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Abstract

In this paper an extension to index-based subgraph matching is proposed. This extension signif-
icantly speeds up the indexing time for graphs where the nodes are labeled with a rather small
amount of different classes. Furthermore, the needed storage amount is significantly reduced.
In order to reduce the complexity, we introduce a weight function for labeled graphs. Using
this weight function, a well-founded total order is defined on the weights of the labels. Inver-
sions which violate the order are not allowed. A computational complexity analysis of the new
preprocessing is given and its completeness is proven. Furthermore, in a number of practical
experiments with randomly generated graphs the improvement of the new approach is shown.
In experiments performed on random sample graphs, and on real-world datasets. The number
of permutations for the real-world datasets have been decreased to a fraction of 10−5 and 10−8

in average compared to the original approach by Messmer. The novel indexing strategy makes
indexing of larger graphs feasible, allowing for fast detection of subgraphs.
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Graphs play a major role in structural pattern recognition. An important task in this field is to find
similar structures (error-tolerant graph matching) or the same structure (exact graph matching).
The focus of this paper is on the latter task, which is important if exactly the same sub-structure
needs to be retrieved.

Exact graph matching is needed when the user searches for specific constellations in molecules [1],
in computer vision for the recognition of 3-D objects [2, 3], shape matching in image analy-
sis [4, 5], or room-constellations in floor plans [6]. In most applications, the retrieval result
should be available in real-time and the database of reference structures does not change too
often. For those situations it is advisable to build an index of the reference structures in advance.

Such a method has been proposed by Messmer et al. [7]. It builds an index using the permu-
tated adjacency matrix of the graph. The real-time search is then based on a tree based search.
While the method has shown to be efficient for reference set with small graphs, it is infeasible
for graphs with more than 19 vertices.

This paper proposes a method to overcome this problem. Assuming that the number of labels
for the nodes is relatively small, we introduce a well-founded total order and apply this during
index building. This optimization decreases the amount of possible permutations dramatically
and allows building indexes of graphs with even more than 30 vertices.
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Note that a preliminary version of this paper has been published in [8]. However, the focus
of [8] was on a short description of the approach and first experiments on random graphs. This
paper elaborates more on the algorithm, its validity and its complexity. Furthermore, additional
experiments have been performed new experiments on random graphs with 100-150 vertices.
Moreover experiments on two real-world databases, i.e., the AIDS Antiviral Screen Database of
Active Compounds [9] and the Mutagency database [10] have been accomplished .

The rest of this paper is organized as follows. First, Section 1 gives an overview over related
work. Subsequently, Section 2 introduces definitions and notation which are used and Section 3
describes the new preprocessing step. Next, Section 4 shows that the number of computational
steps is significantly decreased on random graphs as well as on realistic databases. Finally,
Section 5 concludes the work.

1. Related Work

In [11, 12], a survey of the work done in the area of graph matching is given. Conte et al. [11]
defines two taxonomies, one which almost contains all the graph matching algorithms proposed
from the late seventies, and describes the different classes of algorithms. The second considers
the types of common applications of graph-based techniques in the Pattern Recognition and
Machine Vision field. Using this taxonomy, our approach can be assigns to exact matching, as it
is a modified version of Messmer’s method [7] which is assign to this category.

The focus of Goa et al. [12] is the calculation of error-tolerant graph-matching; where calcu-
lating a graph edit distance (GED) is an important way. Mainly the GED algorithms described are
categories into algorithms working on attributed or non-attributed graphs. Ullman’s method [13]
for subgraph matching is known as one of the fastest methods. The algorithm attains efficiency
by inferentially eliminating successor nodes in the tree search. To filter unmatched graphs,
enumerated paths are used as index features in GraphGrep [14]. While TreePi [15] and FG-
Index [16] use frequent subtrees/subgraphs as index features, GIndex [17] uses discriminative
frequent fragments to improve filtering and reduce index size. GString [18] reduces the problem
of graph querying to subsequence matching. A graph decomposition based approach is taken
in Williams et al. [19] to hash canonical subgraphs for fast accessing. A similar approach is
taken in SAGA [20] in which answers are generated by assembling hits of enumerated fragments.
In [21], a new data model for the storage and management of graph objects has been proposed.
It relies on the idea of structural unification, a novel graph representation based on minimum
structures, and an indexing mechanism for storing minimum graph structures.

