

B. Glimm and A. Krüger (Eds.): KI 2012, LNCS 7526, pp. 253–256, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dependency Parsing with Efficient Feature Extraction

Alexander Volokh and Günter Neumann

DFKI. Stuhlsatzenhausweg 3. 66123 Saarbrücken, Germany
{alexander.volokh,neumann}@dfki.de

Abstract. The fastest parsers currently can parse an average sentence in up to
2.5ms, a considerable improvement, since most of the older accuracy-oriented
parsers parse only few sentences per second. It is generally accepted that the
complexity of a parsing algorithm is decisive for the performance of a parser.
However, we show that the most time consuming part of processing is feature
extraction and therefore an algorithm which allows efficient feature extraction
can outperform a less complex algorithm which does not. Our system based on
quadratic Covington's parsing strategy with efficient feature extraction is able to
parse an average English sentence in only 0.8ms without any parallelisation.

1 Introduction

Dependency parsers have recently become very popular and beneficial for many natu-
ral language processing (NLP) tasks, because of their ability to reliably capture useful
information within a sentence. However, the quality of the result is not the only re-
quirement. Many applications, especially those which work with huge amounts of
data or applications where processing has to be done online within milliseconds, re-
quire parsing to be particularly fast in order to be eligible for use.

In the 2000s, the very popular CoNLL-X [2] shared tasks in dependency parsing
brought a lot of progress to the field. However, the evaluation highly preferred accu-
racy and efficiency was neglected. Some of the most widely used parsers from that
time, e.g. MaltParser_SVM [7], Stanford Parser [5] or MST Parser [6], have great
accuracies but can only parse around 3 sentences per second. The more recent works:
e.g. MaltParser_Liblinear, Ensemble [8], mate-tools [1] or ClearParser [3] have better
efficiencies. MaltParser trained with linear classifiers can parse up to 1 sentence in
2.5ms, Ensemble in 10 ms, Bohnet's parser - 77ms and ClearParser - 2.29 ms.

All dependency parsers can be split into two approaches: transition-based and
graph-based. Whereas the accuracies of these systems are quite similar, the numbers
above clearly demonstrate that transition-based systems are more efficient (mate-tools
is the only graph-based). We will restrict ourselves to the transition-based.

Transition-based systems start at some initial configuration and perform a sequence
of transitions to some final configuration, such that the desired dependency graph is
derived in the process. There are plenty of parsing strategies with different sets of
possible transitions, which are capable of solving this task. It is usually considered
that the number of configurations is the most important property for the efficiency of
the algorithm. E.g. Nivre's arc-standard (AS) and arc-eager (AE) algorithms [7] re-
quire O(n) transitions, whereas Covington's parsing strategy [4] requires O(n2) in the

254 A. Volokh and G. Neumann

worst-case. Therefore there are a lot different variations of Nivre's algorithm (includ-
ing all of the above parsers), whereas Covington's strategy is much less popular.

However, the number of configurations is not the only important property of an al-
gorithm. It is rather important how long it takes to perform a transition from one con-
figuration to another. We have used profiling technology in order to determine which
parts of code amount for which percentage of execution time and found out that most
of the running time is spent for extracting features (also reported by [1] for their
graph-based system), which are used to predict the most probable transition. Even
though less complex algorithms require feature extraction less often, we will show
that feature extraction costs vary considerably across different strategies.

In this paper we show that Covington's parsing strategy is particularly suitable for
efficient feature extraction. Despite the fact that its theoretical complexity is quadratic
in the length of the sentence, in practice the worst-case never occurs and thus it can
easily outperform linear strategies without efficient feature extraction. In our experi-
ments we could achieve parsing speed of 0.8 ms per sentence.

2 Complexity in Theory

Given a sentence s, consisting out of words w1 to wn the objective of a transition-
based parsing strategy is to find all dependencies (wi, l, wj), i.e. pairs of words wi and
wj, which stand in a syntactic relation l. The most naive strategy to do that is to ex-
amine every possible pair of words and link them if necessary. Covington's strategy
proposes an intelligent refinement to this. First, when searching for potential links for
a word j it works backward. This way heads and dependents are found earlier, be-
cause they are more likely to be near than far away. Second, many pairs are discarded
because they violate permissibility, i.e. well-formedness constraints of a dependency
tree. Examples of such constrains are that words can have only one head, the whole
structure can have only one root, there can be no cycle and if necessary that there are
no crossing branches (projectivity). The worst-case complexity remains O(n2).

Nivre's AE or AS algorithms propose a further restriction of the search space. They
use two stacks and allow only top elements from these stacks to be linked, which
guarantees that no invalid dependency structure comes into being. Additionally, al-
ready processed words are removed from the stacks, such that they are no longer eli-
gible for other words to come. This way the algorithms have O(n) complexity.

