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Abstract. It has been well recognized that the structuring of logic-
based databases like formal ontologies is an important prerequisite to
allow for an efficient reasoning on such databases. Development graphs
have been introduced as a formal basis to represent and reason on struc-
tured specifications. In this paper we present an initial methodology and
a formal calculus to transform unstructured specifications into structured
ones. The calculus rules operate on development graphs allowing one to
separate specifications coalesced in one theory into a concisely structured
graph.

1 Introduction

It has been long recognized that the modularity of specifications is an indis-
pensable prerequisite for an efficient reasoning in complex domains. Algebraic
specification techniques provide frameworks for structuring complex specifica-
tions and the authors introduced the notion of an development graph [4, 1, 6] as
a technical means to work with and reason about such structured specifications.
Typically ontologies are large and, even if structured, bear the problem of in-
consistencies as any large set of axioms. For instance, the SUMO ontology [7]
turned out to be inconsistent [10]. Recently Kurz and Mossakowski presented
an approach [5] to prove the consistency of an ontology in a modular way using
the (structured) architectural specification in CASL and provide mechanisms to
compose the models of the individual components to a global one. Furthermore,
there has been work [9] to (re-)structure ontologies following locality criteria into
modules which cover all aspects about specific concepts. However, since ontology
languages have simple imports without renaming, duplicated sub-ontologies that
are for instance equal up to renaming remain hidden, thus making the ontolo-
gies unnecessarily large, not only from a modeling point of view, but also from
a verification point of view as the same derived properties must be derived over
an over again.

In this paper we present further steps towards the support for structure for-
mation in large specifications that additionally allows to factorize equivalent
sub-specification, i.e. sub-ontologies. The idea is to provide a calculus and a
corresponding methodology to crystallize intrinsic structures hidden in a speci-
fication and represent them explicitly in terms of development graphs. We start
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with a trivial development graph consisting of a single node that contains the
entire specification. Step by step, the specification is split to different nodes in
the development graph resulting in an increasingly richer graph. On the oppo-
site, common concepts that are scattered in different specifications are identified
and unified in a common theory (i.e. node).

2 Prerequisites

We base our framework on the notions of development graphs to specify and rea-
son about structured specifications. Development graphs D are acyclic, directed
graphs 〈N ,L〉, the nodes N denote individual theories and the links L indicate
theory inclusions with respect to signature morphisms attached to the links.

This approach is based on the notion of institutions [3] (SignI ,SenI ,ModI ,
|=I,Σ), where (i) Sign is a category of signatures, (ii) Sen : Sign −→ Set
is a functor giving the set of sentences Sen(Σ) over each signature Σ, and
for each signature morphism σ : Σ −→ Σ′, the sentence translation function
Sen(σ) : Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),
(iii) Mod : Signop −→ CAT is a functor giving the category of models over a
given signature, and for each signature morphism σ : Σ−→Σ′, the reduct func-
tor Mod(σ) : Mod(Σ′) −→Mod(Σ), where often Mod(σ)(M ′) is written as
M ′|σ, (iv) |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign| is a satisfaction re-
lation,1 such that for each σ : Σ −→Σ′ in Sign, M ′ |=Σ′ σ(ϕ) ⇔ M ′|σ |=Σ ϕ
holds for each M ′ ∈Mod(Σ′) and ϕ ∈ Sen(Σ) (satisfaction condition).

However, the abstractness of the signatures in the definition of institution
(they are just a category) makes it difficult to cope with modularization of signa-
tures. Hence, we equip institutions with an additional structure such that signa-
tures behave more set-like. Institutions with pre-signatures [2] are defined as in-
stitutions equipped with an embedding | | : Sign→ Set, the symbol functor, and
a map sym :

⋃
Σ∈|Sign| Sen(Σ)→ |Set|, such that ϕ ∈ Sen(Σ) iff sym(ϕ) ⊆ |Σ|

for all ϕ ∈
⋃
Σ∈|Sign| Sen(Σ). The map sym gives the set of symbols used in

a sentence, and sentences are uniform in the sense that a well-formed sentence
is well-formed over a certain signature iff its symbols belong to that signature.
Pre-signatures are sets and pre-signature morphisms σ̄ mapping pre-signatures
are related to corresponding signature morphisms σ.

