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Abstract
This paper describes a large on-going effort, nearing completion, which aims
to annotate the text of all of the 25 Wall Street Journal sections included
in the Penn Treebank, using a hand-written broad-coverage grammar of En-
glish, manual disambiguation, and a PCFG approximation for the sentences
not yet successfully analyzed by the grammar. These grammar-based anno-
tations are linguistically rich, including both fine-grained syntactic structures
grounded in the Head-driven Phrase Structure Grammar framework, as well
as logically sound semantic representations expressed in Minimal Recursion
Semantics. The linguistic depth of these annotations on a large and famil-
iar corpus should enable a variety of NLP-related tasks, including more di-
rect comparison of grammars and parsers across frameworks, identification
of sentences exhibiting linguistically interesting phenomena, and training of
more accurate robust parsers and parse-ranking models that will also perform
well on texts in other domains.

1 Introduction

This paper presents the English DeepBank, an on-going project whose aim is to
produce rich syntactic and semantic annotations for the 25 Wall Street Journal
(WSJ) sections included in the Penn Treebank (PTB: [16]). The annotations are
for the most part produced by manual disambiguation of parses licensed by the
English Resource Grammar (ERG: [10]), which is a hand-written, broad-coverage
grammar for English in the framework of Head-driven Phrase Structure Grammar
(HPSG: [19]).

Large-scale full syntactic annotation has for quite some time been approached
with mixed feelings by researchers. On the one hand, detailed syntactic annota-
tion can serve as a basis for corpus-linguistic study and improved data-driven NLP



methods. When combined with supervised machine learning methods, such richly
annotated language resources including treebanks play a key role in modern com-
putational linguistics. The availability of large-scale treebanks in recent years has
contributed to the blossoming of data-driven approaches to robust and practical
parsing.

On the other hand, the creation of detailed and consistent syntactic annotations
on a large scale turns out to be a challenging task.1 From the choice of the appro-
priate linguistic framework and the design of the annotation scheme to the choice
of the text source and the working protocols on the synchronization of the parallel
development, as well as quality assurance, each of the steps in the entire annotation
procedure presents non-trivial challenges that can impede the successful produc-
tion of such resources.

The aim of the DeepBank project is to overcome some of the limitations and
shortcomings which are inherent in manual corpus annotation efforts, such as the
German Negra/Tiger Treebank ([2]), the Prague Dependency Treebank ([11]), and
the TüBa-D/Z.2 All of these have stimulated research in various sub-fields of com-
putational linguistics where corpus-based empirical methods are used, but at a high
cost of development and with limits on the level of detail in the syntactic and se-
mantic annotations that can be consistently sustained. The central difference in
the DeepBank approach is to adopt the dynamic treebanking methodology of Red-
woods [18], which uses a grammar to produce full candidate analyses, and has
human annotators disambiguate to identify and record the correct analyses, with
the disambiguation choices recorded at the granularity of constituent words and
phrases. This localized disambiguation enables the treebank annotations to be re-
peatedly refined by making corrections and improvements to the grammar, with
the changes then projected throughout the treebank by reparsing the corpus and
re-applying the disambiguation choices, with a relatively small number of new dis-
ambiguation choices left for manual disambiguation.

For the English DeepBank annotation task, we make extensive use of resources
in the DELPH-IN repository3, including the PET unification-based parser ([4]), the
ERG plus a regular-expression preprocessor ([1]), the LKB grammar development
platform ([7]), and the [incr tsdb()] competence and performance profiling
system ([17]), which includes the treebanking tools used for disambiguation and
inspection. Using these resources, the task of treebank construction shifts from a
labor-intensive task of drawing trees from scratch to a more intelligence-demanding
task of choosing among candidate analyses to either arrive at the desired analysis
or reject all candidates as ill-formed. The DeepBank approach should be differenti-
ated from so-called treebank conversion approaches, which derive a new treebank

1Besides[18], which we draw more on for the remainder of the paper, similar work has been done
in the HPSG framework for Dutch [22]. Moreover, there is quite a lot of related research in the LFG
community, e.g., in the context of the ParGram project: [9] for German, [14] for English, and the
(related) Trepil project, e.g., [20] for Norwegian.

