
Integration of Drools into an OSGI-based
BPM-Platform for CBR

Alexandre Hanft1, Oliver Schäfer1, and Klaus-Dieter Althoff1,2

1 University of Hildesheim
Institute of Computer Science – Intelligent Information Systems Lab

Marienburger Platz 22, 31141 Hildesheim, Germany
{firstname.surname}@uni-hildesheim.de

2 Competence Center Case-Based Reasoning
German Research Center for Artificial Intelligence (DFKI) GmbH

Trippstadter Strasse 122, 67663 Kaiserslautern, Germany

Abstract. This paper describes the integration of the business rule
management system Drools inside the framework SMILA which is a
workflow system. The goal behind that effort is to foster the adaptation
with rules and completion rules not only for CBR-systems, but in busi-
ness context. Existing open source CBR systems have none or very lim-
ited adaptation capabilities as well as proprietary, commercial systems
restrict complex adaptation processes. Our so-called RACK implemen-
tation brings the power of Drools into SMILA and makes the experience
of already written rules in business area available.

1 Introduction

Existing open source CBR systems have unfortunately none or very limited
adaptation capabilities. For instance the popular JColibri currently only allows
to change certain fixed values or a relative modification for numerical values
[1]. Another popular open source system for CBR – myCBR – evolved from a
plug-in of Protégé to an Eclipse RCP-based application in its upcoming version
[2] and has a powerful similarity modelling, but no support for adaptation or
completion rules. Unfortunately, both does not take workflow concepts explicitly
into account.

On the other hand, Attensity Research & Discovery [3], (formerly e:IAS), one
of the most popular industrial strength CBR-capable tool, has a (proprietary)
pipelining concept to organise tasks in workflows and a powerful rule engine for
completion of queries and adaptation of cases. But this tool is limited regarding
capabilities for complex adaptation processes. For instance the rule engine (per-
forming the adaptation) has no direct access on similarity measures and values,
no full access on the case/ query. Furthermore, its concept of handling values with
the concept of set theory lacks in the possibility to iterate over each item inside
the set (details in [4]). Some of the limitations can bypassed by self-programmed
pipelets, but using their API requires a lot of internal knowledge.

1



To overcome limitations of proprietary software despite others problems like
scalability, in 2008 a new framework SMILA was proposed, the SeMantic Infor-
mation Logistics Architecture. SMILA has a clear focus on business enterprises
and uses an established workflow mechanism, BPEL pipelines. SMILA is de-
signed with a very general purpose and allows to use several search technologies,
but its open source edition (the only we consider) lacks some capabilities for
CBR, at least similarity-based retrieval and adaptation. Indeed, Apache Lucene
used for retrieval at the moment.

Hence, we detect a gap between classic CBR systems with rule-based Adap-
tation and business-oriented rule-based systems as well as workflow systems we
aim to bridge with our approach. What we found necessary is a workflow-oriented
tool that performs CBR with a strong adaptation in the enterprise context to
use their already existing (business-rule) experience. Our medium term goal is to
provide a workflow of several adaptation processes, not only in the CBR area but
in the business environment. The necessity for a workflow of adaptation follows
also from the experience with the Improvements of the Model-based Adaptation
in CookIIS [5, p. 207]. Consequently our aim is now enrich the SMILA frame-
work with CBR capability. Beside the retrieval, we focus here on the workflow
and a rule engine to achieve a powerful adaptation.

JBoss Drools is a common, high-performance open source business rules tool
with proven quality [6]. It allows inside the rules full object access on self written
Java classes (beans), calling of own functions for arbitrary functionality, debug-
ging etc. Additionally, Drools proposes (in contrast to other rule-engines) to
be OSGi-ready which recommends it for integrating in other OSGi-based sys-
tems. Due to effort and the afore mentioned advantages we decided us for the
integration of Drools into SMILA instead of an own implementation of a rule
engine.

The next section 2 gives an overview of the Frameworks SMILA and Drools.
We proceed in section 3 with the concept and implementation of the integration
of Drools into SMILA, called RACK. Afterwards, in section 4 we present some
details of the evaluation of the framework and describe the applicability of RACK
for CBR. We finish with a conclusion, discussing related work and give an outlook
on future work.