Given an I-institution with pre-signatures, each node N ∈ N of the graph
is a tuple (sigN , axN , lemN ) such that sigN is a I-pre-signature called the local
signature of N , axN a set of I-sentences called the local axioms of N , and lemN

a set of I-sentences called the local lemmas of N . L is a set of global definition

links M
σ̄ +3 N. Such a link imports the mapped theory of M (by the pre-

signature σ̄) as part of the theory of N . Thus we obtain corresponding notions
of global (pre-)signatures, axioms and lemmata that are defined inductively as
follows:

1 |C| is the class of objects of a category C.



Structure Formation to Modularize Ontologies 3

1. SigD(N) = sigN ∪
⋃
M

σ̄ +3 N∈S
σ̄(SigD(M))

2. AxD(N) = axN ∪
⋃
M

σ̄ +3 N∈D
σ(AxD(M))

3. LemD(N) = lemN ∪
⋃
M

σ̄ +3 N∈D
σ(LemD(M))

A node N ∈ N is globally reachable from a node M ∈ N via a pre-signature

morphism σ̄, D ` M _?
σ̄ +3 N for short, iff 1. either M = N and σ̄ = id is the

identity pre-signature morphism, or 2. M
σ̄′
+3 K ∈ L, and D ` K _? σ̄′′

+3 N ,
with σ̄ = σ̄′′ ◦ σ̄′.

The maximal nodes (root nodes) dDe of a graph D are all nodes without
outgoing links. DomD(N) := SigD(N) ∪ AxD(N) ∪ LemD(N) is the set of all
signature symbols, axioms and lemmata visible in a node N . The local domain
of N , domN := sigN ∪ axN ∪ lemN is the set of all local signature symbols,
axioms and lemmata of N . The imported domain ImportsD(N) of N in D is the
set of all signature symbols, axioms and lemmas imported via incoming definition
links. DomD =

⋃
N∈N DomD(N) is the set of all signature symbols, axioms and

lemmata occurring in D. Analogously we define SigD, AxD, LemD, and AssD.
DomdDe =

⋃
N∈dDeDomD(N) is the set of all signature symbols, axioms and

lemmata occurring in the maximal nodes of D.

A node N has a well-formed signature iff SigD(N) is a valid IN -signature.
A development graph has a well-formed signature iff all its nodes have well-
formed signatures. SiglocD (M) := 〈sigM ∪ sym(axM ) ∪ sym(lemM )〉SigD(M) is the
local signature of N . A node N is well-formed iff it has a well-formed signature
SigD(N) and AxD(N),LemD(N) ⊆ Sen(SigD(N)). A development graph is well-
formed, if all its nodes are well-formed.

Given a node N ∈ N with well-formed signature, its associated class
ModD(N) of models (or N -models for short) consists of those SigD(N)-models

n for which (i) n satisfies the local axioms axN , and (ii) for each K
σ̄ +3 N ∈ S,

n|σ is a K-model. In the following we denote the class of Σ-models that fulfill
the Σ-sentences Ψ by ModΣ(Ψ). A well-formed development graph D := 〈N ,L〉
is valid iff for all nodes N ∈ N ModD(N) |= lemN .