2http://www.sfs.nphil.uni-tuebingen.de/en_tuebadz.shtml
3http://www.delph-in.net



from another already existing one, such as the Penn Treebank, mapping from one
format to another, and often from one linguistic framework to another, adapting
and often enriching the annotations semi-automatically. In contrast, the English
DeepBank resource is constructed by taking as input only the original ‘raw’ WSJ
text, sentence-segmented to align with the segmentation in the PTB for ease of
comparison, but making no reference to any of the PTB annotations, so that we
maintain a fully independent annotation pipeline, important for later evaluation of
the quality of our annotations over held-out sections.

2 DeepBank

The process of DeepBank annotation of the Wall Street Journal corpus is organ-
ised into iterations of a cycle of parsing, treebanking, error analysis and gram-
mar/treebank updates, with the goal of maximizing the accuracy of annotation
through successive refinement.

Parsing Each section of the WSJ corpus is first parsed with the PET parser using
the ERG, with lexical entries for unknown words added on the fly based on a con-
ventional part-of-speech tagger, TnT [3]. Analyses are ranked using a maximum-
entropy model built using the TADM [15] package, originally trained on out-of-
domain treebanked data, and later improved in accuracy for this task by including
a portion of the emerging DeepBank itself for training data. A maximum of 500
highest-ranking analyses are recorded for each sentence, with this limit motivated
both by practical constraints on data storage costs for each parse forest and by the
processing capacity of the [incr tsdb()] treebanking tool. The existing parse-
ranking model has proven to be accurate enough to ensure that the desired analysis
is almost always in these top 500 readings if it is licensed by the grammar at all.
For each analysis in each parse forest, we record the exact derivation tree, which
identifies the specific lexical entries and the lexical and syntactic rules applied to li-
cense that analysis, comprising a complete ‘recipe’ sufficient to reconstruct the full
feature structure given the relevant version of the grammar. This approach enables
relatively efficient storage of each parse forest without any loss of detail.

Treebanking For each sentence of the corpus, the parsing results are then manu-
ally disambiguated by the human annotators, using the [incr tsdb()] treebank-
ing tool which presents the annotator with a set of binary decisions, called discrim-
inants, on the inclusion or exclusion of candidate lexical or phrasal elements for
the desired analysis. This discriminant-based approach of [6] enables rapid reduc-
tion of the parse forest to either the single desired analysis, or to rejection of the
whole forest for sentences where the grammar has failed to propose a viable anal-
ysis.4 On average, given n candidate trees, log2 n decisions are needed in order to

4For some sentences, an annotator may be unsure about the correctness of the best available
analysis, in which case the analysis can still be recorded in the treebank, but with a lower ‘confidence’



fully disambiguate the parse forest for a sentence. Given that we set a limit of 500
candidate readings per sentence, full disambiguation of a newly parsed sentence
averages no more than 9 decisions, which enables a careful annotator to sustain a
treebanking rate of 30 to 50 sentences per hour on the first pass through the corpus.

Error analysis During the course of this annotation effort, several annotators
have been trained and assigned to carry out the initial treebanking of portions of
the WSJ corpus, with most sections singly annotated. On successive passes through
the treebank, two types of errors are identified and dealt with: mistakes or incon-
sistencies of annotation, and shortcomings of the grammar such that the desired
analysis for a given sentence was not yet available in the parse forest. Errors in an-
notation include mistakes in constituent boundaries, in lexical choice such as verb
valency or even basic part of speech, and in phrasal structures such as the level
of attachment of modifiers or the grouping of conjuncts in a coordinated phrase.
Our calculation of the inter-annotator agreeemnt using the Cohen’s KAPPA[5] on
the constituents of the derivation trees after the initial round of treebanking shows
a moderate agreement level at κ = 0.6. Such disagreeements are identified for
correction both by systematic review of the recorded ‘correct’ trees section by sec-
tion, and by searching through the treebank for specific identifiers of constructions
or lexical entries known to be relatively rare in the WSJ, such as the rules admitting
questions or imperative clauses.

Shortcomings of the grammar are identified by examining sentences for which
annotators did not record a correct analysis, either because no analysis was as-
signed, or because all of the top 500 candidate analyses were flawed. Some of
the sources of error emerge quickly from even cursory analysis, such as the ini-
tial absence of a correct treatment in the ERG for measure phrases used as verbal
modifiers, which are frequent in the WSJ corpus, as in the index rose 20 points or
the market fell 14%. Other types of errors required more detailed analysis, such as
missing lexical entries for some nouns taking verbal complements, as in the news
that Smith was hired or the temptation to spend the money. These fine-grained lex-
ical entries are not correctly predicted on the fly using the part-of-speech tagger,
and hence must be added to the 35,000-entry manually supplied lexicon in the ERG.