Bunke [22, 23] discussed several approaches in graph-matching. One way to cope with
error-tolerant subgraph matching is using the maximum common subgraph as a similarity mea-
sure. Furthermore the application of graph edit costs which is an extension of the well-known
string edit distances. A further group of suboptimal methods are approximative methods, they
are based on neural networks [24], such as the Hopfield network, Kohonen map [25] or Potts
MFT neural net. Moreover methods as genetic algorithms [26, 27], Eigenvalues [28], and linear
programming [29] are used.

Recently, He and Singh proposed GraphQL as a query language for graphs [30]. GraphQL
assumes an underlying optimization based on prudent access structures and cost model. Graph
matching is challenging in presence of large databases [6, 23, 31, 32]. Consequently, methods
for preprocessing or indexing are essential. Preprocessing can be performed by graph filtering
or concept clustering. The main idea of the graph filtering is to use simple features to reduce the
number of feasible candidates. Another concept, clustering, is used for grouping similar graphs.
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In principle, given a similarity (or dissimilarity) measure, such as GED [33], any clustering
algorithm can be applied. Graph indexing can be performed by the use of decision trees.

Messmer and Bunke [7] proposed a decision tree approach for indexing the graphs. They
are using the permutated adjacency matrix of a graph to build a decision tree. This technique
is quite efficient during run time, as a decision tree is generated beforehand which contains all
model graphs. However, the method has to determine all permutations of the adjacency matrices
of the search graphs. Thus, as discussed in their experiments, the method is practically limited
to graphs with a maximum of 19 vertices. The main contribution of this paper is to improve the
method of Messmer and Bunke for special graphs by modifying the index building process.

2. Definitions and notations

In this section some basic definitions are given which will be used throughout the paper.

Definition 1. A labeled graph is a 6-tuple, G = (V, E, Lv, Le, µ, υ), where

• V is a set of vertices,

• E ⊆ V × V is a set of edges,

• Lv is a set of labels for the vertices,

• Le is a set of labels for the edges.

• µ : V → Lv is a function which assigns a label to the vertices,

• υ : E → Le is a function which assigns a label to the edges.

The labels Lv set is a finite set and the labeling function µ assigns the type of an entity to a
concrete vertex.

A common representation for a labeled graph is an adjacency matrix.

Definition 2. An adjacency matrix is n × n matrix M.

M = (mi j), i, j = 1, ..., n, where

mii = µ(vi)

and
mi j = υ((vi, v j)) for i , j.

Figure 1 shows an example illustration of a graph and a possible corresponding adjacency matrix.
Furthermore, the so called row-column representation is given. In a row-column representation
the matrix is represented by its row-column elements ai, where ai is a vector of the form

ai = (m1i,m2i, ...,mii,mi(i−1), ...,mi1).

The following definition for the subgraph is given by:

Definition 3. Given a graph G = (V, E, Lv, Le, µ, υ), a subgraph of G is a graph G’ = (V’, E’,
µ’, υ’, Lv’, Le’) such that
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Figure 1: Row-column representation of an adjacency matrix

1. V’ ⊆ V
2. E’ = E ∩ (V’ × V’)

3. µ’(v) =

{
µ(v) if v ∈ V ′

undefined otherwise

4. υ’(e) =

{
υ(e) if e ∈ E′

undefined otherwise

Let G = (V, E, Lv, Le, µ, υ) be a graph with V = {v1, v2, ..., vn}. As stated above, G can also
be represented by an adjacency matrix M. Note that the matrix M is not unique for a graph G. If
M represents G, then any permutation of M is also a valid representation of G.

Definition 4. A n × n matrix P = (pi j) is a permutation matrix if

1. pi j ∈ {0, 1} for i,j = 1, ..., n
2.

∑n
i=1 pi j = 1 for j = 1, ..., n

3.
∑n

j=1 pi j = 1 for i = 1, ..., n

Let G be a graph represented by an n × n adjacency matrix M and P be an n × n permutation
matrix P with PT as the transposed matrix, then the n × n matrix

M′ = PMPT

is also a valid representation of G.

