
Xflow – Declarative Data Processing for the Web

Felix Klein∗

Saarland University
Intel VCI

Kristian Sons†

Saarland University
Intel VCI

DFKI

Dmitri Rubinstein‡

Saarland University
DFKI

Sergiy Byelozyorov§

Saarland University
IMPRS-CS

Stefan John¶

Universität Braunschweig
Philipp Slusallek‖

Saarland University
Intel VCI

DFKI

Figure 1: 3 example applications with Xflow. Each screen shot shows a web page that uses XML3D and Xflow to render real-time 3D
graphics with advanced data processing. The left picture uses multiple instances of mesh interpolation for animation. The middle picture
shows a dynamically generated noise texture. The right screen demonstrates multiple instances of skeletal animations.

Abstract

The Web evolved from a simple information medium to an inter-
active application platform featuring advanced 2D layouts, videos,
and audio. At the same time, support for hardware-accelerated
3D graphics improves continuously even among mobile devices.
Hence, there is a renewed interest in adding interactive 3D graph-
ics to the overall Web experience and therefore a need for high-
performance data processing beyond DOM modifications through
JavaScript. A challenge in adding this functionality to Web tech-
nologies is to close the deep gap between low-level hardware pro-
gramming (e.g. using WebGL or WebCL) and high-level Web de-
velopment with HTML, CSS and JavaScript.

In this paper we present Xflow, a system for declarative, high-
performance data processing. In combination with XML3D, it al-
lows Web developers to combine a 3D scene graph with dataflows.
Our approach is general enough to allow meshes, shaders, texture
samplers and the canvas itself as sink of these dataflows. Thus
it enables data processing e.g. for dynamic meshes, animation of
shader parameters, image processing and post processing. In this
first stage, we define a set of generic building blocks that can be
used to construct more complex operations. This gives a large de-
gree of flexibility, but is still abstract enough to increase ease-of-use
and ensure security. To maximize performance, dataflows are auto-
matically connected to the render pipeline and mapped to both CPU
and GPU, thus harnessing parallelization. In order to evaluate our
system, we have created a number of examples.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional

∗e-mail: f.klein@mx.uni-saarland.de
†e-mail: kristian.sons@dfki.de
‡e-mail: rubinstein@cs.uni-saarland.de
§e-mail: byelozyorov@cs.uni-saarland.de
¶e-mail: john@quantic3d.com
‖e-mail: slusallek@dfki.de

Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques—Languages

Keywords: XML3D, dataflow, visualization, Web3D, WebGL

1 Introduction

It is not just with the arrival of HTML5 that the Web evolved from
a pure information medium to a full-fledged application platform.
HTML is no longer the least common denominator that works the
same on every platform: Browser vendors’ competition moved
from browser gadgets to breadth and speed of support for emerging
Web standards. The continuing migration of desktop applications
to cloud based and hybrid web applications will lead to browser
platforms that have to expose the hardware performance optimally.

This development is expressed in the emergence of new program-
ming and execution models such as Web Workers, River Trail and
WebCL. These approaches expose available hardware functionality
to the Web developers in an imperative way. They will be discussed
in Section 2.1.

Interactive 3D graphics requires a lot of data processing. Well
known use cases are skinning and morphing for the animation of
organic objects, spring-mass systems for the simulation of cloth,

particles for effects such as smoke and fire but also post processing
and image processing in general. These use cases require to run
computation on large arrays of uniform data on a frame by frame
basis. For 3D graphics in the browser’s DOM [Behr et al. 2009;
Sons et al. 2010], recalculation of the data via JavaScript is too slow
(c.f. Section 7). Thus, we were looking for an approach that is suit-
able for most of the use cases, can expose the hardware capabilities
optimally, and is still easily usable for Web developers.

With Xflow we present a new declarative approach to data pro-
cessing. Actually Xflow is applicable to all domains that require
processing of large data sets in the DOM. In this paper we limit
ourselves to the usage of Xflow in the context of XML3D. Though
XML3D as presented in [Sons et al. 2010] did not include dynamic
meshes, this feature was planned from the beginning and has finally
been integrated in version 0.4. The new design not only allows the
definition of dataflows for data processing. It allows to compose
data structures in a granular and easy to understand way with the
possibility to reference data from external resources. This new data
structure maps optimally to modern graphics API features such as
the OpenGL Vertex Array Objects.

2 Related Work

In this section we discuss recent approaches to expose hardware ca-
pabilities to web developers in an imperative way. Then we discuss
classical dataflow systems and the combination of scene graphs
with a dataflow. We show related approaches in COLLADA and
X3D and finally a dataflow approach for 2D image processing in
SVG.

2.1 Imperative Approaches for the Web

JavaScript has originally not been designed to express parallel ex-
ecution programming. Recently a series of projects emerged, that
aim to tackle this limitation.

The draft specification Web Workers [World Wide Web Consortium
2012] defines an API that allows running scripts in the background
independently of any user interface scripts. Web application au-
thors can launch a Worker thread that runs in a separate parallel
execution environment and communicates with the main thread via
message passing. This API exposes multi-threading capabilities of
the hardware. The specification emphasizes that Workers have a
high start-up performance cost, and a high per-instance memory
cost and thus should only be used for larger calculations.

The Intel project River Trail [Herhut et al. 2012] extends JavaScript
by simple data-parallel constructs to expose multi-core capabilities
as well as SIMD instructions to the Web author. The central data
structure is the ParallelArray. It takes an array-like object, e.g. a
JavaScript Array or Typed Array, as input data and provides meth-
ods such as map or reduce. These methods take a function as pa-
rameter. This function gets executed on the arrays in parallel. The
aim of River Trail is to reach a low start-up performance cost such
that it is worth to use the parallel data structures even for smaller
computations. Since the functionality of the ParallelArray is clearly
defined, the hardware capabilities can be exposed in a safe way.

