
Realizing Target-Directed Throwing With a Real Robot
Using Machine Learning Techniques

Malte Wirkus1 and José de Gea Fernández2 and Yohannes Kassahun3

Abstract. This paper presents a practical application of machine
learning techniques in real-world robotics. Our goal was to make a
anthropomorphic robot throw a ball into a bin that is placed at an
arbitrary position in front of the robot. We use evolutionary machine
learning to optimize a cost function based on a simulation model to
aim at the target and generate the necessary motion to throw the ball
at the position that is estimated by the simulation model. In order to
compensate for the error in the simulation model, we trained an arti-
ficial neural network based on data from real-world task executions.
We show that a simple simulation model can already result in good
throwing performance if machine learning is applied to compensate
for the resulting simulation error.

1 Introduction
When machine learning is applied to robotic manipulation tasks, a
common approach is to perform learning in a simulation environ-
ment. The simulation models can be very different in terms of com-
plexity and accuracy in modeling real world behavior, ranging from
very reduced models to very complex dynamic simulations. Espe-
cially for simpler models, but also for the more complex ones, it
comes to problems when learned tasks are transferred to the real
robot. These occur from restrictions of the real-world robot hardware
that have not been considered in the simulation, or from inaccuracies
that results from imprecise modeling of the robot, the task, physical
phenomena and so on. Building a perfect simulation in a way that a
seaming less transfer to a real robot is possible is very difficult and
hardly possible for complex tasks that for example include dynamic
interaction with the environment.

Different approaches to improve the transfer from simulation to
the real system are given in literature. In [8] this problem is ap-
proached by constraining the search space to regions where the sim-
ulation is more likely to be correct. To realize this it is proposed to
define a metric for the similarity of behaviors to compare simula-
tion with real-world performance. An estimation of the likeliness for
a successful transfer of a simulated to a real-world behavior is de-
rived from this. An evolutionary algorithm is then used to optimizes
multiple objectives that on the one hand optimize the primary target
function in simulation, and on the other hand prefers solutions that
are expected to perform well on the real system.

In [2], a forward model is learned that maps motor commands of
a controller to expected sensor data (e.g. a compass) in simulation.

1 Robotics Innovation Center, DFKI Bremen, Germany, email:
Malte.Wirkus@dfki.de

2 Robotics Innovation Center, DFKI Bremen, Germany, email:
Jose.de Gea Fernandez@dfki.de

3 Universität Bremen, Germany, email: Kassahun@informatik.uni-
bremen.de

Figure 1. We used the robotic platform AILA in our experiments. This
image sequence shows the execution of the throwing task.

During real-world execution, a simulation error is composed based
on the forward model and actual sensor data. A correction function
that modifies the behavior is then learned online to compensate for
the simulation error.

In [3] walking optimization of a small two-legged robot was per-
formed with no external simulation environment, instead a surrogate
optimization scheme is used. By performing real-world experiments,
data is collected to learn a smooth surrogate function that is used
as a replacement for a simulation environment. Simultaneously the
current estimation of the surrogate function is used to optimize the
main objective (walking distance) in order to generate a new parame-
ter set to be evaluated on the robot hardware. Although the surrogate
function is not able to approximate the real-world performance of the
robot appropriate on the whole domain, the number of experiments
to be performed is rather low (≈ 50) to learn a good performing gait.

On the control area, learning strategies have been long using neu-
ral networks to implement dynamic controllers. At first they were
used for learning the whole inverse dynamic model of the robot
which was found later on to be too complex. Therefore, the use
of neural networks was in recent years mainly to support an adap-
tive control scheme rather than trying to approximate the whole in-
verse dynamics. That is, there is available a certain inaccurate inverse
model which is used by the main dynamic controller and the learn-
ing strategy utilizes neural networks to compensate for inaccuracies
or unforeseen changes of that dynamic model [5], an idea we adopt in

our work in order to compensate for an imprecise simulation model.
In this paper we validate this approach on the problem of mak-

ing a real robot throw a ball into a bin that is placed at an arbi-
trary position in a bounded area in front of the robot. An incomplete
physical formulation simulates the problem of predicting how far a
ball, placed in the hand of the anthropomorphic robot (see Figure
1), would be thrown, when executing a trajectory. A cost function
is designed and minimized using an evolutionary learning technique
to find trajectories and joint configurations to throw the ball at the
desired target. Shortcomings in the simulation are compensated by
supervised training of an artificial neural network in order to enable
for real world application which is also trained using evolutionary
learning. To increase stability of the approach a library of parameter
presets for the initialization of the function minimization algorithm
is used. An overview of the framework is given in Figure 2.

