is exactly one de
nition for
every sort� and no de
ned sort occurs in the right hand side of a de
nition� We call
A�� the expansion of A�

Let A be an admissible set of axioms and C be a constraint system� We transform C into a
system C�� by replacing every occurence of a sort with its de
nition in A���if it has one�
We call C�� the A�expansion of C�

Proposition �
� Let A be an admissible set of axioms and C be a constraint system� Then

C is satis�able w�r�t� A if and only if C�� is satis�able�
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Moreover� if I is an interpretation and � an I�assignment satisfying C��� then � satis
es C
as well� Conversely� if I � �"I� �I� is an interpretation and � an I�assignment satisfying C�
then there exists an interpretation I � � �"I � �I

�

� with the same carrier such that AI � AI�

for the sorts occurring in C and such that �� considered as an I ��assignment� satis
es C���
Intuitively this means that C�� alone has the same models as C and A together�

Proposition �
� There exists an algorithm that decides for every admissible set of axioms

A and every constraint system C whether C is satis�able w�r�t� A�

Proof� The algorithm proceeds by 
rst transforming C into C�� and then checking C�� for
satis
ability� Such a check can be made by a calculus based on propagation rules like in
�HN��� or �BH��b��

�
�
� Decidability and Complexity of Satis�ability

We conclude this section by considering the satis
ability problem for classes of sets of
axioms that are either less or more restrictive than admissible sets� Our results for such
variants show on the one hand that slight changes may easily cause undecidability and
on the other hand that it is hard to think of restrictions that reduce the complexity of
reasoning in a formalism of this kind�

We say that a description is simple if it is built up according to the following syntax rules

D�D� �� � j S j D uD� j f 
S j p �
� q j p � �� q�

We say that a set of axioms is simple if for every inclusion S v D the description D is
simple�

Proposition �
� Satis�ability of constraint systems w�r�t� simple sets of axioms� that may

contain cycles� is undecidable�

Proof� We can reduce the word problem for semi�groups� which is known to be undecidable�
to the satis
ability problem for constraints w�r�t� simple sets of axioms� Suppose f�� � � � � fm
is a 
nite alphabet and p� q� p�� � � � � pn� q�� � � � � qn are words over this alphabet� We view
f�� � � � � fm also as features and p� q� p�� � � � � pn� q�� � � � � qn as paths� Consider the set A
containing the single axiom

S v f�
S u � � � u fm
S u p�
�
� q� u � � � u pn

�
� qn�

Then the word identity p
�
� q follows from the identities p�

�
� q�� � � � � pn

�
� qn if and only if

the constraint xS u p �
�
� q is unsatis
able w�r�t� A�

This result shows that cycle freeness is a crucial condition in order to guarantee decidability
of the satis
ability problem� Intuitively� the language construct that causes undecidability
is the agreement of feature paths�

Proposition �
� Satis�ability of constraint systems w�r�t� simple admissible sets of axioms

is NP�hard� even if agreements and disagreements are disallowed�
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Proof� We can reduce �SAT� that is the satis
ablity problem for sets of propositional clauses
with three literals� which is known to be NP�complete� to the satis
ability problem for
constraint systems w�r�t� simple admissible sets of axioms� Let u�� � � � � um be propositional
variables and let C � fC�� � � � � Cng be a set of clauses over these variables that have three

literals each� Thus� each clause has the form Cj � l
�j�
� � l

�j�
� � l

�j�
� � where l

�j�
k is either a

variable or a negated variable� We construct a set of axioms A as follows� Let S�� � � � � Sn�
S�� S�� T�

� � � � � � T
�
m � and T�

� � � � � � T
�
m be sorts� and f�� � � � � fm be features� Let A contain

the following axioms

� S� k S�

� T�
i v fi
S

� and T�
i v fi
S

� for i � �� � � � �m

� Sj
�
� T

�j�
� t T

�j�
� t T

�j�
� for j � �� � � � � n� where T �j�

k � T�
k if l�j�k � uk and T

�j�
k � T�

k if

l
�j�
k � 
uk�

� S� v S� u � � � u Sn

The idea underlying this construction is that S� and S� encode true and false� T�
i and

T�
i encode the literals ui and 
ui� Si encodes the clause Ci� and S� encodes the whole set of

clauses� Then it is easy to see that A is simple and admissible� The reader readily veri
es
that C is satis
able if and only if the constraint xS� is satis
able w�r�t� A�

In this case� NP�hardness is due to the interplay of conjunctive expressions in the right
hand side of inclusions and disjunctive expressions in the right hand side of cover axioms�
Proposition ��� shows that the complexity of the satis
ability problem is not increased by
allowing for a richer sort language�

One might argue that for certain applications it is not su�cient to give only necessary
conditions for an individual to be an element of a sort� as it is done in sort inclusions� One
might therefore want to extend the language of axioms by allowing also for sort de
nitions
of the form

S
�
� D�

Such an extension again gives rise to undecidability�

Proposition �
	 Satis�ability of constraint systems w�r�t� simple cycle free sets of axioms

with sort de�nitions is undecidable�

Proof� Sort de
nitions together with cover axioms allow one again to express cyclic sets of
axioms�

��� The Relational Language

In this section we want to augment our description language with relations� This will be
done by a two step construction� which is similar to that of H�ohfeld and Smolka �HS��� or
of Ja�ar and Lassez �JL���� In the 
rst step we introduce a constraint language L which
is based on the taxonomical language de
ned in section ���� In the second step L will
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be extended to a relational language R�L� providing for relational atoms� propositional
connectives and quanti
cation�

The constraint language L consists of constraint formulas� A constraint formula is a con�
junction c� $ � � � $ cn of constraints c�� � � � � cn�

An I�assignment � satis�es a constraint formula c� $ � � � $ cn if it satis
es all its con�
straints ci� We call a constraint formula � valid in an interpretation I� if � satis
es � for
all I�assignments �� I is called a model of a set of constraint formulas %� if every � � % is
valid in I�

A constraint formula c� $ � � � $ cn is simple if all its constraints ci are simple� A constraint
is simple if it is of the form

sD� spt� s
�
� t� s �

�
� t� P �s�� � � � � sk��

where D is a description according to the following syntax rule �cf� ����

D�D� �� � j S j D uD� j f 
S j p
�
� q j p �

�
� q�

Simple constraint formulas will play a role in Section 	�

Let R denote a set of relational symbols �or predicate symbols�� where every relation sym�
bol comes with a natural number specifying the number of arguments it takes� Now the
constraint language L will be extended to the relational language R�L� as follows�

The variables of R�L� are the variables of L� The so called relational formulas of R�L�
are de
ned inductively� Let r denote a relational symbol in R� x a variable� �s a tuple of
terms which has as many elements as r arguments and � a constraint formula in L� We
form relational formulas F � G according to the following syntax rule

F�G �� � j � j r��s� j F $ G j F � G j �x�F�

We call r��s� a relational atom�

By extending an interpretation for constraint formulas in a natural way� we get an in�
terpretation for relational formulas� An interpretation N of R�L� is obtained from an
L�interpretation I by taking the same domain �"N � "I� and by choosing for every
relation symbol r � R with arity n a relation rN on �"I�n�

Let ���s� denote ���s��� � � � � ��sn�� for �s � �s�� � � � � sn�� Every N �assignment � satis
es ��
Furthermore� we say that � satis
es

r��s�� if ���s� � rN

F $ G� if � satis
es F and G

F � G� if � does not satisfy F or � satis
es G

�x�F � if there exists an N �assignment 	 that satis
es F

and ��y� � 	�y� for all y �� x�

Valid relational formulas and models for relational formulas are de
ned as in the case of
constraint formulas�
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Next we introduce a form of rules which allow us to de
ne new relations� A de�nite clause

is a relational formula of the form

r��s�� r���s�� $ r���s�� $ � � � $ rn��sn� $ �

where the r��s�� ri��si� are relational atoms and � is a constraint formula�

Let S denote a set of de
nite clauses� A relational symbol r is called a basic symbol if it
does not occur on the left hand side of a clause in S and a de�ned symbol otherwise�

Two R�L��interpretations for S are called basically equivalent if their restrictions to con�
straint symbols and basic symbols are equal� A partial ordering on the set of all R�L��
interpretations for S is de
ned by

A � B �� A and B are basically equivalent and �r � R� rA � rB�

A basic interpretation forR�L� is an interpretation which only interprets constraint symbols
and basic symbols of R�L���

Proposition �
 Let S denote a set of de�nite clauses in R�L� and B a basic interpreta�

tion for R�L�� Then there exists a unique minimal extension of B to a model of S�

Proof� Consider the following construction� Let N� be the R�L��interpretation which
extends B such that rN� � � for all de
ned symbols r � R� Now we de
ne R�L��
interpretations Ni�� by the following equation

rNi�� � f���s� j �r��s�� G� � S and � is an Ni�assignment which satis
es Gg�

Since basic symbols do not occur on the left hand side of the clauses in S� this de
nes a
chain N�� N�� � � � of basically equivalentR�L��interpretation� By induction on i one veri
es
that Ni � Ni��� It is easy to see that N �

S
i��Ni de
nes a model of S extending B and

that N is minimal w�r�t� the above de
ned ordering on R�L��interpretations�

Such an extension exists in particular if we have a basic interpretation which is a model for
a set of cover�� inclusion� and disjointness axioms�

In section 	 we will de
ne de
nite clauses as a part of the de
nitional knowledge� The
above proposition gives us the justi
cation to do this�

� The Representation of the Con�guration Knowl�

edge

As already mentioned in section �� there are di�erent parts of knowledge for specifying
a con
guration problem in a structured way� With the de�nitional knowledge D and the
integrity constraints I one can describe the technical domain of interest� With a speci�cation
S one formulates a special con
guration goal and a con�guration C describes a solution for
such a goal� In the following we assume that all sets are 
nite sets�

�The de�nition of a basic interpretation will be extended in section ��
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��� The De�nitional Knowledge

In this part we describe the overall classes and relations� The de
nitional knowledge D
splits into two subparts� the set Tax of taxonomical knowledge and the set Rel of relational
knowledge� The taxonomical knowledge Tax consists of a set of cover axioms of the form
�cf� section ����

S�
�
� S� t � � � t Sn

with the restriction� that

�� for every sort S there is at most one cover axiom S
�
� D in Tax

�� Tax is cycle free�

Dropping one of these conditions leads to problems with the satis
ability of constraints as
will be explained below�

The inclusion� and disjointness axioms are not part of the de
nitional knowledge� They do
not in�uence the subsumption hierarchy� but represent necessary conditions for elements
to be in a sort and therefore belong to the integrity constraints �see below�� In the con
g�
uration domain all sorts and their relationships are well known� A sort is always the union
of its subsorts� This can be modeled with a set of cover axioms in a natural manner�

The relational knowledge Rel consists of a set of de
nite clauses in R�L� of the form �cf�
section ����

r��s�� r���s�� $ r���s�� $ � � � $ rn��sn� $ ��

where the variables on the left hand side are a subset of the variables on the right hand
side and � is a simple constraint formula�

These clauses introduce new relations between objects of the domain� In particular� if we
have an interpretation of the constraint symbols and the basic symbols of R�L�� Rel leads
to unique minimal denotations for the de
ned ones �cf� section �����

From now on an interpretation which interprets the features and only the basic sorts and
basic relational symbols is called basic interpretation for R�L�� From Proposition ��� it
follows that for every basic interpretation B there exists a unique minimal extension of B
to a model of D� Here Tax uniquely determines the denotation of the nonbasic sorts�

Thus the de
nitional knowledge plays the important role of a link between abstract and
basic notions� The speci
cation of con
guration goals and integrity constraints is given in
an abstract language containing arbitrary relational and sort symbols �see below�� However
the description of a solution� i�e� of a concrete technical system is given in terms of basic
relational and sort symbols �see below�� Given such a basic description� D de
nes unique
�minimal� denotations for all relations and sorts�

��� The Integrity Constraints

The integrity constraints I express necessary conditions which the components of a con
g�
uration have to satisfy or rule out certain combinations of components as impossible� We
have three kinds of integrity constraints sort conditions� forward�rules and denials�
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Sort conditions describe necessary conditions for elements of the sorts� They consist of a
set of inclusion axioms and disjointness axioms of the form �cf� section ����

S v D� S� k S��

The sort conditions together with Tax have to be admissible in order to get a decidable
satis
ability problem for constraints�

By means of sort conditions we can explicitly introduce and�or forbid features� The inclu�
sion axiom

S v f�
D� u f�
D� u f��

for example introduces the features f� and f� und forbids the feature f� for elements which
are in S� Note that the inclusion axiom

S v P �f� g�

with P a concrete domain predicate also introduces the features f and g�

Together with the relational part Tax of D� subsorts inherit necessary conditions from their
supersorts� If we have for example the axioms

S
�
� S� t S�� S v f 
D� u g��

then all elements of A� and A� have a feature f and have no feature g�

Forward rules describe necessary conditions for con
gurations and have the form

R��s� $ �� ��y Q��s� �y� $ 
�

where R��s�� Q��s� �y� are conjunctions of relational atoms� � is a simple constraint formula�

 a constraint formula and �y is a tuple of distinct variables which occur neither in R��s� nor
in ��

Sort conditions and forward rules are called active constraints� This plays a role in the
calculus for generating a model of �
S and I �see section ��� If we have an inclusion axiom

S v D

and during the generation we put an element a into S� then we try in the following to ful
ll
all conditions speci
ed in D for a� Or if we have a forward rule and during the generation
the left hand side of the rule becomes valid� we try to make the right hand side valid� too�

