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Abstract. On-line chain partition is a two-player game between Spoiler and Algo-
rithm. Spoiler presents, point by point, a partially ordered set. Algorithm assigns
incoming points (immediately and irrevocably) to the chains which constitute a chain
partition of the order. The value of the game for orders of width w is a minimum num-
ber val(w) such that Algorithm has a strategy using at most val(w) chains on orders of
width at most w. There are many recent results about variants of the general on-line
chain partition problem. With this survey we attempt to give an overview over the
state of the art in this field. As particularly interesting aspects of the article we see:

– The sketch of the proof for the new sub-exponential upper bound of Bosek and
Krawczyk: val(w) 6 w

16 lg(w).
– The new lower bound: val(w) > (2 − o(1))

(

w+1
2

)

.
– The inclusion of some simplified proofs of previously published results.
– The comprehensive account on variants of the problem for interval orders.
– The new lower bound for 2-dimensional up-growing orders.

1. General problem

Partitioning graphs and orders into simple components is a fundamental combinatorial
task. The on-line approach to these problems is receiving much attraction not only
because of its natural application flavor but also because of the beautiful mathematics
evolving in the area. The classical theorem of Dilworth says that an order of width w
can be partitioned into w chains. The dual of Dilworth’s theorem is also true: an order
of height h admits a partition into h antichains. In the on-line setting the challenge
is to construct such a partition of the smallest possible size, assuming that the points
constituting the order are revealed one at a time and have to be assigned to a block of
the partition immediately.

An on-line algorithm can be understood as an algorithm running without the full
knowledge of the input. Instead, the input is revealed piece by piece and for each new
piece of the input an irrevocable action must be taken before the next piece is shown.
Such a scenario surely applies in many real-world problems. In this paper the setting of
on-line algorithms and their performance is discussed in terms of two-person games and
strategies for the two players of such games.

The first results about on-line algorithms for problems on orders were obtained in
the context of recursive combinatorics, this is a logics program aiming for constructive
existence proofs of infinite structures. The introduction of Kierstead’s survey [16] has a
more detailed account. In our terminology [16] could have been entitled On-line problems
for orders. In the late 1980’s the idea of on-line algorithms and competitive analysis
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became popular in computer science and quickly found its way into combinatorics. Since
then most of the work in the area is using this terminology.
Our interest lies primarily in the on-line chain partition problem. We like to describe

this problem as a two-player coloring game. The players are named Spoiler and Algo-
rithm. The game is played in rounds. In each round Spoiler adds one new point to the
present order and describes all comparabilities to already existing points. Algorithm
responds by making an assignment of the new point to one of the chains in the chain
partition that he maintains. Think of the chains as being colored with different colors
and of the point to be colored in the color of the chain containing them, it then makes
sense to say that a move of Algorithm consists in assigning a color to the new point.
The aim of Algorithm is to use few colors while Spoiler tries to force many colors. In
Fig. 1 we show the smallest example that can force any on-line algorithm to use more
than w chains on an order of width w.

1 1 2 1 2 1 2

x 2

Figure 1. Spoiler forces 3 chains on an order of width 2. The white
element is the new element of a round. 1, 2, 3 are chains. In the third
round Algorithm has three choices for x: The case x = 3 is an immediate
win for Spoiler, the other two cases are symmetric and lead to Spoiler’s
win in round 4.

To measure the quality of the on-line algorithm we consider upper bounds on the
number of chains in the constructed partition as a function of the width w. This is
natural because by Dilworth’s theorem an optimal off-line algorithm would produce a
chain partition with exactly w chains.
The value val(w) of the game is the least integer s such that Algorithm has a strategy

using at most s chains on any on-line order of width at most w. It can be verified that
val(w) is equivalently the largest s for which Spoiler has a strategy forcing any algorithm
to use s chains on an order of width w.
Obviously val(1) = 1 but at first glance it is not clear if val(2) is well-defined, i.e.,

that there exists a constant c such that Algorithm can partition any on-line order of
width 2 into at most c chains. Leaving out the detailed bounds on val(w) for Section 3,
here we only mention that the best-known lower bound for val(w) is quadratic while the
best-known upper bound is super-polynomial (until 2009, it had been exponential). In
our belief, this huge gap represents one of the most intriguing challenges in the whole
domain of partially ordered sets.
This paper is organized as follows. In Section 2 we deal with on-line antichain par-

titions. Since this problem is much easier than on-line chain partitioning this section
may serve as a warm-up. Section 3 is concerned with the on-line chain partition prob-
lem for general orders. Theorem 3.1 is a lower bound construction due to Szemeredi.
Theorem 3.2 is a new lower bound gaining a factor of almost two. The up-growing
variant of the on-line chain partition problem is introduced. We show the tight upper
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bound for this variant in Theorem 3.5. In Subsection 3.1 we sketch the proof of the new
sub-exponential upper bound (Theorem 3.4).

In Sections 4 to 6 we discuss variants of the problem on restricted classes of orders.
In Section 4 we begin with interval orders and consider variants where the order is
given with or without representation and with or without the up-growing restriction.
Section 5 is concerned with semi-orders. The value of the up-growing game on this class
is based on the golden ratio (Theorem 5.2). For some variants where the order is given
with a geometric representation the value of the game remains elusive. In Section 6 we
review the state of the art regarding d-dimensional orders. This section also contains
a new lower-bound proof for up-growing 2-dimensional orders presented with a realizer
(Theorem 6.2).

Playing on special classes of orders, as in the up-growing variant or adding information
regarding a representation, is restricting the power of Spoiler. In Sections 7 and 8 we
talk about variants where the power of Algorithm is modified. In Section 7 we report on
results about First-Fit, this takes all freedom from Algorithm, the color of the new point
can be pre-calculated by Spoiler. Still there are situations where First-Fit has its merits.
In Section 8 we discuss the adaptive version of the game. In this setting Algorithm may
assign a point to several chains and withdraw it from some of these chains in later stages
of the game. We conclude in Section 9 with some open problems.

2. On-line antichain partitions

Dilworth’s Theorem is much harder to prove than its dual version. The difference in
‘hardness’ carries over to the on-line setting. As shown below, the value of the on-line
antichain partition problem is precisely known while the situation for chains (Section 3)
is much more intricate.

The following precise result must be provided with two complementary strategies: for
Spoiler and for Algorithm. Algorithm’s strategy using at most

(

h+1
2

)

antichains on orders
of height h appears in [16] where it is attributed to James Schmerl. Kierstead [16] also
describes a strategy for Spoiler that forces any on-line algorithm to use at least

(

h+1
2

)

antichains on an order of height h. The strategy is attributed to Emre Szemerédi. We
describe a camouflage version for Szemerédi’s lower bound below in Theorem 3.1. To
translate the proof of Theorem 3.1 to the antichain problem it has to be noted that the
order P presented by Spoiler has dimension 2 and can be presented together with an
on-line realizer. Reverting one of the linear extensions of the realizer yields the conjugate
order Pc which has the property that chains of P are in bijection to antichains of Pc

and vice versa. (For details on dimension 2 and conjugate orders we refer to [25].)

Theorem 2.1 (Schmerl, Szemerédi). The value of the on-line antichain partition game
for orders of height h is

(

h+1
2

)

.