Simulation /
Forward Model

Simulation Error
Compensation

Evolutionary
Optimization

Template
Library

Constraints

Throw
configuration

Corrected ball
landing position

Estimated ball
landing position

Initial throw
configuration

Goal
coordinates

Figure 2. The proposed learning framework.

The ball throwing is performed on a human-scaled anthropomor-
phic robot, equipped with a five-fingered tendon driven hand which
is used to hold the ball and release it while performing the throw
movement. The given task is challenging and difficult to simulate
precisely. Beside an accurate calibration of the robots kinematics and
description of the dynamics of its movements, also the dynamic inter-
action between the ball and the multi-fingered, inherently compliant
hand must be modeled to fully describe the simulation physically.
We show that an incomplete simulation in terms of accuracy of the
modeled quantities and the fact that there are unmodeled dynamic
phenomena can already lead to good results. The inaccuracies of the
simulation can be compensated by a function that maps the simula-
tion results to corrected values, so that the task can be successfully
fulfilled on real robot hardware.

In Section 2 we show how the robot’s throw movements are repre-
sented. This forms the Simulation or Forward Model (Section 3) that
is used to estimate the expected position where the ball will land.
To find the proper movement to throw the ball at an arbitrary target,
we formulate a parameter optimization problem that is described in
Section 4. In Section 5 we discuss the shortcomings of the forward
model and introduce a simple method to overcome these. We apply a
correction function that was learned using supervised learning using
data collected from multiple throw performances. We made a num-
ber of experiments in order to investigate the problem we are dealing
with on the robot, collected training data and evaluated the results
from learning the simulation error compensation function. In Section
7 we present these experiments along with their result. A discussion
of the results and concluding comments are given in Section 8.

2 Throw configuration
To be able to throw the ball to arbitrary positions, we need the pos-
sibility for a computer program to modify the movements the robot
should execute. A parametric description of movements provides this
possibility and will be discussed in this section. While in Section 4,
we will go more into detail on the modification of the throw param-
eters, here we only want to state that for parameter optimization the
number of adjustable parameters plays a crucial role in the optimiza-
tion performance. For this reason we where looking for a compact
parametric representation of joint movement. Also, the joint move-
ment should satisfy some criteria:

• The trajectory is bounded within defined joint limits.
• It should be smooth and non-oscillating.
• It should start and end with zero velocity.

To keep the number of parameters in a reasonable size, we decided
to distinguish between joints that move (active joints) and joint that
keep their position during the throw but are still used for aiming (in-
active joints). The combination of both build the set of adjustable
parameters to make the robot throw at different targets. We call this
set of parameters throw configuration.

As a representation for joint movements we adopted a concept
from the computer graphics community, the Bézier curve that is used
to encode a sequence of joint angles. A Bézier curve

q(u) =

n−1∑
i=0

piBi(u) (1)

is described in terms of a parameter u, that varies in the interval
of 0 to 1. The parameter is used to blend a set of control points
pi = [pi, ti], i ∈ Z|0 ≤ i < n by evaluating n basis functions B
dependent on u.

The basis functions are the Bernstein polynomials, a set functions
that are all always positive and together add up to 1 at each point in
the interval of u. The resultant curve is a spline of degree n−1. Using
fifth degree Bernstein polynomials as we do in this paper, Equation
1 can be written as

q(u) = [p0 p1 p2 p3 p4 p5]

(1− u)5

5u(1− u)4
10u2(1− u)3
10u3(1− u)2
5u4(1− u)

u5

= P · b (2)

The resulting curve starts at p0, ends in p5 and is always enclosed
within the convex hull of the control polygon that is spanned be-
tween the control points, so no strong oscillations occur. By con-
straining the p-coordinate of the control points to the operating range
of the corresponding joint, it is ensured that the trajectory is within
the boundaries of the joint limits.