3 Complexity in Practice

Let us consider the sentence Economic1 news2 had3 little4 effect5 on6 financial7 mar-
kets8.9. We have used MaltParser, which has all algorithms implemented, with option
“-m testdata” in order to analyse how many transitions are necessary to parse the data.
With Nivre's arc-eager strategy it took 16 transitions to parse the example sentence,
for Nivre's arc-standard 17 transitions were necessary and for Covington's algorithm
33 word pairs are examined, however, 17 of them are not permissible and thus there
are only 16 real configurations. By real configurations we mean those for which

 Dependency Parsing with Efficient Feature Extraction 255

feature vectors actually have to be constructed and the correct transition has to be
predicted. For non-permissible states it is not necessary and they therefore hardly
influence the overall performance. Thus the theoretically more complex Covington's
strategy in practice does not re-quire more real configurations than Nivre's linear al-
gorithms. We have performed similar experiments for the whole CoNLL English
development data and found out that for these 1337 sentences 63916 real configura-
tions are required with Covington's algorithm, 64137 with AE and 65148 with AS.

4 Feature Extraction

In order to predict what transition should be performed in which parser state, the pars-
er state is trans-formed into a feature vector and according to the previously learned
model the best transition is selected. The algorithms presented in this paper require a
similar number of feature templates in order to achieve similarly competitive perfor-
mance. In MaltParser arc-standard default algorithm runs with 21 different templates,
arc-eager with 22 and Covington's algorithm also uses 22 feature templates.

In his PhD [7] Nivre differentiates between static and dynamic feature templates.
Static templates always return the same value for the same input, e.g POS tags of the
words never change. Dynamic feature templates might change their output in course
of processing, e.g. the dependency label of a word is null in the beginning and
changes to some non-null value as soon as the word gets a head.

The decisive difference between the algorithms is that many other features, which
actually are also static can only be reused in Covington's and not in Nivre's algo-
rithms, where the reusability of features is limited, because one never knows what the
stacks will look like and it would be too memory intensive to keep all possibilities in
memory until it is clear which one of them is correct. The reusability of static features
considerably improves the performance of an algorithm, since it is no longer neces-
sary to look up the value of a feature and then its index in a global alphabet (mapping
of strings to unique integers constructed during the training of the model; might con-
tain tens of thousands of different values and thus is not so fast) so often. Instead, we
consult the global mapping only once for all features which are used many times and
store those in a different local (i.e. valid only within the current sentence) data struc-
ture from where they can be retrieved much faster.

Additionally, in order to compensate for the lack of a kernel, which creates con-
joined features implicitly, one has to add artificial feature combinations manually. In
MaltParser's feature models for Liblinear around 40% are feature combinations,
which are concatenations of basic features.

String is an immutable basic type in Java, each time you append something a new
String is created, the old value is stored the new value is added, and the old String is
thrown away. The longer the strings the longer the concatenations take, but even for
typical feature lengths of ~10 characters it takes around 0.25 µs. For 780,000 feature
combinations (the amount required for 65000 configurations) it would mean around
0.2 seconds, i.e. around 20% of the whole time if one aims to parse a sentence in less
than 1ms. Therefore it is even more important that feature combinations are reused
whenever possible, since they contain costly string operations.

256 A. Volokh and G. Neumann

Even though String operations are expensive in Java, there are no alternatives.
Tricks like translating features to integers and substituting concatenation by multipli-
cation do not work better, since they require a mapping from the String values to ints
and the look up in such large collections is even more expensive than concatenation.

5 Results and Conclusion

We have implemented a system which is based on Covington's parsing strategy and
reuses static features whenever possible. We could achieve a parsing speed of 0.8
ms/sentence for an average English sentence (24.41 words). Despite the worse theo-
retical complexity, we have shown that in practice other properties are more impor-
tant. In particular, that most of the execution time is spent on feature extraction and
thus the suitability of an algorithm for efficient feature extraction is decisive.

For space reasons we could not discuss the accuracies of different algorithms and
models. However, running MaltParser with default models has shown that the accura-
cy of Covington's algorithm for English is better than the accuracy with Nivre's algo-
rithms. Both the default MaltParser's model and a model where the feature conjunc-
tions are replaced by static ones have very similar accuracies.

The tests were performed on a 2.4 GHz CPU with only one core used.

Acknowledgements. The work presented here was partially supported by a research
grant from the German Federal Ministry of Education and Research (BMBF) to the
DFKI project Deependance (FKZ. 01IW11003).

References

1. Bohnet, B.: Top Accuracy and Fast Dependency Parsing is not a Contradiction. In:
COLING 2010, Beijing, China (2010)

2. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In:
Proceedings of CONLL-X, New York, pp. 149–164 (2006)

3. Choi, J.D., Palmer, M.: Getting the Most out of Transition-based Dependency Parsing. In:
ACL: HLT 2011, Portland, Oregon, USA, pp. 687–692 (2011)

4. Covington, M.A.: A Fundamental Algorithm for Dependency Parsing. In: Proceedings of
the 39th Annual ACM Southeast Conference (2000)

5. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: ACL 2003, pp. 423–430
(2003)

6. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-Projective Dependency Parsing using
Spanning Tree Algorithms. In: HLT 2005 (2005)

7. Nivre, J.: Inductive Dependency Parsing (Text, Speech and Language Technology). Sprin-
ger-Verlag New York, Inc., Secaucus (2006)

8. Surdeanu, M., Manning, C.D.: Ensemble Models for Dependency Parsing: Cheap and
Good? In: NAACL 2010 (2010)

	Dependency Parsing with Efficient Feature Extraction
	Introduction
	Complexity in Theory
	Complexity in Practice
	Feature Extraction
	Results and Conclusion
	References