Given a signature Σ and Ax,Lem ⊆ Sen(Σ), a support mapping Supp for
Ax and Lem assigns each lemma ϕ ∈ Lem a subset H ⊆ Ax ∪ Lem such that
(i) Mod〈sym(H)∪sym(ϕ)〉Σ (H) |= ϕ (ii) The relation @⊆ (Ax ∪ Lem)× Lem with
Φ @ ϕ ⇔ (Φ ∈ Supp(ϕ) ∨ ∃ψ.Φ ∈ Supp(ψ) ∧ ψ @ ϕ) is a well-founded strict
partial order. If D is a development graph, then a support mapping Supp is a
support mapping for D iff for all N ∈ D Supp is a support mapping for AxD(N)
and LemD(N).

3 Development Graphs for Structure Formation

As a first step towards structure formation we will formalize requirements on
development graphs that reflect our intuition of an appropriate structuring for
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(formal) ontologies in particular (and formal specifications in general) in the
following principles.

The first principle is semantic appropriateness, saying that the structure of
the development graph should be a syntactical reflection of the relations between
the various concepts in our ontology. This means that different concepts are
located in different nodes of the graph and the links of the graph reflect the
logical relations between these concepts. The second principle is closure saying,
for instance, that deduced knowledge should be located close to the concepts
guaranteeing the proofs. Also the concept defined by the theory of an individual
node of a development graph should have a meaning of its own and provide
some source of deduced knowledge. The third principle is minimality saying
that each concept (or part of it) is only represented once in the graph. When
splitting a monolithic theory into different concepts common foundations for
various concepts should be (syntactically) shared between them by being located
at a unique node of the graph.

In the following we translate these principles into syntactical criteria on devel-
opment graphs and also into rules to transform and refactor development graphs.
In a first step we formalize technical requirements to enforce the minimality-
principle in terms of development graphs. Technically, we demand that each
signature symbol, each axiom and each lemma has a unique location in the de-
velopment graph. When we enrich a development graph with more structure we
forbid to have multiple copies of the same definition in different nodes. We there-
fore require that we can identify for a given signature entry, axiom or lemma a
minimal theory in a development graph and that this minimal theory is unique.
We define:

Definition 1 (Providing Nodes). Let 〈N ,L〉 be a development graph. An

entity e is provided in N ∈ N iff e ∈ Dom〈N ,L〉(N) and ∀M σ̄ +3 N. e 6∈
Dom〈N ,L〉(M). Furthermore,

1. e is locally provided in N iff additionally e ∈ domN holds.

2. e is provided by a link l : M
σ̄ +3 N if not locally provided in N and

∃e′ ∈ Dom〈N ,L〉(M). σ(e′) = e. In this case we say that l provides e from e′.
e is exclusively provided by l iff e is not provided by any other link l′ ∈ L.

Finally, the closure-principle demands that there are no spurious nodes in the
graph that do not contribute anything new to a concept. We combine these
requirements into the notion of location mappings:

Definition 2 (Location Mappings). Let D = 〈N ,L〉 be a development graph.
A mapping locD : DomD → N is a location mapping for D iff
1. locD is surjective (closure)
2. ∀N ∈ N . ∀e ∈ domN . locD(e) = N
3. ∀e ∈ DomD. locD(e) is the only node providing e (minimality)

Furthermore, for a given locD we define loc−1
D : N → 2DomD by loc−1

D (N) :=
{e ∈ DomD|locD(e) = N}. We will write loc and loc−1 instead of locD and loc−1

D
if D is clear from the context.
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Based on the notion of location mappings we formalize our intuition of a
structuring. The idea is that the notion of being a structuring constitutes the
invariant of the structure formation process and guarantees both, requirements
imposed by the minimality-principle as well as basic conditions on a development
graph to reflect a given formal specification or ontology.

Definition 3 (Structuring). Let D = 〈N ,L〉 be a valid development graph,
loc : DomD → N , Σ ∈ |Sign|, Ax,Lem ⊆ Sen(Σ) and Supp be a support
mapping for D. Then (D, loc,Supp) is a structuring of (Σ,Ax,Lem) iff
1. loc is a location mapping for D.
2. let DomdDe = Σ′ ∪Ax′ ∪ Lem′ then Σ = Σ′, Ax = Ax′ and Lem ⊆ Lem′.