It can be shown that the first derivative at the first and last control
point is given by

q̇(0) = n ∗ (p1 − p0) (3)

and

q̇(1) = n ∗ (pn−2 − pn−1). (4)

To ensure zero velocity at the start and end of the trajectory we set
p0 = p1, pn−2 = pn−1, t0 6= t1 and tn−2 6= tn−1 [10]. An example
trajectory is shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0

t [s]

−20

−10

0

10

20

30

40

50

p
[d

eg
re

es
]

q(u)

P

0.0 0.2 0.4 0.6 0.8 1.0

t [s]

−20

0

20

40

60

80

100

120

140

160

ṗ
[d

eg
re

es
/s

]

q̇(u)

0.0 0.2 0.4 0.6 0.8 1.0

t [s]

−4

−3

−2

−1

0

1

2

p̈
[d

eg
re

es
/s

2
]

q̈(u)

Figure 3. Joint trajectories are modeled as Bézier curves. By modifying the
placement of the control points P the curve changes. The control polygon is

shows as plotted line. Also joint velocity and acceleration are shown.

It is worth to mention that the parameter for the basis functions
u lies within the range but is not equal to t. To sample the curve in
discrete steps along the t-axis (which represents a scaled time axis),
we sample q̇(u) with a rate 4 times higher than the desired control
frequency for the trajectory and linearly interpolate for the actual
time steps.

3 Simulation / Forward Model
For our ball throwing task it is relevant, how the joint movements of
the robot influence the movement of the ball, or stated differently:
Given a throw configuration, where will the ball hit the ground. Ac-
tually, for throwing inside the bin we need to know when the ball
passes a specified height, which is the height of the bin. We call a
function that provides this information the forward model.

For a precise simulation, there are factors involved that are diffi-
cult to model. It starts with the question how the robot will be able
to follow the joint space trajectories, which is dependent on the low-
level controllers and mechanical parts like the motor, gears and so on.
Also dynamic properties of each link have to be modeled if you want
to be precise. In our case, the ball is held by the robot in a robotic

hand. Here dynamic properties, involving the friction between hand
and ball, as well as the exact shape of the fingers, should be consid-
ered. We decided not to try to provide a physical model that is very
precise, but rather to use one that captures only the most relevant
properties.

Task space
TrajectoryForward

kinematics

Trajectory

analysis
Projectile

motion

Throw
Configuration

Initial velocity
of the ball

Predicted
landing position

Figure 4. The Simulation / Forward model.

For the prediction where the ball will land we are especially inter-
ested in the movement of the robotic hand through space (task space
trajectory) as the result from the throw configuration. Evaluating the
task space trajectory then leads to an estimation of the ball trajectory
in an ideal way. Figure 4 shows an overview about our forward model
and will be explained in the following paragraphs.

The throw configuration contains fixed joint positions together
with joint trajectory parameters that can be evaluated to joint space
trajectories using Equation (2). That means all information from a
throw configuration can be represented as a temporal sequence of
joint configurations, when the fixed joint positions are considered as
a trajectory of zero velocity. The task space trajectory results from the
joint movements and the kinematic structure that connects the joint.
The kinematic structure of the robot can for example be represented
using the well-known Denavit-Hartenberg convention. Calculation of
the forward kinematics (given the joint configuration at a particular
time point) leads to the determination of the configuration of the end
effector at this time. By repeating this for every sample from the joint
trajectories we get the task space trajectory.

During the execution of the throw movement (i.e. the task space
trajectory) we need to release the ball. The moment where the ball
gets released should be well timed, so that it results in a nice tra-
jectory of the ball through the air. The trajectory of the ball can be
calculated using equations for projectile motion as shown in Equa-
tion (5). They depend on the initial velocity of the projectile (in our
case the ball, which we assume has the velocity of the end-effector
in direction of hand aperture) ṗ0 = [ẋ0 ẏ0 ż0], the gravity g, and
the displacement from the origin frame at the moment of launch
p0 = [x0 y0 z0]. The origin frame R is placed centered to the robot
on the ground (see Figure 5(b)).

x(t) = x0 + ẋ0t

y(t) = y0 + ẏ0t

z(t) = z0 + ż0t− 0.5gt2 (5)

We are interested in the point where the ball passes a specified
height h (the height of the bin). So we modify the last term from
Equation (5) to include the height of the bin and solve the resulting
quadratic equation for t

0 = z0 − h+ ż0t− 0.5gt2

tpred =
(
√

2gz0 + ż20 − 2gh− ż0)
g

. (6)

Now that we have the time of flight tpred, we can insert the value
in Equation (5) to calculate the predicted ball landing position

qpred =

[
x(tpred)
y(tpred)

]
. (7)

To determine the end-effector velocity at each time point, we dif-
ferentiate the task space trajectory with respect to time. We look for
the point in the end-effector trajectory that has the highest velocity
and use this for estimating where the ball will land using the Equa-
tions (6) and (7). The ball can leave the hand only in direction of
the hand aperture, so the velocity along this vector is considered. In
Figure 5(a) and 5(b) screenshots of a visualization of the simulation
model are given.