Grammar & Treebank Update While grammar development proceeds inde-
pendent of the initial treebank annotation process, we have periodically incorpo-
rated improvements to the grammar into the treebank annotation cycle. When a
grammar update is incorporated, the treebank also gets updated accordingly by (i)
parsing anew all of the sentences in the corpus using the new grammar; (ii) re-
applying the recorded annotation decisions; and (iii) annotating those sentences
which are not fully disambiguated after step ii, either because new ambiguity was
introduced by the grammar changes, or because a sentence which previously failed

score assigned, so the annotation can be reviewed in a later cycle of updates.



to parse now does. The extra manual annotation effort in treebank update is rel-
atively small when compared to the first round of annotation, typically requiring
one or two additional decisions for some 5–10% of the previously recorded correct
analyses, and new annotation for previously rejected items, which were another
15% of the total in the second round, and much less in successive rounds. Hence
these later rounds of updating the treebank proceed more quickly than the initial
round of annotation.

Correcting errors of both classes based on analysis of the first pass through
DeepBank annotation has resulted in a significant improvement in coverage and
accuracy for the ERG over the WSJ corpus. Raw coverage has risen by some 10%
from the first pass and the ‘survival’ rate of successfully treebanked sentences has
risen even more dramatically to more than 80% of all sentences in the first 16
sections of the WSJ that have now gone through two rounds of grammar/treebank
updates. The table below shows the current status of these first 16 sections of
the English DeepBank in terms of “Observed” and “Verified” coverage, where the
former reports the number of sentences that received at least one analysis from the
ERG, and the latter gives the number of sentences for which the annotator recorded
a correct analysis.

Table 1: English DeepBank ERG results for WSJ Sections 00–15

Section Number of items Observed coverage Verified coverage
00 1922 92.2% 82.0%
01 1997 92.3% 81.6%
02 1996 92.3% 84.0%
03 1482 92.0% 82.1%
04 2269 92.6% 81.5%
05 2137 92.3% 81.8%
06 1835 91.3% 81.1%
07 2166 91.9% 82.6%
08 478 90.6% 80.1%
09 2073 92.0% 81.2%
10 1945 91.8% 81.3%
11 2237 91.5% 80.4%
12 2124 94.2% 85.1%
13 2481 94.8% 85.8%
14 2182 94.0% 86.0%
15 2118 94.1% 86.4%
Subtotal 31442 92.6% 82.6%

These figures, which are surprisingly stable across sections both in raw parsing
coverage and in treebanked items, show that roughly 18% of the sentences in the
corpus fail to receive a correct analysis from the ERG; we discuss the DeepBank
annotations for this portion of the corpus in section 4. Note that most of the re-
maining portion of the WSJ corpus has now been treebanked the first time through,
and we expect the remaining updated sections to be completed by the end of the
year, excluding three held-out sections reserved for future testing.



3 Annotation formats

In comparison to existing large-scale treebanks, DeepBank stands out as a unique
resource which incorporates both syntactic and semantic annotations in a uniform
grammar framework. To facilitate the easy access of various layers of annotation
in the treebank, multiple formats will be provided in the release of the English
DeepBank. The [incr tsdb()] profiles are comprehensive relational databases
that record the original ERG derivation trees together with the semantic represen-
tations natively expressed in Minimal Recursion Semantics (MRS: [8]) structures.
The database also keeps the history of the manual annotations (the disambigua-
tion discriminants). For users interested in simpler or more conventional repre-
sentations, the HPSG derivations are also converted to PTB-style phrase structure
tree representations which employ a mapping of HPSG categories to a smaller set
of POS and phrasal categories that roughly corresponding to those of the English
PTB. Furthermore, the treebank is also available in a dependency-oriented repre-
sentation following the format of the CoNLL-2008 Shared Task [21]. The syntactic
dependencies are extracted from the derivation trees of the ERG, while the semantic
dependencies offer a simplified view of the native MRS structures[12]. It should be
noted that not all linguistic information in the native DeepBank annotations is pre-
served in the PTB phrase structure and CoNLL dependency formats. Nevertheless,
they offer easy access to the data in familiar formats.