Definition 5. Let G = (V, E, µ, υ, Lv, Le) be a graph, then A(G) is the set of all permuted
adjacency matrices of G,

A(G) = {MP|MP = PMPT where P is a n × n permutation matrix}.

In order to formalize the subgraph isomorphism, we can first define the isomorphism as
follows:

Definition 6. Let G1 and G2 be two graphs and M1 and M2 their corresponding adjacency
matrices. G1 and G2 are isomorphic if there exists a permutation matrix P, such that

M2 = PM1PT
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So, the permutation matrix P can be considered as a bijective function f that maps vertices
of G1 to G2, and vice versa. Thus finding a graph isomorphism between G1 and G2 is equivalent
to finding a permutation matrix P for which Definition 6 holds true.

Definition 7. Given two graphs G1 and G2, there is subgraph isomorphism from G1 to G2 if
there exists a subgraph S ⊂ G2 such that G1 and S are isomorphic.

In order to compare two adjacency matrices with different dimensions, a notation S k,m(M) is
required which reduces the dimension of the matrix.

Definition 8. Let M = (mi j) be a n × n matrix. Then S k,m denotes the k × m matrix that is
obtained from M by deleting rows k + 1,..., n and columns m + 1,...,n where k,m ≤ n. That is,
S k,m(M) = (mi j); i = 1,...,k and j = 1,...,m.

Let G1 and G2 be graphs with their adjacency matrices M1 and M2 of dimension m × m and
n× n and m ≤ n. The problem of finding a subgraph isomorphism from G1 to G2 is equivalent to
finding a n × n permutation matrix P such that

M1 = S m,m(PM2P).

Besides, we need a definition for orders on sets.

Definition 9. A partial order is a binary relation ≤ over a set P which is reflexive, anti-symmetric
and transitive, thus for all a, b and c in P, it holds that:

• a ≤ a (reflexivity);

• if a ≤ b and b ≤ a then a = b (anti-symmetry);

• if a ≤ b and b ≤ c then a ≤ c (transitivity).

Definition 10. A total order is a binary relation≤ over a set P which is transitive, anti-symmetric,
and total, thus for all a, b and c in P, it holds that:

• if a ≤ b and b ≤ a then a = b (anti-symmetry);

• if a ≤ b and b ≤ c then a ≤ c (transitivity);

• a ≤ b or b ≤ a (totality).

Definition 11. A partial or total order ≤ is well-founded,

iff (∀ Y ⊆ X : Y , ∅ → (∃y ∈ Y : y minimal in Y in respect to ≤)).

Additionally to the previous definitions, a weight function is defined which assigns weight to
a label.

Definition 12. The weight function σ is defined as: σ : Lv → N.

Using the weight function, a well-founded total order can be defined on the labels of the
vertices, for instance σ(L1) < σ(L2) < σ(L3) < σ(L4). Thus the labeled graph can be extended
in its definition.
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Definition 13. An ordered labeled graph consists of a 7-tuple, G = (V, E, Lv, Le, µ, υ, σ), where

• V is a set of vertices,

• E ⊆ V × V is a set of edges,

• Lv is a set of labels for the vertices,

• Le is a set of labels for the edges,

• µ : V → Lv is a function which assigns a label to the vertices,

• υ : E → Le is a function which assigns a label to the edges,

• σ : Lv → N is a function which assigns a weight to the label of the vertices,

and a binary relation ≤ exists which defines a well-founded total order on the weights of the
labels:

∀x, y ∈ Lv : σ(x) ≤ σ(y) ∨ σ(y) ≤ σ(x)

After having introduced the basic definitions, we can use them for the further description and
analysis of the algorithm.

3. Algorithm

3.1. Messmer algorithm

In [7], Messmer and Bunke proposed an index-based algorithm. Their method computes all
permutations of the adjacency matrices and transforms them into a decision tree. During run-
time, the adjacency matrix of the query graph is split into its row-column vectors. These vectors
are now used to traverse the decision tree and find the adjecency matrix which contains this
sub-structure.