WebCL [Khronos Group 2012] is a JavaScript binding to OpenCL
defined by the Khronos group. OpenCL [Khronos Group 2011]
is a language and low-level-API to harness GPU and multi-core
CPU parallel processing. Providing this functionality through a
JavaScript API comes with all the pros and cons known from
WebGL: WebCL is a low-level API with a high entry barrier for
Web application authors. It exposes the hardware capabilities very
directly, thus it can be very efficient and flexible. But this also

means that security issues need to be solved. The security issues
are even more critical compared to WebGL, because OpenCL has
very direct access to memory e.g. through pointers.

The three imperative approaches expose multi-core e.g. multi-
parallel hardware capabilities on different abstraction levels to the
Web author. They are not directly comparable to declarative ap-
proaches such as Xflow and both can exist next to each other. One
could say, Xflow is to XML3D what WebCL is to WebGL. Apart
from that, we can use these techniques to implement a JavaScript
prototype of Xflow.

2.2 Dataflows

Dataflow is a term in computing, that is used for hardware archi-
tectures (e.g. [Dennis and Misunas 1975; Khailany et al. 2001]).
Derived from these architectures, dataflow programming describes
a program as a network of operators that forward data to each other,
where each operator is run once all of its input data from other op-
erators is available. This paradigm fits well for modern multi- and
many-core hardware offering various options for thread- and data-
level parallelism. Dataflow software architectures can be found in
various domains, in particular for multimedia processing [Black
et al. 2002; Microsoft 2012].

2.2.1 Dataflows in Scientific Visualization

The combination of dataflow algorithms with computer graphics
has a long history. The central architecture of systems such as
AVS [Upson et al. 1989], Data Explorer [Lucas et al. 1992], and
VTK [Schroeder et al. 1996] are build around user configurable
dataflows networks, often editable via some user interface. These
visualization systems are typically designed to work with a large
amount of input data from a discrete simulation or from sensor
data. After a filtering step, in which the data is e.g. converted and
sampled, there is a mapping to a graphical representation, which is
finally presented to the user. The steps before the rendering can re-
quire computation time due to the large amount of input data. Visu-
alization is usually an iterative process, e.g. changing the time step
in the input data often triggers recalculation of the whole graph.

The input data of a graph node is often an abstract type and the
algorithm is branched inside the node depending on the actual data.
This makes it very difficult to globally optimize the data flow and
to merge operations. Thus the classical system typically leverage
hardware acceleration only locally on a node by node basis.

Though there are approaches to control the workflow and show
the results of the dataflow in the web browser [Jomier et al. 2011;
Niebling et al. 2010], the scientific visualization systems are not
designed to perform dataflow calculations on the client-side in the
browser. Also, the objective of Xflow is different: Xflow is de-
signed for real-time processing. Many processing steps will be ex-
ecuted on a frame by frame basis.

Having said that, there are also many similarities and we consider
lightweight scientific visualization for the Web as one important use
case for Xflow.

2.2.2 Dataflow in Open Inventor

CashFlow [Kalkusch and Schmalstieg 2006] is a dataflow extension
to the OpenInventor [Strauss and Carey 1992]-compatible scene
graph framework. CashFlow, in contrast to Xflow, uses Open-
Inventor traversal concepts instead of direct connections between
processing and visualization nodes. It stores processed data in the
traversal state, making the dataflow order a side-effect of a traversal
order used to render a scene. Nodes that manipulate traversal state

influence the rendering result. For example separator nodes keep
changes of the processed data local to all children of a separator.
Without a separator, changes are applied to all nodes visited in the
traversal order after the data are changed. This makes the job of a
scene author difficult as he needs to carefully place dataflow nodes
into the scene, so when visited by a scene graph traversal they pro-
duce desired effect. With Xflow, the author designs the dataflow
by connecting dataflow nodes, and Xflow takes care that they are
processed in a correct way.

2.3 COLLADA

COLLADA [Khronos Group 2008] is a 3D data format to exchange
assets among digital content creation (DCC) tools. The major de-
sign principle was to reduce the loss of information between those
DCC applications. Consequently it does not consider requirements
on an interactive real-time format, defines no interaction and no
runtime behavior. Nevertheless, COLLADA can be found as input
format for many WebGL libraries, since it’s one of the few open
graphics formats to include animation, skinning, and morphing in-
formation.

COLLADA defines a dataflow model to provide a generic way to
connect data sources with sink elements. However, it’s not possible
to create deep flow structures and <sampler> is the only element
that defines an operation on data sources.

2.4 X3D

X3D is an ISO standard [Web3D Consortium 2011] file format to
represent interactive 3D scenes. It features a dataflow mechanism
to describe all dynamic aspects of the scene by connecting individ-
ual node fields via ROUTEs. By integrating sensor, interpolation,
and visualization nodes into the dataflow it is possible to describe
animated scenes without any scripting. Additionally this dataflow
allows the construction of cycles in the dataflow and supports ani-
mation of geometry via special nodes (e.g. CoordinateInterpolator,
Humanoid Animations), as well as the integration of script nodes
into the dataflow.

For a more detailed comparison of X3D and XML3D/Xflow see
Section 6.

2.5 SVG Filter Effects

Scalable Vector Graphics (SVG) [W3C 2009] is an XML-based
file format for two-dimensional vector graphics. It features Fil-
ter Effects for simple 2D image processing that are applied as a
post-processing step on the rendered vector graphics. Filter Effects
are declared as a dataflow based on a connection of fixed-function
operators. These operators include effects like blurring, specular
lighting, color compositing, blending, and so on. Filter effects are
declared independent of the input graphic and can be assigned to
SVG graphic and container elements via attributes and CSS prop-
erties. Thus, they help to maintain the original semantics structure
of the SVG document by separating detailed visual properties from
the content.

