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ABSTRACT

It is the goal of this manuscript to describe and analyze a
complete kinematic model for hybrid wheeled-leg rovers
and its applicability to Sherpa, a flexible rover with a
complex actuation system. Differential kinematic equa-
tions of the hybrid legs are combined to form the com-
posite equation for the rover motion. The model captures
the 6 DoF pose (position and orientation) while travers-
ing uneven terrains for hybrid systems and independently
actuated joints. The kinematics model is analyzed in or-
der to correctly propagate rover pose as input for a pose
estimator in localization. Initial results from simulation
are discussed for Sherpa navigation kinematics towards
efficient pose estimation and dead reckoning.

Key words: robot motion, wheel odometry, rover
kinematics, dead reckoning and planetary rovers.

1. INTRODUCTION

Up to now planetary rovers deployed on extraterrestrial
surfaces made use of passive suspension systems (mostly
the ”Rocker-Bogie” suspension). Wheeled mobile robots
are more energy efficient than legged robots on hard and
smooth surfaces while active articulated robots with so-
phisticated mobility systems enable traversal over un-
even terrain. Development of hybrid wheeled-leg solu-
tions for the next generation of more capable systems
with active suspension are currently ongoing. The ATH-
LETE [WLB+07] family of rovers with completely ac-
tive suspension or hybrid solutions with actively and pas-
sive suspension as in Scarab [BWW08] or Chariot1 are
only some of the developments currently in progress.

Rover kinematics plays fundamental roles in design, dy-
namic modeling, dead reckoning, control and wheel slip
detection. As the control of an actuated suspension sys-
tem is more complex, a motion model of the chassis is
required to correctly command the desired trajectory and
propagate the pose of the wheels as well as to reduce slip
by proper maneuvering [TM05] [SSVO09]. Most efforts

1http://www.nasa.gov/mission_pages/
constellation/main/lunar_truck.html

on kinematics have concentrated either on planar two-
dimensional space, i.e., translation in the x-y plane and
heading [Vol, GFASH09] or in more sophisticated sys-
tems with passive articulate joints [TM05]. Typically,
the kinematics modeling can be solved by two methods,
the geometric or the transformation approach. The ge-
ometric approach is more intuitive but it is restrictive to
the particular platform lacking of generalization [CW90].
The transformation approach is general and consistent by
applying a series of transformations and Jacobian matri-
ces to relate motion in the joint space to the Cartesian
space, which main contribution is by Muir and New-
man [MN86].

Extensive research with different reasoning is available
in literature. Alexander et al [AM89] present a pla-
nar rigid body model considering a variable number of
wheels. Campion et al [CBDN96] classified ordinary
mobile robots into five types taking into consideration
generic parts of the model equations. Other research into
wheel-ground contact angle and pose estimation of robots
moving on uneven surfaces can also be found [LS07].

As of today, the challenges and problems of hybrid struc-
tures have not been extensively described. The approach
presented in this paper extends [TM05, MN86] in or-
der to solve the complete kinematics of hybrid wheeled-
leg rovers. The methodology is applied to the particu-

Figure 1: The fully integrated Sherpa robot in a lunar
testing environment.



Figure 2: Coordinate frames for the Sherpa rover. W is
the world reference frame, B is the body frame, Si is the
swing leg-base frame, Ai is the wheel axle frame and Ci
the wheel contact frame

lar case of Sherpa which has a complex mobility system
(see Figure 1). A six degrees-of-freedom (DoF) solu-
tion is pursued to propagate rover pose and velocity in
a three dimensional space depending on the articulated
joint configuration. The paper starts by describing a gen-
eral kinematics model in Section 2. Afterwards, Section 3
analyzes its applicability to Sherpa. Different kinematics
forms as the navigation kinematics (rover motion model)
and the slip kinematics (wheel slip vector detection) are
explained in Section 4. Uncertainty modeling and dead
reckoning are presented in Section 5 to finally conclude
with some results.