Proof of the upper bound. Algorithm will maintain an antichain partition using a family
of antichains A(a,b) indexed by pairs (a, b) of numbers 1 6 a, b and a + b 6 h + 1. Since

there are exactly
(

h+1
2

)

such pairs (a, b) this will prove the theorem.
When Spoiler presents a new point x Algorithm determines the size a of the longest

chain in the already presented order that has x as its maximum element and the size b
of the longest chain that has x as its minimum element. As the size of any chain in the
already presented order is at most h we get a + b 6 h+ 1.
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Now, Algorithm inserts x into A(a,b). It has to be shown that A(a,b) remains an
antichain. Indeed, suppose that x is comparable with some y that was previously put
into A(a,b), and say x > y. Membership of y in A(a,b) is certified by chain C of size a with
maximum y. Since C ∪ {x} is a chain of of size a + 1 with maximal element x we have
contradicted x ∈ A(a,b). In the case where x < y, argue with a chain of size b having y
as minimum to obtain a similar contradiction. �

3. On-line chain partitions

The material of this section is in the core of the problem. We start with Szemerédi’s
lower bound and a new one improved by a factor of almost two. Theorem 3.3 is Kier-
stead’s classic upper bound and Theorem 3.4 is a new sub-exponential upper bound,
obtained by Bosek and Krawczyk in 2009. The main ideas for that result will be pre-
sented at the end of the section in Subsection 3.1. We present the status of the problem
for width 2 and 3. After that we introduce the up-growing version of the problem. In
this variant the value of the on-line chain partition game is precisely known. We include
a proof of the result.
The lower bound

(

w+1
2

)

6 val(w) is often attributed to Szemerédi (published in [16])
but in fact Szemerédi is the author of the dual construction for the on-line antichain
partition game and Saks is the one who translated it for the chain partition game.
Although we are going to prove the same bound in a much more restricted setting (see
Theorem 6.2) we would like to share this nice and short construction with the reader.
Szemerédi’s argument can be improved to obtain the result twice as good.

Theorem 3.1 (Szemerédi). The value of the on-line chain partition game is at least
(

w+1
2

)

.

Proof. We use induction on w and present a strategy S(w) for Spoiler forcing Algorithm
to use

(

w+1
2

)

chains on an order of width w. For w = 1 it suffices to introduce a single

point. Then, indeed,
(

1+1
2

)

= 1 chain is forced.
For w > 1 the strategy S(w) consists of two steps. First, Spoiler constructs a colorful

chain C of size w. Colors used by Algorithm on C will be blocked for further usage.
The construction of C goes as follows. Put initially C = ∅. As long |C| < w, Spoiler
introduces a new point x greater than all points in C and incomparable with the rest.
If Algorithm uses a new color on x then x is incorporated to C. Otherwise, C remains
unmodified (see Fig. 2). Note that each color used by Algorithm on C may be used
at most once outside C. Therefore the procedure stops with an order consisting of the
colorful chain C with |C| = w and a rest R(w) of at most w − 1 additional points.

1

2

4

2

1

5

4

3

3

S(4)

1

2

4

3

5

Figure 2. Strategy S(5) for Spoiler.

Now, Spoiler plays S(w − 1) in such a way that every new point is incomparable
with all elements of C and lies below all elements of R(w). Algorithm is not allowed to
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reuse the w colors used on C. Using the induction hypothesis for S(w − 1) it follows
that w +

(

w

2

)

=
(

w+1
2

)

colors are forced in total. As the largest antichain in the order
presented by S(w− 1) is of size w− 1 and any such antichain may be extended only by
one point (from C), the width of the order is w. �

Theorem 3.2. The value of the on-line chain partition game is at least (2−o(1))
(

w+1
2

)

.

Proof. The strategy of Spoiler starts by repeating the strategy from Theorem 3.1. The
result is an order PH with an antichain x1, . . . , xw of minimal elements. Each xi is a
bottom of a chain Xi of size i with i different colors used on it. Also, distinct Xi’s
are totally incomparable. Next, essentially the same strategy is played in an up-side
down way below PH . The result is an order PL with an antichain y1, . . . , yw of maximal
elements such that xi > yj for all i, j where each yi is a top of an i-colorful chain Yi.

We claim that there is an index i such that |Yw|+|Xi| > 2w−
√
2w (the sizes of Xi and

Yw are the same as the number of different colors on them). Given this index i Spoiler
continues recursively with the strategy for width w − 1 such that all the new points
are below each of x1, . . . , xi−1, xi+1, . . . , xw and their successors, above y1, . . . , yw−1 and
their predecessors but incomparable with Xi and Yw. It follows that the colors used in
Xi ∪ Yw can not be used again. By induction we find that the number of chains forced
by Spoiler is

w
∑

k=1

(2k −
√
2k) > 2

(

w + 1

2

)

− w
√
2w = (2− o(1))

(

w + 1

2

)

.

It remains to prove the claim. To minimize the maximum of |Xi ∪ Yw| it is best to have
|Xi ∩ Yw| = k−(w−i) for all i > w−k. In this case |Xi ∪ Yw| = 2w−k for all i > w−k.
Of course we have to respect the fact that |Yw| = w and hence

∑

i>w−k(k −w+ i) 6 w.

This implies
(

k+1
2

)

6 w, i.e., k2 + k 6 2w and finally k <
√
2w. �

Theorem 3.3 (Kierstead [15]). The value of the on-line chain partition game is at
most 5w−1

4
.

A good outline of the beautiful proof of the theorem is given in Trotter’s chapter [32]
in the Handbook of Combinatorics. The strength of this result may be measured by the
fact that no progress has been made for more than 25 years. Only in 2009, Bosek and
Krawczyk managed to improve the upper bound. Their new sub-exponential bound is:

Theorem 3.4 (Bosek and Krawczyk). The value of the on-line chain partition game is
at most w16 lgw.

We give a sketch of the quite involved proof further in Section 3.1.
Additionally, in the paper from 1981 Kierstead presented a general lower bound 4w−

3 6 val(w). Today the precise value of val(w) is known only for w 6 2, where val(2) = 5
(by Kierstead’s lower bound and Felsner’s upper bound given in [11]). In the next case
w = 3 there is still a gap. Recently, Bosek [3] improved the upper bound and the current
state of the art is: 9 6 val(3) 6 16.

The strategy for Spoiler enforcing 5 colors on orders of width 2 can be plugged into
Szemerédi’s strategy and with a few ideas from the proof of Theorem 3.2 it can produce
a slightly better lower bound for val(w). The authors claim that val(w) > (5

4
− o(1))w2.

