
Aligning mildly context-sensitive
formalisms for data-driven parsing

ILYA KASHKAREV

Master Thesis
Universität des Saarlandes

25th September 2012

Declaration

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet

habe.

Declaration

I hereby confirm that the thesis presented here is my own work, with all
assistance acknowledged.

Saarbrücken, 25th September 2012

Signature: Ilya Kashkarev

2

Acknowledgements

I am grateful to my supervisor in Saarbrücken Dr. Yi Zhang for constant
help and consultation. He helped a lot in directing my thoughts in a way
that led to fruitful results.

I would like to thank my supervisor in Nancy Dr. Sylvain Pogodalla for
inspiring my interest in scientific work and very intensive and deep discus-
sions.

Last but not least, I am indebted to my relatives for support and to my
dear friend Olga Nikitina for all the other good things that happened to me
during the work on this thesis.

3

Contents

1 Introduction 6

2 Background 12
2.1 German and relatively free word order 12
2.2 Treebanks . 13
2.3 Parsing of German . 14

2.3.1 Head-driven Phrase Structure Grammars 14
2.3.2 CFG . 16
2.3.3 LCFRS . 17
2.3.4 LFG . 18
2.3.5 CCG . 18
2.3.6 Dependency parsing 19

2.4 Theoretical investigation . 19
2.4.1 Hyperedge Replacement Grammars 20
2.4.2 Abstract Categorial Grammars 20

3 Approach 22
3.1 Conversion of HPSG into ACG 22

3.1.1 HPSG grammars and their models 22
3.1.2 Graphs as descriptions of tokens 27
3.1.3 Routes in graphs and joint union 34
3.1.4 Hyperedge replacement grammars 38
3.1.5 Construction of HRG form HPSG 42
3.1.6 Main result . 51

3.2 Implementation of an LCFRS parser 55
3.2.1 Definition . 55
3.2.2 Grammar extraction 56
3.2.3 Preprocessing . 58
3.2.4 Binarization . 61
3.2.5 Parsing . 61
3.2.6 Baseline . 67
3.2.7 Evaluation . 69

4 Empirical evaluation 70
4.1 Data . 70
4.2 General overview . 72
4.3 Coverage . 72
4.4 E↵eciency . 76

4

4.5 Parsing . 78
4.5.1 Parser . 78
4.5.2 First experiments . 80
4.5.3 Going nose-wise . 83
4.5.4 Markovization . 84
4.5.5 Re-attachment of relative clauses 85

5 Conclusion 87

5

1 Introduction

In the current research we investigating the relations between formalisms
with di↵erent levels of deepness of linguistic knowledge integrated in them.
On the far end of this scale we may put context-free grammars (CFG), as
linguistically rather trivial formalism. In its simplest form a CFG assigns
categories, or tags, to certain continuous substrings of a sentence called con-
stituents. The analisys of a sentence with a CFG is a local tree, whose nodes
correspond to constituents, and the mother node is a concatenation of the
substrings of the daughters. Locality practically means that the daughters
of every constituent are, so that their projection on the string are a sequence
of adjacent substring with the same order.

CFG is a very nice and simple formalism. A number of fast and prac-
tical algorithms were developed for CFG parsing, which allow to parse in
polinomial time with moderate constant parameter [64, 19]. The underrep-
resentation of linguistic knowledge, with only one parameter, the category
of a node, allows for coarse parsing with good quality. As a more general
term, context-freeness means that the derivation of a current node, or the
application of the current rule, does not depend on the context, i.e. the
history of the derivation, as well as other neighbouring rules. This provides
very concise representation of partial analises.

A probabilistic context-free grammar (PCFG) is a CFG grammar with
probabilities assigned to each rule of the grammar. A grammar can easily
be read from a treebank and the probabilities computed on the basis of the
frequencies of the rules in the treebank. There are a number of big treebanks
that one can use (Penn treebank [42], TIGER corpus [3]).

The formalism, though, has a few disadvantages. First, long-distance
dependencies may not be directly, if at all, analized by CFG. The notion
of locality is very restricted here. In a single grammar rule one may only
represent direct daughters of a node and no other constituent is permited
to inteleave. The dependancies may still be encoded into treebanks, but
they cannot be modelled on the regular basis by a grammar. Not handeling
long-distance dependencies is of course one of the features that makes CFGs
so e↵ecient to parse with. More complex grammars need good mechanisms
to filter possible dependencies.

Discontinuous constituents is a notion that makes it possible for a con-
stituent to consist of more than one continuous segments. A local tree
cannot have discontinuities. It has recently been argued that the phrase
stucture component should be loosened to be just ordered trees, rather than
local tree. This point of view is strongly supported by empirical evidence.

6

Indeed, even such a strict word order language as English exposed signifi-
cant amount of discontinuous phrases, not to speak of other more flexible
languages.

Although it is di�cult to prove whether natural languages are not context-
free, evidences from linguistic studies have indicated that a richer formalism
would better capture the mechanism of natural languages. The class of lan-
guages which is considered a proper class for modelling natural languages
is mildly context-sensitive languages. A good formalism to analyze the lan-
guage must generate context-sensitive languages. In particular, it must be
capable of generating context-free languages, parsing must be possible in
polinomial time and it must be able to analyze so-called cross-serial depen-
dencies. These are so to say word order variation, proven to be non-context-
free, which appear in natural languages.

Linear context-free rewriting systems (LCFRS [62]) and abstract catego-
rial grammars (ACG [12]) are examples of this sort of formalisms. LCFRS
is a rather straightforward generalization of CFG. One also allows category
labels to contain additional information to assist parsing. The grammars
are linear in the sense that every rule may only pass the information up
in the derivation in any order or combination, nothing can be duplicated
or deleted. Thus, the formalism actually unites a class of formalisms with
di↵erent interpretations of operations allowed on the information. We can
for instance use the parse trees as features of nodes and join these trees by
the grammar rules.

A particularily important interpretation of LCFRS is when non-terninals
(nodes) are assigned a list of variables which stand in one-to-one correspon-
dence with continuous segments spanned by this non-terminal. Therefore,
we have an integrated direct representation of discontinuities. The applica-
tion of a rule may, then, concatenate these variables or list them separately,
depending on whether the corresponding segments are adjacent. The sim-
plisity of the generalisation made leaves the possibility to use only slightly
modified versions of many parsing algorithms.

Having these generalizations makes it possible to directly read grammars
from treebanks with crossing branches. And this type of representation has
an advantage of clearer subcatigorasation frames’ representation as well as
tighter syntax-semantics connections. We obtain more informative rules and
they in turn are better motivated. Having an overt representation of discon-
tinuities in a grammar allowes us to have direct control over the structures
and phenomena which have always deteriorated parsing e�ciency as well as
accuracy.

The new but still simple machinery allows LCFRS to go behind context-

7

freeness but the parsing complexity remains polinimial. The current research
shows that the parsing speed is comparabale to that of CFG. It lies within
the same range, but the systems are not easily scalable as opposed to CFG.
The parsing times grow because discontinuous nodes if unrestricted may
span over any possible subset of words. The more variables a non-terminal
has, the larger the number of all possible subsets that it can span over
becomes. There are theoretical results of how to minimize these numbers
but they are hardly linguistucally motivated.

Concerning the accuracy of LCFRS parsing, it was also shown to be very
close to that of CFG [29]. Several existing implementation were trained
on large corpora, they manage to parse sentences of more than average
length. Although the main aim of the generalization made is to handle
discontinuities, we have not seen any detailed investigation of how LCFRS
manages to process them. One of the first intentions we put into this work
is to give a comparative analysis of the accuracy results on continuous and
discontinuous data, on the sentence level and also node-wise. The analises
should better reveal the impact of the introduction of discontinuities. We
can actually observe whether they are captured and how many of them are
missing. These observations help understand the specificity of the formalism
and to integrate appropriate modifications.