Even though SVG Filter Effects are limited to simple image pro-
cessing, they are a good example for a dataflow technology that is
well integrated into Web technologies.

3 Previous XML3D specification

As an effort to add declarative and interactive 3D content to the
Web, XML3D was developed as an extension to HTML5. The
specification adds a minimal set of generic elements to describe 3D

scene graphs as part of the web page. As a declarative approach, it
fully leverages other Web Technologies, such as the Document Ob-
ject Model (DOM) and Cascading Style Sheets (CSS). As a result,
an interactive 3D scene graph can be developed just like any other
Web application, enabling thousands of Web developers to work
with 3D content with minimal learning effort.

In this section, we shortly review the previous XML3D specifica-
tion [Sons et al. 2010] with respect to performance, highlighting
advantages as well as limitations, which we address with Xflow.

3.1 Hardware efficient design

XML3D featured a generic declaration of data buffers, which are
optimized for modern graphics hardware and do not require any
conversion. This declaration was based on a number of Input el-
ements for different data types. Supported types were the basic
types <int>,<bool>, <float>, the vector types <int4>, <float2>,
<float3>, <float4>, the matrix types <float3x3>, <float4x4> as
well as <texture>. Input elements of basic, vector, and matrix types
could define an arbitrary number of values, declared in the node’s
value. The <texture> element could include an HTML tag
(and potentially other HTML elements like <video>) to define a
texture of flexible size and format.

Input elements could be connected to different nodes, including
<mesh> for geometry and <shader> for surface shading, via the
<bind> element. Each bind elements used the semantic attribute
to correctly assign the data buffer to the sink. (e.g. <mesh> expects
data buffers with semantics index and position)

Since the declaration of the geometry requires a lot of memory, in-
stantiation is an essential feature for any 3D scene graph. XML3D
allowed for reuse of a declared <mesh> elements with the <use> el-
ement, which referred the mesh by document id.

3.2 Limitations

Since the scene graph of XML3D could be accessed and modi-
fied via DOM interfaces, it was possible to create dynamic scenes
with JavaScript. This was sufficient for simple dynamic effects like
rigid body transformations, which only required modifications of
the scene graph transformations. However, for more complex an-
imations, one often needs to process mesh data on a vertex level,
e.g. for mesh interpolations or skinning. These kind of computa-
tions are expensive and would slow down the performance when
performed only with JavaScript. Thus, XML3D required function-
ality to perform these expensive computations efficiently in a data-
parallel way.

Another problem was flexible instantiation. While geometry could
be instantiated as a whole with <use>, it was not possible to reuse
individual buffers among meshes (e.g. to have two meshes of the
same shape with individual color buffers to change the appearance).

The purpose of the <bind> element was originally to support the
reuse of individual data buffers as well as the connection of pro-
cessing nodes, using explicit connections via document id. How-
ever, during the course of development, we realized that explicit
connections via document ids are often impractical if many buffers
are involved. Thus, we developed Xflow as a new data composit-
ing and processing system that allows a more compact and practical
description of arbitrary data compositions and dataflows.

4 The Xflow System

The goal of Xflow is to provide high-performance data processing
capabilities to Web developers. For the design of this technology,

we took three important requirements into consideration.

Efficiency First of all, Xflow must be designed with efficiency in
mind. The execution of the dataflow should be parallelized
and integrated with the render pipeline as far as possible.
The data layout should allow a simple conversion to hardware
buffers with little overhead.

Flexibility Second, the technology must be flexible. Xflow should
cover as many use cases as possible and aim to match the
flexibility of the programmable graphics pipeline of modern
graphics APIs.

Usability Last but not least, we must consider usability for Web
developers. Thus, Xflow should be well integrated into Web
technologies and feature a compact and readable dataflow de-
scription. The technology should be stable and easy to use,
without the need to deal with hardware related details.

With these requirements in mind, we designed Xflow as a declar-
ative language to describe dataflows. Used as an extension to
XML3D, it enables Web developers to connect dataflows to the 3D
scene graph of the web page. Thus, it allows for leveraging high-
performance data processing for interactive, real-time 3D graphics.

In this section, we will describe how dataflows are modelled with
Xflow and how they are connected with the 3D scene graph. At
the end of this section, we will review the design with respect to
efficiency, flexibility and usability.

4.1 Data Compositing

The sources of the dataflow are still declared with Input elements,
as described in Section 3.1. However, we no longer use the <bind>

element to assign Input elements with a semantic. Instead, each
Input element is declared with a name attribute to define a named
DataField.

With the <data> element, Xflow provides a mechanism to combine
arbitrary DataFields together. A <data> element may contain any
number of Input elements, combining the named DataFields into a
named DataTable. Additionally, it may include other <data> ele-
ments to merge whole DataTables together. Alternatively, it may
refer to another <data> element by document id with the src at-
tribute to reuse its DataTable.

A DataTable has only one DataField per name. Thus, there are a
number of replacement rules to deal with equally-named DataFields
when combining Input and <data> elements.

1. If the src attribute is used, the named DataTable of the referred
element is reused directly, ignoring all child elements. This is
the same behavior as defined for <script> nodes in HTML.

2. A DataField of a child Input element always replaces an
equally-named DataField of a child <data> element.

3. If the second rule does not apply and two child elements pro-
vide equally-named DataFields, the DataField of the latter
child replaces the DataField of the former.

These rules are applied iteratively until the named DataTable in-
cludes only one DataField per name. See Figure 2 for an example.

