
On-line dimension of semi-orders

Bartłomiej Boseka, Kamil Klochb, Tomasz Krawczyka, Piotr Miceka

a Theoretical Computer Science Department, Faculty of Mathematics and Computer

Science, Jagiellonian University
bEmbedded Systems Lab, University of Passau

Abstract

We analyze the on-line dimension of partially ordered sets as a value of a two-
person game between Algorithm and Spoiler. The game is played in rounds.
Spoiler presents an on-line order of width at most w, one point at a time. Algo-
rithm maintains its realizer, i.e., the set of d linear extensions which intersect to
the presented order. Algorithm may not change the ordering of the previously
introduced elements in the existing linear extensions. The value of the game
val(w) is the least d such that Algorithm has a strategy against Spoiler pre-
senting any order of width at most w. For interval orders Hopkins showed that
val(w) 6 4w − 4. We analyze the on-line dimension of semi-orders i.e., interval
orders admitting a unit-length representation. For up-growing semi-orders of
width w we prove a matching lower and upper bound of w. In the general (not
necessarily up-growing) case we provide an upper bound of 2w.

Key words: on-line dimension, semi-order

1. Introduction

Let P be a finite partially ordered set. The width P is the size of the
largest antichain in P and the height of P is the size of the largest chain in P.
By Dilworth’s theorem any order of width w can be partitioned into w chains
and dually, any order of height h can be partitioned into h antichains. When
P = (X,P) and Q = (X,Q) are partial orders on the same set X then we call
Q an extension of P if P ⊆ Q, i.e., if x 6 y in P implies x 6 y in Q, for all
x, y ∈ X . Among all extensions of a given poset, those which are additionally
linear orders are of special importance. They are called linear extensions. For
a poset P consisting of n elements x1, . . . , xn we write L = (x1, . . . , xn) as an
abbreviation for a linear extension L = (X,L) of P in which x1 < · · · < xn. A
set R of linear extensions of a poset P intersecting to P is called a realizer of P.

URL: http://tcs.uj.edu.pl/Bosek (Bartłomiej Bosek),
http://www.esl.fim.uni-passau.de/˜kloch/ (Kamil Kloch),
http://tcs.uj.edu.pl/Krawczyk (Tomasz Krawczyk), http://tcs.uj.edu.pl/Micek (Piotr
Micek)

Preprint submitted to Elsevier April 18, 2012

The dimension of a poset P, denoted by dim(P), is the least integer k for which
there exists a realizer of P consisting of k linear extensions. Another classic
theorem of Dilworth says that dim(P) 6 width(P). The notion of dimension in
posets is often compared with chromatic number of graphs. Dimension theory
greatly influenced the research on combinatorial properties of posets and graphs.
For a comprehensive account on the topic and an extensive bibliography work
we refer the reader to Trotter’s monograph [1].

All mentioned basic parameters of orders: width, height and dimension have
their witnessing structures. These structures in are: chain decomposition, an-
tichain decomposition and a realizer, all of the smallest possible size equal to the
respective parameter. In the on-line setting the sole question about the value of
those parameters does not pose new challenge as all of them can be computed
after each round of the game exactly in the same way as in the off-line case.
Therefore, instead of asking only for the scalar values we additionally require to
build (and update on-line) an appropriate witnessing structure.

From the three on-line problems introduced, the majority of researchers’
efforts has been devoted to the on-line width game. However some of the results
in this field are very much related to the on-line dimension problem. Therefore,
before drawing our attention to the latter, we give a brief overview of the on-line
width and on-line height results.

The on-line width is the value of the following two-person game. We call
the players Spoiler and Algorithm. First Spoiler announces parameter w – the
width of the order to be presented. Algorithm responds with k – the size of the
chain partition maintained in the game. The game is then played in rounds. In
each round Spoiler presents a new point enlarging the order of width at most w
presented so far. Algorithm, in turn, makes an irrevocable assignment of this
point to some chain in the maintained chain partition. He loses the game if the
new point cannot be incorporated into any of the maintained k chains. The
value of the game val(w), for width w orders, is the least k such that there is
a winning strategy for Algorithm using at most k chains on orders of width at
most w.

The study of chain partitioning games reaches back to the early 80’s when
Kierstead [2] and Szemerédi (published in [3]) proved the estimates for on-line
orders of width w:

(

w+1
2

)

6 val(w) 6 5w−1
4 . It took almost 30 years until these

bounds had been slightly improved. The story can be found in [4]. The big
question remains whether val(w) is bounded by a polynomial of w.

Since the chain partitioning problem resists the attempts to be solved in its
general form, some restricted variants are being analyzed. Felsner [5] proposed
a modified chain partitioning game in which Spoiler’s power is limited by the
condition that the new element has to be a maximal element of the order pre-
sented so far. In other words, a possible comparability of a new element x to an
old element y has to be of the form x > y. On-line posets with this property are
called up-growing. Felsner [5] showed that the value of the chain partitioning
game for up-growing orders is

(

w+1
2

)

.
Another way of simplifying the problem is to narrow the class of posets

that is being considered. In particular, interval orders and semi-orders are of

2

our interest. Poset P = (X,6) is an interval order if it can be represented
as a set of intervals of the real line so that for x, y ∈ X we have x < y if and
only if the interval corresponding to x is entirely to the left of the the interval
corresponding to y. Semi-orders, in turn, are interval orders which admit a
unit-length interval representation. The precise result val(w) = 3w − 2 for the
on-line chain partitioning game of interval orders was settled in the early 80’s
by Kierstead and Trotter [6]. Recently, Baier et al. [7] resolved the case of
up-growing interval orders, they proved val(w) = 2w− 1. For up-growing semi-
orders, Felsner et al. [8] proved a matching lower and upper bound of ⌊ 1+

√
5

2 w⌋.
The analysis of the on-line height of posets happens to be much easier. This

time Spoiler announces the height of the order to be presented and Algorithm
maintains its antichain decomposition. The value of the game val(h) is the
least integer k such that there is a winning strategy for Algorithm using k
antichains on orders of heigth at most h. Schmerl and Szemerédi proved that
val(h) =

(

h+1
2

)

(published in Kierstead’s [3], see also p. 441 of [9]). The beautiful
result of Gyárfás and Lehel [10]: ‘any chordal graph G can be covered on-line
with 2α(G) − 1 cliques (where α(G) is the maximal size of independent set in
G)’ implies that the on-line height of interval orders is at most 2h− 1 and this
bound is tight (see [11]).

We finally focus on the on-line dimension of posets. Like above, the problem
is defined by means of our two-person game. This time Algorithm fixes the
size k of the on-line realizer he is going to maintain. Spoiler wins if Algorithm
cannot incorporate the new point into k linear extensions while keeping them a
realizer.

Knowing only the dimension d of order presented by Spoiler, the above game
is hopeless for Algorithm.

Proposition 1. For every k there is a strategy for Spoiler presenting an on-line
order of dimension 2 and winning with Algorithm using a realizer of size k.

Proof. For a fixed k Spoiler introduces a (k+1)-element antichain a1, . . . , ak+1.
At least one of the ai’s is not on the top of any linear extension in Algorithm’s
realizer, say a1. Now Spoiler presents point b above all the ai’s except a1.
Algorithm has to put b on the top of all maintained k linear extensions. On the
other hand, since a1 and b are incomparable, we must have b < a1 in at least
one of those linear extensions. Clearly, this is impossible. The on-line order
presented by Spoiler has dimension 2 (see Figure 1).

a1 a2 a3

b

a1

a2

ak+1

ak+1

a2

b

b a1realizer of
size 2:

ak+1

· · ·
a3 a3

Figure 1: Order of dimension 2 presented by Spoiler

3

The width of the order presented by Spoiler in the above strategy depends
on the number k of linear extensions used by Algorithm (see Figure 1). One
can ask if knowing the width w of the presented order Algorithm could produce
a realizer whose size would be bounded in terms of w? The answer, given in
[12], is again: no. The winning strategy for Spoiler produces a poset with a 3-
crown (see Figure 2). (An n-crown is a poset with points {a1, . . . , an, b1, . . . , bn}
such that ai, ai+1 < bi for i < n and an, a1 < bn). In the very same paper it is
proved that if Spoiler presents an on-line order of width w without an n-crown
as a subposet for any n > 3 then the number of linear extensions needed by
Algorithm is indeed bounded in terms of w.