We give an example of each of these annotations for a simple sentence from the
corpus, beginning with the native derivation which contains sufficient information
to enable full reconstruction of the HPSG feature structure returned by the parser.
Next is the simplified PTB-style labeled bracketing for the example, then the native
semantic representation in MRS, and finally the CoNLL-style dependency view of the
syntax and the semantics.

(root_strict
(sb-hd_mc_c
(hdn_bnp_c
(aj-hdn_norm_c
(j-j_crd-att-t_c
(v_j-nb-pas-tr_dlr (v_pas_odlr (estimate_v4 ("estimated"))))
(mrk-nh_evnt_c
(and_conj ("and"))
(actual_a1 ("actual"))))

(hdn-aj_rc_c
(hdn_optcmp_c (n_pl_olr (result_n1 ("results"))))
(vp_rc-redrel_c
(hd-cmp_u_c
(v_prp_olr (involve_v2 ("involving")))
(hdn_bnp_c (hdn_optcmp_c (n_pl_olr (loss_n1 ("losses"))))))))))

(hd-cmp_u_c
(be_c_are ("are"))
(hd_optcmp_c (w_period_plr (v_pas_odlr (omit_v1 ("omitted."))))))))

Figure 1: Sample DeepBank native derivation tree for “Estimated and actual results
involving losses are omitted.”



In the derivation show in Figure 1, we see that a combination of very gen-
eral rules and construction-specific ones have been applied to license this analy-
sis: the rule that combines any head with a complement (the hd-cmp_u_c rule)
is used for the verb phrase “involving losses” and again for “are omitted”, while
the narrowly constrained rule that converts a VP into a post-nominal modifier (the
vp_rc-redrel_c rule) is used to ensure the correct semantics for the nominal phrase
“results involving losses”. The specific lexical entry identifiers are also included
in the derivation, showing for example that the entry used for “estimated” here is
estimate_v4, which happens to be the simple transitive verb, not, say, the raising
verb that would be needed for we estimated there to be dozens of applicants.

(S
(NP (N (AP (AP (V estimated))

(AP (CONJ and)
(AP actual)))

(N (N results)
(S (VP (V involving)

(NP (N losses)))))))
(VP (V are)

(VP (V omitted.))))

Figure 2: Sample DeepBank PTB-style labeled bracketing for “Estimated and ac-
tual results involving losses are omitted.”

The simplified view of the syntactic analysis in Figure 2 employs one of a small
set of familiar lexical and phrasal category labels for each bracketed constituent.
These node labels can be helpful both for cross-framework parser comparisons,
and also for coarse-grained searches of the treebank, such as when looking for all
noun phrases in a certain configuration, ignoring the internal composition of each
NP.

<h1,e3:prop:pres:indicative:-:-,
{h4:udef_q<0:45>(x6, h5, h7),
h8:_estimate_v_at<0:9>(e9, i10, x6),
h8:parg_d<0:9>(e11, e9, x6),
h12:_and_c<10:13>(e13, h8, e9, h14, e15),
h14:_actual_a_1<14:20>(e15, x6),
h12:_result_n_of<21:28>(x6:3:pl:+, i16),
h12:_involve_v_1<29:38>(e17, x6, x18),
h19:udef_q<39:45>(x18, h20, h21),
h22:_loss_n_of<39:45>(x18:3:pl:+, i23),
h2:_omit_v_1<50:58>(e3, i24, x6),
h2:parg_d<50:58>(e25, e3, x6)},
{h1 qeq h2, h5 qeq h12, h20 qeq h22}>

Figure 3: Sample DeepBank semantics in native MRS representation for “Estimated
and actual results involving losses are omitted.”

The compact view of the MRS representation shown in Figure 3 employs a strict
ascending ordering convention on the arguments for each elementary predication,
with the first argument being the inherent variable (a referential index for nominal
predications such as _loss_n_of and an event variable otherwise). Thus the verbal



ID FORM LEMMA GPOS HEAD DEPREL PRED ARGS-P1 ARGS-P2 ARGS-P3 ARGS-P4 ARGS-P5 ARGS-P6 ARGS-P7
1 Estimated estimate v_np 4 aj-hdn_norm _estimate_v_at ARG0 L-INDEX _ _ _ _ _
2 and and c_xp_and 1 j-j_crd-att-t _and_c _ ARG0 _ _ _ _ _
3 actual actual aj_-_i 2 mrk-nh_evnt _actual_a_1 _ R-INDEX ARG0 _ _ _ _
4 results result n_pp_c-ns-of 7 sb-hd_mc _result_n_of ARG2 _ ARG1 ARG0 ARG1 _ ARG2
5 involving involve v_np 4 hdn-aj_rc _involve_v_1 _ _ _ _ ARG0 _ _
6 losses loss n_pp_mc-of 5 hd-cmp_u _loss_n_of _ _ _ _ ARG2 ARG0 _
7 are be v_prd_are 0 root_strict _ _ _ _ _ _ _ _
8 omitted. omit v_np 7 hd-cmp_u _omit_v_1 _ _ _ _ _ _ ARG0