3. ∀φ ∈ LemD . ∀ψ ∈ Supp(φ). ∃σ̄. loc(ψ) _?
σ̄ +3 loc(φ) ∧ σ̄(ψ) = ψ

4 Refactoring Rules

In the following we present the transformation rules on development graphs that
transform structurings again into structurings. Using these rules we are able to
structure the initially trivial development graph consisting of exactly one node
that comprises all given concepts step by step. This initial development graph
consisting of exactly one node satisfies the condition of a structuring provided
that we have an appropriate support mapping at hand.

We define four types of structuring-invariant transformations: (i) horizontal
splitting and merging of development graph nodes, (ii) vertical splitting and
merging of development graph nodes, (iii) factorization and multiplication of
development graph nodes, and (iv) removal and insertion of specific links. Split-
ting and merging as well as factorization and multiplication are dual operations.
For lack of space and because we are mainly interested in rules increasing the
structure of a development graph we will omit the formal specification of the
merging and multiplication rules here.

We illustrate our rules with the help of a running example in mathematics.
We start from a flat theory specifying a Ring over two operations + and ×. A
structure (R,+,×) is a Ring, if (R,×) is an abelian group, (R,+) a monoid
and × distributes over +. Furthermore, an abelian group is a monoid for which
additionally commutativity holds and inverse exists. The initial development
graph consists of a single node (without any links) containing all the symbol
definitions, axioms and theorems of the example.

Vertical Split. The first refactoring rule aims at the split of specifications in
different theories. In terms of the development graph a node is replaced by two
nodes one of them importing the other; each of them contains a distinct part
from a partitioning of the specification of the original node. While all outgoing
links start at the top node, we are free to reallocate incoming links to either
node. To formalize this rule we need constraints on how to split a specification
in different chunks such that local lemmata are always located in a node which
provides also the necessary axioms and lemmata to prove it.
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N

KkK1 M1 Mp

θ̄1
θ̄k σ̄1 σ̄l

. . .
ρ1 ρm

. . . . . .

N2

N1

M1
MpKkK1

ρ1 ρm

θ̄1
θ̄k

. . .

. . .

id

σ̄1 σ̄l

. . .

Vertical Split

Vertical Merge

Fig. 1. Vertical Split and Merge

Definition 4. Let S = (D, loc,Supp) be a structuring of (Σ,Ax,Lem) and N ∈
ND. A partitioning P for N is a set {N1, . . . , Nk} with k > 1 such that 1. sigN =
sigN1 ] . . . ] sigNk , axN = axN1 ] . . . ] axNk , lemN = lemN1 ] . . . ] lemNk

2. sigNi∪axNi∪lemNi 6= ∅ for i = 1, . . . , k. A node Ni ∈ P is lemma independent
iff Supp(ψ) ∩ (axN ∪ lemN ) ⊆ (axNi ∪ lemNi) for all ψ ∈ lemNi .

Definition 5 (Vertical Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem) and P = {N1, N2} be a partitioning for some N ∈ N such
that N1 is lemma independent. Then, the vertical split S wrt. N and P is S ′ =
(D′, loc′,Supp) with D′ = 〈N ′,L′〉 where

N ′ :={N1, N2} ] (N \N)

L′ :={M σ̄ +3 M ′ ∈ L|M 6= N ∧M ′ 6= N} ∪ {N1
id +3 N2}

∪ {M σ̄ +3 N1 | M
σ̄ +3 N ∈ L} ∪ {N2

σ̄ +3 M | N σ̄ +3 M ∈ L}

loc′(e) =

N2 if loc(e) = N and e ∈ DomD′(N2)
N1 if loc(e) = N and e 6∈ DomD′(N2)
loc(e) otherwise

such that SigD′(Ni), i = 1, 2, are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)),
i = 1, 2. Conversely, S is a vertical merge of N1 and N2 in S ′.