Theorem 2 (Kierstead, McNulty, Trotter [12]).

(i) For every k there is a strategy for Spoiler presenting an on-line order of
width 3 and winning with Algorithm using a realizer of size k.

(ii) For on-line orders of width at most w and without an n-crown as a subposet
for n > 3 there is a strategy for Algorithm using c! linear extensions, where
c is the value of on-line chain partitioning game on width w, i.e., c 6 5w−1

4 .

a1 a2 a3

b3 b2b1

Figure 2: A 3-crown

Results from Theorem 2 lead to the structural gap left in the area: what
happens if only 3-crowns are being forbidden? Does Algorithm have a winning
strategy (in terms of w) on 3-crown-free on-line orders of width w? Another
emerging question is how good strategies (in terms of w) for Algorithm can
be devised on other (narrowed) classes of orders defined in terms of forbidden
structures, like interval orders or semi-orders?

Formally, the on-line dimension of a class C of orders, or the value of the
on-line dimension game for C, denoted by val(w), is the least integer k for which
Algorithm has a winning strategy using k chains on orders from C of width at
most w.

Recall that poset P = (X,6) is an interval order if there is a function I which
assigns to each x ∈ X a closed interval I(x) = [lx, rx] of the real line so that
x < y in P if and only if I(x) < I(y), i.e., rx < ly. An interval representation I
is correlating if elements sharing the same sets of predecessors (successors) are
mapped to intervals with the same left (right) end points. It is easy to see that
every finite interval order admits a correlating interval representation. For an
integer n > 2, let In denote the canonical interval order determined by the set
of all closed intervals with distinct integer end points from {1, . . . , n}.

4

An interval order P = (X,6) is called a semi-order if it has an interval
representation {[lx, rx] : x ∈ X} such that rx = lx + 1 for every x ∈ X . By
possibly locally stretching some of the intervals one can easily show that P is
a semi-order if and only if it admits a proper interval representation, i.e., a
representation in which no interval is properly contained in another one.

It is not entirely naive to ask whether there are interval orders which have
large dimension. However, it can be proved that dim(In) = log log(n) + (12 +
o(1)) log log log(n) (see [1]). On the other hand Füredi, Hajnal, Rödl and Trotter
[13] bounded from above the dimension of any interval order of height h by
log log h +

(

1
2 + o(1)

)

log log log h. The dimension of any semi-order is at most
3 (by Rabinovitch [14]).

The on-line dimension of interval orders is still far from being understood.
As interval orders do not induce n-crown for n > 3 their on-line dimension is
bounded in terms of the width (by Theorem 2). The results of Hopkins [15] and
Kierstead, McNulty, Trotter [12] give us some better bounds (see Table 1).

presentation method bounds remarks

arbitrary 4
3w 6 ? 6 4w − 4 [12], [15]

up-growing 8
7w 6 ? 6 2w − 2 unpublished results of authors

Table 1: On-line dimension of interval orders

For semi-orders the lower bound 4
3w still applies, while the upper bound of

2w can be achieved with the technique basically mirroring the proof of Hopkins
for interval orders (Theorem 9). In this paper we prove that the value of the
on-line dimension game for up-growing semi-orders is exactly w (see Table 2).
The lower bound is trivial and follows from Proposition 1. The proof of the
upper bound is split into two parts, to better pinpoint its difficulties. First, in
Section 4, we show a more relaxed bound of w + 1. The improved result of w
follows thereafter in Section 5.

presentation method bounds remarks

arbitrary 4
3w 6 ? 6 2w [12], Theorem 9

up-growing w Theorem 18

Table 2: On-line dimension of semi-orders

On-line dimension game on interval orders (semi-orders) has a natural vari-
ant in which Spoiler, instead of points, reveals the underlying interval represen-
tation of the order. This of course provides more information to Algorithm and
typically the value of the resulting game is different. Authors cover this new
variant of the game in [16].

5

2. Basics

For a poset P = (X,6) and x ∈ X we denote the set of all predecessors of x
in P by x↓ and the set of all its successors in P by x↑, i.e.: x↓ = {y : y < x in P}
and x↑ = {y : y > x in P}.

We will make an extensive use of the well-known characterization of interval
orders and semi-orders in terms of forbidden structures.

Theorem 3. Let P = (X,6) be a poset. The following statements are equiva-
lent.

(i) P is an interval-order,

(ii) P is a (2+ 2)-free order, i.e., P does not contain elements a, b, c, d ∈ X
such that a < b, c < d, with no more comparabilities (see Figure 3),

(iii) For any x, y ∈ X either x↓ ⊆ y↓ or x↓ ⊇ y↓, i.e., the down sets are linearly
ordered with respect to inclusion.

(iv) For any x, y ∈ X either x↑ ⊆ y↑ or x↑ ⊇ y↑, i.e., the up sets are linearly
ordered with respect to inclusion.

Theorem 4 (Scott and Suppes [17]). Let P = (X,6) be an interval order.
Then the following statements are equivalent.

(i) P is a semi-order,

(ii) P is a (3+ 1)-free order, i.e., P does not contain elements a, b, c, d ∈ X
such that a < b < c and d ‖ a, b, c (see Figure 3).

a

b

c

d

a

b

c

d

Figure 3: (2+ 2) and (3+ 1) orders

Let P be a semi-order and let x, y ∈ X . Theorem 4 allows us to define an
(irreflexive) extension ≺ of P as follows.

x ≺ y iff x↓ (y↓ or x↑) y↑.

Reflexive extension of ≺ is defined so that x 4 y iff x ≺ y or x and y have the
same up sets and down sets. Up to twin equivalence the ordering 4 define a
linear extension of P.

Let P = (X,6) be a semi-order and L be a linear extension of P. We say
that point y ∈ X is strictly high in L if for every z ∈ X , y < z in L implies
y < z in P. Point y ∈ X is high in L if for every z ∈ X , y < z in L implies
y ≺ z in P (equivalently, z 4 y in P implies z 6 y in L). In other words, if I is

6

y

z3

z2

z1

y′

z4

z5

L:

z1
z3
z2
z4
y
y′
z5

z1 z2 z3 y

z4 z5 y′

Figure 4: y is high in L, y′ is not high in L

a correlating interval representation of P then y is high in L if z <L y for every
z lying weakly to the left of y, i.e., for every z 4 y and z 6= y (see Figure 4).

By the dual of a poset P = (X,P) we mean a poset Pd = (X,P d) where
(x, y) ∈ P d iff (y, x) ∈ P . Using the concept of the dual poset Pd of P and the
linear extension Ld of Pd we introduce two more definitions.

Point x is low (strictly low) in L if and only if it is high (strictly high) in Ld.
Let P′ = (X ∪ {x},6) be an extension of P. Define L′

high and L′
down, two

linear extensions of P′ obtained from a linear extension L of P:

L′
high: add x high in L, i.e., let x go as deep as possible in L so that x is high in

L′
high, that is, put x just above the largest y in L for which y 4 x,

L′
down: add x strictly low in L, i.e., let x go as deep as possible in L so that L′

down

remains a linear extension of P′, that is, put x just above the largest y in
L for which y <P′ x.

Three important properties of these extensions are summarized in the following
observation.

Observation 5. Let semi-orders P, P′ = (X ∪ {x},6) and linear extensions
L, L′

high and L′
down be defined as above. If y ∈ X is high in L then

(i) y is high in L′
high if and only if x and y are not twins,

(ii) y is high in L′
down,

(iii) if x‖y then x < y in L′
down.

Proof. Let h and d be the points immediately preceding x in the linear exten-
sions L′

high and L′
down, respectively.

If y ≺ x then, according to definition of being high, y remains high in any
linear extension L′ of P′ obtained from L. In particular, y remains high in L′

high

and L′
down.

For x 4 y we have d < x 4 y, so d < y. Hence x < y in L′
down as x is just

above d in L′
down and y must be above d as well. This proves (ii).

In order to prove (i) assume that x ≺ y. Then h 4 x ≺ y. Since y is high in
L, we get h < y in L. Point x is just above h in L′

high, so that x < y in L′
high

and therefore y remains high in L′
high.