This data composition mechanism has the advantage that we can
easily combine individual DataFields or merge whole DataTa-
bles together. Further, it is possible to easily override individual
DataFields of a DataTable. In the context of mesh data, we can
use this to easily reuse a large set of shared mesh data, while re-
placing individual fields for each mesh instance. Since we can re-
fer entire DataTables, we do not need to specify a connection for

dataA

float3 position
float3 normal
float2 texcoord

int index

int index

float2 texcoord

dataB

float3 position
float3 normal
float2 texcoord

int index

1

2 baseData
float3 position
float3 normal
float2 texcoord

1

3

float3 position

float3 normal

float2 texcoord

int index

2

1

2

3

<data id="dataA">
<int name="index" >0 1 2 ...</int>
<data id="baseData">
<float3 name="position" >1.0 0.04 -0.5 ...</float3>
<float3 name="normal" >0 1 0 ...</float3>
<float2 name="texcoord" >0.0 0.0 ...</float2>

</data>
</data>

<data id="dataB">
<data src="#baseData" />
<int name="index" >10 11 12 ...</int>
<float2 name="texcoord" >1.0 0.5 ..</float2>

</data>

<mesh type="triangles" src="#dataA" />
<mesh type="triangles" src="#dataB" />

Figure 2: An example for data compositing in Xflow. Note that the
DataTables of <data> elements ”dataA” and ”dataB” have both
their own index field, but share the position and normal field of
”baseData”. Additionally, ”dataB” uses its own texcoord field by
simply overriding the field provided by ”baseData”. At the bottom
we have two mesh elements that serve as sink for the dataflow to
display 3D geometry.

each DataField explicitly (as e.g. necessary in X3D), but can rely
on the data composition rules to have a more compact declaration.
Additionally, the data composition approach maximizes the reuse
of data, since a DataField can be referenced by many DataTables
without being copied. This allows us to reuse data on a very fine
grained level.

Finally, we also support external references by having <data>

elements refer to an external document. To do this, we sim-
ply write a complete or relative url with id reference (e.g.
external/model.xhtml#baseData) inside the src attribute. This
way, we can separate large mesh declarations from the main scene
graph, which separates the structure from the main data (similar
to in HTML). Note that one external document can contain
an arbitrary number of different data sets that can be individually
referred using the node’s document id.

4.2 Data Processing

To transform our data composition graph into an actual dataflow,
we need to apply operations that process data and generate new
output. Thus, Xflow allows us to define a ComputationBlock by
attaching operations to <data> elements via the compute attribute.
We can specify the type of operation, the DataFields that serve as
input, and the name of the output DataFields, which are included in
the element’s output DataTable. Note that output DataFields always
replace equally-named entries of the original DataTable. See Figure

<data compute="position = xflow.morph3(
pos: position, posAdd: posAdd2, weight: weight2)" >

<data compute="position = xflow.morph3(
pos: position, posAdd: posAdd1, weight: weight1)" >

<float3 name="position" >1.0 0.04 -0.5 ...</float3>
<float3 name="posAdd1" >0.0 1.0 2.0 ...</float3>
<float3 name="posAdd2" >1.0 0.0 0.0 ...</float3>
<float name="weight1" >0.35</float>
<float name="weight2" >0.6</float>

</data>
</data>

Figure 3: Syntax example for Xflow operators. We attach opera-
tors with the compute attribute, specifying the operator (in this case
xflow.morph3), the input value assignment inside the brackets (e.g.
the DataField position is assigned to input pos) and the name of
the output value on the left. This syntax is inspired by JavaScript
function calls with the usage of the object notation for argument
list.

3 for an example of the operator syntax.

To finally declare a complete dataflow, we connect multiple Com-
putationBlocks into an graph using a tree of <data> elements com-
bined with references via the <data>’s src attribute. The execution
of the resulting dataflow starts at the leaf nodes and ends at the
root, i.e. an operation of a ComputationBlock can only be executed
after all child ComputationBlocks have been executed. Note, that
the execution order of siblings is independent of each other and can
therefore be parallelized. As a first step, we only support undirected
acyclic node connections, since those can be effectively optimized
and are sufficient for many use cases. We plan to add support for
cyclic node connections as a second step (see Section 8).

Xflow provides a number of small, generic operators, which can be
combined to match the dataflow to many different use cases. Figure
4 demonstrates this for skinning and morph targets. All Xflow op-
erators are designed to operate on large arrays of values. They work
without any side-effects on the input data to allow efficient paral-
lelization with shared input. A list of operators can be found under
http://www.xml3d.org/xml3d/specification/xflow. Not that this list
is only a first version and subject to change.

While some Xflow operators require explicit array access to the
input, the majority of them only defines a simple, element-wise op-
eration. For these operators, Xflow determines the iteration method
depending on the input buffer size. Xflow iterates over the mini-
mum range of all input arrays and performs the operation on input
values of the same index. However, input values that are scalars are
considered uniform input and used for each iteration step instead.
With this technique, we avoid the creation of multiple operators,
that do the same computation with different iteration methods.

4.3 Data Sequences

In certain situations, a data block needs to provide a number of
DataFields as a sequence of arbitrary length (e.g. many poses for
key-frame animations). To avoid the usage of name sequences (e.g.
position1, position2, ..., positionN), Xflow allows to declare Input
elements with the key attribute to define DataField sequences with
only one name. The type of the key is float rather than int to allow
a flexible distribution of key frame values along the time line.

Xflow provides a number of operators that do processing on
DataField sequences. An example is xflow.lerp3Seq, which takes

Skinned mesh
with normals

Skinned mesh
with normals
and tangents

Skinned mesh
with normals,
tangents and
morph targets

morph target
values

morph
weight morph3

morph vertex
positions by weight

skinPosition skinDirection
skinning

data
pose

Matrix
mesh with

normals

transform
vertex position

transform
vertex normals

skinDirection

transform vertex
tangents

tangents

Input Data Operators

Figure 4: An abstract example on how Xflow operators can be com-
bined to create dataflows for many use cases. We can nest several
”skinPosition” and ”skinDirection” operators to process an arbi-
trary number of vertex attributes. Additionally, we can combine dif-
ferent types of mesh animations (e.g. skinning and morph targets)
by simply nesting the operators accordingly.

a <float3> sequence as well as a key and returns the linearly inter-
polated float3 values that matches the key value.