(a) Side view (b) Back view

Figure 5. Two screenshots taken from the simulation for the same throw
configuration from different views. The kinematic model is shown as black
lines. The projectile trajectory is the dashed line. The end-effector trajectory
is shown in thick black curve. We superimposed some of the quantities from

the Equations (5 - 7).

It is clear that using this formulation alone as forward model will
deliver faulty predictions. But in this paper we claim that an incom-
plete simulation can already be good enough to accomplish tasks in
real world, if the error in the simulation is compensated as we will
describe in Section 5.

4 Parameter optimization

In Section 2 we described how movement of the robot is modeled and
in Section 3 how an estimation for the resulting ball landing position
is calculated given a throw configuration. A throw configuration is a
set of adjustable parameters and varying these will result in a differ-
ent throw movement in terms of dynamics, position and orientation
of the hand in task space. This finally results in a different estimated
landing position of the ball. Modifying the values in the parametric
description allows to aim for different targets to throw at.

Summarized the adjustable parameters c from a throw configura-
tion are:

• The start and end position of each active joint represented by p0
and p5 (cf. Figure 3 and Equation (2)).

• The 2D-positions of the inner control points p1, . . . , p4 for each
active joint trajectory (also Equation (2)).

• The time for each active joint trajectory, which is the factor we
scale the t axis from Figure 3 with.

• The angles of the inactive joints.

The problem to solve is to find the set of parameters, for which the
result from the forward model corresponds to a given target position.
We formulate this as a parameter optimization problem

argmin
c

f(c). (8)

The predicted ball landing position is given by Equation (7) of
the forward model described in Section 3, which is a function g(c)
dependent on the throw configuration. To describe the quality of one
particular throw configuration, we measure the squared Euclidean
distance from the target d:

fpos(c) = ‖g(c)− d‖2 . (9)

Working on actual hardware we need to generate feasible trajec-
tories that are executable on the robot. This requirement constraints
the joint limits and the maximum velocity per joint, that is limited by
the dynamic properties of the robot, its actuators and the low-level
controllers. Also we want to enforce a principle characteristic in the
throw movement, i.e. we have an acceleration and deceleration phase
in the end-effector movement. By constraining the position of the in-
ner control points of the joint space trajectory parameters this can be
achieved. To induce these constraints k, we formulate the objective
function from Equation (8) as

f(c) = fpos(c) + fpenalty(c,k, α), (10)

where fpenalty(c,k, α) calculates the absolute distance of each
parameter value to the nearest boundary of the valid range if it ex-
ceeds it. For each parameter the constraint violation is weighted by a
corresponding factor from the weight vector α.

From the different methods to choose for parameter optimization,
we decided to use Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [1]. This method allows for minimization of non-linear
functions without the need of a derivative. The algorithm already
showed very good results in many different problem domains4.

5 Simulation error compensation
Due to our rather simple simulation model, the estimation of the
throwing distance lacks precision. For example, the point on the tra-
jectory where the ball leaves the hand and the direction are only
rough estimations. Friction between the ball and the robotic hand
or collisions of the ball with the fingers is not considered at all. Also
the kinematic model of the robot is not precisely calibrated and the
response behavior of the low-level controllers is not modeled in the
simulation.

A classical way would be to try to improve the simulation to model
all involved phenomena using physical equations and to establish a
complete dynamic simulation of the problem. The resulting software
would be much more complex and slower, and also the success of this
approach can be questioned, since most simulation software show a
discrepancy as compared to real-world system it simulates [6]. In-
stead we decided to accept that the simulation is not perfect but gives
an estimation that only reflects the most important characteristics of
the problem.

We wanted to overcome these shortcomings by means of super-
vised machine learning and decided to train a feed-forward neural
network that acts as an error compensation function. As depicted in
Figure 6, the neural network maps from the predicted position by

4 A list of applications of the algorithm can be found on the website of the
author of CMA-ES (http://www.lri.fr/ hansen/cmaesintro.html)

the forward model to a corrected position and was trained on data
collected in real world experiments (see Section 7 for a detailed de-
scription of the experiments).