7

To prove the converse in (i) assume that x ≈ y. Since x is high in L′
high, it

dominates y in L′
high and y is no longer high in L′

high.
It remains to prove (iii). Recall that d < x. If x‖y then d ≺ y. Since y is high

in L, we know that d < y in L. This implies x < y in L′
down and proves (iii).

Define linear extensions L′
low and L′

up dually to L′
high and L′

down, respectively.

L′
low: add x low in L, i.e., let x go as high as possible in L so that x is low in

L′
low, that is, put x just below the smallest y in L for which y < x,

L′
up: add x strictly high in L, i.e., let x go as high as possible in L so that L′

up

remains a linear extension of P′, that is, put x just below the smallest y
in L for which y >P′ x.

Clearly, Observation 5 has its counterpart for linear extensions for L′
low and L′

up.

3. General case

Let P = (X,6) be a semi-order and R be its realizer. Suppose that P is
extended to P′ = (X∪{x},6) so that width(P′) = width(P). Our first concern
is to understand under which conditions for R this new point x can be inserted
to existing linear extensions from R without creating a new one, so the new
set R′ of extensions is a realizer of P′. Clearly, for every y ∈ Inc(x) there must
exist L′

i, L
′
j ∈ R

′ in which x < y and x > y, respectively. It is easy to observe
that instead of considering all points from Inc(x) it suffices to focus on minimal
and maximal points in Inc(x) in order to get that R′ is a realizer of P′. This
easy fact is worded in the following observation.

Observation 6. In the setting described above, R′ is a realizer of P′ if for every
y ∈ min(Inc(x)) there exists L′

i ∈ R
′ in which x < y and for every y ∈ max(Inc(x))

there exists L′
j ∈ R

′ in which x > y.

It turns out that updating R to R′ (of the same size) is not always possi-
ble without further assumptions on the behavior of R. Consider the following
example. Let P = ({a, b, c},6) be a 3-element antichain. Define L1 = (a, b, c),
L2 = (c, b, a), L3 = (b, a, c). If Spoiler presents x so that x > a, c and x‖b then
x cannot be added to L1, L2, L3 so that R′ is a realizer of P′ as x has to be
below b in one of the L′

i’s but then x would be also below a or c.
The problem in the above example arises from the fact that there is no Li

in which x could be put below b. On the other hand, if b had been high in some
Lj then putting x as deep as possible in Lj would guarantee x < b in L′

j , by
Observation 5(iii). The latter remark is the reason for introducing the concept of
coloring functions. Maintaining such functions during on-line dimension game
will guarantee the possibility of extending the realizer without increasing its
size.

Let P = (X,6) be a semi-order of width at most w and R = {L1, . . . , Lw}
be the set of w linear extensions of P. A function c : X → {1, . . . , w} is a high-
coloring function for (P,R) if y is high in Lc(y), for all y ∈ X . We usually

8

say that y has color c(y), while obviously y may be high in some other linear
extension from R as well. Dually, a low-coloring function c : X → {1, . . . , w}
for (P,R) satisfies that y is low in Lc(y), for any y ∈ X . It is easy to see that
a low-coloring function for (P,R) is simultaneously a high-coloring function for
(Pd,Rd), where Rd = {Ld : L ∈ R}.

Let c : X → {1, . . . , w} be a high-coloring function for (P,R). Suppose that
P is extended to P′ = (X ∪ {x},6) so that width(P′) = w. As previously
suggested, Algorithm can use the function c to insert x below all points incom-
parable with x. However, in order to maintain the high-coloring function c′

for (P′,R′), the new point x must be put high in some linear extension. Since
{x}∪min(Inc(x)) is an antichain in P′, we have |min(Inc(x))| < w. Hence there
is a color in {1, . . . , w} but not in c(min(Inc(x))) which can possibly be used to
color x highly. We express this inspiration in the following proposition.

Proposition 7. In the setting defined above, fix i0 ∈ {1, . . . , w}−c(min(Inc(x)))
and define R′ = {L′

1, . . . , L
′
w} as follows:

– put x high in Li0 , i.e., L′
i0
:= (Li0)

′
high,

– put x down in Li, for all i 6= i0, i.e., L′
i := (Li)

′
down.

Then there is a high-coloring function c′ for (P′,R′) with c′|X = c. Moreover,
for each y ∈ min(Inc(x)) there is L′

i ∈ R
′ in which x < y.

Proof. To see the latter note that by Observation 5(iii) we have x < y in L′
c(y)

for y ∈ min(Inc(x)). Define c′ by:

c′(y) =

{

c(y), if y ∈ X ,

i0, if y = x.

To prove that c′ is a high-coloring function for (P′,R′) we need to show that
y is high in L′

c′(y) for every y ∈ X ∪ {x}. Clearly, x is high in L′
i0

. Let y ∈

min(Inc(x)). Point x was put down in Lc(y). From Observation 5(ii) we get
that y remains high in L′

c′(y). Finally, let y ∈ X−min(Inc(x)). Then x and
y are not twins. Again, from Observation 5(i), it follows that y is high in
L′
c′(y).

Obviously, Proposition 7 has its dual counterpart for a low-coloring function:

Proposition 8. For a low-coloring function c : X → {1, . . . , w} of (P,R) fix
i0 ∈ {1, . . . , w}−c(max(Inc(x))) and define R′ = {L′

1, . . . , L
′
w} as follows:

– put x low in Li0 , i.e., L′
i0
:= (Li0)

′
low,

– put x strictly high in Li, for all i 6= i0, i.e., L′
i := (Li)

′
up.

Then there is a low-coloring function c′ for (P′,R′) with c′|X = c. Moreover,
for each y ∈ max(Inc(x)) there is L′

i ∈ R
′ in which x > y.

9

Combining Propositions 7 and 8 we get the next theorem.

Theorem 9. Let val(w) denote the value of the on-line dimension game on the
class of semi-orders of width at most w, presented without representation. Then

val(w) 6 2w.

Proof. Let P = (X,6) be a semi-order of width at most w. To maintain a real-
izer R of size 2w we actually require that R can be split into R = Rl ∪Rh with
|Rl| = |Rh| = w such that there is a low-coloring function cl : X → {1, . . . , w}
for (P,Rl) and a high-coloring function ch : X → {1, . . . , w} for (P,Rh). The
realizer R and the functions cl, ch are trivially defined when |X | 6 1.

Consider an extension P′ = (X ∪ {x},6) of P such that width(P′) 6 w.
Define R′

h and c′h as in the proof of Proposition 7 so that c′h is a high-coloring
function for (P′,R′

h) and for each y ∈ min(Inc(x)) there is H ′ ∈ R′
h in which

x < y. Dually, define R′
l and c′l as in the proof of Proposition 8 so that c′l is a

low-coloring function for (P′,R′
l) and for each y ∈ max(Inc(x)) there is L′ ∈ R′

l

in which x < y. By Observation 6 we know that R′ = R′
h ∪ R

′
l is a realizer

of P′.

4. Up-growing case, upper bound: w + 1

Let P = (X,6) be a semi-order. For x ∈ X define a partition of the set
Inc(x) into Inc0(x) ∪ Inc1(x) as follows:

Inc0(x) = min(Inc(x)), Inc1(x) = Inc(x)−Inc0(x).

Obviously, Inc0(x) is an antichain. Moreover, by Theorem 4 we know that P is
(3+ 1)-free and hence Inc1(x) is an antichain as well. Note also that for every
y ∈ Inc1(x) we have y ≻ x.

Let P = (X,6) be a semi-order of width at most w andR = {L1, . . . , Lw} be
a realizer of P of size w. Suppose P is extended to a semi-order P′ = (X∪{x},6)
so that width(P′) 6 w and x is maximal in P′. As in Section 3 we would like
to know under which conditions for R this new point x can be inserted into
existing linear extensions from R without creating a new, (w + 1)-st one, so
that the new set of extensions R′ is a realizer of P′. The next observation gives
such a condition.

Observation 10. In the setting described above, R′ is a realizer of P′ whenever
for every y ∈ Inc0(x) there exists L′

i ∈ R
′ in which x < y and there exists L′

j ∈
R′ where x is on the top.