2. KINEMATIC MODELING

Wheeled-leg mobile robots consist of a number of legs
connected to a main body and having a wheel at the end
for rolling capabilities. Four main coordinate frames are
defined, a robot body frame (B) attached to the rover cen-
ter of mass, a swing leg-base frame (S) at the base of the
leg, a wheel axle (A) frame attached to the wheel axle
and a wheel contact frame (C) defined as a single point
of contact between the wheel and the ground (see Fig-
ure 2). The B frame is related to a fixed navigation-frame
(W) by the pose vector U = uW,B = (x y z φ θ ψ) Each
wheel frame Ai = 1, 2, 3, ...,m is related to the B frame
by the transformation matrix TB,Ai

(q) which depends on
the particular leg kinematics in joints space represented
by the vector q = [q1 q2 ... qn−1] where n is the number
of degrees of freedom of each leg.

The wheel is considered to be a rigid disc. A key dif-
ference between planar and articulated rovers for uneven
terrain is the wheel contact angle δi at each C-frame de-
fined as the angle between the normal vector to the ter-
rain plane and the wheel z axis in A-frame (see Figure 3).
Whereas the contact angle is always zero for planar mo-
bile robots moving on flat terrains, it is a main distinction
for articulated rovers and it is more important for hybrid
wheeled-leg rovers which their suspension system allows
actively control the angle.

The C-frame is related to the A-frame by the transforma-

Figure 3: General coordinate frames for wheel axle and
contact point on inclined terrain. Ai is depicted here as
x-axis pointing forward.

tion matrix TAi,Ci
(δi) defined as a rotation of the contact

angle δi along the y axis and a translation in z-axis de-
fined by the wheel radius r. The corresponding transfor-
mation matrix is given in (where c denotes cosine and s
sine):

TAi,Ci
(δi) =

 cδi 0 sδi −rsδi
0 1 0 0
−sδi 0 cδi −rcδi

0 0 0 1

 (1)

The leg forward kinematics solution relating the
wheel contact point with respect to the body is de-
fined by the matrix multiplication TB,Ci

(q, δi) =
TB,Ai

(q)TAi,Ci
(δi). Hybrid rovers also provide rolling

capability which entails a change of the Ci frame over
time increment ∆t. The wheel motion is composite of
a translation of the contact point along the x axis by
rqni + ξi, where qni is the wheel rotation angle corre-
sponding to the nth DoF of the leg i and ξi is the slip in
the x direction. The slip vector can be modeled in three
dimensions including lateral slip ηi along the y axis and
rotational slip ζi along the z axis. The resulting transfor-
mation matrix is (where C̄i is Ci(k−1) and Ci is Ci(k)):

TC̄i,Ci
=

cζi −sζi 0 rq
ni + ξi

sζi cζi 0 ηi
0 0 1 0
0 0 0 1

 (2)

The transformation of the body frame B with respect to
the wheel contact point frame including the wheel rota-
tion is:

TC̄i,B = TC̄i,Ci
(q

ni, εi)TCi,Ai
(δi)TAi,B(q) (3)

where εi = [ξi ηi ζi] is the slip vector and the matrix
TCi,Ai = (TAi,Ci)

−1 and TAi,B = (TB,Ai)
−1

Mobile robots are commonly commanded by desired ve-
locities. The mapping between the rover Cartesian space
rate vector u̇ = u̇B̄,B =

[
ẋ ẏ ż φ̇ θ̇ ψ̇

]
and the joint

space rate vector q̇, the wheel rotation rate q̇ni, wheel slip



rate vector ε̇i and the wheel-ground contact angle rate δ̇i
is solved by the Jacobian matrix. The velocity kinematics
is deduced by applying the transformation matrix and the
derivation of the point position relative to a coordinate
system. Defining the transformation of the rover body at
time step k − 1 (B̄) to rover body at time step k (B) as
TB̄,B = TB̄,C̄i

TC̄i,Ci
TCi,B , the derivative is

ṪB̄,B = ṪB̄,C̄i
TC̄i,Ci

TCi,B +

TB̄,C̄i
ṪC̄i,Ci

TCi,B +

TB̄,C̄i
TC̄i,Ci

ṪCi,B (4)

Considering that for a general body in motion the posi-
tion and orientation rates of ṪB̄,B are defined by the skew
matrix:

ṪB̄,B =


0 −ψ̇ θ̇ ẋ

ψ̇ 0 −φ̇ ẏ

−θ̇ φ̇ 0 ż
0 0 0 0

 (5)

Equating matrices in Equation 4 and 5 the velocity
kinematics is obtained. The equation can be reordered
in order to have the leg Jacobian matrix Ji of the form

[
ẋ ẏ ż φ̇ θ̇ ψ̇

]T
= Ji

[
q̇ q̇

ni ε̇i δ̇i

]T
(6)

It defines the contribution of each leg to the body rover
motion allowing the analysis of each joint to the resulting
final velocity in u̇. The Ji matrix size is 6×(n+4) where
n corresponds to the DoF of the leg. Finally, the compos-
ite rover equations are obtained combining the Jacobian
matrices for all legs into a sparse matrix equation as


I6
I6
...
I6



ẋ
ẏ
ż

φ̇

θ̇

ψ̇

 = J

 q̇q̇nε̇
δ̇

 ≡ Eu̇ = Jṗ (7)

where E is a 6m × 6 matrix that is obtained by stacking
m 6 × 6 identity matrices, q̇ is the m(n − 1) × 1 vector
of rover joint angle rates, q̇

n
is the m× 1 vector of wheel

rotation velocities, ε̇ is the 3m×1 slip vector and δ̇ is the
m × 1 vector of wheel-ground contact angle rates. The
rover Jacobian matrix J is a 6m × (mn + 4m) matrix
obtained from the individual leg/wheel Jacobian matrices
Ji, i = 1, 2, ...,m and ṗ is a (mn + 4m) × 1 vector of
composite angular rates for m leg/wheels of the rover.

Figure 4: Detail of a Sherpa leg with the number of DoF

3. SHERPA ROVER

Sherpa [CDK11] is a hybrid wheeled-leg rover that is
part of a multi-robot exploration system [CBLK10]. The
rover is equipped with four legs with 4 DoF each, on these
so called swing units are mounted the rover’s wheels
with 2 further DoF, one for steering the wheel and one
for driving the wheel, respectively. More detailed infor-
mation on Sherpa and the RIMRES project is provided
in [CDK11, CRK12].

Sherpa is a highly capable planetary rover that is intended
to serve as the central mobile unit in a multi-robot explo-
ration scenario. It is able to manipulate payload-items
that can be used to build up scientific or infrastructural
components as well as for enhancing the capabilities of
the mobile systems. The manipulator on top of Sherpa is
used for handling the payload-items and for locomotion
support [DRC11].

The wheeled-legs that constitute Sherpa’s suspension
system provide a total of 6 DoF each, summing up to
24 active DoF in the locomotion system. The first DoF
(q1) seen from the central body is called Thorax joint.
The movement range is ±90◦ around the vertical axis.
The Basal joint (q2) is designed as a parallel structure,
that is responsible for lifting the wheel. These two DoF
are the main DoF for (re-)positioning the wheel with re-
spect to the body. The two auxiliary DoF WheelTilt (q3)
and WheelFlip (q4) are used to orient the Wheel to the
ground. By positioning a designated foot plate on top
of the WheelSteering (q5), the WheelFlip can be used to
flip over the whole wheel and use a secure foot point2.
WheelSteering (q5) and WheelDrive (q6) are used for
steering and driving the wheel respectively. Figure 4 and
Table 1 details the DoFs.

3.1. Sherpa Kinematic Model

Figure 5 illustrates the coordinate frames of a single leg
of Sherpa according to Denavit-Hartenberg (D-H) nota-
tion. The D-H parameters θ, d. a and α are presented
in Table 2 with units radians and millimeters. The pres-
ence of a parallel structure in the leg requires the defi-
nition of a virtual axes (Ba2) which rotation angle (q2)

2This feature is currently not implemented mechanically.