2 Used Frameworks: SMILA and Drools

2.1 SMILA

The framework SMILA (SeMantic Information Logistics Architecture) is an
Eclipse RT project [7] aimed for building Java Applications to index, process
and search unstructured informations. Its goal was to overcome the disadvan-
tages of their predecessors Research & Discovery/e:IAS. SMILA bases in contrast
to the proprietary model of e:IAS on standards technologies like OSGi, BPEL,
JMX, SCA and SDA to easier the maintenance and integration of third-party
components.

2



The OSGi Service Platform is a specification of the OSGi Alliance which
provides an API to build modular Java-Applications. The main components of
an OSGi based Application are bundles and services. These can be installed,
started, stopped, updated and de-installed at the Service Platform at runtime
to dynamically exchange functionality at system runtime.

SMILA organises its processes in a workflow model running several BPEL
pipelines which are managed by a workflow engine. These are at least preprocess-
ing and information retrieval. Figure 1 shows an overview of the architecture of
SMILA [8]. On the left hand side the components for preprocessing can be seen as
well as the components for information retrieval on the right hand side. A work-
flow here is called pipeline. Single activities in such a pipeline are called pipelets
representing reusable Java Components [9]. The communication between these
pipelets is managed by a pipeline- and invocation-specific blackboard. This con-
cept is very similar to them of e:IAS, but now it does not need internal knowledge
to configure or implement own components, because its specification is open and
well-known in literature.

Fig. 1. Overview of the SMILA framework [8]

3



2.2 Drools

The ”Business Logic integration Platform” Drools is one of the most common
open source tools for rule-based systems, workflow and event processing [10,6].
This platform consist of five parts, but we concentrate here on the core compo-
nent: Drools Expert (the rule engine). Drools Expert performs forward chaining
inference with an enhanced version of the Rete algorithm.

Figure 2 shows the key components of Drools Expert. The KnowledgeBuilder
is used to build KnowledgePackages representing the knowledge in form of rules
or fact types. For instance it take a drl file, the Drools standard format for rules,
analyses it and compiles it into a knowledge package. One or more knowledge
packages build a Knowledge Bases. For each knowledge base it is possible to
initialise a Knowledge Session which represents it at runtime. After the initial-
isation of a session facts can be inserted and a set of commands can be executed.
The most important command is the FireAllRuleCommand. A knowledge session
can be stateless or stateful. Only the latter saves the state of the facts between
multiple executions. However, a stateful session has to be disposed explicitly,
while a stateless session will be disposed automatically after each execution [6].

Fig. 2. The process of creating knowledge sessions, following [6, p. 22]

3 Design and Implementation of RACK – the Drools
integration

This section describes the concept of the proposed integration as well the be-
haviour of the components during the workflow is running. The implementation
RACK stands for Rule-based Adaptation of Case-based Knowledge which repre-
sents the goal of the integration to make SMILA CBR-ready.

Figure 3 shows the structure of the components (OSGi bundles) which had
to be integrated. Based on the existing Drools bundles, in particular for the
initialisation of knowledge bases and knowledge sessions, they should be used
by the SMILA bundles. For this purpose it was necessary to implement con-
nection bundles (in the figure as Drools-SMILA, later RACK). To process the

4



records, for instance firing rules, the integration in the BPEL pipelining concept
of SMILA was focused. For this reason some services and pipelets were imple-
mented providing the access and execution of the Drools Expert components.

Moreover, it was also necessary to handle the needs of RACK users who act
as fact and rules supplier. To enhance the usability and scalability it was also
important that the consumer can extend the basic integration components by
own classes for their own domain and business-logic. Domain-specific processing
cannot be handled via general pipelets and services. Hence, abstract pipelets
(AP) and helper classes had been implemented. These and the basic pipelets
can be used via derivation to implement domain-specific pipelets.