Horizontal Split. Similar to a vertical split we introduce a horizontal split which
divides a node into two independent nodes. In order to ensure a valid new de-
velopment graph, each of the new nodes imports the same theories as the old
node and contributes to the same theories as the old node did.

Definition 6 (Horizontal Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem), P = {N1, . . . , Nk} be a partitioning for some node N ∈ N such
that each Ni ∈ P is lemma independent and loc−1(N) = domN . The horizontal
split of S wrt. N and P is S ′ = (D′, loc′,Supp) with D′ = 〈N ′,L′〉 where
1. N ′ := {N1, . . . , Nk} ] (N \N)
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N

θ̄1
θ̄
n

. . .

σ̄ 1
σ̄
m

. . .

N1 Nk

θ̄1
θ̄nθ̄1 θ̄n

. . .

σ̄1
|DomN1

σ̄
m
|DomN

1

σ̄ 1
|Dom

N
k

σ̄m
|DomNk

. . .

. . .

Horizontal Split

Horizontal Merge

Fig. 2. Horizontal Split and Merge

2. L′ := {M σ̄ +3 M ′ ∈ L|M 6= N ∧M ′ 6= N}

∪ {M θ̄ +3 Ni|M
θ̄ +3 N ∈ L, i ∈ {1, . . . , k}}

∪ {Ni
τ̄|DomNi+3 M|N τ̄ +3 M ∈ L, i ∈ {1, . . . , k}}

3. loc′(e) := Ni if e ∈ domNi for some i ∈ {1, . . . , k} and loc′(e) := loc(e)
otherwise.

such that SigD′(Ni) are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)) for
i = 1, . . . , k.

Using the transformation rules, the flat initial theory of our running example
can be refactored (cf. Fig. 3). We apply the vertical split rule twice to extract R
and the distributivity law, followed by the horizontal-split rule to separate the
two instances of a monoid. Finally, we apply the vertical-split rule to extract
the extra axioms from Monoid(R,×). We are left with two copies of a monoid
which we like to generalize to a common abstract monoid. This can be achieved
by the following rule.

Factorization The factorization rule allows one to merge equivalent concepts
into a single generalized concept and then to represent the individual ones as
instantiations of the generalized concept. A precondition of this rule is that all
individual concepts inherit the same (underlying) theories.

Definition 7 (Factorization). Let S = (〈N ,L〉, loc,Supp) be a structuring of
(Σ,Ax,Lem). Let K1, . . . ,Kn,M1, . . . ,Mp ∈ N with p > 1 such that sigMj ∪

axMj 6= ∅ and ∃σ̄i,j . Ki

σ̄i,j +3 Mj ∈ L for i = 1, . . . , n, j = 1, . . . , p.

Vertical  
Split (2x) 

Horizontal  
Split 

Distrib(*, +), Comm(*), 
Inverse(*), Monoid(R, +), 
Monoid(R, *), R 

Distrib(*, +) 

R 

Comm(*), Inverse(*),  
Monoid(R, +), Monoid(R, *) 

Distrib(*, +) 

R 

Comm(*), Inverse(*),  
Monoid(R, *) 

Monoid(R, +) 

Distrib(*, +) 

R 

Comm(*), 
Inverse(*),  

Monoid(R, +) Monoid(R, *) 

Vertical  
Split 

Fig. 3. Applying the split rules to our ring example
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M1 Mp. . .

K1 Kn

σ̄
1
,1 σ̄

n
,1σ̄ 1

,p σ̄
n
,p

. . .

. . . . . .

N

K1 Kn

N1 Np. . .
θ̄
1 θ̄p

σ̄1
σ̄
n

. . .

. . . . . .