Nevertheless, the latter seems to be pretty far from the best possible result.
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Note that partitioning an order of width w into n chains is equivalent to coloring a
co-comparability graph of clique size at most w using n colors. Consider, for a moment,
an on-line coloring game in which Spoiler introduces a graph and Algorithm maintains a
proper coloring. Such a game on coloring graphs is more challenging for Algorithm than
the previous on-line chain partition game as a co-comparability graph does not convey
the information about the direction of the poset. In particular, Kierstead’s algorithm
from Theorem 3.3 made explicit use of the orientation of the order relation. These
considerations led Schmerl to ask whether there exists a strategy for Algorithm in the
on-line coloring game on co-comparability graphs with cliques of size at most w using a
certain number of colors bounded in terms of w. Schmerl’s question has been answered
by Kierstead, Penrice and Trotter in [20]. They show that for every tree T of radius two
there exists a function fT : N → N such that there is a strategy for Algorithm in on-line
coloring games on graphs of clique-size at most w and without T as an induced subgraph
which uses at most fT (w) colors. In other words, if Spoiler is not allowed to produce
an induced copy of T then there is a reasonable strategy for Algorithm. Let S be the
subdivision of K1,3. Clearly S is a radius two tree. As co-comparability graphs do not
contain an induced S the question posed by Schmerl is answered affirmatively. A more
detailed account to on-line coloring games on graphs can be found in the survey [18]
by Kierstead which includes a proof that the class of graphs that have no induced S is
on-line χ-bounded.
Felsner [11] introduced a variant of the chain partitioning game in which Spoiler’s

power is limited by the condition that the new element has to be a maximal element of
the order presented so far. In other words, a possible comparability of a new element
x to an old element y has to be of the form x > y. On-line posets with this property
are called up-growing. Felsner determined the precise value of the game for up-growing
orders. In this paper, the lower bound is as a consequence of Theorem 6.2. The following
strikingly simple argument for the upper bound is taken from the paper of Agarwal and
Garg [1].

Theorem 3.5 (Felsner [11]). The value of the on-line chain partition game for up-
growing orders of width w is

(

w+1
2

)

.

Proof of the upper bound. Algorithm maintains a family F1, . . . , Fw of sets of chains
where Fi contains at most i chains. Together, all the chains form a partition of the
present order. Denote by Tops(Fi) the set of maximum elements (tops) of chains from Fi.
The invariant maintained by Algorithm is the following:

Tops(Fi) is an antichain, for every i.

Now, suppose that Spoiler has just introduced a new maximal point x. Let j be the
least number such that |Fj| < j or there is a point in Tops(Fj) which is dominated by x.
Such j does exist as otherwise Fw would have to be of size w and x would have to be
incomparable with all w points from Tops(Fw), so that the set {x} ∪ Tops(Fw) would
form an antichain of size w + 1.
If j is determined and x is comparable with the top of some chain C ∈ Fj , then

Algorithm adds x to C. Otherwise, if x is incomparable to all elements in Tops(Fj) but
|Fj | < j then Algorithm defines a new chain C = {x} and introduces it into Fj.
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Since x may have been comparable to several elements in Tops(Fj) something has to
be done to restore the invariant. This can only happen if j > 1. In this case Algorithm
modifies the families Fj−1 and Fj as follows (new Fi’s are marked with a plus sign):

F+
j−1 = Fj − {C} , F+

j = Fj−1 ∪ {C} .
From the choice of j it follows that the invariant is again true. The total number of
chains used by Algorithm is bounded by 1 + 2 + . . .+ w =

(

w+1
2

)

. �

3.1. The sub-exponential upper bound – sketch of the proof. We give a brief
account of the main ideas of the proof of Theorem 3.4, i.e., the sub-exponential upper
bound val(w) 6 w16 lg(w).

In the first part of the proof, the general chain partition problem is reduced to a family
of instances of a more structured problem, called a regular game. The second part is a
description and analysis of the algorithm for the regular game.

The regular game of width k is an on-line game with players Spoiler and Algorithm.
The description is based on the notion of a regular board. A regular board after t turns is
a poset (

⋃t

i=1Ai,6) of width k. All the Ai’s are antichains of size k. They are pairwise
disjoint and linearly ordered with respect to ⊑, where X ⊑ Y if for all x ∈ X there is
y ∈ Y with x < y. Each antichain Ai is introduced by Spoiler during his round as one
atomic move. The index i represents the time when the antichain was introduced into
the board. The first two antichains A1, A2 are fixed to be the borders of the board, i.e.,
a1 < a2 for all a1 ∈ A1, a2 ∈ A2 and all further antichains are to be presented in between
A1 and A2 with respect to ⊑. Let Ap(i) and As(i) denote the immediate predecessor and
the immediate successor of Ai in the ⊑-order at time i.

– Orders (Ap(i) ∪ Ai,6) and (Ai ∪ As(i),6) are strong orders; where (X ∪ Y,6) is a
strong order if for every two comparable points x ∈ X , y ∈ Y there is a minimum-
size chain partition of (X ∪ Y,6) with x, y in the same chain.

The move of Spoiler on the board at round t > 3 begins with a choice of two consecutive
antichains in the ⊑-order, they will become Ap(t) and As(t). Next Spoiler presents a
new antichain At and strong orders (Ap(t) ∪ At,61) and (At ∪ As(t),62) such that the
transitive closure of 61 ∪ 62 restricted to Ap(t)∪As(t) is a subset of 6. The board after t

turns is (
⋃t

i=1Ai,6
+), where 6+ is the transitive closure of 6 ∪ 61 ∪ 62. In particular,

(
⋃t−1

i=1 Ai,6) is the induced suborder of (
⋃t

i=1Ai,6
+) exactly as one should expect in an

on-line setting (see Fig. 3).

A1

A2

A1

A3

A2

A1

A3

A4

A2

Figure 3. The first two moves of Spoiler in a regular game of width 4.

The reply of Algorithm is a coloring of the elements of At such that all points in the
game with the same color form a chain.
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The reduction from the general chain partition problem to the regular game is done
in two steps. First the order P is split into a sequence P1, . . . , Pw of suborders such that
the width of P1 ∪ . . . ∪ Pi is at most i. This is done on-line by assigning the new point
x to the first Pi where it does not violate the width constraint. Each Pi is then used to
construct a regular game of width i such that the coloring produced in this regular game
yields a chain partition of Pi. The essence of the reduction is captured in the following
proposition:

Proposition 3.6. If Algorithm has a strategy which uses at most reg(v) chains on
a regular game of width v then there is a strategy for Algorithm which uses at most
∑

v6w reg(v) 6 w · reg(w) chains in the general on-line chain partition game for orders
of width w.

Now, we sketch the strategy of Algorithm for the regular game. During round t, just
before coloring the points of an incoming antichain, Algorithm assigns a color to each
comparability edge (x, y) of the incoming strong orders, i.e., x <1 y in (Ap(t) ∪ At,61)
or x <2 y in (At ∪ As(t),62), in such a way that

(⋆) the set of all points incident to edges colored with γ is a chain in 6.

The next step is easy. To x ∈ At, Algorithm assigns a color of any edge incident to the
vertex x. Condition (⋆) guarantees that all points with the same color lie in one chain.
Therefore, in the following we focus on coloring new edges of the incoming strong orders.
Algorithm’s edge-coloring strategy is based on the idea of a node. A node is a con-

nected component (in the comparability graph of the order) of one of the strong orders
presented by Spoiler during the game. From the definition of strong order and because
width is at most k it simply follows that a node has the same number of minimal and
maximal points. Also, each edge belongs to exactly one node. The essential property of
nodes is:

– The set of all nodes of strong orders in a regular game can be organized in a tree
T , called the tree of the game (see Fig. 4). The root of T is the node (A1, A2).

L

H

H

L

M

Figure 4. A node in the strong order (L,H) and its four sons in strong
orders (L,M) and (M,H).