Let G = (V, E, Lv, Le, µ, υ) be a graph from the graph database and M the corresponding n×n
adjacency matrix and A(G) the set of permuted matrices. The total number of permutations is
|A(G)| = n!, where n is the dimension of the permutation matrix, respectively the number of
vertices.

Now, let Q = (V, E, Lv, Le, µ, υ) be a query graph and M′ the corresponding m ×m adjacency
matrix, with m ≤ n. If a matrix MP ∈ A(G) exists, such that M′ = S m,m(MP), the permutation
matrix P which corresponds to MP represents a subgraph isomorphism from Q to G, i.e

M′ = S m,m(MP) = S m,m(PMPT ).

Messmer proposed to arrange the set A(G) in a decision tree, such that each matrix in A(G)
is classified by the decision tree. Figure 2 shows an example of the decision tree built from the
permuted adjacency matrices for a graph.

Unfortunately, this approach has one major drawback. For building the decision tree, all
permutations of the adjacency matrix have to be considered, thus the complexity for compiling
an index for a graph G For a graph with more than 19 vertices the computational effort becomes
intractable.
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Figure 2: Decision tree for adjacency matrices
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3.2. Novel algorithm

In this section, we propose a novel approach to constraint the permutation, in order to overcome
the previous mentioned issue. By limiting the number of permutations larger graphs can be
considered for the indexing and also the decision tree becomes more sparse.

First, a weight function σ (see Definition 12) is introduced which assigns a weight to each
vertex according to its label. So each label has a unique weight and a well-founded total order
(see Definition 10 and Definition 11) on the set of labels which reduces the number of allowed
inversion for the adjacency matrix. Figure 3 illustrates the modified matrices and the correspond-
ing decision tree for the example in 2. There the highlighted numbers (in red) indicate violations
of the ordering (see below) if the following weights for the nodes are considered:

Lv ={A, B,C,D}

σ(A) = 1,
σ(B) = 2,
σ(C) = 3,
σ(D) = 4.

No inversion that violates the ordering is allowed. Hence, just the vertices which have the
same label, respectively the same weights, have to be permuted and if the labels have a different
weight, just the variations are required. Given the graph illustrated in Fig. 2, the following labels
are assigned to the vertices,

V ={V1,V2,V3}

µ(V1) = A,

µ(V2) = B,

µ(V3) = B.

Hence, the only valid permutations are:

1. σ(µ(V1)) ≤ σ(µ(V2)) ≤ σ(µ(V3))
2. σ(µ(V1)) ≤ σ(µ(V3)) ≤ σ(µ(V2))
3. σ(µ(V2)) ≤ σ(µ(V3))
4. σ(µ(V3)) ≤ σ(µ(V2))

Let VA(G) be the set of all valid permutations. The decision tree is built according to the row-
column elements of the adjacency matrices MP ∈ VA(G).

The decision tree should cover all graphs from the repository. So, let R be the set of graphs
R = {G1,G2, ...,Gn}, where n is the total number of graphs in the repository, with their sets of
corresponding adjacency matrices VA(G1), VA(G2), ..., VA(Gn). Now, each set of adjacency
matrices has to be added to the decision tree. As a result for this very small graph, instead of 6
permutations only 4 are need and for the resulting decision tree the number of nodes are reduced
from 12 to 6. The following Section 3.3 will provide a short discussion on the retrieval algorithm
and Section 3.4 will prove, that even with this reduction the method is still complete and finds
all solutions.
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Figure 3: Modified decision tree for adjacency matrices
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3.3. Retrieval Algorithm

The a priori computed decision tree acts as an index for subgraphs. So, during run-time the deci-
sion tree is loaded into memory and by traversing the decision tree, the corresponding subgraph
matrices are classified. For the query graph Q the adjacency matrix M is determined following
the constraints defined by ordering. Afterwards the adjacency matrix is split up into row-column
vectors ai. For each level i of the decision tree the corresponding row-column vector ai is used to
find the next node in the decision tree using an index structure. The pseudo code of Algorithm 1
displays how the results are retrieved by traversing the tree and Figure 4 provides an illustration
of a sample query.