In the up-growing setting it is enough to maintain only a high-coloring func-
tion c : X → {1, . . . , w} of (P,R) to construct a realizerR′ of P′ = (X∪{x},6).
In the rest of this Section we simply say coloring function for a high-coloring
function.

The following statement only slightly differs from Proposition 7. In partic-
ular, the new point x is put not only high, but actually on the top of Li0 . Such

10

an insertion of x is now possible as P is an up-growing semi-order. This slight
modification of Algorithm’s behavior will guarantee that R′ becomes a realizer
of P′. However, we will sometimes no longer be able to maintain a coloring
function for P′.

Proposition 11. In the setting defined above, fix one i0 ∈ {1, . . . , w}−c(Inc0(x))
and define R′ = {L′

1, . . . , L
′
w} as follows:

– put x on the top of Li0 , i.e., L′
i0
:= (Li0)

′
up,

– put x down in Li, for all i 6= i0, i.e., L′
i := (Li)

′
down.

Then R′ is a realizer of P′.

Proof. From Observation 5(iii) we have x < y in L′
c(y) for y ∈ Inc0(x). On the

other hand, we know that x is put on the top of Li0 . This proves that R′ is a
realizer of P′, by Observation 10.

The proof of Proposition 11 was based on the fact that every y ∈ X was
high in at least one linear extension from R, namely in Lc(y). If one could show
that there still exists a coloring function c′ for (P′,R′) then, like in the proof of
Theorem 9, a simple iteration of Proposition 11 would prove val(w) 6 w for the
dimension of up-growing semi-orders. Unfortunately, Example 12 shows such c′

need not exist if no additional care is taken for L1, . . . , Lw.

Example 12. Let P = (X,6) with X = (a, b, c, d, e, f) be an up-growing semi-
order of width 3 shown by Figure 5. (To emphasize the on-line nature of P

we treat X as a sequence, rather than a set of points). If an on-line algorithm

c

b

a

f

ed

x

c
a
d
b
f
e

b
a
d
c
e
f

c
b
a
d
f
e

L2 L3L1

Figure 5: Order P and linear extensions L1, L2, L3 from Example 12

builds a realizer R of P according to Proposition 11 then, depending on the
choice of i0 at each step, the set R = {L1, L2, L3} may look just like in Figure
5. Point b is high only in L2, point d is high only in L1, point f is high only in
L3. If X is extended to X ′ = (a, b, c, d, e, f, x), where x ‖ b, d, e, f and x > a, c
then, according to Proposition 11, x is put down in L1 and L2, x is put on the
top of L3. In the new order P′ = (X ′,6) point f is not high in L′

3 and the value
c′(f) cannot be defined.

As already shown in Proposition 7, there is an easy way to maintain a
coloring function when passing from (P,R) to (P′,R′). However, this can be
achieved at the expense that R′ is no longer a realizer for P.

11

Recall the poset P from Example 12. If the new point x was put high in
L3 then point f would remain high in L3. However, the set R′ = {L′

1, L
′
2, L

′
3}

would no longer be a realizer of P′, as in all of the L′
i’s we would have x < e, f .

At the cost of one extra linear extension, in which the new point x will
always be put on the top, we can combine the techniques from Propositions 7
and 11 to get the next result.

Theorem 13. Let val(w) denote the value of the on-line dimension game on
the class of up-growing semi-orders of width at most w, presented without rep-
resentation. Then

val(w) 6 w + 1.

Proof. Let P = (X,6) be an up-growing semi-order of width at most w, let
R = {L1, . . . , Lw, L⋆} be a realizer of P of size w + 1. For our convenience
(and to remain consistent with the notation used in next sections), define Γ0 =
{1, . . . , w} and Γ = Γ0∪{⋆}. Assume there exists a coloring function c : X → Γ0

for (P,R−{L⋆}). (Both R and the function c are defined in an obvious way
when |X | 6 1).

Consider an up-growing extension P′ = (X∪{x},6) of P such that width(P′) 6
w. We present an algorithm which produces a realizer R′ of P′ of size w+1 and
a coloring function c′ : X ′ → Γ0 of (P′,R′−{L′

⋆}) (see Algorithm 1). A simple
iteration of the algorithm proves the thesis.

Algorithm 1: Dimension of up-growing semi-orders: val(w) 6 w + 1

1 γ ← any element from Γ0−c(Inc0(x));
2 put x high in Lγ ;
3 foreach j ∈ Γ0−{γ} do put x down in Lj;
4 put x on the top of L⋆;
5 c′(x)← γ;
6 foreach y ∈ X do c′(y)← c(y);

We show that Algorithm 1 is correct. Recalling the proof of Proposition 7 it is
easy to see that c′ is indeed a coloring function of (P′,R′−{L′

⋆}). From the proof
of Proposition 11, with {L1, . . . , Lw} replaced by ({L1, . . . , Lw}−{Lγ})∪ {L⋆},
it follows that R′ is a realizer of P′.

5. Up-growing case, upper bound: w

In the proof of Theorem 13 we made an extensive use of the additional
(w + 1)-st linear extension L⋆ to put the new maximal point x above every
existing element of X . Then, at most w − 1 linear extensions were needed
to put x below Inc0(x), the one remaining extension was used to put x high.
Example 12 shows that following the same pattern with only w linear extensions
is not always possible. To stay within w linear extensions we need to refine some
of our notions.

12

Let P = (X,6) be a semi-order and L be a linear extension of P. For two
elements y, z ∈ X such that y ≮ z we say that y is high in L with respect to z if
w > y in L implies w ≻ z in P, for every w ∈ X−{z} (see Figure 6).

z

w3

w2

w1

y

w4

w5

L:

w1

w2

w3

y
w5

z
w4

Figure 6: y is not high in L, y is high in L with respect to z

We will see that the concept of being high with respect to another element
is the needed refinement of the notion of being high. Indeed, y is high in L if
and only if y is high in L with respect to y. Furthermore, Observation 5 can be
generalized as follows.

Observation 14. Let P = (X,6) be a semi-order and L be a linear extension
of P. For two incomparable points y, z ∈ X, assume that y is high in L with
respect to z. If P is extended to P′ = (X ∪ {x},6) and the linear extension
L′

down is defined as in Section 4 then

(i) if z ≺ x then y is high with respect to z in any L′ obtained from L,

(ii) if x‖y and x‖z then x < y in L′
down.

Proof. Condition z ≺ x guarantees that x will not destroy the property of y
being high with respect to z in any extension L′ obtained from L, exactly as (i)
states.

Now let d be the point preceding x in L′
down. Then d < x. Together with

the assumption x‖y we get d 6= y. Moreover, if x‖z then d ≺ z as otherwise
z 4 d < x would give z < x. Point y is high in L with respect to z, hence
d < y in L. Since x is just above d in L′

down, this implies x < y in L′
down and

proves (ii).

Let P = (X,6) be an up-growing semi-order of width w. We say that y ∈
X is active in P if there is an extension P′ of P such that X ′ = X ∪ {x},
width(P′) = w, x‖y and x in maximal in P′. In other words, it is possible to
add to P a maximal element incomparable with y without increasing the width
of P. The set of active points in P is denoted by act(P).

Example 15. Let up-growing semi-orders P1 and P2 of width 3 be defined by
correlating interval representations as in Figure 7. In poset P1 all five points
are active, in poset P2 the only active points are h and i. (Recall, that in the
currently considered on-line dimension game the interval representation of the
poset is not revealed to Algorithm. Posets P1 and P2 are presented as intervals
since it is more intuitive to think about interval orders in the terms of their
geometry).

13

a

b

c e

d h

i

g

f

P1 = ((a, b, c, d, e),6) P2 = ((f, g, h, i),6)

Figure 7: Up-growing semi-orders P1 and P2

The concept of active points turns out to be extremely handy on the class
of up-growing semi-orders. The intuition is that they are the only points an
on-line algorithm needs to keep track of. As we shall see below, their number is
also very limited.

Observation 16. Let P = (X,6) be a semi-order of width w. If P′ = (X ∪
{x},6) is an up-growing extension of P such that width(P′) = w, then

(i) if y /∈ act(P) then x > y and y /∈ act(P′),

(ii) Inc(x) ⊆ act(P),

(iii) if y ∈ act(P) and z < y then z ∈ act(P),

(iv) if y ∈ act(P) then y↑ is an antichain.