Most of the heuristics to improve LCFRS come from already existing
CFG methods. We are rather interested here in how the formalism can
benefit from other formalisms with more complex linguistical foundations.
To this end, we implement a LCFRS parser and seek ways to introduce
more linguistically motivated features, not just probability smoothing or
other usual CFG techniques to improve parsing results. At the same time
the formalism itself o↵ers certain places for improvement. We make an
attempt to approach these ine�ciencies. However, before that, we want to
have theoretical support. It would be critical to observe to which extend
LCFRS allows for the integration of deeper linguistic knowledge.

LCFRS is only one of the class of formalisms generating mildly context-
sensitive languages, like, for example, the tree-adjoining grammars. A very
flexible and general linguistic platform to encode other formalism into is
abstract catgorial grammars (ACG). ACG is a type of categorial grammar,
therefore, it is more logic-oriented. Words and constituents are understood
as sort of logic formulae. They are operated on by logical operations to
obtain an analisys of a sentence. Although the two formalisms initially have
so diverse bases, a subclass of ACGs was proved [15] to generate the same
string languages as LCFRS, as opposed to tree languages. Knowing this we
conduct our theoretical research on ACGs, because they include LCFRSs,

8

are capable of encoding more complex machinery, and at the same time
retain the linearity property which is similar to the linearity of LCFRS.

ACG is a relatively new formalism. It was designed as a platform to
encode other formalisms and investigate their properties. And we use it as
the platform for our attempt to try on more complex linguistic material. The
class of all ACGs is divided into subclassed according to the complexities
of the formulas used. The first non-trivial subclass consisits of second-order
ACGs and they as we already mentioned correspond to LCFRS. There is not
much information known about parsing with ACGs but it was shown that
with second order ACGs one can parse in polinomial time. Other results
suggest that with higher order ACGs polonomial parsing is impossible. Parse
trees here are also local trees and they drive the analisys, however, the
operation of �-abstraction helps arrange the words, or the formulae, in any
order. Wrong types of formulae restrict possible combinations. LCFRS,
though, have all the possible applications listed in the form of rules. Typing
of formulae makes ACG more appealing as the target formalism of a formal
conversion of a type-based formalisms, like HPSG or LFG, which we are
going to discuss soon.

The ACG grammars are carefully hand-written, thus, their linguistic
precision should be better. But we have not seen any large scale experiments
with reported results. The grammars are not yet generalized to probabilistic
parsing as well. However, as other categorial grammars they seem to have
better potential in handling word order phenomena. New research shows
that coordination, di↵erent kinds of movements, cross serial dependencies
are processed with relative easiness.

Although the formalisms we mentioned are already much more powerfull,
than simple context-free grammars, there are other, more complex models of
natural language. Head-driven phrase structure grammar (HPSG [51]) is a
prominent linguistic theory capable of presenting deep linguistic knowledge.
It proves to model a large variety of linguistic phenomena and has a very
sophisticated machinery. It has very precise formal theory resulting from its
strict commitment to formal representation of linguistic knowledge.

The basic structures used in HPSG are feature structures, which are
collections of attribute-value pairs. They are designed to describe linguistic
types, generalization of linguistic entities. Feature structure attributes, or
features, correspond to properties of linguistic entities or their substructures,
e.g. a sentence has a feature of subject. The values of the attributes are
other feature structures. The basic empirical assumption is that a natural
language is a system of linguistic types. This types should be modelled
by a grammar and the proper representation is feature structures. Being a

9

constraint-based theory, HPSG is driven by a set of principles which validate
certain feature structures and rule out all the others.

HPSG operates on feature structures, notions of subsumption and unifi-
cation of those, but the phrase structure skeleton in HPSG is given a special
role. It drives the derivation and usually is required to be a local tree.
Therefore, from its origin the formalism neglected discontinuous phrases.
For many fixed word order languages HPSG has achieved reasonable results
without loosening this presidence constraint [8]. But for other languages, it
becomes very impractical to operate on precise linguistic terms of artificially
created phrases.

There are modifications to the formalism or grammars that allow to have
dicontinuities. However, HPSG is still relatively slow if compared to other,
simpler formalisms e.g. context-free grammars, especially if allowing discon-
tinuity in phrases. The source of this complexity lies in too powerfull feature
structure mechanisms which permits to copy structures unbounded in size,
and poor interface between them and the phrase structure mechanism. The
latter, though is explicated in lexical functional grammars. But in the cur-
rent research we concentrate on a particular case of feature structure based
formalism, HPSG, because it has very formal mathematical foundations,
which is very helpful to conduct our theoretical investigation.

HPSG was aimed at good accuracy. Most of the grammars are hand
written, the phenomena covered are usually revealed to the maximal thor-
oughness, writing a good coverage HPSG grammar takes years. The amount
of data processed by an HPSG parser is huge and it is not obvious that all
these data are really necessary. The machinery may be too complex to
characterise the ususal human usage of the language. This point of view is
supported by the results stating that in general case HPSG feature structure
recognition may be undecidable, i.e. we are not able to say whether a given
sentence type is in the language [32].

So, we observe that the more complex the linguistic material we can
process, the worse the preformance usually goes. Here we would like to
explicate the relationship between the more complex models of the language
and less comlex models on the examples of HPSG, LCFRS, and ACG. There
can be potential benefits from both sides. The complex HPSG structures
may theoretically be simplified to borrow some e↵eciency from simpler ones.
At the same time, the formalisms like LCFRS seem to su↵er from the lack
of more linguistically approved information and can be enriched to support
the processing of new information.

On the theoretical level we construct a partial convertion of HPSG into
ACG. In fact we use hyperedge replacement grammars (HRG) as the target

10

of our convertion, but some very tight correspondence of HRG and ACG
was already proved before. Moreover, the complexity results suggest that
if we try to build such a conversion in a more general fashion, then the
second-order ACG would not be su�cient. But higher-order ACGs are not
yet well-studied. It seems also clear that there may not in principle exist a
fair conversion of HPSG into HRG, basically because head-driven phrase
structure grammars do not have context-free derivations. Thus, in this work,
we try to establish conditions, possibly not too restrictive, under which a
grammar in HPSG formalism may be modeled as an HRG.

Certain extensions to the base ACG formalism were proposed before [14].
These extensions can represent feature structures with a few extra primi-
tives. However, we are rather interested in the expressive power of the
unextended formalism, because the extentins are new and too powerful.
Moreover, we cannot directly relate them to the LCFRS formalism.

The practical side of our investigation concerns LCFRS as there is on-
going research on LCFRS applications. We enrich the formalism with addi-
tional external information to improve parsing. As the target language we
chose German. There are big availiable German corpora which one may use
as the training data. German has variable word order patterns and it is very
di�cult to obtain good results within formalisms restricted to local trees.
Frequently occuring discontinuities present lots of material to work on.

We implement an LCFRS parser for German, train and test it on one
of the largest corpora. The parser, used with a context-free grammar does
the usual probilistic context-free parsing. It provides us with a baseline to
compare our results to. We also compare the results to other current state-
of-art parsers for German. Our theoretical results and error analysis guide
us to introduce modification to the parser.

11

2 Background

2.1 German and relatively free word order

The German language has relatively free order. This makes processing of
German language data a challenge for many linguistic formalisms. Finite
verbs in a German sentence take either second position — in the main
clause (1) — or final position in a relative clause (2).

(1) Karl kauft das Haus in Hamburg
Karl buys the house in Hamburg

(2) dass Karl das Haus in Hamburg kauft
that Karl the house in Hamburg buys

In yes-no questions or in imperative sentences, though, German finite
verbs hold to the first position. Separable particles and finite verbs are
exclusively placed in the final position (see for instance Crysmann [9]).

