
Dataset Generation for Meta-Learning

Matthias Reif, Faisal Shafait, and Andreas Dengel

German Research Center for Artificial Intelligence,
Trippstadter Str. 122, 67663 Kaiserslautern, Germany

{matthias.reif,faisal.shafait,andreas.dengel}@dfki.de

Abstract. Meta-learning tries to improve the learning process by using
knowledge about already completed learning tasks. Therefore, features
of dataset, so-called meta-features, are used to represent datasets. These
meta-features are used to create a model of the learning process. In
order to make this model more predictive, sufficient training samples
and, thereby, sufficient datasets are required.
In this paper, we present a novel data-generator that is able to create
datasets with specified meta-features, e.g., it is possible to create datasets
with specific mean kurtosis and skewness. The publicly available data-
generator1 uses a genetic approach and is able to incorporate arbitrary
meta-features.

1 Introduction

Meta-learning – or “learning to learn” – uses previously gathered knowledge
about a learning task in order to provide an automatic selection, recommenda-
tion, or support for a future task. One intensively investigated meta-learning
field is algorithm or model selection: for a new dataset, one or more suitable
algorithms are selected or recommended based on the knowledge about the suit-
ability of algorithms on other datasets. Common approaches for making rec-
ommendations use classification [1], regression [10], or ranking [2]. A different
meta-learning task supports parameter optimization of learning algorithms [9].

All these approaches use characteristics or properties of datasets as founda-
tion for the actual meta-learning. These properties of datasets are typically called
meta-features. Different groups of meta-features have been proposed in the liter-
ature: simple meta-features [5] are directly extractable from the dataset such as
the number of features or the number of samples. Statistical meta-features [4] use
statistical measures of the probability distributions such as the kurtosis or the
skewness. Information-theoretic meta-features [3] are based on the entropy such
as the joint entropy between feature and class label or the mutual-information.
Model-based and landmarking meta-features build a model from the dataset.
While landmarking [7] uses the performance achieved by this model as meta-
feature of the dataset, model-based meta-features [6] are diverse properties of
this model. Typical, model-based meta-features are properties of a decision tree
such as its width or depth.
1 http://www.dfki.uni-kl.de/~reif/generator/

S. Wölfl (Ed.): Poster and Demo Track of the 35th German Conference on
Artificial Intelligence (KI-2012), pp. 69-73, 2012.
© The Authors, 2012

The meta-features construct the feature space for the meta-learning. As
for any pattern recognition method, it is problematic if this space is high-
dimensional and only sparsely populated. Hence, a sufficient number of datasets
is required. Since real-world datasets are rare and hard to obtain, artificially
created datasets might solve the issue. In this paper, we present a novel data-
generator that is specially designed to support the investigation and development
of meta-learning approaches. It is able to generate datasets with user-defined val-
ues of the meta-features, e.g. with a certain mean kurtosis and a certain Naive
Bayes accuracy. Being able to generate datasets with specific meta-features,
meta-learning can be supported in two different ways:

Sparse Feature Space: Typically, many meta-features are extracted and the
high-dimensional feature space is only sparely populated. Randomly gener-
ated datasets can not ensure that they are sufficiently distributed over the
meta-feature space. Using the presented generator, the meta-feature space
can be filled in a more controlled way and discovered “empty areas” can be
populated.

Investigation of Meta-features: Most of the presented meta-features have
not been thoroughly investigated according to their descriptive power for a
certain meta-learning task. Generating datasets with specific values of meta-
features allow more controlled experiments that might lead to conclusions
about the usefulness of particular meta-features.

2 Design

We treat the data generation as an optimization problem. A candidate solution
is a specific dataset defined by its data points. Since we want the dataset to
fulfill multiple meta-feature requirements, this is a multi-objective optimization
problem. Therefore, we constructed a single aggregate objective function using
a weighted sum over the meta-feature vector x of size n, the vector of desired
values y, and the vector of the according weights w:

f(x) =
n∑

i=1

wi · |xi − yi|. (1)

This objective function measures the difference of the measured meta-features
of a dataset and the desired values. For solving this minimization problem, we
use a genetic algorithm, that mutates datasets by shifting data points and re-
combines two datasets by swapping fractions of them. Since we know that the
best possible value of the objective function is zero, we can stop the genetic
algorithm if it achieves a certain interval.

The presented generator is able to incorporate a variable set of arbitrary
meta-features. The user is able to build a custom set of meta-features by simply
providing the functions computing the meta-features. However, the number of
samples of each class and the number of features are not optimized but fixed

70 M. Reif, F. Shafait, and A. Dengel

in advance and used for creating the random start population of the genetic
algorithm. For each feature and class, values are sampled either from a normal or
a uniform distribution using random parameters (mean and variance or minimum
and maximum, respectively). Since features are typically normalized anyway, we
fixed the range for the parameters of the probability distributions.