Proof. Properties (i) and (ii) follow directly from the definition of being an
active point. To see that (iii) holds observe that x ‖ y implies x ‖ z, for any
maximal element x in P′. Finally, suppose that (iv) fails, i.e., there exist in P

three active points y, z and w with y < z < w. Hence P can be extended to
P′ = (X ∪ {x},6) so that x‖y. Since x is maximal in P′, we get x‖z, w. This
produces a (3+ 1) configuration y, z, w ‖ x forbidden in semi-orders.

Let c : X → {1, . . . , w} be a coloring function of a semi-order P = (X,6)
with a realizer R = {L1, . . . , Lw}. Observe that for two points y and z with
c(y) = c(z) = γ we have y ≺ z or y ≻ z as both y and z are high Lγ . Thus, for
γ ∈ c(X) we may define top(γ) to be the highest (with respect to 4) element
in P colored with γ. Function top : c(X)→ X induces a linear quasi-ordering
of colors actually used by c. For γ, δ ∈ c(X) we say that γ is a (weakly) higher
color than δ and write γ ⊒ δ if top(γ) < top(δ).

Recall the poset P and linear extensions L1, L2, L3 from Example 12. If a
coloring function for (P, {L1, L2, L3}) is defined as follows: c({a, d, e}) = 1,
c(b) = 2, c({c, f}) = 3, then top(1) = e, top(2) = b, top(3) = f and hence
2 ⊏ 1, 3.

We describe our algorithm in three steps. First, we introduce a data struc-
ture used by the algorithm. Second, we define a set of invariants which are to
be kept during each run of the algorithm. Finally, we present a pseudo-code of
the algorithm.

14

Data structure

We introduce variables similar to those used in Algorithm 1.

P = (X,6) an up-growing semi-order of width w
R a set of w linear extensions of P, R = {L1, . . . , Lw}
x a new (maximal) element extending P to P′ = (X ∪ {x},6)
Γ = {1, . . . , w} the set of numbers of w linear extensions in R
⋆ ∈ Γ the number indicating a special linear extension L⋆ ∈ R
Γ0 = Γ−{⋆} the set of numbers of w − 1 non-special linear extensions in R
c : X → Γ a (high) coloring function for (P,R), i.e., y high in Lc(y)

Note that Γ is now, in contrary to Algorithm 1, of size w (not w+1) and the value
of ⋆ may be changed by each run of the algorithm. Note also that the coloring
c : X → Γ enforces an additional structure on Γ, namely the quasi-ordering ⊑.
These facts will help to substantially improve the old algorithm.

Following our notation from previous sections we distinguish input and out-
put variables of the algorithm by appending ′ to the output variables, i.e., P
becomes P′, L2 becomes L′

2, Γ becomes Γ′, ⋆ becomes ⋆′ etc.

Invariants

(I0) R is a realizer of P and c : X → Γ is a coloring function for (P,R).

(I1) Among points colored by ⋆ there is at most one active point in P, denoted
by k and called the anchor. In other words, for every y ∈ act(P), if y 6= k

then c(y) ∈ Γ0.

The conditions (I0) and (I1) are the only invariants if the anchor does not exist.
However, if the anchor does exist, we require four more invariants to be kept:

(I2) | Inc0(k)| = w − 1

(I3) If z ∈ Inc0(k) then c(z) ∈ Γ0 and k is high in Lc(z) with respect to z.

Define two antichains A and B by: A = Inc1(k), B = k↑. Note that A is an
antichain, since P is (3+ 1)-free. Moreover, B is an antichain by Observa-
tion 16(iv) applied to the active point k. The behavior of A and B is further
restricted by the invariants:

(I4) | c(A ∪B)| 6 width(A ∪B)

(I5) If width(A) < width(A ∪ B) = | c(A ∪ B)| then there exists b ∈ B such
that

(i) c(b) /∈ c(A ∪B−{b})

(ii) b is high in L⋆

(iii) there is an antichain I ⊆ A∪B such that b ∈ I and |I| = width(A∪B).

15

Although our algorithm works also for w = 1, there is obviously a much simpler
one if the poset produced by Spoiler is a chain. Therefore, we may assume
that w > 1. Now we easily check that invariants (I0)–(I5) are satisfied by any
one-element poset P, its realizer R and any coloring that does not use ⋆. This
proves the base of the induction step.

Algorithm

See the following page.

16

Algorithm 2: Dimension of up-growing semi-orders: val(w) 6 w

1 ⋆′ ← ⋆;
2 foreach y ∈ X do c′(y)← c(y);
3 if c(Inc0(x)) (Γ0 then /* Case 1 */

4 γ ← a maximal element, with respect to ⊑, in Γ0−c(Inc0(x));
5 put x high in Lγ ;
6 put x on the top of L⋆;
7 foreach j ∈ Γ0−{γ} do put x down in Lj ;
8 c′(x)← γ;

9 else if c(Inc0(x)) = Γ0 then /* Case 2 */

10 put x on the top of L⋆;
11 foreach y ∈ Inc0(x) do put x right below y in Lc(y);
12 c′(x)← ⋆;

13 else if ⋆ ∈ c(Inc0(x)) then /* Case 3 */

14 let k denote the anchor defined in (I1);
15 if x‖m for some m ∈ Inc0(k) then /* Case 3.1 */

16 γ ← any element from Γ0−c(Inc0(x));
17 c′(x)← γ;
18 if γ ∈ c(A ∪B) then /* Case 3.1.1 */

19 put x high in Lγ ;
20 put x on the top of L⋆;
21 foreach j ∈ Γ0−{γ} do put x down in Lj;

22 else if γ /∈ c(A ∪B) then /* Case 3.1.2 */

23 put x on the top of Lγ ;
24 foreach j ∈ Γ−{γ} do put x down in Lj;

25 else if (Inc0(k) < x) and (c(A ∪B) (Γ0) then /* Case 3.2 */

26 γ ← any element from Γ0−c(A ∪B);
27 c′(x)← γ;
28 put x on the top of Lγ ;
29 foreach j ∈ Γ−{γ} do put x down in Lj;

30 else if (Inc0(k) < x) and (c(A ∪B) = Γ0) then /* Case 3.3 */

31 choose b, an active point witnessing (I5);
32 ⋆′ ← c(b), c′(b)← ⋆;
33 if c′(Inc0(x)) (Γ′

0 then /* Case 3.3.1 */

34 γ ← any element from Γ′
0−c

′(Inc0(x));
35 put x high in Lγ ;
36 put x on the top of L⋆′ ;
37 foreach j ∈ Γ′

0−{γ} do put x down in Lj;
38 c′(x)← γ;

39 else if c′(Inc0(x)) = Γ′
0 then /* Case 3.3.2 */

40 put x on the top of L⋆′ ;
41 foreach y ∈ Inc0(x) do put x right below y in Lc(y);
42 c′(x)← ⋆′;

17

As it can be easily seen our Algorithm processes the incoming point x de-
pending on the mutual behavior of Inc0(x) and Inc0(k). This produces 7 cases.
Before considering each case separately and proving that invariants (I0)–(I5)
are satisfied by the output of the algorithm, we collect a few useful facts in the
observation below.

Observation 17. Assume that width(P) = w and the anchor k defined in
(I1) exists in P. Let x be a maximal element which extends P to P′ so that
width(P′) = w. Then

(i) if Y is an antichain of size w in P then y ≺ x in P′ for all y ∈ Y ,

(ii) k ≺ x,

(iii) Inc0(k) ≺ x,

(iv) Inc(x) ⊆ Inc(k) ∪ {k} ∪ k↑,

(v) if c(Inc0(x)) ⊆ Γ0 then k < x.

Proof. Suppose that (i) fails and x 4 y for some y ∈ Y . Then x‖Y (see Figure
8). The set Y ∪{x} would be a (w+1)-element antichain in P′, a contradiction.
By (I2) we have | Inc0(k)| = w − 1, so the set {k} ∪ Inc0(k) is an antichain of

A. .
.

x

a

Figure 8: x 4 y ∈ Y implies x‖Y

size w in P. Now, (ii) and (iii) follow from (i).
For z ‖x, by (ii) we have z ≮ k ≺ x, which gives (iv). Finally, to prove

(v), assume that c(Inc0(x)) ⊆ Γ0, i.e., k /∈ Inc0(x). Then k ≺ x ≺ Inc1(x) gives
k /∈ Inc1(x), so indeed, k /∈ Inc(x) = Inc0(x) ∪ Inc1(x).