Fig. 3. The conception of the integration RACK together with its bundles, files, services
and pipelets [11]

3.1 The Workflow – running the services in SMILA

As shown in figure 4 the processing of an user request (cf. query) (step (1)) is
performed through a sequence of pipelets and processing services in a BPEL
pipeline. The initial search service (LuceneService) pushes records (cf. cases) ac-
cording to the query on the blackboard (2). Followed by initialising the session
(3), these records can be pulled from the blackboard (4) and processed by the
following pipelets and services. The RACK pipelets use the blackboard not only
to load records (4), but in the knowledge sessions they also temporary save a
session (6) and request active SessionID (7) or objects like execution results.
Other pipelets or services can reuse a session by requesting it from the Session-
Service via its SessionID (8). Finally each pipelet can execute the session (5,9).
The steps 7–9 are only necessary for reusing a session. For a stateful session it
is necessary to dispose it after the whole processing is done (10).

5



Fig. 4. Record processing in a BPEL pipeline inside RACK. [11]

The RACK implementation includes three bundles for the interfaces, the
implementation itself and a bundle containing some use cases and examples.
Moreover, RACK offers two declarative (OSGi) services for managing the session
and knowledge base instances. They are not accessible within the BPEL pipelines
and act like a background worker. The processing in the BPEL pipelines can be
performed through the following three basic pipelets and extended consumer-
pipelets:

– PipeletBatchExecutionStateless: Initialises and executes a stateless knowl-
edge session.

– PipeletBatchExecutionStateful: Initialises or reuses a stateful knowledge
session and executes it.

– PipeletDisposeStatefulSession: Disposes a stateful session.

A pipelet can be configured separately for each pipeline invocation and pro-
cesses a configurable list of commands. These commands can also be configured
with subcommands to initialize or reuse existing objects. In short they are used
to insert objects into a session or to trigger firing the rules.

There are a lot of other components in RACK, for instance for the config-
uration, more details can be found in [11]. Figure 4 points to another benefit

6



from using Drools (or other rule systems) in a BPEL pipeline, the component
behaves like all other pipelets operating on the records. As most important it is
possible to perform other record adaptations between these invocations. This is
especially necessary for complex adaptation processes which are composed from
more than one adaptation approach performed sequentially (as three in [5]). For
instance a pipelet have to select an adaptation suggestion from a database or
community before the rule-based adaptation is called.

To reuse a stateful session, it is sufficient informing the session which records
have changed instead of re-insert all records. This could be achieved by collecting
the ID’s of changed records on the blackboard, a flag inside the record or a
publish-subscriber mechanism. Afterwards, facts and rules have only to be re-
evaluated and the rules can fire again. A complying workflow looks like this:

1. Fire completion rules (PipeletBatchExecutionStateless)
2. Retrieve cases (LuceneService)
3. Adapting retrieved cases with rules (RACK) (PipeletBatchExecutionState-

ful), which corresponds to step 3–6 in Figure 4
4. possibly perform other adaptation approaches (third-party components)
5. possibly inform the stateful session which records are changed and
6. Re-evaluate the rules and fire them again (PipeletBatchExecutionStateful)

corresponding to step 7–9 in Figure 4
7. Dipose the session (PipeletDisposeStatefulSession)

The steps 3, 4 and 5+6 can freely repeated – the underlying BPEL pipeline
allows enable a complex adaptation designed as a workflow.

Using Drools has some other practical beneficial features. It is possible to
prioritize the firing of rules via attributes (salience) or partition the Agenda of
the rule base in groups (agenda-group). Therefore, only parts of the rule set
could be fired, which supports the application of several different rule-based
adaptations. While executing a knowledge session the focused Agenda can be
changed at runtime, which implies changing the control flow at runtime towards
a dynamic workflow.