The characteristics of a node N = (L,H), where L is the lower and H is the higher
level of N , consists of its width(N) = |L| = |H| and its surplus s(N) which is the largest
k such that for all non-empty X ⊆ L we have |succ(X)| > min{|X| + k, |H|}, where
succ(X) denotes the successors in H of elements of X . For N being a complete bipartite
graph the condition is true for every k and we put s(N) = ∞. Note that by the definition
of strong order s(N) > 1 for every nodeN . A useful property of the characteristics is that
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if N ′ is a descendant of N in the tree T then width(N ′) 6 width(N) and width(N ′) =
width(N) implies s(N ′) 6 s(N), i.e., the pairs (width, surplus) of characteristics are
weakly decreasing with respect to the lexicographic order along paths in the tree.

A cross of a node N = (L,H) is a set {x1, x2, y1, y2} with x1, x2 ∈ L, y1, y2 ∈ H , with
the four relations xi < yj, such that there is an extension of chains {x1, y1}, {x2, y2} to
a minimum-size chain partition of N . A node is vital if it contains a cross. For each
vital node N a representative cross X(N) is fixed.

A vital node N with characteristics (u, s) is called active if it has no ancestor in the
tree with the same characteristics. On the set of active nodes with characteristics (u, s)
define an order P (u, s) by the rule that N <(u,s) N

′ iff there is a maximum y ∈ X(N)
and a minimum x′ ∈ X(N ′) with y 6 x′. The key property of P (u, s) is:

– The width of P (u, s) is at most w/2.
Algorithm recursively generates an on-line chain partition of P (u, s).

For a chain C in P (u, s) consider the set E(C) of all edges of nodes in C, i.e, E(C) =
{(x, y) : x ∈ L, y ∈ H , x < y and (L,H) ∈ C}. On the set of these edges define the
order relation <E where (x, y) <E (x′, y′) if and only if y 6 x′. The key properties of
(E(C), <E) are:

– (E(C), <E) is (2w − 1) + (2w− 1)-free and its width is at most w3.
Hence, First-Fit can partition this order on-line using at most 3(2w−1)(w3)2 chains
(cf. Section 7).

There are only w2 possible characteristics (u, s). Suppose that Algorithm can partition
on-line orders of width v < w into alg(v) chains. Then we can summarize the result of
this part as:

Proposition 3.7. There is a strategy for Algorithm to color the edges of all active nodes
with at most λ(w) = 3(2w−1)(w3)2 ·w2 ·alg(w

2
) colors in such a way that (⋆) is preserved.

It remains to take care of non-active nodes, or more precisely, of edges lying in non-
active nodes of strong orders presented by Spoiler in the regular game. With an active
node N we associate a set D(N) of dependent nodes. It is the set of nodes N ′ such that
N is the first active node on the path from N ′ to the root of T . Since (A1, A2), the root
of T , is active, the set {D(N) : N is active} forms a partition of all nodes in T .

The basic idea is to replace each of the λ(w) colors used for the edges of active nodes
(Proposition 3.7) by a bundle of µ colors. Then the colors in the bundles associated
with the edges of an active node N are used to color the edges of all nodes N ′ ∈ D(N).

An easy but important property of non-vital nodes is:

– All descendants of a non-vital node are also non-vital and therefore if N ′ is a non-
vital node in D(N) then all descendants of N ′ are also in D(N).

Although a non-vital N ′ ∈ D(N) may have a lot of descendants, the fact that it does
not contain a cross results in:

– There is a greedy strategy that extends an edge coloring of a non-vital node N ′ to
an edge coloring with property (⋆) of all edges of descendants of N ′. This extension
does not require additional colors.

Now, in order to color all the edges in D(N) it remains to deal with the edges of vital
nodes and of first non-vital children of N in the tree of the game (we briefly call them
first-non-vital nodes). Unless N represents a complete bipartite graph we have:
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– All vital nodes in D(N) have the same characteristics as N and they form a path
in the tree T (see Fig. 5).

N = V1

V2

F1

V3

F1

F2 F3

V4

F1

F2 F3

F4 F5

F1

V2

F3

F2

V3

F5

V4

F4

N = V1

– active – vital – non-vital

D(N)

Figure 5. The tree-structure and the path of vital nodes in D(N).

Note that consecutive vital nodes on a path inD(N) split first-non-vital nodes inD(N)
into two regions. Let V be the last vital node on this path and let A(N) respectively
B(N) be the edges of first-non-vital nodes above respectively below V in the sense of
<E. Define the order relation <E (the same as previously) on the edges of A(N) and
B(N). Now, consider the orders (A(N), <E), (B(N), <E) as on-line orders:

– The orders (A(N), <E) and (B(N), <E) are down-growing and up-growing orders
of width at most w3, respectively. Hence, each of these orders can be partitioned

on-line into at most
(

w3+1
2

)

chains (cf. Theorem 3.5).

To an edge z < u in A(N) ∪B(N) we want to assign a color that is used on some edge
x < y of N such that property (⋆) is preserved. That is we need x 6 z < u 6 y. Such a

color assignment is certainly possible if only every edge x < y of N has 2
(

w3+1
2

)

colors
in its bundle.
It remains to color edges of vital nodes and possibly first-non-vital nodes that appear

as sons of the last vital node in D(N). To take care of all these edges it is sufficient to
have two additional colors in the bundle of every edge x < y in N .
The case where N represents a complete bipartite graph can be handled with similar

ideas.

Proposition 3.8. If each edge of an active node N is colored with a bundle of 2
(

w3+1
2

)

+2
colors then Algorithm can color the edges of nodes in D(N) using only colors from the
bundles on edges of N .

The combination of the previous three propositions yields the following:

alg(w) 6 w · (2
(

w3 + 1

2

)

+ 2) · 3(2w − 1)(w3)2 · w2 · alg(w
2
)

6 poly(w) · w16 lgw.

For more details we send the reader to [4].
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4. Interval orders

An order P = (X,6) is an interval order if there is a function I which assigns to
each x ∈ X a closed interval I(x) = [lx, rx] on the real line R so that x < y in P if and
only if I(x) < I(y), i.e., rx < ly. The function I is called a representation of P; see
Fig. 6 for an example. Fishburn [13] characterized interval orders as the orders without
induced (2 + 2), i.e., without four elements a, b, c, d such that a < b and c < d are the
only comparabilities.

a d

f

b e g

c

a b c

d e f

g

Figure 6. Interval order P = ({a, b, c, d, e, f, g} ,6) with its representation.

We start off with a result for antichain partitioning. Gyárfás and Lehel [14] proved
that any chordal graph G can be covered on-line with 2α(G)− 1 cliques (where α(G)
is the maximum size of an independent set in G). This immediately implies that the
value of the on-line antichain partition game for interval orders of height h is at most
2h− 1, and this bound is tight (see [21]).

The value of the on-line chain partition game for interval orders was settled in the
early 80’s by Kierstead and Trotter. Like all other results at that time it was expressed
in the language of recursive combinatorics. Several years later Chrobak and Ślusarek
proved the same result, this time using the terminology of on-line algorithms.

Theorem 4.1 (Kierstead, Trotter [23]; Chrobak, Ślusarek [9]). The value of the on-line
chain partition game for interval orders of width w is 3w − 2.