3 Implementation

We implemented the data generator in Python because it is easy to use and be-
comes more and more popular in scientific computing. As implementation for the
genetic algorithm, we used DEAP [8]. This framework already provides different
variants for the components of a genetic algorithm, such as different selection
and cross-over schemes. Additionally, parallel and even distributed computa-
tion is easily possible as well. The data generator uses Gaussian mutation and
two-point cross-over.

Adding new meta-feature is done by calling add_measure with at least two
parameters: a tupel of functions and the desired value. The functions are suc-
cessively applied, e.g., the tuple (kurtosis, mean) will compute the kurtosis
of all features first, and, then, calculate the mean. This avoids the definition
of additional aggregation functions and enables a caching mechanism to save
computation time. If, e.g., the minimum and the maximum of the kurtosis are
added, the kurtosis itself is computed only once. The remaining parameters of
add_measure are optional: The third parameter defines if the measure also re-
quires the label as input. The last parameter defines the weight of the measure
for the objective function. By default, a value of 1.0 is used.

4 Examples

For illustration of the presented approach, we applied it for the generation of
datasets with the following properties:

#classes: 2 mean skew: 0.0 naive bayes: 0.8
#features: 2 min skew: -0.8 nearest neighbor: 0.9
#samples: 400 max skew: 0.8

We used a weight of 2.0 for the naive bayes and the nearest neighbor accuracies
and 1.0 for the remaining properties. The genetic algorithm uses a population
size of 100 and was stopped if the error was below 0.01.

Figure 1 shows the results of four different runs of the data generator. For
each run, the final dataset as well as the error of the five optimized properties
(#classes, #features, and #samples are fixed) over the generations are plotted.
It is notable that different runs generate quite different datasets although all
datasets have the same specified characteristics.

Dataset Generation for Meta-Learning 71

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1 2 3 4 5 6 7 8 9

er
ro

r

generation

mean skew
min skew
max skew

naive bayes
nearest neighbor

-3

-2

-1

 0

 1

 2

 3

 4

 5

-4 -3 -2 -1 0 1 2 3 4

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

er
ro

r

generation

mean skew
min skew
max skew

naive bayes
nearest neighbor

-2

-1

 0

 1

 2

 3

 4

 5

-6 -5 -4 -3 -2 -1 0 1 2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25

er
ro

r

generation

mean skew
min skew
max skew

naive bayes
nearest neighbor

-2

-1.5

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 5 10 15 20 25 30

er
ro

r

generation

mean skew
min skew
max skew

naive bayes
nearest neighbor

Fig. 1. Generated datasets and multi-criteria error over generations for the same
datasets characteristics.

72 M. Reif, F. Shafait, and A. Dengel

5 Conclusion

We presented a novel data generator for creating datasets with specific charac-
teristics that can be used for the development and evaluation of meta-learning
systems. Its Python implementation is open-source and publicly available. The
current version is limited to numerical features and classification datasets.

References

1. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Applied Soft
Computing 6, 119–138 (January 2006)

2. Brazdil, P.B., Soares, C.: Zoomed ranking: Selection of classification algorithms
based on relevant performance information. In: Proc. of Principles of Data Mining
and Knowledge Discovery PKDD. pp. 126–135 (2000)

3. Castiello, C., Castellano, G., Fanelli, A.M.: Meta-data: Characterization of input
features for meta-learning. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) Mod-
eling Decisions for Artificial Intelligence, Lecture Notes in Computer Science, vol.
3558, pp. 295–304 (2005)

4. Engels, R., Theusinger, C.: Using a data metric for preprocessing advice for data
mining applications. In: Proc. of the European Conf. on Artificial Intelligence. pp.
430–434 (1998)

5. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Sta-
tistical Classification. Ellis Horwood (1994)

6. Peng, Y., Flach, P., Soares, C., Brazdil, P.: Improved dataset characterisation for
meta-learning. In: Lange, S., Satoh, K., Smith, C. (eds.) Discovery Science, Lecture
Notes in Computer Science, vol. 2534, pp. 193–208 (2002)

7. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking
various learning algorithms. In: Proc. of the 17th Int. Conf. on Machine Learning.
pp. 743–750 (2000)

8. Rainville, F.M.D., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: Deap: A
python framework for evolutionary algorithms. In: EvoSoft Workshop, Companion
proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012)
(July 2012)

9. Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter opti-
mization of classifiers. Machine Learning 87(3), 357–380 (2012)

10. Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier se-
lection for non-experts. Pattern Analysis and Applications (2012), 10.1007/s10044-
012-0280-z

Dataset Generation for Meta-Learning 73