Traditionally, German clauses are structured into topological fields [26].
These are relative positions in a sentence, which may even be incoherent
segments of the sentence. A clause in the German language may be split
al least into Vorfeld (pre-field), Linke Klammer (left bracket), Mittelfeld
(middle field), verbal complex field, and Nachfeld (post-field). German word
order principles are based on these positions in a sentence. They identify the
head of the clause and all its components. The Vorfeld is usually the topic
of the sentence of the verb-second type of sentences. The left bracket is the
position of the finite verb in verb-initial and verb-second sentcence types.
Mittelfeld is located between the left bracket and the verbal complex and it is
reserved for all kinds of verb complements and modifiers. All non-finite verbs
and the finite verb in the verb-last sentences go to the verbal complex which
is then followed by the Nachfeld, which contains some extraposed relative
clauses or postponed prepositional phrases. Topological field chunking, i.e.
segmenting sentences into chunks corresponding to topological fields, turns
out to be fruitfully used as a preprocessing step for parsing. Results have
been reported with the quality approaching the results of part of speech
taggers. Several approaches to chunking were compared for instance in [61].

Another instance of uncertainty in the German word order is scrambling,
which manifests itself in the Mittelfeld. The field is typically reserved for
complements and modifiers and they may often be shu✏ed in various com-
binations as well as they can actually be subcategorized by di↵erent verbs
and interleave with modifiers of these verbs. The reasons for this uncer-

12

tainty may not strictly belong to syntax, rather phonology or pragmatics.
Consider the following typical examples of scrambling:

(3) a. dass der Mann der Frau das Buch gab

b. dass der Mann das Buch der Frau gab

c. dass das Buch der Mann der Frau gab

d. dass das Buch der Frau der Mann gab

e. dass der Frau der Mann das Buch gab

f. dass der Frau das Buch der Mann gab

All six variants in (3) of the German sentense for ‘that the man gave
the book to the woman’ are acceptable. Thus, we either do not order the
subcatigorization list of the verb ‘gab’ or have to introduce discontinuous
constituents.

Extraposed relative clauses occur frequently in German and many other
languages. Their location is rather flexible. They seem to be triggered by
the speaker to avoid prosodically heavy center embeddings. Moreover, the
range of possible antecedents is not easily recognized [10]. Thus, they also
form discontinuous constituents and are causes of various parsing errors.

2.2 Treebanks

Development of extensive corpora with good quality favours research in lin-
guistics as well as machine learning methods in natural language processing.
One of the biggest availiable German treebank is the TIGER corpus [3], ap-
proximately 55k sentences, with its predecessor the NEGRA corpus, 20k
sentences. The treebanks contain sentences from the newpaper Frankfurter
Rundshau. They are provided with part-of-speech and morphological an-
notation, phrase structure, as well as grammatical functions and secondary
relations which are only used to mark coordination phenomena. The cor-
pora use Stuttgart Tubinger POS tag set. The corpus annotation allows
discontinuous phrases. Discontinuities are very frequent. One can observe
that in treebanks like NEGRA or TIGER about 25-30 percent of sentences
are discontinuous [38]. An example of a tree from the TIGER corpus is
given in Figure 1.

Tubinger Treebank of Written German (TüBa-D/Z) is another impor-
tant corpus of German, which contains about 60k sentences from the newspa-
per Die Tageszeitung. However, unlike TIGER, it does not contain crossing
branches and uses topological field annotation in combination with func-
tional labels to encode long-distance dependancies. Thus, its trees are

13

Darauf
PROAV

darauf

sei
VAFIN

3.Sg.Pres.Konj
sein

auch
ADV

auch

in
APPR
Dat
in

einem
ART

Neut.Dat.Sg
ein

Begleitschreiben
NN

Neut.Dat.Sg
Begleitschreiben

hingewiesen
VVPP

hinweisen

worden
VAPP

werden

.
$.

.

MO AC NK NK

PP

OP MO HD

VP

OC HD

VP

OCHD

S

VROOT

Figure 1: A tree from the TIGER corpus

deaper than the rather flat TIGER trees. The TIGER trees contain on
average at least twice as many nonterminals as TüBa-D/Z trees [38].

2.3 Parsing of German

The treebanks are rather big and previous research shows that they are
su�cient to create grammars that achieve a fair level of accuracy. Corpus-
based large scale parsing of German was conducted in vatious formalisms.

2.3.1 Head-driven Phrase Structure Grammars

In the VERBMOBIL project [45] an attemnpt to model German the a large
scale linguistic grammar in the framework of HPSG was made. The grammar
was complemented with data specific to Verbmobil domain of scheduling
dialogs and particular attention was paid to spontaneous speech analysis.
The grammar has not been changed for a while. Exessive number of rules
for many complex constructs make the grammar di�cult to maintain. The
grammar is able to parse about 82% of sentences of the 25k sentences from
several VERBMOBIL CDs. Among the phenomena which account for most
errors there are coordination and extraposition.

14

However, the grammar is not currently actively maintained. Due to
complicated German word order priciples the grammar contains a number
of dubious constructions, it became hard to conceive and maintain. What
we can observe is that usual continuous phrase-structure parsing becomes
hard with the growth of grammars. Neither it show good results on new
unseen data of the general domain texts. [66] shows that the coverage of the
grammar on sentence of the Frankfurter Rundschau newpaper is only about
30%.

The Babel-System [43] is a natural language understanding system for
German written in Prolog. It is availiable online, processes morphological,
syntactical and semantical information in the framework of HPSG. The sys-
tem can parse 74% of sentences in a part of VERBMOBIL. The grammar
is limited to verbs, nouns, adjectives and determiners and contains 10,500
stems, however covers a wide range of phenomena. Morphological processing
is done o✏ine.

An approach directly using the concept of discontinuous constituents is
taken while implementing the Babel-System. The parser is designed in the
form of a bottom-up chart parser. A word is taked from a given string and a
coresponding lexical item is retrieved, then all the daughters of each rule are
tried to unify with it. If the unifications succeeds, then the other daughter
is searched for. Finally, the result is added to the chart. Exploitation of
binary vectors denoting the span of the current edge in the chart provides
correctness and limits the search space.

The Babel project shows that it is possible to parse directly discontinu-
ities in HPSG, but it is far less e�cient than for instance the PET parser,
which assumes continuity. It is a state of art parser for HPSG grammars,
which uses the same grammar formalism implementation as the LKB sys-
tem. But unforturately, only continuous constituents are permited.

Discontinuous consituent potentially can span over every subset of words
in a sentence, which amounts to an exponentioal number of possibilities rel-
ative to the length of the sentence. And indeed if parsing discontinuities
without restriction on where they can arise makes the chart explode. In [44]
a few restriction were given of the phrasal elements which may allow discon-
tinuities in terms of their subcategorization lists. It was shown that, in the
Babel system, the chart size can be reduced at least by half and the pars-
ing time decreases by factor of three. The principle used roughly prohibits
non-extraposed saturated phrasal signs to be discontinuous and otherwise
allows no more gaps than the length of the subcat list plus one. Usage of
this principe has a very strong impact on the performance, because there
are no other essential control over gaps in HPSG.

15

As every grammatical theory which is able to apply deep linguistic knowl-
edge, in practice HPSG is much slower than for instance simple context-
free formalisms. To provide a trade-o↵ between practicality and richness
it may be important to establish connections between languages generated
by HPSG and those of context-free grammars. An attempt to approximate
HPSG with CFG was done, for example, in [33], where the authors do an
approximation of HPSG for Japanese by looking at what HPSG rule-types
take as input and what their output is.