4 Evaluation and Applicability of CBR

4.1 Evaluation within the Cooking Contest Domain

The RACK implementation was evaluated by a simplified version of the CookIIS’s
model-based adaptation. The idea behind it is to replace forbidden ingredients
(here meat) in the retrieved recipes by vegetarian alternatives. During the in-
dexation each recipe (cf. record/case) of the Computer Cooking Contest’s recipe
base is categorised as meat or vegetable through completion rules. The users
can query for a recipe with a specific name, ingredient and category (meat, veg-
etable, unknown). During the processing of the query completion rules are fired
to resolve conflicts between given ingredients and category. Additionally, this
categorization improves the retrieval by the LuceneSearchService.

7



Fig. 5. excerpt from the Drools adaptation rule exchanging meat ingredients

Fig. 6. An adapted meat recipe

Figure 5 shows an excerpt of the main adaptation rule, which fires for each
non-empty query and if the queried category is vegetarian and in conflict with
the category of a retrieved recipe (meat). It iterates over each ingredient and
if an ingredient is meat, an alternative is found (method findMeatAlternative()
from own class meat). Afterwards this ingredient is set to its alternative and
an annotation is added (more details in [11]). Figure 6 shows this result in
SMILA for a query for vegetarian recipes after the rule-based adaptation. The
adaptation rule identifies in the recipe Agnolotti Ignudi Al Mascarpone (Meat
Balls in Mascarpone) chicken as a meat ingredient and replaces it with tofu-
chicken. The model and rules in this evaluation prototype are not so complex
as in CookIIS, but demonstrate the execution of Drools rules in SMILA and the

8



full object access on the records (cf. recipe). Furthermore it would be possible
to make use of ontologies via the SMILA integration of SESAME to extend the
limited model.

4.2 Applicability of CBR

The concepts and components of the more general SMILA can be matched on
CBR-specific concepts to provide CBR functionality with SMILA. A case is
clearly a record of SMILA, with the one difference that problem and solution
part are not strictly divided.Accordingly, the case base is the record store. The
used search service Lucene performs a full text search instead of similarity based
retrieval, but replacement is possible. Adaptation rules (as well as completion
rules) can be realised through the aforementioned RACK implementation and
perform the Reuse step from CBR. Revise is at the moment not possible with
this implementation, but due to the workflow concept relatively easy to integrate.
Retain is feasible in a rudimentary way by storing the changed records. What
remains is to replace the search engine with one based on similarity measures as
the next step towards a full-featured CBR system based in SMILA.

5 Conclusion, Related Work and Outlook

In this paper we presented RACK, a Rule-based adaptation of Case-based
Knowledge, implementing the integration of Drools into the workflow-oriented
SMILA framework. It enables rule-based Adaptation in SMILA and is a great
step forward to prepare SMILA as full-featured open source CBR system. This
was integrated into the pipelining concept of SMILA based on the OSGi ser-
vices, which facilitates a flexible orchestration of several subsequent adaptation
approaches (as in [5] with e:IAS) through a workflow.

We gave an overview on the structure of bundles RACK consists of and
on the different possibilities to implement regarding sessions. Afterwards we
described exactly how the sequence of the called services in SMILA works during
lifetime, which is to be more specific, during the execution of a BPEL pipeline
”information retrieval” after the initiating query of an user or agent.

After a successful evaluation showed its general availability for use we de-
scribed the mapping and applicability of RACK with SMILA for CBR. Accord-
ing to the general focus of SMILA RACK is not restricted to adaptation inside
CBR, but explicitly designed to fulfil the specific requirements of CBR systems.

5.1 Related Work

SMILA is the official successor of Research & Discovery/e:IAS. From a broad
perspective the rule engine inside e:IAS achieves the same goal as the Drools
integration in SMILA, but it is open source and have a lot of features missed
there as full object access on self written Java classes, own functions for arbitrary
functionality, debugging etc. Some open source CBR systems are myCBR[2],

9



JColibri[1] or IUCBRF[12]. Integrating a rule system into existing open source
CBR frameworks is fairly imaginable, but we prefer to move our focus to a more
general and business context. Our RACK facilitates rule-bases adaptation from
CBR in the context of workflow-oriented business applications in contrast to the
adaptation of a workflow with the aid of CBR, as for instance in [13].