4.4 Connection to the 3D scene graph

On its own, a dataflow declared with Xflow only describes gen-
eral data processing that can be used for any purpose. To integrate
the dataflow into the 3D scene graph, we attach the output to sink
elements. In XML3D, we support the attachment of dataflows to
the elements <mesh> for geometry, <shader> for surface shading
properties and <lightshader> for light source properties. All these
sink elements behave exactly like <data> in that they may contain
<data> and Input elements as children and can refer another <data>
element via src attribute. The result of a sink element, on the other
hand, is used exclusively by the 3D scene graph and cannot be fur-
ther used in the dataflow.

Sink elements access values from the dataflow via specific
names. The <mesh> element, for instance, always requires at least
DataFields of the names ”index” and ”position” to render geometry
with vertex array objects. Depending on the surface shader used for
the mesh, further DataFields like ”normal”, ”texcoord”, and ”color”
are accessed.

The previous XML3D specification included the <use> element to
instantiate geometry. However, with the introduction of the <data>

element, we can simply reuse one DataTable for two <mesh> ele-
ments, which effectively does the same as instantiating the mesh.
In a way, this approach is similar to the way images are ”instan-
tiated” in HTML: many tags refer the same data, which the
browser can internally load and allocates only once, reusing it for
all instances of the image. The reuse of <data> instead of <mesh>
also resolves issues with CSS properties (e.g. how do CSS prop-
erties of the <use> element influence the referred <mesh>). The
reused <data> is abstract and is consequently not influenced by
CSS, which only deals with appearance properties. As the data
composition mechanism of Xflow provides a more flexible way to
instantiate meshes, we decided to drop the <use> element.

4.5 Discussion

Our goal was to optimize the design of Xflow with respect to effi-
ciency, flexibility, usability.

XML3D-DOM

RTSG2

Browser Interface

Render Interface

OpenGLRTFact

Data

X�ow

Browser

Scene Graph

Rendering

Data
Processing

Figure 5: Technology stack used in our implementation. All of
the components used in our software can be separated into several
layers, dealing with browser functionality, the 3D scene graph, ren-
dering and data processing. See Section 5.1 for more details.

We optimized efficiency, by supporting a data format that can be
easily converted to hardware buffers and a dataflow description that
is simple to parallelize and integrate into the render pipeline.

We kept the technology flexible by providing a generic mechanism
to combine arbitrary data fields as well as small, generic operators,
which can be connected in many ways to achieve a high degree of
flexibility without relying on programmability.

Finally, we have chosen a declarative description for the dataflow,
that is compact and well integrated into Web Technologies. The
description completely abstracts over implementation details like
buffer management and parallelization, leaving only the basic con-
nection of operators and data. As a result, the technology should be
easy to learn and use for Web developers.

5 Implementation

The purpose of the Xflow system is efficient data processing that
is accessible to Web developers. Thus, we were required to extend
the functionality of a web browser. We built upon the implemen-
tations presented in [Sons et al. 2010] and extended the modified
Chromium browser to support Xflow. This implementation allows
for the use of Xflow with XML3D for 3D graphics combined with
mesh animations and image processing. However, Xflow is de-
signed for general purpose data processing. Thus, we had to be
careful to make our implementation efficient for 3D graphics, but
still general enough for arbitrary computations.

In the following section we give an overview of the technology
stack used for our browser implementation and describe important
optimizations that we used to achieve efficient data processing.

5.1 System Overview

The technology stack of our native browser implementation can be
seen in Figure 5. Our system is integrated into a browser, which
already provides document parsing, CSS, DOM events and many
other features that we don’t need to reimplement. The DOM of the
XML3D scene graph is synchronized with a more efficient repre-
sentation provided by the Real Time Scene Graph (RTSG) [Rubin-
stein et al. 2009] library. RTSG implements a modular design by
separating a scene graph as a data structure and the functionality
that acts on it. We group subsets of such functionality into logi-
cal components, which we call aspects. Aspects react on the scene
changes, can be dynamically attached or detached from the scene

Browser RTSG Xflow

Load and parse
XHTML document

Create Scene
Graph

Create Dataflow

Render Frame Render 3D
Scene

Compute Data
Flow / Create
Vertex Shader

Dom Modification Scene Graph
Update

Dataflow
Update

Request mesh or
shader data

Update
Optimized
Structures

Only once

Figure 6: The communication among the different components of
our implementation. The web document is propagated through all
components to create optimized structures which are synchronized
on changes. During the rendering stage, a synchronization step
is run once to create and update optimized data flow structures,
following several requests for dataflow computations.

graph and can also communicate among each other. We imple-
mented aspects to provide rendering capabilities (e.g. rasterization
with OpenGL or ray tracing with RTfact [Georgiev and Slusallek
2008]) as well as a special aspect to do the dataflow processing of
Xflow, based on the separate Xflow library.

The Xflow library manages the combined dataflow of the XML3D
scene in a separate, optimized graph structure. It provides an inter-
face to construct and update the dataflow and query computed re-
sults. This library is designed for general purpose data processing,
but also provides some extensions for an efficient integration into
the rendering pipeline. Figure 6 shows the communication among
the components relevant for data processing.

5.2 Dataflow execution model

Our Xflow implementation includes several techniques to optimize
the execution of the dataflow.