Factorization

Multiplication

Fig. 4. Factorization and Multiplication (with σ̄i,j := θ̄j ◦ σ̄i)

Suppose there are sets sig, ax and lem with (sig∪ ax∪ lem)∩DomD = ∅ and
pre-signature morphisms θ1, . . . , θp and σ1, . . . , σn such that
- ∀e ∈ DomD(Ki). θj(σi(e)) = σi,j(e) and σi,j(e) = e ∨ σi,j(e) 6∈ DomD
- sigMj ⊆ θj(sig) ⊆ DomD(Mj), axMj ⊆ θj(ax) ⊆ DomD(Mj)

- ∀e ∈ lem holds ∃l ∈ {1, . . . p}. θl(e) ∈ lemMl , θi(e) = θj(e) implies i = j and
θj(e) ∈ DomD implies loc(θj(e)) ∈Mj

- there is a support mapping SuppN for ax ∪
⋃
i=1,...,n σi(DomD(Ki)) and lem.

Then S ′ = (〈N ′,L′〉, loc′,Supp′) is a factorization of S with respect to M1, . . .,
Mp and SuppN iff

N ′ :={N} ∪ {Nj |j ∈ {1, . . . p}} ∪ N \ {M1, . . .Mp}
with N = 〈sig, ax, lem〉, Nj = 〈∅, ∅, lemMj \ θj(lem)〉

L′ :={K σ̄ +3 K ′ ∈ L|K,K ′ 6∈ {M1, . . .Mp}

∪ {Ki
σ̄i +3 N|Ki

σ̄i,j +3 Mj, j ∈ {1, . . . p}, i ∈ {1, . . . n}}

∪ {N
θj +3 Nj|j ∈ {1, . . . p}}

∪ {K τ̄ +3 Nj|K
τ̄ +3 Mj ∧ (∀i ∈ {1, . . . n}.K 6= Ki ∧ τ̄ 6= σ̄i,j)

∪ {Nj
τ̄ +3 K|Mj

τ̄ +3 K ∈ L, j ∈ {1, . . . p}}

loc′(x) :=


N if x ∈ DomD′(N) \

⋃
i=1,...,n DomD′(Ki)

Nj if x ∈ DomD(Nj) and ∀K σ̄ +3 Nj. x 6∈ DomD′(K)

loc(x) otherwise.

Supp′ :=Supp ∪ SuppN .

Applying the factorization rule allows us to introduce a generic concept of
monoids which is instantiated to obtain both previous copies of a monoid.

The factorization rule only covers a sufficient criterion demanding that each
theory imported by a definition link to one concept is also imported via definition
links by all other concepts. The more complex case in which a theory is imported
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Distrib(*, +) 

R 

Comm(*), 
Inverse(*),  

Monoid(R, +) Monoid(R, *) 

Distrib(*, +) 

R 

Comm(*), 
Inverse(*),  

Monoid(R, +) Monoid(R, *) Monoid(G, op) 

Factorization 

Fig. 5. Factorization of our ring example

via a path of links can be handled by allowing one to shortcut a path in a single
global link. This results in the following rule.

Definition 8 (Transitive Enrichment). Let S := (〈N ,L〉, loc,Supp) be a

structuring of (Σ,Ax,Lem), K,N ∈ N and there is a path K _?
σ̄ +3 N between

both. Then, (〈N ,L ∪ {K σ̄ +3 N}〉, loc,Supp) is a transitive enrichment of S.

Definition links in a development graph can be redundant, if there are al-
ternatives paths which have the same morphisms or if they are not used in any
reachable node of the target. We formalize these notions as follows:

Definition 9 (Removable Link). Let S = (D, loc,Supp) (D = 〈N ,L〉) be a
structuring of (Σ,Ax,Lem). Let l ∈ L and D′ = 〈N ,L\{l}〉. l is removable from
S and S ′ = (D′, loc,Supp) is a reduction of S iff

1. ∀l′ : M
σ̄ +3 N. if l′ provides exclusively σ(e) from some eDomD(M) then

e ∈ DomD′(N) and l 6= l′;

2. ∀e ∈ DomD.∀M ∈ DGRootsD. if loc(e) _?
σ̄ +3M then there exists M ′ ∈

dD′e such that loc(e) _?
σ̄ +3M ′;

3. ∀φ ∈ LemD. Supp(φ) ⊆ DomD′(N) and ∀SiglocD (N) ⊆ DomD′(N).