We are ready to prove that each run of Algorithm 2 keeps invariants (I0)–(I5).

Case 1

In this case there are spare colors for x in the set Γ0−c(Inc0(x)). Therefore,
Algorithm behaves pretty much as Algorithm 1, but we will need some effort
to prove that it still maintains our involving invariants. Note that if the anchor
k existed in P then assumption c(Inc0(x)) ⊆ Γ0 applied to Observation 17(v)
gives

k < x. (1)

Furthermore, the color γ in line 4 is chosen so that top(γ) = max4{top(δ) : δ ∈
Γ0−c(Inc0(x))}. Now we analyze the invariants.

18

(I0) By Observation 5(iii) we get x < y in L′
c(y) for y ∈ Inc0(x). On the

other hand, x is put on the top of L⋆. This proves that R′ is a realizer of
P′, by Observation 10.

To prove that c′ is a high-coloring function for (P′,R′) we show that y is
high in L′

c′(y) for every y ∈ X ∪ {x}. Clearly, x is high in L′
γ . Fix y ∈ X . First,

assume that c(y) = ⋆. If y ∈ act(P) then (I1) gives y = k and together with (1)
we get y < x. If y /∈ act(P) then y < x as well, by Observation 16(i). In both
cases, y remains high in L′

⋆. Now, let c(y) 6= ⋆ and y ∈ Inc0(x). Point x is put
down in Lc(y) and hence y remains high in L′

c′(y), by Observation 5(ii). Finally,
let c(y) 6= ⋆ and y ∈ X− Inc0(x). Then x and y are not twins. Again, from
Observation 5(i) it follows that y is high in L′

c′(y).

(I1) By Observation 16(i) we have act(P′) ⊆ act(P) ∪ {x}, but the value of
c′(x) is defined so that c′(x) 6= ⋆.

Invariants (I2)–(I5) assume that in the poset P′ there is an anchor, i.e.,
k
′ ∈ act(P′) with c′(k′) = ⋆′. Note that the anchor k

′ may exist in P′ only if
P had the anchor k which remains active in P′. Hence k

′ = k.

(I2) From (1) it clearly follows that the set Inc0(k) does not change in P′.

(I3) By Observation 17(iii), for z ∈ Inc0(k) we have z ≺ x. Now we make use
of Observation 14(i).

(I4) From (1) we have x > k = k
′. Now, Observation 16(iv) applied to k in P′

gives x‖B, so A′ = A and B′ = B ∪ {x}. Obviously, (I4) holds if width(A ∪
B) < width(A ∪B′) or | c(A ∪B)| < width(A ∪B). Otherwise,

width(A ∪B′) = width(A ∪B) = | c(A ∪B)| (2)

and the first equality means in particular that x must be comparable with some
point from A ∪ B. This combined with x‖B yields a point a ∈ A with a < x.
However, Inc0(k) ≺ Inc1(k) = A ∋ a < x so that Inc0(k) < x. So Inc0(k) ∩
Inc(x) = ∅, which together with Observation 17(iv) gives Inc0(x) ⊆ Inc1(k) ∪
k↑ = A∪B (see Figure 9). Now, note that {x}∪Inc0(x) is an antichain in A∪B′

and so | Inc0(x)|+1 6 width(A∪B′). By (2) we obtain c(A∪B)−c(Inc0(x)) 6= ∅.

B. .
.

k x

A. .
.

a

Figure 9: Algorithm 2—Case 1, Inc0(x) ⊆ A ∪B

According to line 4, point x gets a maximal available color with respect to ⊑.
Observe that colors used on points from A∪B are ⊑-greater than the remaining
ones. Thus, x gets a color from a non-empty set c(A ∪ B)−c(Inc0(x)). This
proves that | c′(A ∪B′)| = width(A ∪B′).

(I5) As above, we have A′ = A, B′ = B ∪ {x} and x‖B. The assumptions of
(I5) for P′ are: width(A) < width(A ∪B′) and | c′(A ∪B′)| = width(A ∪B′).

19

If width(A∪B) < width(A∪B′) then the assumption | c′(A∪B′)| = width(A∪
B′) implies c′(x) /∈ c(A ∪ B), as | c(A ∪ B)| = | c′(A ∪ B′)| = width(A ∪ B′) >
width(A ∪ B) contradicts (I4) for P. This shows that b

′ := x satisfies (I5–i),
while the other conditions saying that x becomes a valid witness for b′ in P′ are
obvious.

If width(A∪B) = width(A∪B′) then as in (I4) we argue that Inc0(x) ⊆ A∪B.
First, consider the case c′(x) /∈ c(A∪B). Since Algorithm has to use for x colors
from c(A ∪ B) whenever possible (as they are greater than other colors in the
⊑-ordering), we deduce that c(A ∪B) ⊆ c(Inc0(x)) and therefore

| Inc0(x)| = | c(A ∪B)| = | c(A ∪B′)| − 1 = width(A ∪B′)− 1.

This proves that x ∪ Inc0(x) is an antichain of size width(A ∪ B′) in A ∪ B′.
Thus b′ := x satisfies (I5–iii). The other conditions saying that x becomes a valid
witness for b′ in P′ are obvious. Finally, consider the case c′(x) ∈ c(A∪B). Then
| c(A ∪ B)| = | c′(A ∪ B′)| = width(A ∪ B′) = width(A ∪ B) and we also know
that width(A) < width(A ∪ B′) = width(A ∪ B). Hence b witnessing (I5) has
already existed in P. Condition (I5–iii) supplies us with an antichain I ⊆ A∪B
of size width(A ∪ B) = width(A ∪ B′). Therefore b ≺ x, as otherwise I ∪ {x}
would be an antichain of size width(A∪B)+1, fully contained in A∪B′. Thus,
b remains high in L′

⋆, by Observation 5(i). All we need to show that b remains
a valid witness of (I5) in P′ is that the color of b is still unique in A ∪B ∪ {x},
i.e., c′(x) 6= c′(b). However, x‖b and x ≻ b gives b ∈ Inc0(x), while the color
for x was chosen to be outside Inc0(x).

Case 2

In this case there is no spare color for x in Γ0 (see Figure 10). We will see that
point x is the only candidate to be the anchor, as long as it would be active in
P′. Assumption c(Inc0(x)) = Γ0 gives w−1 > | Inc0(x)| > | c(Inc0(x))| = |Γ0| =
w − 1, so that we actually have

| Inc0(x)| = w − 1. (3)

This shows that c(y) 6= c(z) for two different points y, z ∈ Inc0(x) and proves
that line 11 can be properly executed. Also, if anchor k existed in P then (as
in Case 1) we have

k < x. (4)

Inc0(x). .
.

| Inc0(x)| = w − 1

c(Inc0(x)) = Γ0

x

Inc1(x). .
.

Figure 10: Algorithm 2—Case 2

20

(I0) The proof of the fact that R′ is a realizer of P′ is the same as in Case 1. It
remains to show that c′ is a coloring function for (P′,R′). Clearly, x is high in
L′
⋆. Fix y ∈ X . If c(y) = ⋆ then, as in Case 1, we obtain that y remains high in

L′
⋆. Now assume that c(y) = γ ∈ Γ0. Since c(Inc0(x)) = Γ0, there is z ∈ Inc0(x)

with c(z) = γ. Note that z 4 x as z ∈ Inc0(x) and x is maximal in P′. If y ≺ z
then y ≺ z 4 x gives y ≺ x, so x cannot destroy the property of y being high in
L′
γ . Otherwise, y < z. (Actually, y ≻ z as y ≈ z contradicts the fact that both

y and z are high in the same extension Lγ). Since y is high in Lγ , we know that
y > z in Lγ . However, x is put (right) below z in L′

γ and therefore y > x in L′
γ

as well. This proves that y is high in L′
γ .