Algorithm 1 RETRIEVAL(Q = (V, E, µ, υ, σ, Lv, Le), Tree)

Require: Unsorted set V of vertices, µ labeling function, σ weight function
1: sort(Q, Lv, µ, σ)

Ensure: Vertices V are sorted according to the defined order.
2: Let R be an empty sorted set which will contain all results.
3: Determine adjacency matrix M from graph Q.
4: Determine row-column list RCL from M.
5: for i← 1 to |RCL| do
6: Let mi be the match of row-column vector ai ∈ RCL in tree at leveli.
7: if mi is empty. then
8: return �
9: end if

10: end for
11: Add graphs assigned to leafs of search path to R.
12: return R.

The retrieval algorithm solves the exact subgraph matching problem in O(|Vq|), where Vq are
the vertices of the query graph Q. Furthermore, with modifications using backtracking techniques
it is possible to find a maximum common subgraph (MCS) [31] to realize some kind of inexact
graph matching. However, this is not the focus of this paper and might be investigated in future
work.

3.4. Proof of Completeness

For the proposed modified algorithm it has to be proven that the algorithm finds all solutions.
The algorithm elaborated in the previous section reduces the number of valid permutations. So,
it has to be shown that by leaving out permutations, no valid solution is lost.

Let G = (V, E, Lv, Le, µ, υ, σ) be a well-founded total ordered graph and let A(G) be the set
which contains all valid permutations of the graph’s adjacency matrices. To be complete, the
algorithm must find a solution if one exists; otherwise, it correctly reports that no solution is
possible. Thus if every possible valid subgraph S ⊆ G, where the vertices of S fulfill the order,
every corresponding adjacency matrix M has to be an element of the set A(G), M ∈ A(G).

For this reason to proof that the algorithm is complete it has to be shown that the algorithm
generates all valid subgraphs S ⊆ G. Therefore the pseudo code of Algorithm 2 shows how the
index is build. Algorithms 4 and 5 are helper functions for calculating all variations of the set of
vertices in an interval.

10



AB
v2v1

1

2 3

4

6

B2

2

0

1

BA

B0

1

B2

2

5

{ M1, M2 }

{ M3', M4' }

A

B

1

0

A

B0

1

a
1

a
2

a
1

a
2

= (A)

= (0, B, 1)

v1

v2

v1v2

a
1

a
2

Figure 4: Retrieval using the new decision tree.

Algorithm 2 BUILD INDEX(G = (V, E, Lv, Le, µ, υ, σ), Tree)

Require: Unsorted set V of vertices, µ labeling function, σ weight function.
1: sort(V, Lv, µ, σ)

Ensure: Vertices V are sorted according the defined order.
2: Let O be an empty list.
3: for all li ∈ LV do
4: Let interval {va, . . . , vb} contain all v with µ(v) = li
5: Oi ← VARIAT IONS ({va, . . . , vb})
6: end for
7: Let AG ← O1 × . . . × O|Lv|.
8: for all mi in AG do
9: Add row column vector for sequence of mi to Tree.

10: end for
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The generation of the index starts with an unsorted set of vertices. By sorting the vertices
with their associated labels using the well-founded total order, the set is ordered according the
weights of the labels.

Now, the algorithm iterates over all intervals of vertices {va, ..., vb} where the labels have the
same weights, σ(µ(va)) = σ(µ(vb)). For each interval {va, . . . , vb}i all variations with respect to
the order have to be determined. These variations are computed in Algorithm 3, by determining
all combination of the interval {va, . . . , vb}i including the empty set and calculating all permu-
tations for these combinations. Algorithm 4 and Algorithm 5 realize the algorithm proposed
by Rosen [34] which computes all permutations for a defined interval. It has been proven that
Rosen’s algorithm computes all permutations.

Algorithm 3 VARIATIONS({va, . . . , vb})

Require: Sorted set V = {va, . . . , vb} of vertices, a ≤ b.
1: Let O be an empty list.
2: Determine all combinations C for {va, . . . , vb} including the empty set.
3: for all c in C do
4: Call PERMUT E(c, 0, |c|,O).
5: end for
6: Return O.