Theorem 1 (Structuring Preservation). Let S := (D, loc,Supp) (D = 〈N ,L〉)
be a structuring of (Σ,Ax,Lem). Then
1. every horizontal split of S wrt. some N ∈ N and partitioning P of N ,
2. every horizontal merge of S wrt. nodes {N1, . . . , Nk} ⊆ N ,
3. every vertical split of S wrt. some N ∈ N and partitioning P of N ,
4. every factorization of S wrt. nodes M1, . . .Mp ∈ N ,
5. every multiplication of S wrt. N ,
6. every transitive enrichment of S, and
7. every reduction of S

is a structuring of (Σ,Ax,Lem).

5 Refactoring Process

The refactoring rules presented above provide the necessary instruments to ex-
ternalize the structure inherent in a given flat theory. Nevertheless we need
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Char
Sig. char, A,B, . . . , Z
Ax. ∀x : char. x = A ∨ · · · ∨ Z
Lem. —

String
Sig. str, strnil, addc
Ax. ∀c : char, x : str. strnil 6= addc(c, x)

∀x : str. x = strnil ∨ ∃c : char, y : str.
x = addc(c, y)
∀c, c′ : char, x, x′ : str. addc(c, x) = addc(c′, x′)
→ c = c′ ∧ x = x′, . . .}

Lem. —

Stringops
Sig. strapp, strlen
Ax. strlen(strnil) = 0

∀c : char, x : str. strlen(addc(c, x)) = succ(x)
∀x : str. strapp(strnil, x) = x, . . .

Lem. ∀x, y, z : str. strapp(strapp(x, y), z)
= strapp(x, strapp(y, z)), . . .

Nat
Sig. nat, 0, succ
Ax. ∀x : nat. 0 6= succ(x)

∀x : nat. x = 0 ∨ ∃y : nat. x = succ(y), . . .
Lem. —

Natlist
Sig. nlist, natnil, addn
Ax. ∀n : nat, x : nlist. natnil 6= addn(n, x)

∀x : nlist. x = natnil
∨ ∃n : nat, y : nlist. x = addn(n, y)
∀n, n′ : nat, x, x′ : nlist. addn(n, x) = addn(n′, x′)
→ n = n′ ∧ x = x′, . . .

Lem. —

Natlistops
Sig. natapp, nlen
Ax. nlen(natnil) = 0

∀n : nat, x : nlist. nlen(addn(n, x)) = succ(x)
∀x : nlist. natapp(natnil, x) = x, . . .

Lem. ∀x, y, z : nlist. natapp(natapp(x, y), z)
= natapp(x, natapp(y, z)) . . .

Fig. 6. Heuristic motivated partitioning of a flat theory

appropriate heuristics to determine suitable partitions for horizontal or vertical
splits, in order to group together strongly related entities and afterwards make
explicit analogous groupings of entities by factorization. One heuristic is, for
instance, to group together all axioms and lemmas exclusively devoted to a spe-
cific sort. E.g. all axioms about characters, or all axioms about natural numbers.
From there we carve out those entities about a different sort including an already
classified sorts, and so on. Examples for these are strings or natural numbers,
and in the next iteration lists of strings (cf. Fig. 6). These identified subsets
can then be further partitioned into those defining the basic datatype and the
(inductive) functions and predicates over these. This separates the definition of
lists of natural numbers from the append functions on these, for instance.