There is one subtle issue distinguishing the two results. In the on-line games considered
so far Spoiler always presented an on-line order as a set of points. Interval orders can
be presented in a new way: not as points, but as intervals. In this new variant of
the game Spoiler adds some extra information to the order. The task for Algorithm
remains the same, i.e., assign colors to intervals in such a way that two intersecting
intervals have always a different color. The corresponding notion for the width of the
poset is the clique-size – the maximum size of the set of mutually intersecting intervals.
This new variant of the game is called a variant with representation. Kierstead and
Trotter analyzed the variant without representation. Chrobak and Ślusarek analyzed
the variant with representation. Below we recall Spoiler’s strategy for intervals and
Algorithm’s strategy for the case without representation.

The same argument works also for a game in which Spoiler presents arcs on a circle
and Algorithm colors them avoiding monochromatic intersections. Ślusarek [30] showed
that the value of this game remains 3w − 2, here w denotes the maximum size of a set
of arcs sharing a point on the circle. The proof does not work when Spoiler presents
a circular arc graph without underlying arc representation. The problem is that not
all cliques in a circular arc graph admit a representation with a non-empty common
intersection and the argument relies on such cliques.
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Proof of Theorem 4.1. First, for the lower bound, we provide a strategy S(w) for Spoiler
forcing Algorithm to use at least 3w − 2 colors on a collection of intervals of clique-size
at most w. The strategy S(1) is trivial, it suffices to present a single interval. For
strategy S(k + 1) Spoiler plays many strategies S(k) on disjoint areas of the real line.
On each copy of S(k) Algorithm has to use at least 3k − 2 colors (by induction). If
3k + 1 or more colors are used in total, we are done. Otherwise, Algorithm only has
(

3k
3k−2

)

possible selections of colors for a single copy of S(k). When the number of S(k)’s
is large enough, Spoiler forces four of them, say C1, C2, C3, C4 (read from left to right)
to use the same set of 3k − 2 colors. Now, Spoiler introduces two intervals: the first
covers all intervals from C1 and is disjoint with the rest, the other covers C4, again
being disjoint from the rest (see Fig. 7). On both of these intervals (and also on all the

C1

. . .. . . . . .. . .
C3 C4C2

. . .

Figure 7. S(k + 1): Two intervals intersecting C1 and C4.

following ones) Algorithm has to use colors that have not been used on the Ci’s. If the
same color is used for both new intervals then Spoiler introduces the next two as in the
left part of Fig. 8. Otherwise, if Algorithm uses two different colors, then the third color
is forced by presenting an interval as shown in the right part of Fig. 8.

C1

. . .. . . . . .. . .
C3 C4C2

. . .

32
1 1

C1

. . .. . . . . .. . .
C3 C4C2

. . .

31 2

Figure 8. S(k + 1): Algorithm has to use three different colors.

If all intersections between the new intervals are restricted to the gaps between con-
secutive S(k)’s, then the clique size of the resulting collection of intervals is at most
k + 1. Since Spoiler forced at least (3k − 2) + 3 colors we are done.
In order to prove the upper bound we present a strategy for Algorithm using at most

3w − 2 chains on any interval order of width at most w. We use induction and assume
that strategies A(k) that handle interval orders of width k < w with 3k− 2 colors exist.
Strategy A(1) has to color an order of width one with one color.
Strategy A(w) maintains a partition of the order into two sets G and R such that the

width of G is bounded by w − 1. A new point x is put into G if it does not violate
the width condition for G ∪ {x}. Otherwise, x is put into R. To deal with points in G
algorithm A(w) recursively calls A(w− 1). By induction at most 3w− 5 colors are used
on G. It suffices to show that points in R may be colored on-line using 3 chains.
To visualize the argument we fix an interval representation and identify points with

their intervals. Each interval r ∈ R belongs to clique of size w together with w − 1
elements g1, . . . , gw−1 from G. Let γ(r) be any point on the real axis in the intersection
g1 ∩ . . . ∩ gw−1 ∩ r of intervals. For r′ ∈ R − {r} we note that γ(r) ∈ r′ would prove
the existence of an antichain of size w + 1 (see Fig. 9). Hence, no two intervals from R
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. . .

R r

G

g1 ∩ . . . ∩ gk ∩ r

Figure 9. γ(r) 6∈ r′ for all r′ ∈ R− {r}.

contain each other. In particular, every r′ ∈ R intersecting r must contain an endpoint
of r. Moreover, no interval from R is contained in the union of all other intervals from
R. This implies that there is no point on the real axis that is contained in three or more
intervals from R.

From these considerations it follows that the co-comparability graph of the order
induced on R is a subgraph of a path. A greedy strategy can color such graphs on-line
with three colors. A coloring corresponds to a partition of R into three chains. �

The up-growing variant of the game for interval orders has also been explored. When
Spoiler presents points (not intervals) then the value is 2w − 1, proved in [2]. Below we
present an argument for an upper-bound which is much shorter than the original one.
The observation is that the on-line algorithm from Theorem 4.1 is also optimal in the
up-growing setting.

Theorem 4.2 (Baier, Bosek, Micek [2]). The value of the on-line chain partition game
for up-growing interval orders of width w is 2w − 1.

Proof of the upper bound. The strategy A(w) for Algorithm is the same as in the proof
of Theorem 4.1. We are going to induct that A(w) uses at most 2w − 1 chains on any
up-growing interval order of width at most w. Assume that this is true for all naturals
up to k < w and consider A(w).

The set G is recursively covered by A(w−1) using 2w−3 chains and all we have to do
is to show a way to cover points in R with only 2 chains. Suppose that x is a maximal
point just introduced by Spoiler and it is put in R.

For visualization purposes we again fix an interval representation and identify points
with their intervals.

Following the proof of Theorem 4.1 all intervals r ∈ R intersecting x must contain one
of x’s endpoints. In fact, due to the up-growing restriction, more is true:

– every r ∈ R intersecting x has to contain the left endpoint of x.

To see this recall that by the definition of γ(r) ∈ r the intervals containing γ(r) form
an antichain of size w. If r would contain the right endpoint of x, then γ(r) would also
be to the right of x. Since there is no antichain of size w + 1 this implies that one of
the intervals containing γ(r) is completely to the right of x. This is impossible since the
new element x has to be a maximal element.

From the proof of Theorem 4.1 we know that there is at most one interval in R
that contains the left endpoint of x, i.e., x is incomparable to at most one element of
R. It follows that Algorithm can use the obvious greedy strategy to cover R with two
chains. �
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The up-growing case with representation does not pose a big challenge for Algorithm.
In this setting there is enough information to make even the Nearest-Fit algorithm use
the optimal (off-line) number of colors.

Theorem 4.3 (Broniek [8]). The value of the on-line chain partition game for up-
growing interval orders of width w presented with representation is w.