(I1) Since c′(x) = ⋆, to prove that (I1) holds in P′ we need to show that the
possible old anchor k is no longer active in P′. From (3) we know that x∪Inc0(x)
is an antichain of size w in P′. Now, Observation 17(i) guarantees that any
maximal point x′ extending P′ to P′′ = (X ′ ∪ {x′}) satisfies x ≺ x′. By (4),
k < x ≺ x′ and hence k < x′, so indeed, k is no longer active in P′.

The rest of invariants are to be shown only if x ∈ act(P′), i.e., x is actually
an anchor k

′.

(I2) is already obtained by (3).

(I3) Fix z ∈ Inc0(x) and let γ = c(z). According to line 11, we know that x
is put right below z in L′

γ . Since z was high in Lγ we know that z < w in Lγ

implies z ≺ w for all w, and consequently, x < w in L′
γ implies z ≺ w for all

w 6= z.

(I4)–(I5) Since x = k
′ is maximal in P′, we have B′ = ∅ and (I4)–(I5) are

trivially fulfilled.

Case 3

In this case we have ⋆ ∈ c(Inc0(x)). First of all we need to show that line
14 makes sense. As, by Observation 16(ii), we have Inc0(x) ⊆ Inc(x) ⊆ act(P),
the color ⋆ was used on some active point of P (namely, the anchor), and this
anchor k is incomparable with x. The ideas from Algorithm 1 or Cases 1 and 2
do not work any longer. Indeed, putting x on the top of L⋆, putting x down in
Lj for j ∈ c(Inc0(x)) would require x to be on the top of L⋆ and, at the same
time, to be down in L⋆.

Case 3.1

In Case 3.1 we have not only x‖k but additionally x‖m. More precisely, by
Observation 17(ii–iii) we deduce that

k,m ∈ Inc0(x). (5)

This gives | c(Inc0(x))−{⋆}| 6 w−2 < |Γ0| and proves that line 16 makes sense.
Note that although m ∈ Inc0(k) it may happen that k ≺ m in P (see Figure
11). A careful reader might ask for a reason to distinguish subcases 3.1.1 and
3.1.2. Indeed, the difference between the two subcases is very subtle. It all boils
down to the proofs of (I0) and (I5).

21

A. .
.

B. .
.

Inc0(k). .
.

m

k

x

Figure 11: Algorithm 2—Case 3.1

Case 3.1.1

(I0) Both c′ and R′ are defined nearly like in Case 1. The one big difference
is that x is not put down in Lc(k) although k ∈ Inc0(x). We need an extra
argument to show that

x < k in some L′ ∈ R′. (6)

To see that x is put down in Lc(m) we need to know that c(m) 6= γ, ⋆. Obviously,
c(m) 6= γ as γ /∈ c(Inc0(x)) and m ∈ Inc0(x) (see (5)). Also c(m) 6= ⋆, as by (I1)
the only active point colored by ⋆ is the anchor k. Hence c(m) 6= γ, ⋆ and
according to line 21 point x is put down in Lc(m). Applying (I3) to m ∈ Inc0(k)
we also get that k is high in Lc(m) with respect to m. Now, (5) together with
Observation 14(ii) give x < k in L′

c(m), just as required in (6).

(I1) See Case 1.

(I2) The set Inc0(k) does not change in P′. Otherwise, if x ∈ Inc0
′(k), the set

{k} ∪ Inc0
′(k) would be a (w + 1)-element antichain in P′.

(I3) See Case 1.

(I4) Since x is maximal in P′, x‖k and k ≺ Inc1(k) = A, we have x‖A. Clearly,
A′ = A ∪ {x} and B′ = B. Moreover, x‖B as otherwise x > b ∈ B > k would
contradict x‖k. Now, width(A′ ∪B) > width(A ∪B) > | c(A ∪ B)| so trivially
width(A′ ∪B) > | c(A ∪B)|+ 1 > | c′(A′ ∪B)|.

(I5) Assumption c′(x) ∈ c(A∪B) from line 18 gives | c′(A′∪B)| = | c(A∪B)| 6
width(A ∪B) < width(A′ ∪B) and the second assumption of (I5) fails in P′.

Case 3.1.2

(I0) Observation 10 and γ /∈ c(Inc0(x)) trivially give that R′ is a realizer of
P′. A more sophisticated argument is needed to show that c′ is actually a
coloring function. Again, fix y ∈ X . If c(y) 6= γ then y remains high in L′

c(y),
by Observation 5(ii). Similarly, if y < x then y remains high in any linear
extension L′ obtained from L, in particular, in L′

c(y). Otherwise, y ‖x and
c(y) = γ /∈ c(A∪B) (see line 22), which together with Observation 17(iv) gives
y ∈ Inc0(k). Now, by Observation 17(iii) we have y ≺ x and therefore y remains
high in L′

γ .

(I1)–(I4) See Case 3.1.1.

22

(I5) Recall from the proof of (I4) in Case 3.1.1 that x‖A ∪ B, A′ = A ∪ {x}
and B′ = B. The assumptions for (I5) in P′ are width(A′) < width(A′∪B) and
| c′(A′ ∪ B)| = width(A′ ∪ B). Together with γ /∈ c(A ∪ B) we get width(A) =
width(A′)−1 < width(A′∪B)−1 = width(A∪B) and | c(A∪B)| = | c(A′∪B)|−
1 = width(A′ ∪B)− 1 = width(A∪B). Hence b witnessing (I5) already existed
in P. Now, (I5–i) holds in P′ as c(x) /∈ c(A ∪ B). Property (I5–ii) is fulfilled
in P′ because x is put down in L⋆ and b remains high in L′

⋆ by Observation
5(ii). Finally, (I5–iii) holds as x‖A ∪B makes it possible to extend I ⊆ A ∪ B
to I ′ = I ∪ {x} ⊆ A′ ∪B.

Once more we stress the subtle difference between Cases 3.1.1 and 3.1.2. In
Case 3.1.2, if γ ∈ c(A∪B) then for y < x with c(y) = γ point y would no longer
be high in L′

γ and the value c′(y) could not be defined. On the other hand, if
γ /∈ c(A ∪B) in Case 3.1.1, the witness b for (I5) would not be high in L′

⋆.

Case 3.2

In this case x‖k, Inc0(k) < x and c(A ∪B) (Γ0. As in (I4) for Case 3.1.1,
x‖k and k ≺ Inc1(k) = A imply x‖A, A′ = A ∪ {x} and B′ = B. Observation
17(iv) together with Inc0(k) < x gives Inc(x) ⊆ Inc1(k)∪{k}∪k↑ = A∪{k}∪B.
Clearly, B ⊆ Inc1(x), as otherwise x < b ∈ B > k would contradict x‖k. On the
other hand, if A ∋ a ∈ Inc1(x) then there would exist a′ ∈ Inc(x) = A∪B ∪{k}
such that a′ < a. Obviously, this is not possible. This proves Inc0(x) = A∪{k}
and Inc1(x) = B (see Figure 12). Since γ /∈ c(A ∪ B), we conclude that γ /∈
c(Inc0(x)). Now, we are almost in the setting from Case 3.1.2. The proofs of
invariants (I0)–(I5) can be repeated from Case 3.1.2.

k

x

A. .
.

B. .
.

Inc0(k). .
.

Figure 12: Algorithm 2—Cases 3.2 and 3.3

Case 3.3

In this case x‖k and Inc0(k) < x but now c(A ∪B) = Γ0. Like in Case 3.2,
we argue that Inc0(x) = A ∪ {k} and Inc1(x) = B (see Figure 12).

First, we show that point b from line 31 exists. Indeed, the set A∪{x,k} is an
antichain in P′, so width(A) 6 w−2. On the other hand, we have w−1 = |Γ0| =
| c(A∪B)| 6 width(A∪B) 6 w− 1, where the first inequality follows from (I4)
and the second inequality follows from x‖A∪B. Hence width(A) < width(A∪B)
and | c(A∪B)| = width(A∪B), so a witness b from (I5) existed in P. Note that
x‖k < b and thus x ≺ b. Since x and b are maximal in P′, the latter gives

Inc′(b) ⊆ A ∪B ∪ {x}. (7)

23

So far, we have made no essential use of the mysterious invariant (I5). Now
comes the moment when (I5) plays its tricky role. Line 32 defines the values of
⋆′, c′(b), and also, (indirectly) the new set Γ′

0 := Γ−{⋆′}. There are a few issues
that need to be discussed.