Figure 4: Sample DeepBank CoNLL-style dependencies for “Estimated and actual
results involving losses are omitted.”

predication _omit_v_1 introduced by the passive “omitted” only has its ARG2 in-
stantiated with the index introduced by “results”, leaving its ARG1 uninstantiated,
as indicated by the presence of an “i” rather than an “x” variable as the second of
its three arguments. Each predication is also marked with a character span from
the original sentence, linking this component of the semantics to the corresponding
word or phrase that introduced it.

ID FORM LEMMA GPOS HEAD DEPREL PRED ARGS-P1 ARGS-P2 ARGS-P3 ARGS-P4
1 Estimated estimate VBN 4 NMOD estimate.01 _ AM-ADV _ _
2 and and CC 1 COORD _ _ _ _ _
3 actual actual JJ 2 CONJ _ _ _ _ _
4 results result NNS 7 SBJ result.01 A1 A2 A2 A1
5 involving involve VBG 4 APPO involve.01 _ _ _ _
6 losses losses NNS 5 OBJ _ _ _ A1 _
7 are be VBP 0 ROOT _ _ _ _ _
8 omitted omit VBN 7 VC omit.01 _ _ _ _
9 . . . 7 P _ _ _ _ _

Figure 5: Sample of original CoNLL (2008) dependencies derived from PTB and
PropBank/NomBank annotation

The CoNLL-style dependency format shown in Figure 4 incorporates the essen-
tial syntactic and semantic structures of the HPSG analysis in a uniformed token-
based dependency representation5. The GPOS field contains the “golden” lexical
type selected for the corresponding token. The HEAD field records the token ID of
the dependency head. The DEPREL is the corresponding dependency type which
is inherited from the HPSG rule name. The PRED field contains the name of the
elementary predications from the MRS (hence not limited to verbal and nominal
predicates). The remaining ARGS fields identify the arguments of each predicate.

In comparison to the PTB + PropBank/NomBank derived dependency annotation
for CoNLL Shared Task 2008 (see Figure 5 for an example), the DeepBank data
in CoNLL format offers more fine-grained POS and dependency types, and more
densely populated semantic graphs. For example, in comparison to the dependency
type inventory of [13] used in the CoNLL Shared Tasks which does not distinguish
different types of nominal modifiers (NMOD), our dependencies further mark such
head-adjunct relations by the type of the modifier being a pre-head adjunct (aj-
hdn_adjn, as in “The [big old cat] slept.”), a post-head relative clause (hdn-aj_rc,
as in “The [cat we chased] ran.” ), or a post-head reduced relative clause (hdn-
aj_redrel, as in “A [cat in a tree] fell.” )

5Due to the limited page width, not all the columns in the CoNLL 2008 format are shown here.



4 Patching Coverage Gaps with An Approximating PCFG

As we noted above, one potential criticism against a purely grammar-based tree-
banking approach addresses its lack of complete coverage in analyzing all sen-
tences in the corpus. The missing gaps in coverage are due to one or more of
three causes: (i) ill-formed texts as input to the grammar (rare but present); (ii)
the lack of linguistic coverage in the grammar implementation (most frequent); or
(iii) limits on computing resources – time or memory – imposed in the analysis of
any one sentence (perhaps 20% of the failed parses). The first issue is not specific
to grammar-based treebanking, and in fact, manual treebanking projects also care-
fully select (and in many cases edit) the texts to be annotated. The top criterion for
the selection step is to keep the meaningful and representative texts while discard-
ing the problematic items for which full linguistic annotation is not worthwhile.
For the second and third issues of either incomplete grammar coverage or the lack
of efficiency in processing, there is legitimate concern over the robustness of deep
linguistic grammars such as the ERG in comparison to creative and flexible human
annotators.