Such heuristics guide the application of the horizontal and vertical split rules.
From there we can identify nodes with isomorphic local entries and, using the
transitivity and reduction rules together with further applications of the split
rules try to enable the application of the factorization rule.

We illustrate the refactoring process with the help of a further example,
where we start with flattened theories, and step by step carve out the intrinsic
structure. The example from Fig. 6 is about lists of natural numbers, strings
formed over characters and length functions operating on such lists. All the
signature symbols, axioms, and lemmas occur in a single node in the initial
development graph. For sake of readability we partition the set of these entities
into pairwise disjunct subsets and name them accordingly (cf. [8])

Fig. 7 illustrates the structure formation process for this example. In the
first step the definitions of Nat and Char are separated from the rest by applying
the vertical split rule twice. In the next steps we form the individual theories of
String and Stringops respectively. Notice that Stringops includes strlen counting
characters in a string such that Stringops has to import Nat. After applying again
a vertical split we obtain the theories of Natlist and Natlistops. Since the local
axioms of String and Natlist are renamings of each other we factorize these local
axioms to a new theory of generic lists.
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Char, String, Stringops,  
Nat, Natlist, Natlistops  

Char Nat 

String, Stringops,  
Natlist, Natlistops  

String Nat 
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Stringops 

Nat 
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Natlistops  
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String 

Stringops 

Nat 

Natlist,  
Natlistops  

Char 

String 

Stringops 

Nat 

Natlistops  

Char 

String Natlist 

Stringops 

Nat 

Natlistops  

Char 

String Natlist Genlist 

Stringops 

Nat 

Natlistops  

Char 

[String] [Natlist] Genlist 

Stringops 

Nat 

Natlistops  

Char 

String Natlist Genlist 

Genlistops 

1. Initial Graph 2. Vertical Split (2x) 3. Vertical Split 4. Vertical Split 

5. Superfluous Link 6. Vertical Split 7. Factorization 

8. Transitive Link (2x) 9. Factorization 

Fig. 7. Lists

Genlist
Sig. list, nil, add
Ax. ∀n : elem, x : list. nil 6= add(n, x)

∀x : list. x = nil
∨ ∃n : elem, y : list. x = add(n, y)
∀n, n′ : elem, x, x′ : list. add(n, x) = add(n′, x′)
→ n = n′ ∧ x = x′, . . .

Lem. —

This node consists of the renamed
local axioms of String (or Natlist,
respectively) plus the necessary sig-
nature definitions to obtain a well-
formed development graph node.
This theory is imported via defini-
tion links to String and Natlist using corresponding pre-signature morphisms
to map it to list of chars and numbers, respectively. Both, String and Natlist
have now empty local signatures and axioms. In Fig 7 we indicate those nodes
with empty local signature, empty local axioms and empty local lemmata by a
light-gray color of the node name.

6 Related Work

There is related work to (re-)structure ontologies (after flattening) following lo-
cality criteria into modules containing all knowledge about specific concepts.
However, since ontology languages have simple imports without renamings, du-
plicated sub-ontologies that are for instance equal up to renaming remain hidden.
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To excavate these ontologies requires other heuristics than pure logic based ones
to guide the structuring process, and therefore we deliberately did not impose
specific criteria how to apply the rules beyond the minimal conditions that the
dependency relations among concepts, relations and facts and derived facts and
relations is preserved. It is easy to see that the modularizations of ontologies not
including derived lemmas obtained by using the locality criteria from [9] can
be constructed with our rules by starting from a single flattened ontology and
singling out the modules.

7 Conclusion

Based on the definition of structurings as concise development graphs, we pre-
sented transformation rules that allow one to make explicit common structures
hidden in a flat theory in terms of development graphs. It provides a framework
to modularize flattened ontologies in a useful way as illustrated by two simple
examples. An implementation is planned to provide an interactive tool to mod-
ularize and factorize large ontologies as well as (semi-)automatic procedures.
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