Algorithm 4 PERMUT E(V, begin, end,R)

Require: Sorted set V of vertices and begin < end, with Vend−1 being last the element.
1: Adding sequence of vertices V to R.
2: for i← end − 2 to begin do
3: for j← i + 1 to end − 1 do
4: Swapping position i and j in V.
5: Call PERMUT E(V, i + 1, end,R).
6: end for
7: Call ROT AT E(V, i + 1, end,R).
8: end for

Algorithm 5 ROT AT E(V, begin, end,R)

1: Let temp← Vend−1.
2: Shift elements in V in from position begin to end − 1 one position right
3: Set Vbegin ← temp.
4: Add sequence of vertices V to R.

In combinatorial mathematics, a k-variation of a finite set S is a subset of k distinct elements
of S . For each chosen variation of k elements, where k is Linterval = length of interval; k =

1 . . . Linterval, again all permutations have to be considered.
Now, assuming there would be a valid subgraph Q = (V ′, E′, L′v, L

′
e, µ, υ, σ), respectively

the according adjacency matrix A which depends on the alignment of the vertices. To be a
valid subgraph according to Definition 3, V ′ has to be a subset of V , V ′ ⊆ V . Furthermore the
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alignment of the vertices V ′ according to their labels has to fulfill the defined order, σ(µ(vi)) ≤
σ(µ(vi+1)). For the alignment the intervals {v′a, . . . , v

′
b} ∈ V ′ where the weights of the labels have

the same value σ(µ(v′a)) = σ(µ(v′b)) are important as they can vary. The Algorithm 3 determines
all variations for intervals with the same weights for labels, thus the alignment {v′a, . . . , v

′
b} is

considered.
This holds for each interval, thus algorithm produces all valid permutations according the

well-founded total order. As the query graph Q also has to fulfill the order, its adjacency matrix
A will be an element of A(G), if Q is a valid subgraph of G. Thus, the solution will be found in
the decision tree.

3.5. Complexity Analysis
The computational complexity analysis discussed in this section will be based on the follow-

ing quantities:

N = the number of graphs in the graph database,
M = the maximum number of vertices of a graph in the graph database,

Mv = the number of vertex labels for a graph in the graph database,
I = the number of vertices in the query graph,

lv = the number of vertex labels.

The original algorithm by Messmer [7] as well as the proposed algorithm need an intensive
preprocessing, the compilation of the decision tree. Messmer’s method has to compute all per-
mutations of the adjacency matrix of the graph, thus the compilation of the decision tree for a
graph G = (V, E, Lv, Le, µ, υ, σ) has a run time complexity of

O(|V |!).

For the size of the decision tree Messmer determined the following bounds. The sum of nodes
over all the levels (without the root node) is limited to

O(lv
M−1∑
k=0

(
M
k

)
(le2)k) = O(lv(1 + l2e)M),

and as the decision tree becomes linearly dependent on the size of the database N, the space
complexity of the decision tree is

O(Nlv(1 + l2e)M).

The processing time for the new decision tree compilation algorithm, as Algorithm 2 de-
scribes the new algorithm which compiles the decision tree. The basic idea of the algorithm is
to take all labels Lv with the same weight which occur in the graph and omit their instances. So,
considering the mathematical idea of the algorithm an approximation of the run time complexity
would be:

|Lv |∏
i=1

|{∀v ∈ V |µ(v) = li}|!︸                   ︷︷                   ︸
ni

+

ni−1∑
j=1

(
ni

j

)
· j!

 .
The first term considers the permutations for all labels with the same weight, denoted by ni. The
second term describes the k-variations. As we have to consider the variations from ni − 1 to 1,
the sum is sufficient.
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In order to simplify the equation, we can combine the two terms, as the ni! is equivalent to(
ni
ni

)
· ni! = 1 · ni! = n!, thus we have:

|Lv |∏
i=1

 ni∑
j=1

(
ni

j

)
· j!

 .
Now, let nmax be the maximum number of vertices with the same weight. Then we have the

upper bound of nmax∑
j=1

(
nmax

j

)
· j!

|Lv |

.