Another successful PCFG approximatiom of HPSG, this time for En-
glish, was done in [65]. The authors extact the grammar from an atomat-
ically parsed corpus. There are several corpora automatically parsed with
the English Resource Grammar (ERG), from whose derivation trees the tar-
get PSCFG grammar is extracted. The F-score of up to 84,13% is achived,
which ever exceeds the ERG parsing quality.

2.3.2 CFG

Context-free grammar is one of the most well-studied that is suitable for
parsing natural language sentences. Thus, it is not surprising that many
attempts were made to approximate di↵erent formalisms by context-free
grammars, with or without additional pre- and post-processing.

Several papers have reported on their parsing results on the NEGRA
Corpus. [38] achieves PARSEVAL F-measure of 68.94% whith raised to
76.18% after modification with topological fields information. They also
discussed how various annotation schemes influence results. In general their
left-corner parser performed significantly better on TüBa-D/Z with the F-
score over 80%. The comparison suggests that more structured phrases are
helpful, and at the clause level the usage of flat structures incorpotating
topological fields is advantgeous.

A hierarchically split PCFG with Berkley parser [48] achieved the F-
score of 80.7 on the sentences of length 40. They use a coarse-to-fine
technique, when the categories are approximated by more rough ones and
a ‘filter’ of rougher context-free grammar applies to get n�best parses to
be then re-parsed by finer grammars. This method significantly improves
performance without any loss in quality.

Ra↵erty and Manning [53] reported 79.67% F-score with the Stanford
parser (On the first 20k sentences of the TIGER corpus). They reported the
influence of markovization, i.e. adding of vertical and horizontal context to
nodes of a tree. Adding up to two levels of vertical context positively in-
fluences the performance, adding extra 2% both for the TIGER corpus and

16

TüBa-D/Z. Horizontal context does not yield any gain of accuracy, and has
a degrading tendency because of the sparseness of the data. Using gold part
of speech tags has positive e↵ect of approximately 3%. Another measure
useful for English, state split, does not cause any significant improvement.
The authors also investigated a possibility to add information about gram-
matical functions. Though, due to sparsity, neither e�ciency nor accuracy
improvement was gained. In the experiments only sentences of length less
than 40 words were processed.

In [18], a PCFG parser with sister-head dependencies showed 75% F-
score and they also report decrease of coverage with the introduction of
grammatical functions. The learning curve suggests that the training set is
su�cient to gain better results with PCFG and that the flatness of the corpus
may be the reason that many found constituents have wrong boundaries. It
is also the reason why the sister-head dependencies performs better in their
experiments

Lexicalization of grammars shows a controversial e↵ect for German. It
turns out to be very helpful for English [6], but its e↵ect on PCFG for
german is not that significant [53] or even negative [18].

In general, we can see that the German PCFG results are considerably
worse than English (around 90% F-score on Penn treebank). Some inconsis-
tencies may appear when we convert non-local trees to local. If we conduct
propabilistic context-free parsing, then the learning material, which may
contain crossing branches, must me transformed into continuous trees as we
discuss in Section 3.2.6. All used methods are solely superficial approxima-
tions. They try to interfere with the analisys as little as possible, to obtain
a CFG analysis of the same string.

2.3.3 LCFRS

To extract a LCFRS grammar from a corpus with crossing branches a simple
algorithm was proposed in [41]. The algorithm is based on the idea to inter-
pret the trees in the treebank as derivation trees of a LCFRS. Every node of
a tree represents a non-terminal whose variables are continuous substrings
of the sentence. It allows to explicitly extract large-scale grammars from
corpora allowing crossing branches.

The first actual implementation was done by Kallmeier [29]. The authors
read their grammar from the NEGRA corpus. The parser is basicly CYK
parser where at each point in time the best item from the agenda is chosen
and combined with all possible items in the chart. The production results
are then again added to the agenda. They use di↵erent estimates to chose

17

the best item from the agenda. Those estimates speed up parsing up to
four times. The paper shows that data-drived LCFRS parsing is feasible
and the results (F-score of approximately 70 percent) are competitive with
PCFG parsers. The sentence length is limited to 25 words, due to memory
overload.

Maier [39] extends the training set to the TIGER corpus and also the
sentence length to 30 words. He reports 71.5% and 73.5% labeled F-score
for the two corpora. The total recall of parsed sentences di↵ers only in-
significantly from that of CFG. In comparison to their plain model CFG the
accuracy of LCFRS is slightly higher. The unlabeled attachment score of the
dependency evaluation is rather low, 77-78%, probably because of a naive
dependency extraction algorithm. Accuracy on a few phonomena, such as
forward conjunction reduction or PP attachment, was manually analysed.
In general words, the phenomena are harder for LCFRS, than for instance
for dependency parsing or PCFG.

Parsing sentences with a simple LCFRS longer than 30 words is still dif-
ficult because of computational complexity. Therefore usage of an approxi-
mating CFG was proposed with parsing in two rounds [60]. It is an instance
of coarse-to-fine approach to parsing. It allowed to parse NEGRA-40 with
speed on average one sentence per second, the parsing time curve suggesting
that with a CFG approximation systems are much better scalable.

2.3.4 LFG

German was subject of LFG parsing experiments. It is worth mentioning
that in the first place the treebank annotation was assisted by an LFG
parser [17]. That grammar could achieve 50% of coverage. Later, a more
impressive F-score of 84.2% was achieved in [57] with the coverage of over
86%. Their grammar is hand-written, and they resort to stochastic parse
disambiguation. A grammar automatically extracted from corpus was pre-
sented in [55]. They achieve 73% F-score on the f -structure and 79% on the
c�structure evaluating against a hand-written gold standard.

2.3.5 CCG

Combinatory categorial grammars (CCG) is a formalism based on logical
deduction. The analysis of a sentence is a deduction tree. Several operators
are used to combine phrases, e.g. composition, type-raising, or application,
which substitute ��abstraction. CCG is mildly context sensitive and is
weakly equivalent to TAG. Hockenmaier in [25] constructed a TIGER-based

18

CCG grammar for German. They modify the trees, so that they become
CCG derivation trees. They manage to translate 92% of the treebank to a
CCGbank. The average lexical coverage on 10-fold cross-validation is 86%.
In comparison the English CCGbank has a the coverage of 94% and the
grammar is two times smaller.

2.3.6 Dependency parsing

The absence of hirarchical structure, or grouping of words, allows depen-
dency parsing to obtain better results on long-distance dependencies. In-
deed, a detailed comparative analysis of the two was given in [36] for the
cases of coordination and extraposed relative clauses, and dependency pars-
ing copes with the task considerably better.

Using MaltParser the TIGER corpus and TüBa-D/Z were parsed in [24].
Dependencies were extracted from the corpora and used to train the parser.
The non-projectivity, or discontinuity was encoded into the arc labels. The
label attachment scores are 91% for TIGER and 88.6% for TüBa-D/Z. They
retained the possibility to return back to constituents and, hence, allowing
for a close comparison with constituency parsing. It resulted in 65% and
75% respectively (taking into account grammatical functions).

2.4 Theoretical investigation

Head-driven phrase structure grammars (HPSG), introduced in [51] is constraint-
based linguistic framework. It is capable of modeling a large variety of
linguistic phenomena and has a very sophisticated formalism based on the
typed feature structures. But at the same time in its original form the
phrase structure backbone is restricted to local trees. HPSG can benefit
in this respect from other simpler formalisms with, however more flexible
phrase structure component.

Recent works on linearization of HPSG attempt to loosen the linear
precidence constraint in HPSG. Works of Reape starting with [54] introduce
domains of signs, which are basicly sequences of signs one can manipulate on.
Kathol [31] resorts to German topological fields to account for the clausal
structure. The dissertation of Michael Daniels [11] provides an platform for
processing linear precedence and dominance constraints for HPSG.