The denials describe forbidden combinations of components� They have the form

r���s�� $ r���s�� $ � � � $ rn��sn� $ �� 	�

where the ri��si� are relational atoms and � is a simple constraint formula�

Denials are called passive constraints� This notion again comes from the calculus� If we
have a denial d and during the model generation process the left hand side of d becomes
valid� then we have a clash and must backtrack�

The reason why the constraint formulas in the antecedent of the de
nite clauses� the forward
rules and the denials have to be simple is the following� During the generation of the
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con
guration by the calculus we have to decide whether such a rule is �
ring� or not�
We do this more or less by matching syntactically the antecedent with the current partial
con
guration�� We must be sure that we come to the same decision in every con
guration
derivable from the current one� If we had constraints of the form s p� or s
S� we would
have to make all negative information explicit� �Absence of positive information doesn!t
mean presence of negative information and vice versa�� In order to avoid this we allow only
simple constraints�

We do not forbid constraints of the form s �
�
� t� This would restrict the expressiveness of the

description language too much� We handle this case by adding a rule to the calculus which
nondeterministically separates objects �by introducing a constraint s � �� t� or identi
es them
�by introducing a constraint s

�
� t�� Analogous rules would be necessary if we wanted to

handle negative constraints of the form s p� or s
S� But this nondeterminism would lead
to an enormous growup of complexity�

Forward rules and denials can in�uence the taxonomy� Consider the following forward rule

xS� � xS��

This is semantically equivalent to the terminological axiom S� v S�� Or consider the
following denial

xS �	�

This is semantically equivalent to the terminological axiom 
S �
� �� Even if we forbid

denials or forward rules without relational atoms we get interactions between the taxonomy
and the integrity constraints� Consider the following example� As forward rule and denial
respectively we have

xS� � r�x�� r�x� $ xS� � 	�

This is semantically equivalent to the terminological axiom 
S� t 
S� � ��

So we cannot prevent interactions between the taxonomy and the integrity constraints�
This leads in general to undecidability of the satis
ability of constraints�

The reason why we insist nonetheless on a decidable taxonomical language is the following�
The taxonomical knowledge� i�e� the cover� inclusion and disjointness axioms describe the
classes of the domain� If we have a decidable taxonomic language� we can be sure to detect
inconsistencies in the description of the domain� This can be very helpful for the knowledge
engineer�

��� The Speci�cation and the Con�guration

With the speci
cation S we describe a con
guration goal� This is done in an abstract
language which allows nonbasic sorts and relations� The speci
cation S splits into two
subparts� the part SC� which consists of a set of constraints of the form �cf� section ����

sD� spt� s
�
� t� s �

�
� t� P �s�� � � � � sk��

and the part SR� which is a set of relational atoms of the form

r��s��

�See section � for more details�
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Such a speci
cation is the input of a con
guration problem solver� The task of the problem
solver is to compute a structure�the con
guration C�such that

� C j�D �
S

� C j�D I�

S can be seen as a set of relational formulas F�� � � � � Fn� By �
S we mean the existential
closure of S� i�e� the formula �x� � � � �xm F � where F � F� $ F� $ � � � $ Fn and x�� � � � � xm
are all variables appearing in F �

According to section ���� an R�L��interpretation N is a model of I if every integrity con�
straint is valid in N � i�e� every N �assignments � satis
es every integrity constraint� N is
a model of �
S if �x� � � � �xm F is valid in N � It is easy to see that this is the case if there
exists an N �assignments � which satis
es every relational formula in S�

The con
guration C is represented by a set C of basic relational atoms r��s� and constraints
of the form

sS� sft�

where S is a basic sort�

C describes a basic interpretationC in the following sense� For basic sorts A� basic relational
symbols r and feature symbols f � C is de
ned as follows

� "C � fs j s is a variable or constant in Cg

� AC � fs j s  A � Cg

� rC � f�s�� � � � � sn� j r�s�� � � � � sn� � Cg

� �s� t� � fC� if sft � C�

According to Proposition ��� we get a minimal extension �C of C which is a model of D�
In the next section we will introduce a calculus which computes with input D� I and S a
C such that �C is also a model of �
S and I�

There we will extract an �C�assignment � from C which satis
es obviously every relational
formula in S� By considering the calculus we will make it also obvious that all integrity
constraints are valid in �C�

� A Calculus for Model Construction

Our aim in this section is to give a calculus for computing a structure C to given D� I and
S� Also we want to show that the calculus is correct� i�e� if the computation stops without
an obvious contradiction �C is a model of �
S and I� Furthermore� if there exists a 
nite
model� the calculus will 
nd it� But it may happen� that the calculus runs in
nitely if there
is no 
nite model or no model at all�
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��� Preliminaries

Before we give the calculus we have to establish some de
nitions� The 
rst ones have to do
with concrete domain constraint solving�

Let D denote an admissible concrete domain� A cd�substitution � is a mapping from the
set of variables to the set of concrete constants� Let X denote a set of variables� With �jX
we denote the restriction of � to X� Let A denote a set of concrete atoms Pi��si�� We de
ne
the solutions of A by

sol�A� � f� j Pi��si�� is true in D for all Pi��si� � Ag�

Furthermore� we de
ne
sol�A�jX � f�jX j � � sol�A�g�

For a set of relational formulas G we denote with cd�G� the set of all concrete atoms P ��s�
in G� We say G logically implies a concrete atom P ��s� �written G j� P ��s��� if for every
cd�substitution � � sol�cd�G��� P ��s�� is true in D	� It is easy to see that G j� P ��s� if and
only if sol�cd�G�
P ��s�� � �� Notice that since D is admissible� 
P ��s� can be represented
in D and therefore logical implication is decidable�

In order to handle solutions in the calculus� the concrete domain has to ful
l some further
requirements�

For every set A of concrete domain atoms it must be decidable whether sol�A� is empty�

nite or in
nite� Additionally there must exist a procedure which enumerates the set sol�A��
i�e�� returns a 
rst � � sol�A� to the 
rst call� a second one to the second call and so on� If
all �!s are enumerated� the procedure will return fail�

The next de
nitions have to do with forward rules� denials and de
nite clauses�

A substitution � is a mapping from the set of variables to the set of constants and variables�
An instance of a relational formula F is a formula we get by applying a substitution � to F
in such a way that every free occurrence of a variable x is replaced by ��x�� We write this
as F�� We say a de
nite clause� forward rule or denial is active w�r�t� a set C of relational
formulas� if its antecedent is active w�r�t� C� A formula F $ G is active w�r�t� C� if F and G
are both active w�r�t� C� A relational atom r��s� is active w�r�t� C� if r��s� � C� A constraint
� is active w�r�t� C if one of the following holds

� � � spt and spt � C or there are ti� i � ���n with sfntn� tnfn��tn��� � � � � t�f�t � C
and p � f�f� � � � fn

� � � s
�
� t and s � t

� � � s � �� t and either s � �� t � C or s� t are constants with s �� t

� � � P �s�� � � � � sk� and C j� P �s�� � � � � sk��

� � � sD and sD � C or D � D� u � � � uDn and sDi� i � ���n active w�r�t� C

� � � s�

�This implication is the �normal� logical implication since our concrete domains come with just one

interpretation and the set of all cd�substitutions represents the set of all assignments�

��



� � � s p
�
� q and there is a t with spt and sqt active w�r�t� C

� � � s p � �� q and there are s� t with spt� sqt and s � �� t active w�r�t� C

� � � s f 
S and there is a t with sft � C and tS � C

Notice that the constraints appearing in the antecedents are always simple� With this
de
nition of �active� we want to assure two things� First� that a formula which is valid in
the computed structure �C is active at some point of the generation process� and second�
that a formula which is active at some point of the generation will be active at every point
after�

��� The Calculus

We give a set of so�called completion rules which act on a tuple G
C with G and C sets of
relational formulas� We call G
C a con�guration state� We always start with the con
gura�
tion state S
�� If no more rule is applicable� we call G
C complete� With G
C� we denote
the con
guration state obtained from G
C by replacing each occurence of a variable x by
��x� in G and C�

��



The deletion rule is

D� G  fFg
C � G
C

if F is a relational formula in C

The sort rules are

S� G  fs  Sg
C � G  fs  Sig
C  fs  Sg

if S
�
� S� t � � � t Sn � D

S� G  fs  Sg
C � G
C  fs  Sg

if S is a basic sort

S� G
C � G  fs  Dg
C

if s  S � C� S v D � I� and s  D �� G  C

S	 G
C � G
C  fs  	g

if S� k S� � I� s  S� � C� s  S� � C and s  	 �� C

S� G
C � G
C  fs  S�g

if s  S � C� S�
�
� S�t� � �tSt� � �tSn � D� and s  S� �� GC

S� G  fs  
Sg
C � G
C  fs  
Sg

S� G
C � G
C  fs  	g

if s  S � C  G� s  
S � C and s  	 �� C

The constraint rules are

C� G  fs  D� uD�g
C � G  fs  D�� s  D�g
C  fs  D� uD�g

C� G  fs  D� tD�g
C � G  fs  Dg
C  fs  D� tD�g

if D � D� or D � D�

C� G  fs  p�g
C � G
C  fs  p�g

C	 G
C  fs  p�g � G
C  fs  	g

if sfntn� tnfn��tn��� � � � � t�f�t � C� p � f�f� � � � fn

C� G  fs  	g
C � G
C  fs  	g

C� G  fs  f 
Dg
C � G  fsfx� x  Dg
C  fs  f 
Dg

if x is a new variable

C� G  fs  p
�
� qg
C � G  fspx� sqxg
C  fs  p

�
� qg

if x is a new variable

C� G  fs  p �
�
� qg
C � G  fspx� sqy� x �

�
� yg
C  fs  p �

�
� qg

if x and y are new variables

��



C� G  fspftg
C � G  fsfx� xptg
C  fspftg

if x is a new variable

C�� G  fsftg
C � G
C  fsftg

if no sft� � C

C�� G  fsftg
C � G  ft
�
� t�g
C

if sft� � C

C�� G  fx
�
� sg
C � G
C�xs�

C�� G  fs
�
� xg
C � G
C�xs�

C�	 G  fa
�
� bg
C � G
C  fs  	g

C�� G  fa
�
� ag
C � G
C

C�� G  fs � �� tg
C � G
C  fs � �� tg

C�� G
C � G
C  fs  	g

if s � �� s � C

C�� G  fs  P �p�� � � � � pk�g
C � G  fP �y�� � � � � yk�� sp�y�� � � � � spkykg

C  fs  P �p�� � � � � pk�g

C�� G  fP ��s�g
C � �G
C  fP ��s�g��jX

if X denotes the set of variables appearing in �s and � �
sol�cd�G�  P ��s���

C�� G  fP ��s�g
C � G
C  fs  	g

if sol�cd�G�  P ��s�� � �� s an arbitrary term

The relational rules are

R� G  fr��s�g
C � G  fr���s��� � � � � rn��sn�� �g
C  fr��s�g

if r��s� � r���s�� $ � � � $ rn��sn� $ � is an instance of a
de
nite clause in D

R� G  fr��s�g
C � G
C  fr��s�g

if r is a basic relational symbol

R� G
C � G
C  fr��s�g

if & � r��s� � r���s�� $ � � � $ rn��sn� $ � is an instance of a
clause in D & is active w�r�t� C� and r��s� �� C

The denial rule is

D� G
C � G
C  fs  	g

if & � r���s�� $ r���s�� $ � � � $ rn��sn� $ �� 	 is an instance
of a denial in I & is active w�r�t� C� and s  	 �� C

��



The forward rule is

F� G
C � G  fq���s� �y�� � � � � qm��s� �y�� 
�� � � � � 
ng
C

if & � R��s� $ � � ��yQ��s� �y� $ 
 is an instance
of a forward rule in I & is active w�r�t� C� Q��s� �y� �
q���s� �y� $ � � � $ qm��s� �y�� 
 � 
� $ � � � $ 
n� there is no �y�

such that q���s� �y
��� � � � � qm��s� �y��� 
��� � � � � 


�
n �
�i � 
i��y�y���

are in G  C� and �y is a tuple of new variables�

The equation rule is

E� G
C � G  fs�tg
C

if s and t are distinct terms appearing in G� either � is
�
� or

� is �
�
�� and s�t �� G  C�

We call the rules S�� C�� C��� R� and E� nondeterministic rules� since they can be applied
in di�erent ways to the same G
C� All other rules are called deterministic rules� We call a
con
guration state G
C clash�free if C does not contain a constraint s  	�

The behaviour of the calculus can be described as follows� The set G contains the current
�goals�� whereas C contains the description of the current partial con
guration� We start
with G � S and C � � and eventually end up with a complete G
C with G � �� If fs  	g
is not part of C then C contains a representation of a basic interpretation C given by
constraints of the form  r��s�� s  S� sft� with r� S basic� such that �C is a model for D�
�
S and I�

But there is more in C� There is a representation of �C in form of constraints r��s�� s  S�
with arbitrary r� S� and negative information of the form s � �� t� s  p�� s  
S� The latter
is used to 
nd clashes� the former and the s �

�
� t�constraints are used to determine whether

a denial� forward rule or de
nite clause is active� The former is redundant in the sense that
it can be computed from the basic constraints and D� There are also constraints of the
form s  D and spt in C� They are necessary in order to avoid applying rules like S� or F�
in
nitely many times� One could think about changing the de
nition of con
guration state
to G
C
E
N 
D to denote goals� basic information� extension information� negative infor�
mation and information about descriptions or to G
C
R to denote goals� basic information
and rest� But we think�since the membership to a group is uniquely determined�the
chosen notation is the best�

Now we want to discuss the di�erent groups of rules�

The deletion rule deletes already reached goals� It prevents us from doing things twice�

The sort rules make explicit the membership of elements to sorts and the sort conditions
de
ned in I� Rule S� is nondeterministic in the sense that it makes a hypothesis about
the subclass an element in the superclass belongs to� Here it is important that every class
is the union of its subclasses� Rule S� has an abductive character because it abduces an
element from a basic sort�

The constraint rules handle the constraints imposed on elements by the sort conditions
in I and by the speci
cation S� They simplify the constraints until either an obvious

�	



contradiction is reached �s  	 � C� or one can easily come to an interpretation which
satis
es all these constraints� The last three rules handle concrete domain atoms� They
assure that in a complete and clash�free con
guration state G
C every concrete domain
atom that appeared in G is true with the current cd�substitutions� Rule C� handles the Or�
nondeterminism� rule C�� the nondeterminism introduced by multiple solutions of concrete
predicates�

The relational rules make explicit the relational knowledge de
ned in Rel� Rule R� is non�
deterministic because there can be di�erent de
nite clauses in D which ful
l the condition�
Rule R� is an abductive rule in the sense that it abduces the validity of the basic relation
r��s�� Rule R� shows the necessity for the variables on the left hand side of a de
nite clause
to be a subset of those on the right hand side� Otherwise this rule could be applied in
nitely
many times�

The denial and the forward rule assure that all constraints imposed by denials and forward
rules in I are ful
lled in a complete and clash�free con
guration state�

The equation rule is necessary to make all separations of elements and all identi
cations
explicit in order to be able to use the separations in the antecedents of denials� forward
rules and de
nite clauses�

A variant of this calculus is usable as a con�guration checker� With input D� I� S and
C it determines whether C is a valid con
guration w�r�t� D� I and S� We start with the
con
guration state S
C� First we apply the rules S� and R�� Now we have a complete
representation of �C in C� The absence of positive information now means the presence of
negative information� Therefore� we can decide the validity of arbitrary constraints� not
only of simple ones� We can check now all integrity constraints in I for validity� If they are
all valid� we use the following rules in order to �deconstruct� constraints and 
nd clashes
S�� S�� C� to C�� C�� to C�� and C��� Instead of C�� we take a rule which deletes P ��a�
from G if P ��a� is true� Since we use a nondeterministic rule �C��� we have to follow several
pathes� If no more of the above rules is applicable� we use D� to delete goals� The input
C is a valid con
guration w�r�t� D� I and S if and only if G is empty after this deletion
process and C contains no clash in atleast one of the pathes�

Notice that this calculus is designed for conceptual purposes� It is not intended as a
speci
cation for an implementation� Before implementing it� some further considerations
are necessary� Two of the main points are strategy and control� In particular one has to
think about the application of the nondeterministic rules� If possible they should be applied
only in situations where enough information is available to use them deterministically�
Sophisticated heuristics and suitable methods from Constraint Logic Programming like
forward checking and look ahead �see �Van���� are necessary in order to get a system of
pratical relevance�

Furthermore� in an implementation it might be unnecessary to make all the information
explicit� For example the extension of C could remain implicit� Then an inference step for
deciding whether formulas are active or not would be necessary�
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��� Properties of the Calculus

Now we come to some formal propositions about the calculus� First we want to mention
that in a complete con
guration state there are no more goals left�

Lemma �
� Let G
C be a complete� clash�free con�guration state� Then G � ��

Proof� �Sketch� By contradiction� Assume there is a formula F in G� Analyzing the
possible forms of F will lead to a contradiction to the completeness of G
C in every case�

The application of the rules is model preserving in the following sense�

Proposition �
� �Invariance� Let G
C� G�
C � be two con�guration states� Then


�� If G�
C � is obtained from G
C by application of a deterministic rule� then �
�GC�
D  I has a model if and only if �
�G�  C �� D  I has a model�

�� If G�
C � is obtained from G
C by application of a nondeterministic rule� then �
�G 
C�  D  I has a model if �
�G�  C ��  D  I has a model� Furthermore� if a

nondeterministic rule applies to G
C� then it can be applied in a way that it yields a

G�
C � such that �
�G  C� D  I has a model if and only if �
�G�  C �� D  I has
a model�

This proposition can be shown by a tedious analysis of all the rules�

Now we consider the structure C extractable from a complete and clash�free G
C� We show
that there are correspondences between semantical and syntactical properties� Notice that
a �C�assignment � describes also a syntactical renaming where every term s is renamed by
��s�� With ��s���s��F we denote the formula that we obtain from F if we replace every free
occurence of a term si in F by ��si� with i � ���n and �s � s�� � � � � sn�

Lemma �
� Let G
C be complete and clash�free� Let �C be the extension of the basic

interpretation C extracted from C� Let � be a �C�assignment� � be a simple constraint

formula� F an antecedent of a de�nite clause� a denial or a forward rule� Then the following

holds


�� � satis�es r��s� i� ��s���s��r��s� � C

�� � satis�es � i� ��t���t��� is active in C with �t the terms in �

	� � satis�es F i� ��t���t��F is active in C with �t the terms in F

�� s � D

C if s  D � C

� s � S

C i� s  S � C

This lemma can be shown by an analysis of the involved formulas and descriptions�

The next theorem states the main result of this section� the correctness of the calculus�
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Theorem �
� �Correctness� Let G
C be complete and clash�free� Then there exists a

model for D� I and �
S�

Proof� �Sketch�� The extension �C of the basic interpretation C extracted from C is
a model of D� I and �
S� To see this� consider the following� �C is a model of D by
de
nition� In order to show that C is a model of I one has to show that every sort
condition� every denial and every forward rule is valid in �C� Sort conditions are inclusion
and disjointness axioms� To show that an inclusion axiom S v D is valid� one has to show

that S

C � D


C� Assume s � S

C� With Lemma ��� we have s  S � C� Then s  D � C

since G
C is complete and with Lemma ��� s � D

C� The proof for a disjointness axiom is

analogous� For the forward rule one has to show that every �C�assignment �� which satis
es
the antecedent� satis
es the succedent too� Let � satisfy R��s� $ �� Then� according to
Lemma ��� ��s���s��R��s� $ � is active in C� Since G
C is complete� the rule has �
red�
and therefore � satis
es ��y Q��s� �y� $ 
� The proof for a denial is analogous� As last point
one has to show that �C is a model for �
S� Consider the �C�assignment �C de
ned by
�C�s� � s� An analysis of the structure of the formulas in C shows� that �C satis
es C�
Since we start with the system S
�� �C satis
es S too�

	 Conclusion

In this paper we have given a logic based formalisation of con
guration� We conceive a
con
guration problem as the task to construct for a given speci
cation� which is understood
as a 
nite set of logical formulas� a model that satis
es the speci
cation�

The language in which con
guration problems are speci
ed allows one to express three
kinds of knowledge knowledge about constraints� taxonomies� and rules� The integration
of these di�erent representation languages uses the integration schemes of concrete domains
in concept languages and of constraint logic programming�

We have described a calculus by which one can compute solutions to con
guration prob�
lems if they exist and that allows one to recognize that a speci
cation is inconsistent� In
particular� the calculus can be used in order to check whether a given con
guration satis
es
the speci
cation�

The calculus consists of a set of rules that stepwise try to transform a speci
cation into a
con
guration� It displays a relatively high number of rules� The advantage gained from this
fact is a high �exibility in imposing strategies that specify when to apply which rule� More�
over� based on this calculus one can devise procedures that are incomplete in a controlled
way by modifying certain rules or by not applying them at all�

The rules come in two variants� deterministic and nondeterministic ones� Of course� in an
actual implementation it will be important to avoid nondeterminism whenever possible�
This can partly be achieved by preferring a deterministic step to a nondeterministic one
whenever there is an alternative� Moreover� it might often be the case that by giving priority
to deterministic rules enough information is generated so that a nondeterministic rule can
only be applied in one way without immediately leading to an inconsistency�

Still� there are certain shortcomings� Since the calculus essentially tries to construct a
model� it will run forever if it is given a speci
cation that has in
nite but not 
nite models�

��



Moreover� also when given a speci
cation that has a 
nite model� this will only be found
by a fair strategy� that is� a strategy that does not delay an applicable rule in
nitely long�
Finally� since in an implementation one probably will not want to do exhaustive search� an
actual system based on the ideas of constructive problem solving might be incomplete for
pragmatic reasons� Whether these are serious drawbacks or not will be an open question
as long as our approach is not tested on problems arising in practice�

The next steps to be taken in this research is to express serious examples with our language�
If this succeeds one has to elaborate strategies for applying the calculus� which can be done
along the ideas discussed above� Of course� in order to do so it is crucial to study the
behaviour of the calculus when it is confronted with substantial examples�
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