In our discriminant-based approach of treebanking, the coverage gap shows up
in two ways: either the grammar fails to parse a specific input utterance, or all
the candidate analyses proposed by the grammar are rejected through the manual
disambiguation step. Both suggest that a desired analysis is missing due to certain
constraints in the grammar. Our experience with the Wall Street Journal corpus
and the ERG shows that about 8% of the sentences fail to parse, while another 10%
received no acceptable analysis despite getting one or more parses from the ERG.
In both cases, using the discriminant-based treebanking tools, annotators cannot
record an existing good tree for the sentence.

To annotate the sentences in the grammar coverage gap, we use a robust and
overgenerating grammar that approximates the parsing behavior of the ERG. More
specifically, an approximating probabilistic context-free grammar (PCFG) is ex-
tracted from the automatically parsed treebank of the ERG. The categories in the
PCFG are the HPSG rule names annotated with additional information either from the
syntactic context (derivation tree) or the detailed properties in the feature structure.
Due to the unrestrictive nature of the PCFG, it achieves almost full coverage on all
the sentences from the original corpus. The approximating PCFG delivers the most
likely pseudo-derivations of ERG according to a generative probabilistic model. In
combination with the feature structures of the rules and the lexical entries from
the orignal ERG, we can recompose the semantics by doing unification on these
derivations. In cases where the unification fails, a robust unifier is called instead to
override one side of the conflicting constraints according to certain heuristics.

The evaluation shown in [23] suggests that this PCFG, with careful selection
of addiontal annotations and the massive automatically created training treebank,
achieves very good parsing accuracy. When tested on sentences that the ERG covers
correctly, the best PCFG achieved 84.9 (syntactic) ParsEval F1 score, and 84.2 F1
in the semantic argument relation evaluation (EDMA). Both measures are about



2% lower than the HPSG parser with ERG. The PCFG succeeds in parsing over 99%
of the test set, while the original ERG successfully covers about 80% of it. In a
comparison to the parsing accuracy of the state-of-the-art Berkeley parser trained
with the same corpus, our PCFG training was much more scalable (with up to 50
million automatically ERG parsed trees), yielding much better overall accuracy.

Lastly, we have developed a graphical tree editor that allows the annotators to
manually correct the remaining errors in the PCFG parses. The tool not only sup-
ports an intuitive drag-and-drop style of editing, but also records the entire editing
sequence, creating additional raw annotation data for future research. Preliminary
experience on the post-editing steps suggests that an annotator can correct 35-40
sentences per hour, producing for each a derivation tree which contains at least one
constituent not (yet) licensed by the ERG, but necessary for the correct analysis of
the sentence.

5 Next Steps

Among the principal advantages claimed for this DeepBank approach is the ability
to make successive refinements to the treebank annotations, by making changes to
the grammar or to the parsing configuration, and then reparsing and updating with
the existing discriminant-based annotations. One planned change in that parsing
configuration is to record in the database the full (packed) parse forest for each
sentence, rather than the 500 highest-ranked parses currently stored. Manual dis-
ambiguation from the full forest will require a new treebanking tool, still under
development, but initial experiments already confirm that the existing discrimi-
nants are sufficient to automatically fully disambiguate the great majority of the
previously treebanked WSJ sentences even working with full parse forests. This
full-forest method will provide greater stability in the English DeepBank, eliminat-
ing the current minor but annoying uncertainty that results from the dependence on
parse ranking to preserve the desired analysis among the top-ranked 500.

6 Conclusion

The English DeepBank provides linguistically rich syntactic and semantic anno-
tations grounded in a well-established and leading linguistic theory (HPSG) for a
large and familiar corpus, the million-word Wall Street Journal portion also anno-
tated in the Penn Treebank. The first public release of this resource will include
manually selected full analyses produced by the English Resource Grammar for
more than 80% of these 50,000 sentences, providing unmatched consistency and
linguistic detail, available in multiple formats and representations. The remainder
of the corpus will be annotated with compatible though approximate syntactic and
semantic analyses produced using a PCFG trained on the manually annotated tree-
bank, to ensure complete coverage of the corpus in the treebank. Adopting the
Redwoods methodology for constructing and maintaining this dynamic treebank



will enable further improvements in the grammar to be projected into updated ver-
sions of the DeepBank, along with correction of any remaining annotation errors.
We believe that an annotated resource of this scale for this corpus will be useful
for research both in NLP and in corpus-based theoretical work in linguistics and
psycholinguistics.
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