In [32] it is shown that head-driven phrase structure grammar theory,
considered as a theory of the monadic second-order logic (MS2) is in general
undecidable. This result suggests that there should not be a faithful and
e↵ective encoding of HPSG into another formalism with computable mem-

19

bership problem, such as, in particular, linear context-free rewriting systems
and abstract categorial grammars. At the same time the authors also show
that an HPSG theory becomes decidable if the language generated by this
grammar (feature structures encoded as formulas of MS2) is also generated
by a hyperedge replacement grammar.

2.4.1 Hyperedge Replacement Grammars

Hyperedge replacement grammars of [1], HRG, are grammars which gen-
erate languages of graphs. They appeared as counterparts of context-free
grammars over the domain of graphs. Languages generated by hyperedge
replacement grammars constitute so called equational sets of graphs, which
are values of a regular set of graph expressions.

HRGs are capable of generating string languages as well, which do not
have to be context-free, and at the same time they have context-free deriva-
tions. Roughly, it means that the derivations of every pair of nonterminals
in a graph do not depend on one another (the property LCFRS’s also have).

An important result that [30] establishes is that the trees generated by
second-order abstract categorial grammars are those generated by HRGs.
Then, we only need to give a mapping from HPSG to HRG, which will be
transited to ACG automatically. However even in this case the complexity
results suggest that it may not be possible in the general settings.

2.4.2 Abstract Categorial Grammars

Categorial grammars in general can better cope with word order phenomena,
than for instance HPSG (Lambda grammars [46], Logical Grammar [50]).
The ability of categorial grammars to separate superficial string operation
from abstract syntax which guides the derivation allows to handle word order
somewhat separately.

ACG is a grammatical framework dedicated to syntax and semantics of
natural languages. It generates �-terms which can be used to describe strings
as well as trees. The appealing aspects of ACG (as other combinatorial
grammars) are that ACG separates syntactic component from semantics and
surface strings, adding to modularity of language processing, and that the
abstract syntax is performed in the implicative fragment of linear logic [21],
which is rather easy to understand and work with. Linear logic is prominent
for its resource-sensitivity, meaning that once a formula is used, it can no
longer be used, a property similar to linearity on rules of LCFRS’s.

The two essential components of an ACG are its abstract language and

20

object language. The abstract language can be perceived as a set of ab-
stract grammatical structures from which concrete structures of the object
language are generated. A lexicon is a morphism from the abstract language
to the object language which accounts for this generation.

The ACG framework is rather flexible and was originally designed to be
the platform in which other grammatical formalisms can be encoded. And
indeed it turned out that a number of formalisms can be represented as
ACGs, including context-free grammars [16], tree-adjoining grammars [13],
and to certain extent hyperedge replacement grammars [30].

As for the complexity results, string generative power of second-order ab-
stract categorial grammars is equivalent to that of the context-free rewrit-
ing systems [15, 62, 58]. Then, it is no wonder that they have polyno-
mial time recognition complexity. It means that second-order ACGs may
generate some mildly context-sensitive languages. At the same time linear
context-free rewriting systems have context-free derivations, as hyperedge-
replacement grammars do. However, for ACGs of higher orders a clear
picture of what complexity they have and what kind of languages they may
generate has not yet been formed.

Another piece of motivation for the transformation we are about to make
in this paper is that ACGs have been shown capable of representing under-
specified semantic representations (URL semantics for TAG, [49]). Any se-
mantic theory designed specifically for deep linguistic processing with HPSG,
should account for underspecification.

Certain extensions to the base ACG formalism were proposed [14]. These
extensions can represent feature structures with a few extra primitives. How-
ever, we are rather interested in the expressive power of the unextended
formalism. Possibly, by making clear to which extent ACG may already
imitate HPSG we can help better motivate possible extensions.

21

3 Approach

3.1 Conversion of HPSG into ACG

In the first part of the work we plan to concentrate on the theoretical pos-
sibility of embedding HPSG into ACG. However, we think that as the first
step one should try to do it via the chain HPSG ! HRG ! ACG. We
have already mentioned that the second step in the chain has been provided.
Moreover, the complexity results suggest that if we try to build such a con-
version in a more general fashion, then the second-order ACG would not
be su�cient. But higher-order ACGs are not yet well studied. At the same
time [32] also shows that an HPSG theory becomes decidable if the language
generated by this grammar (feature structures encoded as formulas of MS2)
is also generated by a hyperedge replacement grammar.

It seems also clear that there may not in principle exist a fair conver-
sion of HPSG into HRG, basically because head-driven phrase structure
grammars do not have context-free derivations. Thus, in this work, we try
to establish conditions, possibly not too restrictive, under which a grammar
in HPSG formalism may be modeled as an HRG.

As we have seen ACG and LCFRS generate the same string languages,
though their tree-generative power was not yet compared. If we know that on
theoretical level it is possible to transform an HPSG grammar in a restricted
form into an ACG grammar, then we can also do a practical investigation
of whether we can profit from such a transformation.

3.1.1 HPSG grammars and their models

Although HPSG applications have some kind of phrase-structure backbone,
which can in principle be processed by a context-free component, in theoreti-
cal foundations of the formalism there need not be this component. HPSG is
a constraint-based theory. It means that even if its data structures (feature
structures) are constructed, or generated, by certain principles, a grammar
itself only provides restrictions on the generated structures and it does not
matter how this structures were brought to life.

HPSG has strong commitment to strict formalization of linguistic the-
ories. There have been a long discussion about which logic is better for
HPSG. The most influential ones are (Carpenter, [5]) and (King, [34]). We
decided to use King’s speciate reentrant logic as our base to represent head-
driven phrase structure grammars. This logic directly explicates the found-
ing HPSG principles and was appreciated by Pollard. However, it now seems

22

to be the case that this paper would have been shorter and more straight-
forward if we initially used the logic of (Carpenter [5]).

Anyway, no matter which logics one prefers, in practice NLP environ-
ments do not accept all possible functionalities that the formalism o↵ers.
In [23], the authors provide a direct conversion of HPSG type constraints
into definite clause programs, which gives a partial case of closing the gap
between description language theory and practical applications. We, in fact,
do a similar work, although the target framework is di↵erent, HRGs rather
than definitive clause programs.

Definition 3.1. A signature is a triple (S, F,A) where S is a finite set,
those elements are called types (or species), F is a finite set of elements,
called features, and A is total function form F ⇥ S to }(S) called appro-
priateness function.

A feature path (or just path) is a dot-separated sequence of features
f1.f2 . . . fn. There is an empty sequence, denoted by : and of zero length.
Denote all finite feature paths as T⌃. We sometimes use concatenation of
paths, denoted as path1.path2. An atomic description is either path1 ⇡
path2, or path1 ⇠ �, where � 2 S and path1, path2 2 T⌃. Descriptions are
defined as follows:

• atomic descriptions are descriptions,

• if � and are descriptions, then � _ , � ^ , � ! and ¬ are
descriptions,

• nothing else is a description.

A theory ⇥ is a set of descriptions. An HPSG grammar consists of a
signature ⌃ and a theory ⇥.

The signature gives another way to encode usual feature declaration of
the form:

� :

2

64
F1 ⌧1

...
Fn ⌧n

3

75

where � and ⌧i are types and Fj are features. Such a declaration means
that for the type �, the features Fj are appropriate and the values Fi(�))
must have types ⌧j . Types in HPSG form a hierarchy and subtypes inherit
feature declaration. However, nonmaximal types are superfluous and can
be replaced by disjunctions of maximal types, especially if one expects the

23

semantics of a type be a set of tokens. Therefore, the set of types S in the
signature stands for all maximal types. And the appropriateness function
A, given Fi and �, outputs all maximal subtypes of ⌧i.