Proof. The strategy for Algorithm: from all legal colors (i.e., colors not used for intervals
intersecting the new interval) choose the closest one used rightmost (in other words,
choose a legal color used on an interval with the right endpoint nearest to the new
interval). We prove that this strategy (called the Nearest-Fit algorithm) uses no more
colors than the clique-size of the presented collection of intervals.
Let top(γ) denote the top element of the γ-chain, this is the rightmost interval colored

with γ. Let x = [lx, rx] = top(α) be the interval with the leftmost right endpoint from
all top elements.
We claim that rx is contained in an interval of each color used by Algorithm. Consider

any color β used during the game. The right endpoint of top(β) is to the right of rx. If
top(β) contains rx then it is the interval we are looking for. Otherwise, β 6= α and top(β)
is completely to the right of rx. Now, let y be the leftmost interval among those colored
with β and completely to the right of rx (see Fig. 10). By the up-growing property, x
must have been presented prior to y. The Nearest-Fit algorithm colored y with β 6= α
while α was also legal for y. This means that there is an interval z of color β to the left
of y but with rz > rx. Our choice of y implies that z contains rx.
Hence, for all the β’s we have found an interval colored with β and containing rx.

Therefore, the number of intervals containing rx is at least the number of colors used by
Algorithm. As these intervals form an antichain, the proof is finished. �

x = top(α)

rx

z top(β)y
. . .

Figure 10. Each color is used on an interval containing rx.

5. Semi-orders

An order P = (X,6) is a semi-order if there is a function I assigning to each point
x ∈ X a closed, unit-length interval I(x) = [lx, lx + 1] of the real line R so that for
all x, y ∈ X we have x < y in P iff lx + 1 < ly. In other words, an interval order is
a semi-order if it has a representation formed by unit-length intervals. An interval
representation is proper if there is no inclusion between intervals. Proper interval orders
are the interval orders admitting a proper representation. It is a well known theorem
of Roberts [28], that the classes of proper interval orders and semi-orders coincide. A
representation-free characterization of semi-orders is due to Scott-Suppes [29]: an orders
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is a semi-order exactly if it has no induced (2+ 2) and no induced (3 + 1), this is a four
element order on a, b, c, d such that b < c < d are the only comparabilities.

The on-line chain partition game for semi-orders in its most general form is relatively
easy to analyze.

Proposition 5.1. The value of the on-line chain partition game for semi-orders of width
w is 2w − 1.

Proof. The strategy for Spoiler forcing 2w − 1 chains on a semi-order of width w is as
follows:

Phase 1. Present two antichains A and B, both consisting of w points in such a way that
A < B, i.e., all points from A are below all points from B. If Algorithm uses 2w − 1 or
more chains, the construction is finished. Otherwise, suppose that k chains (2 6 k 6 w)
are used twice, once in A on a1, . . . , ak and once in B, on b1, . . . , bk respectively so that
ai and bi have the same color.

Phase 2. Present k − 1 incomparable points x1, . . . , xk−1 such that the only compara-
bilities are a1, . . . , ai < xi < bi+1, . . . , bk. Their interval representation may look as in
Fig. 11. The width of the resulting order is w. It is easy to verify that Algorithm is
forced to use 2w − 1 chains as each xi has to go into a new chain.

a1
a2
a3

. .
.

. .
.ak

b1
b2
b3

. .
. bk

. .
.

. .
.

x1

x2

xk−1

Figure 11. Strategy for Spoiler forcing Algorithm to use 2w − 1 chains
on a semi-order of width w.

To prove the upper bound we show that a greedy strategy for Algorithm never needs
more than 2w−1 chains. This fact will become quite obvious with a little help of geom-
etry. Fix a proper representation of the order and identify points with their intervals.
Let x be the new point and let Inc(x) denote the set of points incomparable with x. The
only chains forbidden for x are those used in Inc(x). If y ∈ Inc(x) then intervals x and
y intersect. Moreover, since y cannot lie in the interior of x, it must contain one of the
endpoints of x. The number of intervals sharing a common point does not exceed the
width of the order w. This implies that | Inc(x)| 6 2(w − 1) = 2w − 2, proving that at
least one out of a set of 2w − 1 chains is legal for x. �

The analysis of the up-growing case turned out to be much more involved. The result
is shown in the next theorem. The proof can be found in an independent paper [12].

Theorem 5.2 (Felsner, Kloch, Matecki, Micek [12]). The value of the on-line chain

partition game for up-growing semi-orders of width w is ⌊1+
√
5

2
w⌋.

We now turn to the variants where the semi-order is presented together with a repre-
sentation. There are two variants:

(i) P is presented with unit intervals.
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(ii) P is presented with a proper representation.

In both cases the value of the game is still unknown. Rather unsatisfactory bounds are
given in Proposition 5.3.

Proposition 5.3. The value of the on-line chain partition game for semi-orders of
width w presented with representation (unit-length or proper) is at least ⌊3

2
w⌋ and at

most 2w − 1.

Proof. The upper bound is valid for any greedy algorithm (see Proposition 5.1). For the
lower bound we present a strategy for Spoiler which forces 3k colors on a collection of
unit-length intervals of clique-size 2k. The strategy is as follows:

Phase 1. Present a clique A of k identical, unit-length intervals. Let 1, . . . , k be the
colors used by Algorithm.

Phase 2. Present a clique B of 2k unit-length intervals in such a way that:

(i) their left endpoints lie within a unit distance from the right border of A,
(ii) Algorithm is forced to use new colors on the k leftmost intervals from B.

We now explain how to build B satisfying (i) and (ii). Present the first interval so that
the distance between its left endpoint and the right border of A is 1

2
. For the rest of the

construction maintain a partition of B into two (possibly empty) sets B0 ∪ B1, where
B0 (B1, respectively) contains intervals with a new (old) color, and additionally all left
ends of intervals from B0 lie to the left of all left ends of intervals from B1 (see Fig. 12).
Introduce any further interval into the gap between B0 and B1, i.e., put it slightly to
the right of all left ends of B0 and slightly to the left of all left ends of B1. Depending
on the color used by Algorithm, the new interval extends either B0 or B1. Since B has
2k intervals and there are at most k old colors used on B, we indeed get |B0| > k, which
is exactly condition (ii).

. . .
A . . .

. . .

B0 – new colors

B1 – old colors

new interval B

Figure 12. Construction of B = B0 ∪B1.

Phase 3. Present k identical unit-length intervals intersecting A and the k leftmost
intervals in B.

The k intervals presented in Phase 3 need new colors. Therefore 3k colors have to be
used in total but the largest antichain only has size 2k. �

The upper bound 2w − 1 is tight for greedy strategies of Algorithm, i.e., strategies
using a new color only when they have to (noted in [9]). To force 2w − 1 colors
Spoiler presents two cliques of intervals: a1, . . . , aw and b1, . . . , bw, where la1 < . . . <
law < ra1 < . . . < raw < lb1 < . . . < lbw < rb1 < . . . < rbw . The order of presentation is:
a1, b1, . . . , aw, bw. Clearly, a greedy Algorithm assigns i-th color to ai and bi. Now,
Spoiler presents x1, . . . , xw−1 (exactly as in the proof of Proposition 5.1) such that the
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only comparabilities are a1, . . . , ai < xi < bi+1, . . . , bw and Algorithm must use w−1 new
colors. The presented collection is of clique-size w and can be realized by unit-length
intervals.