We used a feed-forward artificial neural network with one hidden
layer that consists of 5 nodes activated by tanh functions. The two
output nodes are also implemented using tanh activation functions.

Feed forward
neural network

Estimated ball
landing position

Corrected ball
landing position

Figure 6. Simulation Error Compensation: A feed-forward artificial neural
network is used to correct the simulation error.

Learning is performed using the RPROP algorithm [9] to minimize
the mean square error of the output of the network activated by the
predicted ball landing position from Equation (10) to the measured
throwing distances m = [mx my]:

argmin
x

1

2k

k−1∑
i=0

(
n(q

(i)
pred,x)x −m(i)

x

)2
+
(
n(q

(i)
pred,x)y −m(i)

y

)2
(11)

Here, n(q(i)
pred, x)x,y denotes the activation level of the two out-

put nodes of the artifical neural network as a function of the estimated
throw position for the ith out of k samples, given the weight vector
x. As a result the corrected estimation is now given by

qcorr = n(qpred,xmin), (12)

where xmin are the weights for the neural network obtained from
training.

6 Template library
Our simulation error compensation function maps from expected ball
landing positions to corrected ones. This approach completely ne-
glects special characteristics in the resulting ball trajectory due to
distinct parameter constellations in the throw configurations. So the
correction function is likely to work only for throw configurations
that are very similar to each other.

To improve the results, we decided to not strictly use one source
configuration as initial parameter set for the generation of new throw
configurations, but created a database from the training data. We then
used the configuration that results in the closest ball landing position
to the given target (determined by nearest neighbor search) as initial
parameter set.

We expected to increase the performance of the algorithm by pro-
viding template throw configurations. But it is clear that it does not
really solve the problem which arises from the fact that different
throw configurations with the same target estimated by the forward
model, might actually result in different ball landing positions.

7 Experiments and Results
7.1 Initial tests of the robot hardware
As robotic platform to implement the framework, we use a human
scaled mobile dual-arm robot named AILA (shown in Figure 1). It
consists of a complete anthropomorphic upper body mounted on a
mobile platform. The upper body consists of two arms, each of them

with seven degrees of freedom, a torso with four joints, and a head
with two degrees of freedom. Each torso and arm joint is equipped
with position and velocity sensors. To the right arm a five fingered
hand is mounted. The hand is underactuated which means that several
of the 19 joints are coupled and only actuated by one motor. In total
there are 9 active degrees of freedom for the hand. The design of the
hand makes it in parts inherently compliant. The head of the robot is
equipped with two cameras.

The task requires the robot hand to grasp and hold the ball and re-
lease it during the trajectory after accelerating at the time of highest
task space velocity. We use predefined hold and release configura-
tions that are position controlled by a PID-controller. To synchronize
the hand and body movements, we determined the time for changing
from the hold to the release configuration empirically.

0 10 20 30 40 50

Iteration [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
im

e
[s

]

(a)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Left/Right [m]

1.6

1.8

2.0

2.2

2.4

2.6

Fo
rw

ar
d

[m
]

(b)

Figure 7. (a) Difference in opening time of the hand over multiple
repetitions. (b) Resulting ball landing position after execution of the same

trajectory multiple times. Each symbol represents a different trajectory.

Beside other factors like the capabilities of the low-level con-
trollers in the body and arms of the robot to follow a given trajec-
tory in a similar way over multiple repetitions, the repeatability of
the hand opening movement was identified as an important factor to
influence the overall ball throwing performance. To evaluate this, we
brought the hand into an open configuration, placed the ball and set
the hold configuration as reference for the position controllers of the
hand joints. Now we set the release configuration as reference and
measured the time until the movement is completed using software
timers. This was performed 50 times (see Figure 7 (a)). The mean

time needed for the trajectory was 0.357s with a standard deviation
in the opening time is 0.014s.

Together with unmodeled dynamics inside the system, the repeata-
bility of complete throw performances, measured as the mean stan-
dard deviation in the ball landing position is 0.08m. This was found
out by performing the resulting trajectory from one throw configura-
tion multiple times. For each trial the position where the ball landed
was marked and measured. This resulted in the distributions as shown
in Figure 7 (b).