Definition 3.2. An interpretation of signature ⌃ is a triple (U,S,F) such
that U is a set, called the universe, S : U ! S is a function distributing
elements of U, called tokens, into types from S, and F is a function from
F to partial functions form U to U. Moreover, for every f 2 F and u 2
U, F(f)(u) is defined i↵ A(f,S(u)) is defined. If both are defined, then
S(F(f)(u)) 2 A(f,S(u)).

An interpretation is the semantics of HPSG. The set U is a set of linguistic
tokens, e.g. there may be instances of words, like ‘donkey’ of type word 2 S
with the case ‘nominative’ of type nominative 2 S, or instances of sentences
like ‘Fido is a donkey’ of type sentence 2 S with many possible appropriate
features, such as subject 2 F .

Given an interpretation I, function TI is defined as a total function from
T⌃ to partial functions from U to U. It is recursively defined as follows:

• for every u 2 U TI(:)(u) equals u

• for u 2 U and f = g.fk 2 T⌃, g 2 T⌃, TI(f)(u) is defined i↵
both TI(g)(u) and F(fk)(TI(g)(u)) are defined, and then TI(f)(u) =
F(fk)(TI(g)(u)).

In order to talk about models of a theory we need the notion of truth.

• Description p1 ⇡ p2 is true of token u 2 U i↵ TI(p1)(u) and TI(p2)(u)
are defined and TI(p1)(u) = TI(p2)(u).

• Description p1 ⇠ s is true of token u 2 U i↵ TI(p1)(u) is defined and
S(TI(p1)(u)) = s.

• ¬� is true of u i↵ it is not the case that � if true of u;

• � _ is true of u i↵ � and are true of u;

• � ^ is true of u i↵ � or are true of u;

• �! is true of u i↵ is true of u or it is not the case that � is true
of u;

Definition 3.3. An interpretation I models ⇥ if every description d 2 ⇥
is true of every token u 2 U. In this case we call I a model of ⇥.

24

Only models of a grammar are relevant for it. It is imperative that
the language being described is a model of the grammar. However, for a
grammar, it is desirable that its models should be part of the language.

Definition 3.4. A type definition for s 2 S is a set of descriptions which
are either of the kind

:⇠ s ! path1 ⇡ path2

or disjunctions of descriptions of the kind

:⇠ s ! ((path1 ⇠ �1) _ (path1 ⇠ �2) _ · · · _ (path1 ⇠ �k)),

for one and the same path1 in every disjunct, and �i 2 S.

In simple words, the descriptions in⇥ define each type in terms of sharing
(path1 ⇡ path2) and subtyping (path1 ⇠ one of �1 . . .�k).

We consider HPSG theories ⇥ of a certain class. Namely, we demand
that ⇥ must be a union of type definitions and none of the types has more
than one definition. Denote by ⇥s all descriptions on the right-hand side of
implications in the type definition of s. For our purposes it is also possible
to accept a more general form of type definitions, which however may only
operate within one type (:⇠ s ! X, where X can have more elaborated
structure with conjunctions, disjunctions or negation of descriptions).

This definition already underlines two important notions of HPSG: shar-
ing and subtyping. Thus, for simplicity we decide to adhere to it. Type
definitions of this or similar form are widely used in practice, for instance in
such systems as LKB (developed in Stanford) or PET (Saarbrucken). It is
also critical that the basic principles of HPSG of [51] may be encoded within
a type, e.g. the head-feature principle of HPSG, saying that the head feature
of a headed phrase must be token-identical to the head feature of the head
daughter, can easily be written as

:⇠headed-phrase !
synsem.local.category.head ⇡daughters.head-dtr .synsem.local.category.head.

Fact. In this setting an interpretation is a model of ⇥ i↵ every description
in ⇥s is true for every token u 2 U such that S(u) = s.

If P (s) stands for all feature paths which occur in ⇥s, then Pref(s) =
{f1.f2 . . . fk | 9f1.f2 . . . fk.fk+1 . . . fn 2 P (s)} is a set of all prefixes of P (s)
including the empty path. The set of feature paths that we mainly need is
Path(s) = Pref(s) [{p.f | p 2 Pref(s)\ :, f 2 F}.

25

Example. We illustrate some of ideas of the paper in a toy grammar, actually
even a fragment of a grammar. The grammar does not make much sense
linguistically, but should demonstrate some basic principles oh how things
work. It has a number of primitive types and the following type definitions:

sg-noun2

664

cat : noun
number : sg
head : n-head
subcat : ;

3

775

intr-verb2

66664

cat : verb
number : [1] = num
head : v-head

subcat :

cat : noun
number : [1]

�

3

77775

subj-rule2

66664

cat : sent
head : [1]

dtr-1 :

head : [1]
subcat : [2]

�

dtr-2 : [2] = sign

3

77775

We assume that types noun, verb, sent, sg, pl, n-head, v-head, ; are maximal
and have no appropriate features. Let also sign be the supertype of sg-noun,
intr-verb and subj-rule, the type num be the supertype of sg and pl, and head
— the supertype of n-head and v-head. Then, the values of subcat in intr-
verb, and dtr-1 in subj-rule are of type sign. This grammar is supposed to
parse one sentence, ‘John sleeps’, though for conciseness we did not add
features for string values into the types.

From this data one can construct a signature ⌃ = (S, F,A), where S
consist of the maximal types we already mentioned. The set of features is all
left-hand sides of the feature structures. Although we did not present type
declarations, we may, for instance, assume that A is given by the following
table

types features result
intr-verb, sg-noun, subj-rule cat {noun, verb, sent}

intr-verb, sg-noun number {sg, pl}
intr-verb, sg-noun, subj-rule head {n� head, v � head}

sg-noun subcat {;}
intr-verb subcat {sg � noun, intr � verb, subj � rule}
subj-rule dtr-1 , dtr-2 {sg � noun, intr � verb, subj � rule}

and the rest results in ;.
The theory ⇥ has then three type definitions. For example, the type

definition for intr-verb contains

:⇠ intr-verb ! cat ⇠ verb
:⇠ intr-verb ! (number ⇠ sg) _ (number ⇠ pl)

:⇠ intr-verb ! head ⇠ v-head
:⇠ intr-verb ! subcat.cat ⇠ noun

:⇠ intr-verb ! number ⇡ subcat.number

26

3.1.2 Graphs as descriptions of tokens

Let us define graphs. In our definition of a graph, labels are essential and
inseparable components of edges.

Definition 3.5. A directed labeled rooted graph G, in the text just graph,
over signature (S, F,A) is a triple (V,E, r), where V = V (G) is a set of
vertices, r = r(G) 2 V and E = E(G) ⇢ V ⇥ V ⇥ F is a set of edges.

Everywhere in the text graphs are considered up to isomorphism. The
set of all graphs is Gr. For an edge e = (v1, v2, f) we use component-wise
notation as in e(1) = v1, e(2) = v2, e(3) = f . Note also, that an edge e is
uniquely defined by e(1), e(2), e(3).

Definition 3.6. A graph G 2 Gr is root-connected if for every vertex
v there is a sequence of edges e1, e2, . . . ek such that en+1(1) = en(2) for
0 n < k, e0(1) = r and ek(2) = v.

We say that a graph has functional features if there are no two edges
e1 and e2, such that e1 = (v1, v2, f) and e2 = (v1, v3, f) with common v1
and f .

Definition 3.7. A graph G becomes completely labeled if one provides
a vertex labeling function l : V (G) ! F .

Completely labeled root-connected graphs with functional features may
be a possible candidate to represent feature structures. They must be
rooted, because one graph describes exactly one linguistic entity. Root-
connectedness provides that nothing unrelated can also be in the description.
Edges correspond to features, and those in turn are functional.