5.2 Outlook

The evaluation was done with stateless sessions. Therefore, we will build a sec-
ond prototype with stateful sessions and investigate the interactions between
other adaptation approaches and our rule-based adaptation in workflows. We
plan further implementations to enhance SMILA as a full-fledged CBR system
framework. Therefore we looking for a similarity-based retrieval service, we will
try to reuse a retrieval component equipped with a web service interface from
former projects. Moreover, Drools can use DSLs as special rule dialects to facili-
tates simpler, human-centered adaptation languages. Due to other development
activities on myCBR we aim at repeating the integration of Drools for myCBR
to provide it with the execution of adaptation and completion rules.

References

1. Garca, J.A.R.: jCOLIBRI: A multi-level platform for building and generating CBR
systems. PhD thesis, Universidad Complutense de Madrid (Oct 2008)

2. DFKI: mycbr. http://www.mycbr-project.net (2011) (last verified 2011-06-10).
3. Attensity: Research & discovery - product home page. http://www.attensity.

biz/en/Applications-and-Services/Applications/Research-and-Discovery.

html (2011) (last verified 2011-06-10).
4. Hanft, A., Ihle, N., Newo, R.: Refinements for retrieval and adaptation of the

CookIIS application. In Hinkelmann, K., Wache, H., eds.: Wissensmanagement.
Volume 145 of LNI., GI (2009) 139–148

5. Hanft, A., Newo, R., Bach, K., Ihle, N., Althoff, K.D.: Cookiis a successful recipe
advisor and menu creator. In Montani, S., Jain, L., eds.: Successful Case-based
Reasoning Applications - I. Volume 305 of Studies in Computational Intelligence.
Springer Berlin, Heidelberg (2010) 187–222

6. Bali, M.: Drools JBoss Rules 5.0 Developer’s Guide. Packt., Birmingham (2009)
7. The Eclipse Foundation: SMILA– eclipse project. http://www.eclipse.org/

smila/ (2011) (last verified 2011-06-08).
8. The Eclipse Foundation: SMILA Wiki - Architecture Overview. http://wiki.

eclipse.org/SMILA/Architecture_Overview (2011) (last verified 2011-06-08).
9. The Eclipse Foundation: Smila wiki - pipelets. http://wiki.eclipse.org/SMILA/

Documentation/Pipelets (2011) (last verified 2011-06-09).
10. JBoss: Drools. http://www.jboss.org/drools (2011) (last verified 2011-06-10).
11. Schäfer, O.: Integration eines regelbasierten Systems über die OSGi Service Plat-

form in SMILA. Bachelor thesis, Universität Hildesheim (2011)
12. Bogaerts, S., Leake, D.: IUCBRF: A framework for rapid and modular CBR

system+development. Technical report, Indiana University, Bloomington (2005)
13. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation

of workflows. In Montani, S., Bichindaritz, I., eds.: ICCBR 2010. LNAI 6176,
Springer-Verlag (2010) 421–435

10

http://www.mycbr-project.net
http://www.attensity.biz/en/Applications-and-Services/Applications/Research-and-Discovery.html
http://www.attensity.biz/en/Applications-and-Services/Applications/Research-and-Discovery.html
http://www.attensity.biz/en/Applications-and-Services/Applications/Research-and-Discovery.html
http://www.eclipse.org/smila/
http://www.eclipse.org/smila/
http://wiki.eclipse.org/SMILA/Architecture_Overview
http://wiki.eclipse.org/SMILA/Architecture_Overview
http://wiki.eclipse.org/SMILA/Documentation/Pipelets
http://wiki.eclipse.org/SMILA/Documentation/Pipelets
http://www.jboss.org/drools

	Integration of Drools into an OSGI-based BPM-Platform for CBR
	Introduction
	Used Frameworks: SMILA and Drools
	SMILA
	The OSGi Service Platform

	Drools

	Design and Implementation of RACK – the Drools integration
	The Workflow – running the services in SMILA

	Evaluation and Applicability of CBR
	Evaluation within the Cooking Contest Domain 
	Applicability of CBR

	Conclusion, Related Work and Outlook
	Related Work
	Outlook