A rather imprecise approximation of the sum
∑nmax

j=1

(
nmax

j

)
· j! would be (nmax + 1)!, so the

resulting complexity of the algorithm is

O(((nmax + 1)!)|Lv |)

Thus for the worst case - where all vertices have the same label - nmax = |V |,

O((|V | + 1)!)

which would be worse than the method proposed by Messmer and the best case - where all
vertices have different labels - nmax = 1

O(2|V |)

To find the average case of the algorithm the distribution of the labels in the graph has to be
considered. Thus the average is dependent on the distribution of the data.

4. Experiments

In order to examine the modfied algorithm in practice, we performed experiments on randomly
generated graphs and two real world graph datasets taken from [32]. For the first experiment a
set of random graphs with average sizes of 50, 75, 100, 125, and 150 have been analysed with
each 1000 graphs.

For the second experiment, the AIDS data set was used. It consists of graphs representing
molecular compounds and they are constructed graphs from the AIDS Antiviral Screen Database
of Active Compounds [9]. The molecules are converted into graphs in a straightforward manner
by representing atoms as vertices and the covalent bonds as edges. Nodes are labeled with the
number of the corresponding chemical symbol and edges by the valence of the linkage. For
the third experiment, the Mutagenicity database was used. It is one of the numerous adverse
properties of a compound that hampers its potential to become a marketable drug [10]. In order
to convert molecular compounds of the Mutagenicity data set into attributed graphs the same
procedure as for the AIDS data set is applied. For both databases we choose the chemical symbol
as the label for the vertex and the valence as the label for the edge. For the experiments we have
just taken a subset of the database where the number of vertices are less than 30 in a graph. So,
from the AIDS database we used 1781 graphs and from the Mutagenicity database 2681 graphs.
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Table 1: Run time for compiling the decision tree for each graph

Vertices Same labels Run time Per. Per.
# (max.) (minutes) (modfied) (original)

1 10 4 1.32 × 10−3 1.04 × 104 3.63 × 106

2 11 6 2.62 × 10−2 1.25 × 105 3.99 × 107

3 12 8 4.75 3.51 × 106 4.79 × 108

4 11 9 3.26 × 102 3.95 × 106 3.99 × 107

...
...

...
...

...
135 12 8 1.86 × 101 7.12 × 106 4.79 × 108

� 9.44 5.01 4.67 3.54 × 105 9.3 × 107

During these experiments we only compute the permutations needed for the original algo-
rithm and for the proposed modified version, since this is the main difference of the two al-
gorithms. The permutations for the modified algorithm have been determined according to the
algorithm discussed in Section 3 and the formula in Section 3.5:

|Lv |∏
i=1

 ni∑
j=1

(
ni

j

)
· j!

 .
The original algorithm has to be calculate the permutations for all vertices (|V |! permutations).

In the fourth experiment the time has been measured to add a graph to the decision tree. As
this experiment is quite time-consuming on a desktop machine (Intel R© CoreTM 2 Quad CPU
Q9550 @ 2.83 GHz), only the performance for 135 graphs with less than 12 vertices has been
measured. The graphs have been taken from the AIDS database and the algorithm has been
implemented single threaded in unoptimized Java code 1. The results of the experiment are listed
in Tab. 1.

Further experiments show that the algorithm also significantly reduces the number of permu-
tations for random graphs (see Tab. 2). For average size of graphs we have tested the algorithm
on three sets: The first set of graphs only has different labels; the second set has a limited number
of vertices having the same label; and the labels of the last set were more randomly distributed.
While the number of permutations is significantly reduced, with the current state of the algorithm
still to many permutations are needed for larger graphs. A possible solution is to find a way to
split larger graph into smaller subgraphs and then using the subgraphs for indexing without los-
ing the completeness. Noteworthy, these experiments have just been performed to measure the
hypothetical performance of the algorithm. In the real world data set used below, which fulfill
conditions like having many different label categories, the proposed algorithm can be used for
the exact subgraph isomorphism search for graphs with more than 19 vertices.

Also for the real world data sets we have observed an improvement (see Tab. 3 and Tab. 4).
As the vertices of the molecules in the AIDS database mainly had the same labels - in average 7
out of 11 vertices - there was less improvement than on the Mutagenicity database, where only
10 out of 20 vertices had the same label in average. The average number of permutations needed

1The Java implementation and the IAM Graph Database: AIDS and Mutagenicity are available at: http://www.
dfki.uni-kl.de/~m_weber/subgraph-matching
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has been reduced from 6.1 × 1029 to 2.3 × 1024 on the AIDS database and from 1.7 × 1031 to
1.5 × 1023 on the Mutagenicity database, respectively.