Definition 3.8. A right congruence ⇠ defined on T⌃ is an equivalence
relation, such that 8p1, p2 2 T⌃, f 2 F if p1 ⇠ p2, then p1.f ⇠ p2.f .

Definition 3.9. A graph G = (V,E, r) is a defining graph for s 2 S if it
has the following properties:

• there is a right congruence ⇠ defined on T⌃, which contains path1 ⇠
path2 for every path1 ⇡ path2 in ⇥s and such, that V (G) = {[p] | p 2
Path(s)}, where [p] is an equivalence class of p modulo ⇠;

• the class [:] is the root of G;

• e = (v1, v2, f), v1 2 V (G), v2 2 V (G) is an edge in E(G) if and only
if there are p1 and p2 = p1.f in Path(s), such that v1 = [p1] and
v2 = [p1.f].

27

number
cat

cat

head subcat

number

[:]

[head]

[cat]

[subcat]

[number] =

[subcat.cat]

[subcat.number]

Figure 2: A defining graph generated by minimal congruence

The set of all defining graphs for s is denoted by Defs.

Defining graphs are supposed to reflect all obligatory sharing coming
from the type definition and additionally, since the congruence⇠ is otherwise
arbitrary, they may contain sharing, possibly inferred from some other token
above this one.

Fact. Every defining graph G is root-connected. If v = [f1.f2 . . . fk] 2 V (G)
for some f1.f2 . . . fk 2 Path(s), then the sequence ei, 1 i < k, with ei =
([f1 . . . fi], [f1 . . . fi.fi+1], fi+1), and e0 = ([:], [f1], f1), provides the required
connection of v and the root.

Fact. The graph G is completely defined by ⇠. Moreover, if any two right
congruences ⇠1 and ⇠2 coincide on Path(s)⇥ Path(s), then they yield the
same defining graph. Therefore, we can write G = G(⇠) and ⇠=⇠G.

Example. The set Defs is usually huge and most of the graphs there are
irrelevant for our purposes. For our toy grammar, let us show one graph from
Defheaded-phrase . Among all congruences chose the minimal containing the

pair (number, subcat.number). Then, the corresponding defining graph will
look like in Figure 2. The forks represent edges for all features f 2 F

28

For each s 2 S we want to chose a set of subgraphs of Defs supplied
with labeling functions in accordance with the appropriateness function. In
particular, they will all have functional features. Definine the center of a
defining graph G as C(G) = {w | w = [path], path 2 Pref(s)}.

Definition 3.10. A graph D is an extended defining graph for s 2 S i↵

1. there is G 2 Defs, such that D ✓ G,

2. D is completely labeled by some labeling function l, such that for every
path ⇠ t from ⇥s holds l([path]) = t,

3. all appropriate edges ofG are the edges ofD, i.e. for every v = [path] 2
V (D) where : 6= path 2 Pref(s) and f , such that A(f, l(v)) 6= ;, there
is one edge e = (v, u, f) 2 E(D). Additionally, it is required that
l(u) 2 A(f, l(v)),

4. every edge e = (v, u, f) where v and u are in the center of G belongs
to E(D).

Note, that because of Item 4 of Definition 3.10 we can understand the
center of G as also the center of D.

We write Exts for the set of all extended defining graphs. Every graph
D in Exts additionally to sharing information of Defs has also subtyping
restrictions of the type s. Moreover, ‘central’ vertices have out-edges for
every appropriate feature and their ends have appropriate labels. Thus, Exts
has all minimal graphs complying to the restrictions of the type definition
of s and also to some of those of the appropriateness functions A. They
are maximally specific in the sense that all vertices have labels residing in
S, the set of (maximal) types. All in all, every token u 2 U which is an
instantiation of S(u) = s must at least partially ‘look’ like some D 2 Exts.
The root node is not expanded with all appropriate edges because they are
allowed to be introduced by other ‘higher’ type definitions. It will become
more clear when we formulate the condition under which an HPSG may be
imitated by an HRG (Definition 3.20).

Example. Considering our running example, Figure 3 displays what an ex-
tended defining graph for the type intr-verb can be (the vertices’ names are
changed to labels). Note, that this graph (without labels) is the only pos-
sible extended graph one can obtain from the defining graph in Figure 2.
However, the labels of the vertices, may be di↵erent, e.g. in the place of
sg-noun could stay intr-verb, changing ; into something else, or instead of
sg there could be pl.

29

number
cat

cat

head subcat

number

v-head

verb

sg

noun

intr-verb

sg-noun

subcat
head

; n-head

Figure 3: An extended defining graph

As we will use Deff as building bricks of the hyperedge replacement
grammar constructed from this HPSG, these sets better be finite.

Lemma 3.11. Exts has only a finite number of graphs.

Proof. Every graph D in Exts has no more vertices than #(Path(s)). Since
graphs are considered up to isomorphism, every edge is defined by a pair of
vertices and a feature f taken from a finite set F , there may only be a finite
number of possible graphs with a limited number of vertices.

The final result of the conversion we are working on is a graph grammar,
but in the logic used an HPSG generates no graphs, rather it limits the
variety of possible interpretations. Then, one should be able to formally
say, what it means that a graph corresponds to a token.

Definition 3.12. Let D be a graph, completely labeled by l, and u 2 U a
token of some interpretation I = (U,S,F). We say that D describes u, i↵
there is a map � : V (D) ! U such that:

• �(r(D)) = u

• S(�(v)) = l(v),

30

• for every edge e = (v1, v2, f) 2 E(D) holds F(f)(�(v1)) = �(v2)

A map � satisfying these three properties is called a morphism of D
into U. In other words, D describes u if there is a morphism from D into
U which sends r(D) to u. We say that D completely describes u if D
describes u with such a morphism � that for every w 2 U, if w = �(v1) and
for some f 2 F the value of F(f)(w) is defined and equals q, then there is
e = (v1, v2, f) 2 E(D). Then, of course holds q = �(v2).

The correspondence between graphs and tokens mentioned before is that
a graph completely describes a token. The class of graphs which completely
describe a token is much narrower than that of graphs just describing this
token. For instance, a graph with one vertex v, such that l(v) = S(u) for
some u 2 U describes u, but it completely describe u only if there are no
features F(f) applicable to u.

A peculiar aspect here is that this morphism does not have to be injec-
tive. It would of course be very appealing to have full-blow isomorphisms.
But in that case we would have to be able to reconstruct tokens with unpre-
dictable sharing, i.e. whose with sharing which is not declared by any type
definition. Such tokens are possible, as they do not contradict any descrip-
tion in ⇥. We admit that we cannot model them, though, their existence
is actually one of the things in King’s theory of token which is subject to
critics, for instance in [56].

Every isomorphism must preserve sequences of consequent edges as it is
first established in Lemma 3.13 and later in Lemma 3.17.

Lemma 3.13. Assume D 2 Exts describes some u with the morphism �
and v is in the center of D. Then, �(v) = TI(path)(u).

Proof. We give an inductive proof by the length of path. If path =: has
length zero, then [path] = r(D) = r and �(v) = �([:]) = �(r) = u = TI(:)(u)

Assume now that path = path0.f . Then, path0 is also in Pref(s). In
this case, exploiting the inductive supposition we conclude, that �(v0) =
TI(path0)(u) for v0 = [path0]. The graph D is an extended defining graph
for s, hence by Definition 3.10, Item 4, there is an edge e = (v0, v, f) in E(D),
v 2 V (D). As a morphism, � complies to F(f)(�(v0)) = �(v). Finally, we
obtain

�(v) = F(f)(�(v0)) = F(f)(TI(path0)(u)) = TI(path)(u).