6. d-dimensional orders

An extension of an order P = (X,P ) is an order Q = (X,Q) such that x 6 y in
P implies x 6 y in Q. If an extension Q of P is a linear order, it is called a linear
extension. A set of linear extensions of P intersecting to P is called a realizer of P. The
dimension of P, denoted by dim(P), is the least number n such that there is a realizer
of P consisting of n linear extensions. This definition is due to Dushnik and Miller in
[10]. Clearly, an order is of dimension 1 if and only if it is a chain. The dimension of
an antichain A with |A| > 1 is exactly 2. Indeed, for any linear extension L of A the set
R = {L, L∗} is a realizer, here L∗ denotes the reverse of L. For a comprehensive account
on the topic and an extensive bibliography we refer the reader to Trotter’s monograph
[31].

A geometric interpretation of the dimension (and justification of the term) is the
following. Denote by R

d the standard Cartesian product of real numbers, partially
ordered by inequality on each coordinate: (x1, . . . , xd) 6 (y1, . . . , yd) if and only if xi 6 yi
for each 1 6 i 6 d. LetR = {L1, . . . , Ld} be a realizer of a finite poset P = (X,6). With
every element x ∈ X we associate the point (x1, . . . , xd) so that xi is the position of x
in the linear extension Li. Such a mapping of X into R

d defines an embedding of the
poset P into R

d. Conversely, projections of such an embedding onto d coordinates give d
linear extensions yielding a realizer of P. An example of such an embedding of a poset
into a 2-dimensional grid is shown in Fig. 13.

a

c

g

e f

d

b

b
d

f
a
e
c

g

a b c d e f g

Figure 13. Poset embedded into a 2-dimensional grid.

The analysis of the on-line chain partition game restricted to d-dimensional orders
appears to be as hard as the general problem (even for d = 2). No better bound, specific
for this class, is known. On the other hand there is a nice result of Kierstead, McNulty
and Trotter for the game in which Spoiler introduces a d-dimensional order via its
embedding into R

d or equivalently, by providing on-line a realizer of size d.

Theorem 6.1 (Kierstead, McNulty, Trotter [19]). The value of the on-line chain parti-
tion game for d-dimensional orders of width w presented with representation is at most
(

w+1
2

)d−1
.
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Proof. The workhorse of the proof is the following fact: Y is a chain in a 2-dimensional
order P with realizer {L1, L2} if and only if Y is an antichain in P∗ defined by a realizer
{L1, L

∗
2}. In particular, an antichain partition of P∗ (obtained e.g. by Theorem 2.1) is

a chain partition of P.
We describe the strategy of Algorithm witnessing the upper bound using induction on

d. For d = 1 Spoiler presents a chain and Algorithm covers it optimally using 1 =
(

1+1
2

)0

chain.
Fix d > 1. Let P be the presented order and {L1, . . . , Ld} be its realizer given by

Spoiler. Consider P∗ = L1∩ . . .∩Ld−1 ∩L∗
d. Note that every chain in P∗ is an antichain

in P and so height(P∗) 6 width(P) 6 w. On the other hand if Y is an antichain in P∗

then the order induced by Y in P is just (L1 ∩ . . .∩Ld−1)|Y and therefore Y a subposet
of P with dimension at most d− 1.
During the game, Algorithm uses Schmerl’s algorithm (see Theorem 2.1) to generate

an on-line antichain partition of P∗ of size at most
(

h(P∗)+1
2

)

6
(

w+1
2

)

. Each antichain A
in the partition of P∗ is a suborder of P. Its width is at most w and L1|A, . . . , Ld−1|A
is a (d − 1) realizer. Therefore, it can recursively be partitioned into

(

w+1
2

)d−2
chains.

Altogether the Algorithm uses at most
(

w+1
2

)d−2+1
chains. �

The next theorem deals with up-growing orders presented with a 2-realizer. The
motivation to consider such a restricted setting comes from the results of Szemerédi and
Felsner (see Theorems 3.1 and 3.5). The poset constructed in the proof of Theorem 3.1
is 2-dimensional but not up-growing. On the other hand, the up-growing order as used
in the original proof of Theorem 3.5 was not 2-dimensional. The following result shows
that the value

(

w+1
2

)

remains a lower bound even if we consider on-line orders which are
both: up-growing and 2-dimensional.

Theorem 6.2. The value of the on-line chain partition game for 2-dimensional up-
growing orders of width w presented with representation is at least

(

w+1
2

)

.

Proof. The argument is inspired by the proof of the lower bound from Theorem 3.5 from
[11]. However, we have to take care that all construction steps preserve the dimension.
This is achieved by restricting the operations used by the Spoiler’s strategy to only
very elementary ones. For the description of the operations we need an easy fact about
2-dimensional orders.

Claim 6.3. If P is a 2-dimensional order with a realizer L1, L2 and the maximal elements
of P are ordered as in L1, i.e., max(P) = {x1, . . . , xw} and x1 <L1

. . . <L1
xw, then their

order is reversed in L2, i.e., xw <L2
. . . <L2

x1. We call (x1, . . . , xw) the sorted antichain
of maximal elements of P.

Given the sorted antichain (x1, . . . , xw) of maxima and two indices 1 6 i 6 j 6 w we
introduce the following operations extending the order in an up-growing way:

abovei,j Add a new element y with relations xi < y, xi+1 < y, . . . , xj < y and all relations
implied by transitivity but no others.

lefti,j Always preceded by abovei,j. Add a set yi+1, yi+2, . . . , yj of twin elements such that
each ys from this set has relations xi+1 < ys, . . . , xj < ys and all relations implied by
transitivity but no others. The index of the element y introduced by the preceding
move abovei,j is i, i.e., yi = y.
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righti,j Always preceded by abovei,j. Add a set yi, yi+1, . . . , yj−1 of twin elements such
that each ys from this set has relations xi < ys, . . . , xj−1 < ys and all relations implied
by transitivity but no others. The index of the element y introduced by the preceding
move abovei,j is j, i.e., yj = y.

The combination of a move abovei,j followed by a move lefti,j is illustrated in Fig. 14.
Throughout the strategy Spoiler repeatedly makes a move of type abovei,j and depending
on the color given to the new element y, Spoiler completes the operation with a move
of type either lefti,j or righti,j.

Claim 6.4. If L1, L2 is a realizer of P and P+ is obtained by a move abovei,j followed by
lefti,j then L1, L2 can be extended to a 2-realizer L+

1 , L
+
2 ofP+. The same holds if abovei,j

is followed by righti,j. In other words: the operations preserve the 2-dimensionality of
the order.

yi+1

xi−1 yi

xi+1 ...

...

...

...
yj

L1

L2

xj

xi

xj+1

Figure 14. Combination of abovei,j followed by lefti,j.

Recall that top(α) is the top element of the α-chain. If x is a maximal element of
an order partitioned into chains then private(x) is the set of chains α with top(α) 6 x
and top(α) 66 y for all maximal elements y 6= x. The general idea is to keep track of
the number of private chains for the consecutive maxima and make Algorithm produce
a large number of them. The workhorse for the proof of the theorem is the following
proposition.

Proposition 6.5. Fix a number Z ∈ N. Let P be a 2-dimensional order of width w
with sorted antichain (x1, . . . , xw) of maximal elements and let a chain partition of P be
given. There is a strategy S(i, j), for all i 6 j, which extends P in an up-growing way by
using only the three operations described above such that the width remains w and every
on-line chain partitioning algorithm has to tolerate one of the following two results for
the sorted antichain of maximal elements (z1, . . . , zw) of the resulting order:

(i) |private(zr)| > r − i+ 1 for all r = i, . . . , j, or
(ii) the algorithm has used more than Z colors.