Table 1: Sherpas degrees of freedom of the suspension system and their specification

DOF Name Angle
Limit (◦)

Maximum Angu-
lar Velocity (◦/s)

Repeatable Peak
Torque/Force

Estimated std. de-
viation (◦)

1 Thorax (Th) ±90 12.0 250Nm 0.08
2 Basal (Ba) ±60 13.3 600N 0.08
3 WheelTilt (WT ) ±30 6.7 168Nm 0.2
4 WheelFlip (WF ) ±180 23.4 76Nm 0.4
5 WheelSteering (WS) ±90 75.0 34Nm 0.05
6 WheelDrive (WD) cont. rot. 165.0 50Nm 0.02

is the negative value of the Basal joint (Ba). Wheel Tilt
frame is rotated Φ radians along the z-axis in order to
avoid the elbow between the virtual Basal joint and the
Wheel Tilt. Wheel Flip frame appears to be outside of
the mechanical structure between the steering and its pre-
decessor frame in the chain (WT ) with a displacement of
−HWF units along its x-axis. This choice of the coor-
dinate frame ensures the minimum number of frames to
represent the transformation between the wheel leg swing
base (S) and the wheel contact point (C)

The resulting transformation from Sherpa body to the
wheel contact point can be written as

TB,Ci(q,δi) = TB,Si
TSi,Ai

(q)TAi,Ci
(δi) i = 1, 2, 3, 4

(8)

The transformation from the body frame (B) to the leg

Table 2: D-H parameters for Sherpa Leg

Frame θ d a α

Th q1 0 LTh Π/2

Ba q2 0 L 0

Ba2 −q2 − Φ 0 D 0
WT q3 + Ω 0 HWF Π/2

WF q4 + Π/2 LWT + LWF 0 Π/2

WS q5 + Π/2 −HWD LWD 0

LTh = 90mm offset between the Th and the Ba frame
L = 520mm forward distance between Ba and Ba2
LBa = 88mm forward offset between Ba2 and WT
LWT = 50mm horizontal offset between WT and WF
LWF = 67mm horizontal distance between WF and WS
LWD = 161mm offset between WS and A
HWF = 29mm vertical displacement between WT and WF
HWD = 100mm vertical offset between WS and A
Φ = arctan (HWT

LBa
) offset angle along the z-axis between

Ba2 and WF frame
D =

√
Lba2 + HWT 2 displacement between the rotated

Ba2 frame by Φ and the WF frame

swing base (S) (denoted in Equation 8 by TB,Si
) is a fixed

transformation depending on the leg position. Therefore,
forward-right leg has a rotation of 45◦, forward-left of
−45◦, rear-left of 135◦ and rear-right of−135◦ along the
z-axis and a corresponding translation along x and y-axis.
In order to be consistent to the right-handle frame nota-
tion and keep the x-axis in the Ci-frame pointing towards
the forward motion of the wheel rotation, the transforma-
tion betweenAi andCi frames given by Equation 1 varies
depending on the leg side. It results on a positive (right-
side legs) or negative (left-side legs) 90◦ angle rotation
along z-axis, which gives the following transformation
matrices

TAi,Ci(δi) =

 0 cδi sδi −rsδi
−1 0 0 0
0 −sδi cδi −rcδi
0 0 0 1

 i = 1, 3 (9)

TAi,Ci
(δi) =

0 −cδi sδi −rsδi
1 0 0 0
0 sδi cδi −rcδi
0 0 0 1

 i = 2, 4 (10)

It is noted that wheel-contact transformation depends on
the articulated joints values q and the wheel-contact an-
gle δi. The Jacobian matrices are calculated as explained
in Section 2 using Equation 8. The computation of the
velocity kinematics requires the derivative of transforma-
tion matrices, which for Sherpa rover there are a consider-
able amount of DoFs (10 DoF per leg coming from joints,
wheel-ground contact angle and slip vector). The cas-
cade velocity derivative corollary [MN86] is applied in
order to simplify the derivation. Since TB,Si

(and there-
fore TSi,B) is independent of time, the time derivative of
TB̄,B is

ṪB̄,B = TB̄,S̄i
ṪS̄i,C̄i

TC̄i,B +

TB̄,C̄i
ṪC̄i,Ci

TCi,B +

TB̄,Ci
ṪCi,SiTSi,B (11)

where the first row represents the rate change of the wheel
contact point at time k−1 with respect to the body frame.