The performance experiment has shown that even on a desktop machine with unoptimized,
single-threaded Java code graphs with up to 12 vertices can be handled without any problem.
Note that the time needed to compile the decision tree is still quite long (even for small problem
instances) as shown in Tab. 1. However, as the method is designed for an off-line preprocessing,
i.e., it would only need to be applied once and then several search operations can be applied very
fast. Furthermore, the compilation could run on a server machine. Running this system on a
multi-core server with optimized parallel code would significantly reduce the compilation time.

5. Conclusion

In this paper an extension for the method of Messmer’s subgraph matching has been proposed.
The original method is very efficient to perform exact subgraph matching on a large database.
However, it has a limitation for the maximum number of vertices. The modification discussed
in this paper enables to increase this limit depending on how the vertices are labeled. As the
number of permutations in the preprocessing step depends on the vertices with the same labels,
an analysis of the data that will be represented in graph is necessary. If there are just a few
vertices with the same label, e.g. less than five, even graphs with 30 vertices can be handled. It
has been proven that the modification of the method does not affect its completeness.

Noteworthy, the proposed method can be applied in several areas, such as object recognition,
matching of 2D or 3D chemical structures, and architectural floor plan retrieval (room connectiv-
ity graphs). Future work will be to research strategies for choosing appropriate weight functions.
Furthermore, we plan to extend this method to provide a fast method for error-tolerant graph
matching and investigate strategies to split larger graph into smaller subgraphs without losing
the completeness of the method. These smaller subgraphs will then be used for indexing.
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Table 2: Results of random graph experiments.

Exp. Same labels Vertices Perm. Perm. Diff. labels
(max.) # (modified) (original) #

1 1 � 50.08 5.7 × 1016 7.2 × 1078 50.08
2 5 � 49.99 2.0 × 1028 8.2 × 1078 10.60
3 10 � 50.04 4.7 × 1039 6.4 × 1078 5.56
4 1 � 75.15 2.0 × 1024 1.6 × 10125 75.15
5 5 � 75.20 7.5 × 1040 1.9 × 10125 15.64
6 10 � 75.10 1.1 × 1056 2.2 × 10125 8.05
7 1 � 100.10 6.6 × 1031 7.4 × 10174 100.11
8 5 � 99.97 2.8 × 1053 8.4 × 10174 20.59
9 10 � 100.05 4.2 × 1074 6.4 × 10174 10.57

10 1 � 125.35 2.4 × 1039 1.1 × 10227 125.35
11 5 � 124.55 7.0 × 1065 7.4 × 10226 25.52
12 10 � 124.84 7.1 × 1090 8.8 × 10226 13.03
13 1 � 150.15 8.1 × 1046 1.7 × 10281 150.15
14 5 � 149.71 3.2 × 1078 1.4 × 10281 30.54
15 10 � 150.00 4.5 × 10109 1.5 × 10281 15.55

Table 3: Results of AIDS graph database experiments.

Graph Vertices Permutations Permutations Same labels
# (modified) (original) (max.)

1 12 3.51 × 106 4.79 × 108 8
2 30 1.52 × 1020 2.65 × 1032 14
3 9 8.45 × 103 3.63 × 105 4
4 22 2.31 × 1013 1.12 × 1021 11
...

...
...

...
...

1781 11 3.43 × 105 3.99 × 107 7
� 11.39 2.3 × 1024 6.1 × 1029 7.14

Table 4: Results of Mutagenicity graph database experiments.

Graph Vertices Permutations Permutations Same labels
# (modified) (original) (max.)

1 28 1.54 × 1021 3.05 × 1029 15
2 19 1.72 × 1010 1.22 × 1017 8
3 23 2.78 × 1016 2.59 × 1022 15
4 14 6.38 × 106 8.72 × 1010 15
...

...
...

...
...

2682 26 1.39 × 1017 4.03 × 1026 11
� 20.7 1.5 × 1023 1.7 × 1031 10.06
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