First of all, we structured the dataflow runtime into a push-based
update phase, and a pull-based execution phase, an approach sim-
ilar to [Woods et al. 1997]. The dataflow structure can be updated
at any time through DOM modification. However, modifications
of the dataflow do not trigger computations immediately. Instead,
notifications are pushed through the dataflow to invalidate any com-
puted results depending on the change. The sinks of the dataflow
will later request (i.e. pull) the execution of the dataflow, when
data is required (e.g. before rendering at each frame). This two-
phase-separation allows us to efficiently perform an analysis of the
dataflow prior to its execution. This again enables us to easily con-
struct and synchronize optimized structures for the dataflow, which
lay the foundation for many optimizations:

• We skip the execution of operators that are not required to
compute the requested result.

• We cache already computed results and reuse them if re-
quested again. We keep cached results for subsequent
dataflow executions, unless invalidated.

• We reuse previously allocated output buffers when results
need to be recomputed to avoid expensive reallocations.

5.3 Mapping to the GPU

In addition, Xflow further optimizes the dataflow when used in
combination with 3D graphics: It integrates operations into the ren-

IndexedFaceSet
A index data A

TimeSensor A
cycleInterval = 4.0

CoordinateInterpolator A
coordinate data A

Shape

Shape

Shape

IndexedFaceSet
B index data A

TimeSensor B
cycleInterval = 2.0

CoordinateInterpolator B
coordinate data A Shape

IndexedFaceSet
C index data A

TimeSensor C
cycleInterval = 3.0

CoordinateInterpolator C
coordinate data A Shape

Figure 7: An example on how certain route connections in X3D re-
quire the duplication of data. A mesh that is animated via Coordi-
nateInterpolator can be instantiated multiple times, if all instances
are animated the same way (TimeSensor A). However, if we want
to animate the same mesh with a different TimeSensors (i.e. Time-
Sensor B and C), we need to duplicate CoorindateInterpolator and
IndexedFaceSet with coordinate and index data.

der pipeline, if supported by the shader model. This technique does
not only enhance the processing speed by leveraging the GPU pro-
cessing power, it also saves memory, as all operations in the vertex
shader are executed on the fly and do not require the allocation of
output buffers to store results.

For now, we support the generation of shader code for the vertex-
shader stage. The Xflow system automatically extracts the sub-
graph that can be mapped to the vertex shader stage (see Figure 9).
To make this optimization work we had to extend the interface of
the Xflow library: The renderer can specify a number of constraints
and implicit functionality that must be implemented by the vertex
shader, e.g. the transformation of mesh vertex positions and nor-
mals according to the scene graph transformation hierarchy, and
the transfer of vertex attributes to the fragment shader. Provided
with this information, Xflow generates vertex shader code, that per-
fectly integrates into the render pipeline, and a list of values for
input arguments of the vertex shader.

6 Comparison to X3D

In this section we compare XML3D/Xflow with X3D in more detail
to showcase some design differences.

6.1 Instantiation

In X3D, arbitrary nodes can be reused throughout the document
via the USE and DEF attributes. This way, meshes or even whole
groups can be instantiated, which results in a directed acyclic scene
graph. Since this instantiation is limited to nodes, it is not possible
to reuse individual fields. In certain cases, this may lead to the
duplication of nodes with all their fields (See Figure 7). A work
around for this limitation can be achieved with prototypes.

XML3D tries to be more aligned with HTML, which only supports
tree structures, by limiting instantiation to the elements <data>,
<shader>, and <lightshader>. This way, all visible components
of the scene graph are structured as a tree and support unambigu-
ous CSS property assignments. Due to the compositing rules of the
<data> element it is possible to reuse individual fields.

6.2 Dataflow description

X3D allows the connection of individual node fields via ROUTEs
to describe a event-based dataflow for dynamic aspects of the scene.
This dataflow allows, for instance, the connection of sources (e.g.
nodes for user input) with operations to dynamically change the

scene. It is possible to attach time sensors to describe continu-
ous changes, as well as to connect script execution to the dataflow.
Due to this extensive flexibility as well as the general design of the
event communication, it is often difficult to map the processing of
the dataflow to hardware efficiently. For instance, loops inside the
dataflow can only be determined at runtime since outgoing events of
nodes are in general not predictable [Taniguchi 1998]. Script nodes
integrated in the dataflow can have side effects on the scene graph
and even modify the dataflow itself. Thus it is often challenging to
efficiently parallelize the dataflow or integrate processing steps in
the render pipeline.

In XML3D all dynamic changes of the scene are done solely with
scripting and CSS, again matching the paradigm of HTML. Hence,
the dataflow modelled with Xflow does not describe continuous
changes, but rather a one-way-computation, usually triggered by
rendering. This dataflow can be updated at any time by modify-
ing the corresponding document with scripting. The actual data
processing, however, is strictly separated from the execution of dy-
namic scripts. This design allows the implementation to analyze the
dataflow more easily with stricter assumptions (e.g. no side effects
of scripts during dataflow execution), which simplifies optimiza-
tion.

6.3 Mesh Processing

X3D includes several specialized nodes for mesh animations, e.g.
CoordinateInterpolator, NormalInterpolator, and all nodes of the
Humanoid Animation extension. The specialized nature of these
nodes allows a type-secure, high-level description of these opera-
tions, but it also limits the flexibility of the operation. For instance,
the H-Anim specification does not only provide the functionality to
perform skinning but also aims to unify animations for humanoid
models in general by specifying a precise skeleton. The skinning
itself, however, only works for meshes with positions and normals.

Apart from the specialized nature, the design of certain process-
ing components is inherently inefficient and hard to map to modern
graphics hardware. For instance, the tight connection of the opera-
tion state with the data in the Interpolator nodes makes prototypes
and an efficient browser implementation a requirement to avoid un-
necessary data duplication (See Figure 7). The data layout of the
Humanoid Animation nodes (specifically the skinCoordIndex and
skinCoordWeight inside the Joint nodes), requires data restructur-
ing in order to perform skinning on the graphics card.