Figure 5: Coordinate frames for rover’s leg at zero position. Note that the orientation of wheel contact point frame (C)
depends on the leg side.

It involves leg lifting and is only applicable when walking
mode is used by Sherpa (i.e, overcoming big obstacles),
since walking machines do not provide continuous con-
tact to the ground. The second row is the rate change of
the wheel contact point due to wheel rotation. The third
row is the Sherpa body frame rate change related to the
ground contact point when adapting to the terrain.

This kinematic model defines different wheel Jacobian
matrices depending on the locomotion mode. When the
rover is walking over its wheels, no rotation is performed
and only the slip vector rate defines the derivation of
ṪC̄i,Ci

. The derivative transformation ṪS̄i,C̄i
defines the

first part of the walking cycle and ṪCi,Si
models the

second part. In the majority of cases, when the robot
is rolling over its wheels, the wheel contact point only
changes due to wheel rotation and the first row of Equa-
tion 11 is set to zero while the third row defines the joints
rate change due to actively terrain adaptation of the chas-
sis.

The resulted ṪB̄,B given by Equation 11 is equaled to the
Equation 5 and the leg Jacobian of the form in Equation 6
is obtained for the Sherpa rover. Further, the composite
rover equations are formed by combining the four legs
Jacobian matrices in the form of Equation 7.

4. SHERPA KINEMATIC EQUATIONS

Different forms of rover kinematics can be obtained de-
pending on the specific state of interest. This article fo-
cuses on two forms since the purpose is to properly model
Sherpa rover kinematics towards an efficient pose estima-
tion during path following. This will be done by describ-
ing useful forms of Equation 7 for Sherpa, referred as
navigation kinematics and slip kinematics. Finally, un-
certainty modeling and step-integration is performed to
estimate rover pose over time using dead reckoning meth-
ods. Other forms of interest as leg-inverse kinematics and
actuation kinematics to command desired rover velocities
are also valuable to analyze [TM05], but they are beyond

the scope of this paper.

4.1. Navigation Kinematics

Navigation kinematics relates rover pose rate to the joints
and sensed rate quantities. The navigation kinematics is
often referred as motion model and is the basics for dead
reckoning systems. The objective of the method is to es-
timate the rover pose. Moreover, it is useful for the un-
derstanding of the role of different quantities contributing
to the final rover pose.

In order to simplify the model, the navigation kinematics
focuses on the navigation form of Equation11 when
Sherpa is rolling over its wheels and adapting its legs to
the uneven terrain. Therefore, the first row of Equation11
is set to be zero since any walking movements are an-
alyzed for the purpose of this work. Joint angle mea-
surements are available in Sherpa rover since absolute
encoders are installed in each joint and relative encoders
are available in all wheels for measuring wheel rotation
rates. Sherpa rover is also equipped with an IMU that
can provide information on the pitch and roll angle, since
they are able to compensate for drift error by estimation
of the gravity vector using accelerometers. This is not
totally possible by the heading error. Sensor availability
defines sensed and not-sensed quantities and Equation 7
separates as

[Es En]

[
u̇s
u̇n

]
= [Js Jn]

[
ṗs
ṗn

]
(12)

Rearranging into not-sensed (right-side) and sensed (left-
side) quantities, the resulting equation is obtained

[En −Jn]

[
u̇n
ṗn

]
= [−Es Js]

[
u̇s
ṗs

]
≡ Aχ = Bγ

(13)



where A and B are matrices dimensions depends on the
sensing capabilities of the rover system which will direct
influence on the existence of a solution. The study the
rank of A refers the sensing analysis of the navigation
equations. There is no solution if the matrix A has not
full-rank and therefore the system is undetermined. How-
ever, if rank[A|B] = rank[A] the system is determined
and a unique solution exits. When the system is overde-
termined, rank[A|B] > rank[A], there is more than one
solution and least-square method is applied to solve the
equations minimizing the error. If the matrix A has fully-
rank and rank[A|B] > rank[A], there is ample sensing
because it provides extra sensing capabilities. This ex-
tra information is very useful for slip detection and error
analysis where the equations are inconsistent [TM05].