First of all, by (I5–ii), point b is high in Lc′(b), so that the modified function
c′ : X → Γ is still a coloring function for (P,R). By (I5–i) we have ⋆′ = c(b) /∈
c(A) and therefore ⋆′ /∈ c(A) ∪ {⋆} = c(A ∪ {k}). Hence

c′(Inc0(x)) = c′(A ∪ {k}) = c(A ∪ {k}) ⊆ Γ−{⋆′} = Γ′
0. (8)

The obtained inclusion c′(Inc0(x)) ⊆ Γ′
0 proves that Cases 3.3.1 and 3.3.2

are indeed the only possibilities that we are left with. Before considering these
cases separately, we make some preparations. First, we will show that

act(P′) ⊆ A ∪B ∪ {x}. (9)

Invariant (I5–iii) for P supplies us with an antichain I ⊆ A∪B of size width(A∪
B) = | c(A ∪B)| = |Γ0| = w − 1 and such that b ∈ I. This means that I ∪ {x}
is an antichain witnessing the width w in P′. Now, by our basic Observation
17(i) we get that any future presented maximal point x′ extending P′ to P′′ =
(X ′ ∪ {x′},6) must fulfill b ≺ x′ and hence Inc′′(x′) ⊆ Inc′(b)∪{b}. The latter
together with (7) proves (9).

Again, c(A ∪B) = Γ0 together with (I5–i) in P gives

c′(A ∪B−{b}) = c(A ∪B−{b}) = Γ0−{c(b)} ⊆ Γ′
0, (10)

so that with (9) we get

c′(act(P′)−{x}) ⊆ c′(A∪B) = {c′(b)}∪c′(A∪B−{b}) ⊆ {c′(b)}∪Γ′
0 = Γ′

0. (11)

We are now ready to analyze the proofs of Cases 3.3.1 and 3.3.2. A quick
glance at lines 3–12 and 33–42 brings us to a conclusion that our Algorithm
behaves in these cases pretty much the same as in Cases 1 and 2, only with c′

and ⋆′ in place of c and ⋆, respectively.

Case 3.3.1

(I0) First, recall that c′|X is a coloring function for (P,R). Now, the proof of
the fact that R′ is a realizer of P′ is pretty much the same as in Case 1.

To prove that c′ is a high-coloring function for (P′,R′) we will show that y
is high in L′

c′(y) for every y ∈ X ∪ {x}. Clearly, x is high in L′
γ . Recall that

Inc(x) = A ∪B ∪ {k}. Fix y ∈ X . If c′(y) = ⋆′ = c(b) then invariant (I5–i) for
P together with ⋆′ 6= c′(b), c′(k) gives y /∈ A ∪ B ∪ {k} = Inc(x). Hence y < x
and y remains high in L′

⋆′ . Now, let c′(y) 6= ⋆′ and y ∈ Inc0(x). Point x is put
down in Lc′(y) and hence y remains high in L′

c′(y), by Observation 5(ii). Finally,
let c′(y) 6= ⋆′ and y ∈ X−Inc0(x). Then x and y are not twins. Again, from
Observation 5(i) it follows that y is high in L′

c′(y).

(I1) By (11) we get c′(act(P′)) ⊆ Γ′
0 ∪ {c

′(x)} = Γ′
0, since γ ∈ Γ′

0.

(I2)–(I5) Since c′(act(P′)) ⊆ Γ′
0, the anchor k

′ does not exist in P′ and the
invariants do not apply.

24

Case 3.3.2

(I0) The proof of the fact that R′ is a realizer of P′ is pretty much the same
as in Case 1. To prove that c′ is a high-coloring function for (P′,R′) we show
that y is high in L′

c′(y) for every y ∈ X ∪ {x}. If c′(y) = ⋆′ then we repeat

the argument from the proof of (I0) in Case 3.3.1 to see that y is high in L′
⋆′ .

Otherwise, c′(y) 6= ⋆′ and we may follow the proof of (I0) in Case 2, only with
the function c replaced by c′|X .

(I1) follows directly from (11) as the only candidate for an anchor is the point
x.

Invariants (I2)–(I5) assume there exists an anchor k′ in P′. In our case, it means
that k

′ = x. Now, it is easy to see that proofs of (I2)–(I5) can be obtained by
repeating the proofs from Case 2.

This ends the proof of 7 cases of the algorithm. It is easy to check that apart
from those 7 cases there are no other possibilities. Thus, Algorithm 2 witneses
Theorem 18.

Theorem 18. Let val(w) denote the value of the on-line dimension game on
the class of up-growing semi-orders of width at most w, presented without rep-
resentation. Then

val(w) = w.

References

[1] W. T. Trotter, Combinatorics and partially ordered sets, Johns Hopkins
Series in the Mathematical Sciences, Johns Hopkins University Press, Bal-
timore, MD, 1992, dimension theory.

[2] H. A. Kierstead, An effective version of Dilworth’s theorem, Trans. Amer.
Math. Soc. 268 (1) (1981) 63–77.

[3] H. A. Kierstead, Recursive ordered sets, in: Combinatorics and ordered
sets (Arcata, Calif., 1985), Vol. 57 of Contemp. Math., Amer. Math. Soc.,
Providence, RI, 1986, pp. 75–102.

[4] B. Bosek, S. Felsner, K. Kloch, T. Krawczyk, G. Matecki, P. Micek, On-line
chain partitions of orders: A survey, Order 29 (2012) 49–73.

[5] S. Felsner, On-line chain partitions of orders, Theoret. Comput. Sci. 175 (2)
(1997) 283–292, orders, algorithms and applications (Lyon, 1994).

[6] H. A. Kierstead, W. T. Trotter, An extremal problem in recursive combina-
torics, in: Proceedings of the Twelfth Southeastern Conference on Combi-
natorics, Graph Theory and Computing, Vol. II (Baton Rouge, La., 1981),
Vol. 33, 1981, pp. 143–153.

[7] P. Baier, B. Bosek, P. Micek, On-line chain partitioning of up-growing
interval orders, Order 24 (1) (2007) 1–13.

25

[8] S. Felsner, K. Kloch, G. Matecki, P. Micek, On-line chain partitions of
up-growing semi-orders, Order 28 (2011) 1–17.

[9] W. T. Trotter, Partially ordered sets, in: Handbook of combinatorics, Vol.
1, 2, Elsevier, Amsterdam, 1995, pp. 433–480.

[10] A. Gyárfás, J. Lehel, On-line and first fit colorings of graphs, J. Graph
Theory 12 (2) (1988) 217–227.

[11] H. A. Kierstead, J. Qin, Coloring interval graphs with First-Fit, Discrete
Math. 144 (1-3) (1995) 47–57, combinatorics of ordered sets (Oberwolfach,
1991).

[12] H. A. Kierstead, G. F. McNulty, W. T. Trotter, Jr., A theory of recursive
dimension for ordered sets, Order 1 (1) (1984) 67–82.

[13] Z. Füredi, P. Hajnal, V. Rödl, W. T. Trotter, Interval orders and shift
graphs, in: Sets, graphs and numbers (Budapest, 1991), Vol. 60 of Colloq.
Math. Soc. János Bolyai, Amsterdam, 1992, pp. 297–313.

[14] I. Rabinovitch, The dimension of semiorders, J. Combin. Theory Ser. A
25 (1) (1978) 50–61.

[15] L. Hopkins, Some problems involving combinatorial structures determined
by intersections of intervals and arcs, Ph.D. thesis, University of South
Carolina (1981).

[16] B. Bosek, K. Kloch, T. Krawczyk, P. Micek, On-line version
of Rabinovitch theorem for proper intervals, Discrete Mathematics
doi:10.1016/j.disc.2012.02.008.

[17] D. Scott, P. Suppes, Foundational aspects of theories of measurement, J.
Symb. Logic 23 (1958) 113–128.

26

http://dx.doi.org/10.1016/j.disc.2012.02.008

	1 Introduction
	2 Basics
	3 General case
	4 Up-growing case, upper bound: w+1
	5 Up-growing case, upper bound: w