XML3D is designed to go hand-in-hand with the genericness of
modern Graphics APIs that rely on arbitrary vertex attributes and
shaders rather than a fixed function pipeline. Xflow matches this
approach by providing small, generic ComputationBlocks that can
be combined to work with those arbitrary vertex attributes (See Fig-
ure 4). Data and ComputationBlocks can be effectively mapped to
vertex buffers and shader code. Thus Xflow is a data-centric ap-
proach that provides building blocks to compose complex function-
ality rather than providing inflexible domain-specific functionality.

7 Results

We tested our Xflow implementation on several web pages that fea-
ture 3D graphics with mesh animations (e.g. mesh interpolation and
skeletal animations) as well as image processing.

7.1 Mesh Interpolation

We used Xflow to linearly interpolate a sequence of large mesh
models (over 67 poses, about 40k triangles per pose). The graph

Scene #triangles FPS
CPU GPU

16x cloned movement 639,552 92 74
16x individual movement 639,552 32 68
32x individual movement 1,279,104 19 41

Figure 8: This table shows performance results for mesh interpo-
lation done with Xflow. We measured the performance for 3 scenes,
one with 16 instances of the same movement and two with 16 and
32 individually moving meshes. For all scenes we measured the
performance with data processing done on the CPU and GPU (as
part of the vertex shader). For the cloned movement, the CPU per-
forms betters since it only needs to compute the animation once for
all instances. However, for individual movement, we see a general
improvement of the frame rate with the GPU.

consists of three operators: One interpolation operator for both po-
sitions and normals and one operator for the normalization of the
normal after interpolation. To check performance, we ran multiple
instances of the same animations, both with shared and individual
timing. Additionally, we performed the skinning on the GPU and
on the CPU, to compare performance. Figure 8 shows a table with
the results.

7.2 Skeletal animation

We performed skeletal animation with Xflow using seven Xflow
operators (see Figure 9 for details). The local joint transformations
are created from a translation sequence containing vectors and a
rotation sequence containing quaternions. We apply forward kine-
matics using the joint hierarchy to transform the local joint transfor-
mations into global transformations. These are multiplied with the
inverse bind pose to get from model space to object space. Finally,
the skinPosition and skinDirection operators do a linearly weighting
of the positions and normals to the joints.

Xflow automatically separates the skinning algorithm into two
parts: vertex operations are performed on the GPU, while all com-
putations for bone matrices are performed on the CPU beforehand.

The possibility to compose the operators for skeletal animations
allows us to adapt the skinning algorithm to the available data
sources. In the example above, we apply local transformations in
bind space, which allows us to easily apply other animations in the
same bind space. If sufficient, one could apply the inverse bind ma-
trix beforehand and apply the transformations in world space. This
shows, how flexible the solution is. Nesting of multiple skeletons,
as well as combining morph targets with skeletal animations is pos-
sible as well.

We developed a converter for COLLADA files, that outputs
XML3D with included Xflow skinning and animation information
ready to be used in real-time web applications.

7.3 Image Processing

To demonstrate another use case for Xflow, we created an operator
that dynamically creates a noise texture from several input param-
eters. This texture can then be applied to a surface shader and is

skinPosition

skinDirection

mul4x4

forwardKinematics

lerp slerp

createTransform

bindPose

rotation translation

boneParent

normal

boneWeight
boneIndex

position

time

GPU

CPU

Figure 9: The dataflow for skeletal animations with Xflow. Per-
vertex computations are performed on the GPU, while per-bone
computations are performed on the CPU. Note that we can add
operators for skinning of tangents or more advanced bone compu-
tations.

consequently used for rendering. Modifying input parameters of
the Xflow operator changes the generated texture and updates the
rendering in real-time. Figure 1 shows a web page with a rendering
using the generated noise texture. Potentially, Xflow can provide
set of generic image processing operators that again can be used to
perform image analysis for Augmented Reality applications.

8 Conclusion and Future Work

In this paper, we introduced Xflow, a technology for declarative
high-performance data processing. We presented the design that
aims to be efficient, flexible, and easy to use. With our browser
implementation we demonstrated that this technology can be inte-
grated in modern browsers with manageable efforts.

Xflow in its current state already provides many ways to use
dataflows for 3D graphics and other applications. However, we will
continue developing Xflow to improve optimization, usability, and
to support more use cases. Other conceivable use cases for Xflow
include post-processing, multi-indexing, compression, mesh reduc-
tion and many more.

We extended the WebGL implementation of XML3D (xml3d.js) to
support Xflow. The current version computes the operators using
single-threaded JavaScript. We will add an OpenGL ES specific
shader compositing as well as a RiverTrail based solution to lever-
age hardware capabilities also in this implementation.

Due to the generic design with small, atomic operators, users often
need to declare larger dataflow for common tasks, which decreases
usability in favour of flexibility. Another problem is the strong cou-
pling of the dataflow and data that requires the redeclaration of the
same dataflow for each input data set. We plan to solve both of
these issue by adding a template or prototype mechanism, which
enables the reuse of dataflows independent of input data. With this
techniques users can refer to higher level dataflows (even declared
in external dataflow library files) instead of working with small in-
dividual operators.

Our current specification does not support any loops in order to sim-
plify the dataflow optimization. However, certain use cases such as
image processing and particle effect still require cyclic connections
of operators to process data iteratively. Thus, we plan to add sup-
port for cyclic operator connections that can still be analysed and
optimized prior to execution.

Xflow can be used to process the input of surface shaders, but is

otherwise disconnected from the actual surface shader program. We
want to extend Xflow such that the dataflow can be integrated into
the surface shading as well. This allows us to model something like
a shading tree as known from several 3D engines and rendering
programs.

Xflow already aims to provide a lot of flexibility with a combination
of generic fixed function operators. We plan to further extend this
by adding programmability of operators to cover even more use
cases.