7.2 Visual detection
In this work we did not focus on computer vision algorithms, but
found using the measuring tape cumbersome. A simple method to
detect the bin visually and estimate its position using the camera in
the head of the robot was implemented. We detect the bin by finding
and filtering blobs (according to size and position constrains) that
result from the difference of the current camera image to a reference
image taken earlier in an initialization step. For the reconstruction of
the position of the bin we search for the pixel in the detected blob that
has the highest y-value, since this is a relatively strong feature that in
most poses corresponds to the same point on the rotational invariant
bin (eg. the centre point of the frontal arc of the bins bottom). The
resulting image coordinates point is reprojected into 3D space and
the intersection with a virtual ground plane is calculated that was
determined for a fixed pose of the torso and head in a calibration
procedure.

In the next sections we will evaluate the overall performance of
the system while using the vision system.

7.3 Training the error compensation function
To train the compensation function, first we designed a exemplary
throw configuration (source configuration). We defined an operating
range (the range of possible targets) of 1-2.5m to the front of the
robot and 1m to the left and right. The throwing distance of the source
configuration was approximately 2m straight to the front. This source
configuration defines the initial parameter set for the parameter opti-
mization that is performed in order to generate a throw configuration
for a new target as described in Section 4).

Now, we randomly defined new targets near the predicted distance
of the source throw configuration and generated new throw config-
urations for these targets. We performed the throws for each target
several times to find good optimal position to place the bin for this
throw configuration. Finally we took the distance for the bin position
using the computer vision system. In total data from 17 throws has
been collected for training.

To train the feed forward neural network described in Section 5,
each weight in the neural network was initialized with a small ran-
dom value. Using the normalized predicted distances as input and the
also normalized measurements from the vision system as reference
output, after approximately 500 iterations of RPROP5 we stopped
optimization. Figure 8 shows the training data for the error com-
pensation function (bigger arrows) as well as the correction function
sampled in discrete steps. Here we can see that the internal model, as
expected, gives a rather high deviance from the measured distances
of 0.388m (RMS error) what implies the necessity of the correction
function since with such a prediction error it’s very unlikely to hit the
target. Using the neural network the error is reduced a lot to 0.088m.

5 For training we used the implementation given by the FANN library:
http://leenissen.dk/fann/wp/

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

Left/Right

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fo
rw

ar
d

0.30

0.36

0.42

0.48

0.54

0.60

0.66

0.72

0.78

Figure 8. The learned correction function. The tail of the arrows show the
predicted position qpred. The direction points towards the corrected position

qcorr with the color encoding the magnitude of qcorr − qpred.

Running the RPROP algorithm for more iterations could further
decrease the error, but leads to overfitting to the few data points avail-
able what decreases the overall performance which is evaluated be-
low.

7.4 Overall performance evaluation

For evaluating the overall performance, we placed the bin at 5 ran-
dom positions inside the operating range. The position of the bin was
measured using the vision system and for the resulting coordinates a
throw configuration was generated with the error compensation en-
abled. Each throw was then performed 10 times. For every throw it
was counted whether the ball landed inside the bin or missed it. Ta-
ble 1 shows the results of this experiment, resulting in a final success
rate of 0.46. The bin that was used in this experiment was cylinder
shaped and has a height of 34cm and a diameter of 28cm.

Target 1 2 3 4 5
Success 7 6 1 4 6

Fail 4 4 9 6 4
Success rate 0.64 0.6 0.1 0.4 0.6

Avg. success rate 0.46

Table 1. Evaluation of the overall performance. First, the bin was detected
visually. A throw configuration was generated afterwards and executed

multiple times. This was done for five different bin positions. Success is the
number that indicates how often the ball landed inside the basked and fail the

number how often it missed.

Table 1 shows a summary of the experiment. The success rate
(Success
Fail+Success

) shown there is influenced by the repeatability of ex-
ecuting one particular throw configuration similarly (cf. Section 7
and Figure 7(b)) together with the position error due to the visual bin
detection and errors in the simulation error compensation. We can
see in Table 1, that for target 3, there was only one successful throw
out of 10 trials, what is an indication that the at this point the error
compensation failed.

8 Conclusion and Future Work

In this paper we showed an approach to make a anthropomorphic
robot throw a ball into a bin that is placed randomly in a region in
front of the robot. Instead of completely modeling the problem with
an exact physical simulation we proposed a different approach, to use
a simple simulation model and compensate the resulting error using
machine learning techniques.