All the joints angles and wheel rolling rates are sensed
quantities, as well as the pitch φ̇ and roll θ̇ angles rates.
The slip vector ε̇ is not a sensed quantity and the wheel-
ground contact angles δ̇ are defined here as unknown
values even though some techniques can be used to es-
timate these angles [LS07] or by the installation of force
sensors in wheel axles. Not-sensed quantities of the vec-
tor u̇ are ẋ, ẏ, ż and ψ̇. Here, the slip vector ε̇ is modeled
as only rotation along its z-axis ζi since it is assumed
no wheel slip with nonholonomic constraints. Then rows
corresponding to x and y-axis elements of the slip vector
can then be removed for the navigation kinematics. The
resulting matrices En, Es, Jn and Js have dimensions
24 × 4, 24 × 2, 24 × 8 and 24 × 24 respectively. The
matrix A and B have dimensions 24 × 12 and 24 × 26
respectively and χ is a 12 × 1 vector corresponding to
the not-sensed quantities and γ is a 26 × 1 vector corre-
sponding to the sensed quantities (i.e., rover joints, wheel
rolling and pitch and roll angles). The solution for the
Equation 13 is obtained using least-square method where
the error vector is given as

e = Bγ −Aχ (14)

the solution is based on minimizing the error vector E =
eTCe, where C is the constant matrix which could be the
weighting matrix block diagonal, but for simplification
here C ≡ I . The solution to Equation 13 is given by

χ = (ATCA)−1ATCBγ (15)

The desired quantities of Sherpa pose ẋ ẏ ż are extracted
by taking the first element of the solution vector χ. The
least-square solution provide an optimal solution by min-
imizing the error e in velocity. This solution is applica-
ble to dead reckoning methods. A large error represents
larger navigation uncertainty, while a small error implies
a more accurate solution.

4.2. Slip Kinematics

The detection of the slip vector ε is important to iden-
tify the terrain, correct odometry errors and reduce un-
desirable motions as well as detect the called ’slip-
sinkage effect’. Similar to the navigation kinematics, the
slip kinematics equation can be obtained per each rover
leg/wheel. No-sensed values are worked out together at
the right-side of the equation and sensed values are in the
left-side

[In −Jin]

[
ε̇i
δ̇i

]
= [−Is Jis]

[
u̇
q̇
q̇
ni

]
Aiχi = Biγi , i = 1, 2, ...,m (16)

The analyses if the existence of a solution is similar to
the navigation equations. The study the rank of Ai refers
the sensing analysis of the slip equations. There is no
solution if the matrix Ai has not full-rank and therefore
the system is undetermined. The wheel slip rates could be
fully detected if rank[Ai|Biγ] = rank[Ai] or equivalent
to express the residual error equal to zero as

Ai(A
T
i Ai)

−1ATi − IBiγi = P (Ai)− IBiγi = 0 (17)

where P (Ai) is the projection matrix to the column space
of the matrix Ai. When P is coincident with the identity
the error is zero and a unique solution is found for the slip
vector. For Sherpa rover, it is assumed that rover pose u̇
is know using sensor capabilities as visual odometry or
inertial sensors. The wheel contact angle is unknown and
the joint rate angles and wheel rolling rate are known.
With this configuration the resulting matrices Is, Jis and
Jin have dimensions 6× 6, 6× 6 and 6× 4 respectively.
The matrix Ai and Bi have dimensions 6× 4 and 6× 12
respectively, with not-sensed vector χi of dimension 4×1
and sensed vector γi of dimension 12× 1.

5. EXPERIMENTS

Experiments with the real hardware are costly to perform
and a proof-of-concept is needed as a first approach be-
fore testing with the real system. In order to evaluate
the feasibility of the approach, a simulated terrain and
the Sherpa rover in MARS (Machina Arte Robotum Sim-
ulans) [RKK09], a simulation and visualization tool for
developing control algorithms and designing robots, is
used. The simulator consists of a core framework con-
taining all main simulation components, a GUI, OpenGL
based visualization and a physics core that is currently
based on ODE simulation environment. The simulation
provides true position and orientation values, as well as
information about wheel contact points with the ground.
It is not the purpose of this work to accurately model sur-
face conditions, the wheel-terrain interaction is based on



simple models. The output of the simulated rover is the
sensed quantities as joint-angle vector q, wheel rolling
angles q

ni, contact angles δi and ground truth for the pose
vector U .