Moreover for all s 6∈ {i, i+1, . . . , j} we have zs = xs and private(xs) was not affected by
the play of S(i, j).
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Proof. The proof is by induction on j − i. For j = i we are in case (i) without doing
anything, just observe that the color of the chain to which xi has been assigned is an
element of private(xi), hence | private(xi)| > 1.
For the induction step we begin with strategy S(i + 1, j) which may result in case

(ii) so that we can stop. In the interesting case S(i+ 1, j) ends with a sorted antichain
of maximal elements (y1, . . . , yw) such that | private(yr)| > r − (i + 1) + 1 = r − i for
r = i + 1, . . . , j. The next step is a move of type abovei,j. Let the new element y be
assigned to chain γ. We distinguish two cases:

(a) If γ 6∈ private(yj) then a move righti,j follows. This results in a new sorted antichain
(y1, . . . , yw) of maximal elements with | private(yj)| > j − i+ 1. Playing S(i, j − 1)
results in one of the two outcomes claimed for S(i, j).

(b) If γ ∈ private(yj) then continue with a move lefti,j. This results in a sorted antichain
(y1, . . . , yw) of maximal elements with one more chain γ in the set private(yi) than
before. Continue with another iteration of strategy S(i+ 1, j). This or one of the
following iterations of S(i+1, j) may result in case (a). If case (a) is avoided, then
after Z iterations we have | private(yi)| > Z and, hence, state (ii) of the proposition.

�

To prove the theorem we fix Z >
(

w+1
2

)

. Starting with an initial antichain (x1, . . . , xw)
apply strategy S(1, w). After completion of S(1, w) we either have reached Z colors, or,
the final sorted antichain (z1, . . . , zw) of maximal elements has the property that the
private colors of the elements obey | private(zi)| > i for each 1 6 i 6 w. Hence, the total
number of chains used is at least 1 + 2 + . . .+ w =

(

w+1
2

)

. �

7. First-Fit

Probably, the simplest strategy for Algorithm in the on-line chain partition game
is First-Fit, a strategy assigning the new point to a chain with the smallest possible
number. Spoiler can make First-Fit use arbitrarily many chains already on orders of
width 2. An example of Kierstead [16], see Fig. 15, shows how to force 3, 4, 5, . . . chains.

3

x2

1

1

2
x1

x4 x3

3

1

1

2

1

42

3

1

1

2

x6

x5

1

42
x7

3

5

1

2
x11

x10

x9

x8

Figure 15. First-Fit forced to use 5 chains on an order of width 2.

Recently, Bosek, Krawczyk and Szczypka [5] proved that First-Fit uses at most 3kw2

chains on (k+ k)-free orders of width w, i.e., orders with no two incomparable chains
of size k. It is likely that indeed First-Fit uses only O(w) chains on (k+ k)-free orders
(see Problem 3). Note that the case k = 2 deals with interval orders.
Several papers investigate the performance of First-Fit for interval orders. This proved

to be an exciting and a challenging problem. The upper bound for the number of chains
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used by FF on interval orders has a long history: O(w2) by Woodall, 40w [17], 26w
[21], 10w [27], and 8w [7], [26]. The paper of Pemmaraju and Raman [27] introduced
a completely new and elegant technique called the column construction method. The
authors achieved an upper bound of 10w, overlooking one detail leading later to 8w.
From the other side, Chrobak and Ślusarek [9] showed that FF can be forced to use
4.4w − c chains on a collection of intervals with clique-size w, for some constant c.
Kierstead and Trotter [22] have recently improved this to 4.99w − c.

8. On-line adaptive chain partitions

On-line adaptive chain partitioning is a variant of the game where Algorithm is
stronger than in the standard game. In the adaptive variant Algorithm may assign
a non-empty set of colors to the new point. The choice of the set is restricted by the
condition that the set of all points containing γ in their set must form a chain. Before
coloring an incoming point, Algorithm may remove colors from the sets of some older
points. Of course at least one color has to remain for each point. Figure 16 shows an
example of an adaptive game.

{1} {2} {3} {1} {2} {3} {1} {2} {3}

{1, 2} {3}x y
{1, 2, 3}

Figure 16. Spoiler forces 4 colors on the order of width 3. If Algorithm
sticks to three colors, either x or y has only one color upon the arrival of
y. In both cases Spoiler may present a point forcing the fourth color.

The value adapt(w) of the on-line adaptive chain partition game is the least integer
s such that Algorithm has a strategy using at most s colors on any on-line order of
width at most w. This variant of the game was introduced in [11] in the up-growing
variant. The motivation was that the value of this game equals the on-line dimension of
up-growing orders.

Very little is known about adapt(w). In particular, no strategy using substantially
less colors than in the original chain partition game is known for Algorithm. Theorem
8.1 gives the best-known lower bound for adapt(w). We expect that this bound is far
from the best possible. Theorem 8.2 is a recent precise result for up-growing orders of
height 2.

Theorem 8.1 (Bosek, Micek [6]). The value of the on-line adaptive chain partition
game for up-growing orders of width w is at least (2− o(1))w.

Theorem 8.2 (Kozik, Matecki [24]). The value of the on-line adaptive chain partition

game for up-growing orders of height at most 2 and width w is (1 + π/ cosh(
√
3
2
π) −

o(1))w ≈ 1.41w.

9. Open problems

Despite the recent progress, the big challenge in the field of on-line chain partitions
remains to lower the gap between upper and lower bound in the unrestricted setting.
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Hopefully we have convinced the reader that considering variants and restricted ver-
sions of this problem can also lead to interesting structures and beautiful mathematics.
We feel that together with the restrictions to special classes of orders, two types of
restriction which reduce the power of Spoiler are interesting:

(i) the up-growing case,
(ii) the case where Spoiler has to present the order with a geometric representation

which certifies the membership of the order in a given class.

Below is a table of related results and open problems. Columns U and R of the table
indicate whether Spoiler has to play up-growing and with a geometric representation,
respectively. In particular it would be very interesting to answer the following questions:

Problem 1. What is the value of the on-line coloring game in which Spoiler presents
unit-length/proper intervals? It is likely that the values of these two variants of the
chain partition game for semi-orders with representation are different. The best known
lower and upper bound is 3

2
w and 2w − 1, respectively. Moreover, any greedy on-line

algorithm may be forced to use 2w − 1 chains.

Problem 2. What is the value of the on-line chain partitioning game for 3-dimensional
orders with geometrical representation? In this case the lower and upper bound are
(

w+1
2

)

and
(

w+1
2

)2
, respectively.

Problem 3. Does the First-Fit algorithm use O(w) chains on (k+ k)-free orders?

Problem 4. What is the strict bound for the number of colors (chains) used by the
First-Fit algorithm on a collection of intervals with clique-size at most w? The current
lower bound is 4.99w and upper bound is 8w. Trotter conjectures it to be 5w.

Problem 5. Is adapt(w) bounded from above by a polynomial of w? The linear lower
bound (2− o(1))w is rather weak.
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[30] Maciej Ślusarek. Optimal on-line coloring of circular arc graphs. RAIRO Inform. Théor. Appl.,
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