9 Acknowledgement

The captured performance data of Figure 8 were provided cour-
tesy of the research group 3D Video and Vision-based Graphics of
the Max-Planck-Center for Visual Computing and Communication
(MPI Informatik / Stanford).

This work was partly supported by grants from the 7th European
Community Framework Programme (VERVE) and from Intel Cor-
poration.

References

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM: a DOM-based HTML5/X3D integration model. In
Proceedings of the 14th International Conference on 3D Web
Technology, ACM, New York, NY, USA, Web3D ’09, 127–135.

BLACK, A. P., HUANG, J., KOSTER, R., WALPOLE, J., AND PU,
C. 2002. Infopipes: An abstraction for multimedia streaming.
in ACM Multimedia Systems Journal 8, 406–419.

DENNIS, J. B., AND MISUNAS, D. P. 1975. A preliminary archi-
tecture for a basic data-flow processor. In Proceedings of the 2nd
annual symposium on Computer architecture, ACM, New York,
NY, USA, ISCA ’75, 126–132.

GEORGIEV, I., AND SLUSALLEK, P. 2008. Rtfact: Generic con-
cepts for flexible and high performance ray tracing. In To appear
in the IEEE/Eurographics Symposium on Interactive Ray Trac-
ing 2008.

HERHUT, S., HUDSON, R. L., SHPEISMAN, T., AND SREERAM,
J. 2012. Parallel Programming for the Web. In Proceed-
ings of the 4th USENIX conference on Hot topics in parallelism,
USENIX Association, Berkeley, CA, USA, HotPar’12.

JOMIER, J., JOURDAIN, S., AYACHIT, U., AND MARION, C.
2011. Remote visualization of large datasets with midas and par-
aviewweb. In Proceedings of the 16th International Conference
on 3D Web Technology, ACM, New York, NY, USA, Web3D ’11,
147–150.

KALKUSCH, M., AND SCHMALSTIEG, D. 2006. Extending the
scene graph with a dataflow visualization system. In Proceed-
ings of the ACM symposium on Virtual reality software and tech-
nology, ACM, New York, NY, USA, VRST ’06, 252–260.

KHAILANY, B., DALLY, W. J., KAPASI, U. J., MATTSON, P.,
NAMKOONG, J., OWENS, J. D., TOWLES, B., CHANG, A.,
AND RIXNER, S. 2001. Imagine: Media processing with
streams. IEEE Micro 21, 35–46.

KHRONOS GROUP, 2008. COLLADA - 3D Asset Exchange
Schema. URL: http://www.khronos.org/collada/, March.

KHRONOS GROUP, 2011. OpenCL - The open standard
for parallel programming of heterogeneous systems. URL:
http://www.khronos.org/opencl, November.

KHRONOS GROUP, 2012. WebCL - Parallel Computing for the
Web. URL: http://www.khronos.org/webcl, March.

LUCAS, B., ABRAM, G. D., COLLINS, N. S., EPSTEIN, D. A.,
GRESH, D. L., AND MCAULIFFE, K. P. 1992. An architecture
for a scientific visualization system. In Proceedings of the 3rd
conference on Visualization ’92, IEEE Computer Society Press,
Los Alamitos, CA, USA, VIS ’92, 107–114.

MICROSOFT, 2012. DirectShow. URL:
http://msdn.microsoft.com/, March.

NIEBLING, F., KOPECKI, A., AND BECKER, M. 2010. Collab-
orative steering and post-processing of simulations on HPC re-
sources: everyone, anytime, anywhere. In Proceedings of the
15th International Conference on Web 3D Technology, ACM,
New York, NY, USA, Web3D ’10, 101–108.

RUBINSTEIN, D., GEORGIEV, I., SCHUG, B., AND SLUSALLEK,
P. 2009. RTSG: Ray Tracing for X3D via a Flexible Render-
ing Framework. In Proceedings of the 14th International Con-
ference on Web3D Technology 2009 (Web3D Symposium ’09),
ACM, New York, NY, USA, 43–50.

SCHROEDER, W. J., MARTIN, K. M., AND LORENSEN, W. E.
1996. The design and implementation of an object-oriented
toolkit for 3d graphics and visualization. In Proceedings of
the 7th conference on Visualization ’96, IEEE Computer Soci-
ety Press, Los Alamitos, CA, USA, VIS ’96, 93–ff.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. Xml3d: interactive 3d graphics for the
web. In Proceedings of the 15th International Conference on
Web 3D Technology, ACM, New York, NY, USA, Web3D ’10,
175–184.

STRAUSS, P. S., AND CAREY, R. 1992. An object-oriented 3d
graphics toolkit. In Proceedings of the 19th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’92, 341–349.

TANIGUCHI, M. 1998. Event processing for complicated routes
in vrml 2.0. In Proceedings of the third symposium on Virtual
reality modeling language, ACM, New York, NY, USA, VRML
’98, 83–88.

UPSON, C., FAULHABER, JR., T., KAMINS, D., LAIDLAW,
D. H., SCHLEGEL, D., VROOM, J., GURWITZ, R., AND VAN
DAM, A. 1989. The application visualization system: A compu-
tational environment for scientific visualization. IEEE Comput.
Graph. Appl. 9 (July), 30–42.

W3C, 2009. Scalable Vector Graphics.
http://www.w3.org/Graphics/SVG/.

WEB3D CONSORTIUM, 2011. X3d inter-
national specification standards. URL:
http://www.web3d.org/x3d/specifications/x3d specification.html,
May.

WOODS, D. J., NORTON, A., AND BELL, G. 1997. Wired for
speed: efficient routes in vrml 2.0. In Proceedings of the second
symposium on Virtual reality modeling language, ACM, New
York, NY, USA, VRML ’97, 133–138.

WORLD WIDE WEB CONSORTIUM, 2012. Web Workers – Editor’s
Draft. http://dev.w3.org/html5/workers/, March.