5.1. Position Estimate Uncertainty and Results

Determining the uncertainty associated with robot’s in-
ternal sensors is especially important since sensed values
are usually corrupted by measurement errors. The uncer-
tainty of the wheel-contact point is estimated with respect
to the body frame. The information should be statistically
relevant in order to be useful. A common assumption is
to work with the first and second order centered moments
of a calculated pdf ρν , which is the expectation value ν̄
and the covariance matrix

∑
νν (std. deviation is detailed

in Table 1). Each DoF in the leg is modeled as a random
value in the direction of the joint rotation which affects
to the final pose uncertainty as a composition of transfor-
mations.

The angle uncertainty is then treated as a couple
(ν̄,
∑
νν). A classical first order approximation of Ja-

cobians described by Pennec et al in [PT97] is used to
model the resulted noise of a chain of transformations
along the leg. Therefore, rigid motions and the handling
of uncertainty are done by composition of noise covari-
ance matrix instead of additivity. The detailed derivation
of the method is not reported here for brevity and can be
found in [PT97].

The same noise propagation is used in the dead reckon-
ing process. The least-squared solution of the navigation
kinematics is the exact solution for the rover velocities
under wheel no-slip assumption. The dead reckoning up-
date calculation is described as

U(k) = U(k− 1) +
∆t

2
RW,B̄(u̇(k− 1) + u̇(k)) (18)

where RW,B̄ is a rotation matrix from W -frame to B̄-
frame. It is assumed that the Sherpa motion is ade-
quately modeled by constant accelerations since the robot
is being actuated by constant force/torque generators in
each sampling period ∆t (the same sampling period as
the dead reckoning process).The dead reckoning integra-
tion is erroneous when wheel slip occurs and visual tech-
niques could be used to estimate the wheel slip vector
described in Equation 17.

Two tests are presented here: a squared path and a ser-
pentine path performed on inclined flat terrain by 15◦.
Figure 6 depicts the pose estimator for the navigation
kinematics and the dead reckoning method when the
squared path is performed. An uncertainty of 0.12 m in x
axis after 19 meters path is estimated considering internal
errors coming from the encoders. Figure 7 show the pitch
and roll angles propagation when initial pose is given and
the angular rates φ̇ θ̇ ψ̇ are not-sensed for a serpentine

Figure 6: Pose estimation of Sherpa while performing a
squared path on inclined terrain. The ellipse represent the
rovers belief at different times.

Figure 7: Estimated pitch and roll angles when perform-
ing a serpentine path on inclined terrain.

Figure 8: Wheel track and slip vector estimation for the
Front Right wheel on one of the turns of the serpentine
path. Black arrows represent the direction of the esti-
mated slip vector.

path. The navigation kinematics is used to estimate the
change in attitude. Estimation of the wheel slip vector
using Equation 17 is shown in Figure 8 demonstrating
the applicability of the slip kinematics.



6. CONCLUSION

A methodology for the kinematic modeling and the pose
estimation problem of a hybrid wheeled-leg robot is pre-
sented. Additionally, the wheel slip vector detection by
the slip kinematics is also analyzed. The insight into
kinematic modeling takes more importance for localiza-
tion in space where methods can not make use of the
Global Positioning System (GPS). Therefore, a six DoF
solution in a three dimensional space is desirable for posi-
tioning during complex maneuvers and long term naviga-
tion by means of dead reckoning methods. The following
objectives have been achieved. (1) Calculation of the
leg/wheel forward kinematics and Jacobian matrices for
the Sherpa rover. (2) Equations for the navigation and
the slip kinematics for the Sherpa rover (3) Uncertainty
modeling and propagation along the kinematic model due
to measurement errors and (4) six DoF dead reckoning
propagation. By using this method, all degrees of free-
dom are captured. Further analysis on the influence of
each rover leg joint on the resulted robot pose is desired.
Experiments with the real system should be performed to
allow a more in-depth analysis in real environments.
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