To accomplish this we represented parametric joint space trajec-
tories as fifth order polynomials based on Bernstein basis functions.
The joint space trajectories are analyzed to identify the task space
motion. From the task space motions, based on an incomplete simu-
lation model, an estimation of the position where the ball will land is
given. By minimizing a constrained error function, throw movements
can be generated, that lead to arbitrary ball landing positions. The de-
viation between simulation and the real world is compensated using
a neural network that maps the estimated landing position of the ball
to a corrected one that corresponds to real world positions. Dynam-
ics that are unmodeled in the simulation and calibration errors are
compensated by this function. Providing a mapping from estimated
to corrected throw positions cascades the underlying parameters to
generate the trajectories, but this error compensation only works re-
liably if the resulting movements are similar. We build a database of
parameter configurations that stores example trajectories for distinct
target positions. In order to generate similar trajectories, the function
minimization is initialized using template configuration that results
in a nearby target.

Our solution gives a simple and practical approach to the given
problem, but suffers especially from one weakness. Different throw
configurations that are predicted by the forward model to have the
same ball landing position, but in reality result in different positions
cannot be handled by the simulation error compensation in its cur-
rent form. The correction is solely be made on the predicted target
coordinates from the forward model. The underlying parametric con-
figuration of the throw movement is not considered. Instead of learn-
ing a correction function, learning the forward model from examples
would solve this. Even better would be to learn the inverse model,
i.e. a function that directly maps goal coordinates to a proper throw
configuration. We want to look at this issue and try different learning
methods on this problem. Another possibility is to use reinforcement
learning methods, so that the estimation can get gradually better over
time with each trial. In [7] reinforcement learning was used to im-
prove an initial control policy given by imitation learning [4] to solve
the challenging ball in a cup task. One concern with this approach
might be, that while with the approach shown in this paper only 17
training samples where it is likely that control policy improvement
with reinforcement learning would need more data.

9 Acknowledgements

This work was performed within the iStruct project funded by the
German Space Agency (DLR) with federal funds of the Federal
Ministry of Economics and Technology (BMWi) in accordance with
the parliamentary resolution of the German Parliament, grant no.
50RA1013 and grant no. 50RA1014.

REFERENCES
[1] N. Hansen and A. Ostermeier, ‘Completely derandomized self-

adaptation in evolution strategies.’, Evolutionary computation, 9(2),
159–95, (January 2001).

[2] Cedric Hartland and Nicolas Bredeche, ‘Evolutionary Robotics , Antic-
ipation and the Reality Gap’, in Proceedings of the 2006 IEEE Confer-
ence on Robotics and Biomimetics, pp. 1640–1645, (2006).

[3] T. Hemker, M. Stelzer, O. von Stryk, and H. Sakamoto, ‘Efficient Walk-
ing Speed Optimization of a Humanoid Robot’, The International Jour-
nal of Robotics Research, 28(2), 303–314, (February 2009).

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal, ‘Movement imitation with
nonlinear dynamical systems in humanoid robots’, in Proceedings
2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), pp. 1398–1403. Ieee, (2002).

[5] Akio Ishiguro, Takeshi Furuhashi, Shigeru Okuma, and Yoshiki
Uchikawa, ‘A Neural Network Compensator for Uncertainties of
Robotics’, Industrial Electronics, IEEE Transactions on, 39(6), 565–
570, (1992).

[6] N. Jakobi, ‘Evolutionary Robotics and the Radical Envelope-of-Noise
Hypothesis’, Adaptive Behavior, 6(2), 325–368, (September 1997).

[7] Jens Kober, Betty J. Mohler, and Jan Peters, ‘Imitation and reinforce-
ment learning for motor primitives with perceptual coupling’, in From
Motor Learning to Interaction Learning in Robots, 209–225, (2010).

[8] Sylvain Koos, Jean-Baptiste Mouret, and Stephane Doncieux, ‘Cross-
ing the Reality Gap in Evolutionary Robotics by Promoting Transfer-
able Controllers’, in In Proc . of GECCO, pp. 119–126, (2010).

[9] Martin Riedmiller and Heinrich Braun, ‘A direct adaptive method for
faster backpropagation learning: the RPROP algorithm’, in IEEE Inter-
national Conference on Neural Networks, pp. 586–591. Ieee, (1993).

[10] Alan Watt, 3D Computer Graphics, Pearson Education, Essex, 3. edn.,
2000.