31

Having in mind an interpretation I = (U,S,F) and a token u 2 U,
satisfying all descriptions of ⇥s, we can construct Gu — a defining graph
initiated by token u. It is defined by a congruence ⇠u. For every p1, p2 2
T⌃, p1 ⇠u p2 i↵ either

• TI(p1)(u) and TI(p2)(u) are defined and TI(p1)(u) = TI(p2)(u),

• or both are undefined.

It is obvious, that ⇠u contains (path1, path2) for path1 ⇡ path2 in ⇥S(u).

Lemma 3.14. ⇠u is a right congruence.

Proof. As ⇠u is defined with help of some other equality relation, the proof
that it is an equality relation is obvious. Not that obvious is to see why it
is a congruence. Consider an f 2 F and p1, p2 2 T⌃ such that p1 ⇠u p2. If
though TI(p1)(u) is undefined, then such is TI(p1.f)(u) and the same holds
for p2. If TI(p1)(u) and TI(p2)(u) are defined and TI(p1)(u) = TI(p2)(u) =
T , then there are again two cases: F(f)(T) may exist or not. The former
allows us to induce TI(p1.f)(u) = F(f)(T) = TI(p1.f)(u) and the latter
means that both TI(p1.f)(u) and TI(p2.f)(u) do not exist.

The congruence ⇠u, as one can see, consist of all equations which are
true in the interpretation where u is located. Then, Gu 2 Defs is a natural
choice of a defining graph to be extended to Du 2 Exts which describes u (in
fact, it is not extended, rather shrinked, though a vertex labeling function
is added).

The following theorem basically confirms the intuitions we put into Exts.

Theorem 3.15. Let I = (U,S,F) be an interpretation of signature ⌃ and
u 2 U, S(u) = s. Then, every description of ⇥s is true of u if and only if
there is a D 2 Exts which injectively (with an injective morphism) describes
u.

Proof. First, let us assume D describes u. Consider a description d 2 ⇥s.
The description d can be either path1 ⇡ path2 or path1 ⇠ t for some t 2 S.

If the former if true, then path1, path2 2 Pref(s) and path1 ⇠G path2
for the defining graph G ◆ D. Since D describes u, there is a mor-
phism � : V (D) ! U . Define a token v = �([path1]) = �([path2]). By
Lemma 3.13, v 2 V (D), �(v) = TI(path1)(u) and �(v) = TI(path2)(u),
implying TI(path1)(u) = TI(path2)(u), which means that d is true of u.

If d is of the kind path1 ⇠ t, then we may again consider the vertex
v = [path1] in V (D). The fact that D 2 Exts and Definition 3.10, Item 2,

32

imply that D is completely labeled with some l, in such a way that for every
path0 ⇠ t0 in ⇥s holds l([path0]) = t0. In particular, l([path1]) = t. While �
is a morphism, S(�(v)) = l(v) for all v 2 V (D), leading to S(�([path1])) =
t. Using Lemma 3.13 we observe that, �([path1]) = TI(path1)(u). Therefore,
holds S(TI(path1)(u)) = t and it in turn means that path1 ⇠ t is true of u.

Now, we shall prove the backward implication. Assume that every de-
scription in ⇥s is true of some token u 2 U, S(u) = s. Let us define D as
a subgraph of Gu with the labels given by l([path]) = S(TI(path)(u)) and
only those vertices of Gu are left in D for which TI(path)(u) is defined. The
edges of D are those of Gu whose nodes are in V (D).

In order l to be uniquely defined, it is required that l([path1]) = l([path2])
if [path1] = [path2] for some path1, path2 in Path(s). Thus, we need to
establish that S(TI(path1)(u)) = S(TI(path2)(u)) holds if path1 ⇠u path2.
From definition of ⇠u we conclude, that TI(path1)(u)) = TI(path2)(u)) and
it is even more than required.

Now, we observe that D 2 Ds. Indeed,

1. D ✓ Gu by construction;

2. for the labeling function l that we defined and every description path ⇠
t in ⇥s, as I is a model, follows l([path]) = S(TI(path)(u)) = t;

3. Take any v 2 V (D), v = [path], path 2 Pref(s) and an f 2 F with
A(f, l(v)) 6= ;. There is an edge e = (v, v2, f) 2 E(G) ◆ E(D), then
path = f1.f2 . . . fk, v2 = [f1.f2 . . . fk.f] and

l(v2) = S(TI(f1.f2 . . . fk.f)(u)) = S(F(f)(TI(f1.f2 . . . fk))(u)).

Moreover,

l(v) = l([f1.f2 . . . fk]) = S(TI(f1.f2 . . . fk)(u)).

By Definition 3.2,S(F(f)(TI(f1.f2 . . . fk))(u)) 2 A(f,S(TI(f1.f2 . . . fk)(u))),
and thus l(v2) is defined, e 2 E(D), and after rewriting we get the de-
sired equality l(v2) 2 A(f, l(v)).

4. If u = [path1] and v = [path2], then while pathi are in Pref(s) and u
satisfies all desriptions both l(u) and l(v) are defined.

Further, we need to establish that D describes u. For v 2 V (G), v =
[path], put �(v) = TI(path)(u). If v = [path1] = [path2], then path1 ⇠u

path2, TI(path1)(u) = TI(path1)(u) and � is correctly defined. Let us deal
with the required properties for � to be a morphism one by one.

33

• �(r) = TI(:)(u) = u.

• If v = [path] 2 V (D), S(�(v)) = S(TI(path)(u)) = l(v).

• For each edge e = (v1, v2, f) 2 E(G) holds F(f)(�(v1)) = F(f)(TI(path)(u)),
where v1 = [path]. Further, F(f)(TI(path)(u)) = TI(path.f)(u) =
�(v2), because v2 = [path.f].

The injectivity follows immediately from the definition of Gu

3.1.3 Routes in graphs and joint union

Definition 3.16. A route in a graph D 2 Gr starting at v 2 V (D) is a
feature path p = f1.f2 . . . fk 2 T⌃ such that there exist a sequence of edges
e1, e2, . . . , ek, ei 2 E(D), such that the labels ei(3) = fi, e1(1) = v and
ei+1(1) = ei(2). Moreover the empty feature path : is also a route.

Denote all routes of a graph starting at v by Routev(D). Then, Route(D)
is a shortening for Router(D)(D). We also denote the end point of a route
p 2 Routev(D) of length k by Endv(p) = ek(2) if k � 1, and Endv(:) = v. By
analogy, End(p) = Endr(D)(p). The value Endv(p) is not always uniquely
determined, because there may be various sequences of edges with given
properties. If, however D has functional features, then ends are unique.
Otherwise we still use this notation and by Endv(p) mean any end or a
particular one.

The following lemma is a counterpart of Lemma 3.13.

Lemma 3.17. If D describes u via �, v 2 V (D), and �(v) = w, then
�(Endv(route)) = TI(route)(w) for route 2 Routev(D).

Proof. We give a proof by induction by the length of route. If route =:,
then �(Endv(:)) = �(v) = w = TI(:)(w). Now assume route = route0.f
is licenses by the sequence (e1, e2, . . . , ek, ek+1), where (e1, e2, . . . , ek) is the
sequence for route0, ek+1(3) = f , ek+1(1) = Endv(route0) and ek+1(2) =
Endv(route). Then, by inductive assumption

�(ek+1(1)) = �(Endv(route0)) = TI(route0)(w).

Finally, due to existence of the edge ek+1 and the fact that D describes u,

�(Endv(route)) = F(f)(�(ek+1(1))) = F(f)(TI(route0)(w)) = TI(route)(w).

34

Definition 3.18. Completely labeled graphs D1 with v 2 V (D1) and D2

are compatible in v if for every route1, route2 2 Routev(D1)\Route(D2),
the following applies:

Endv(route1) = Endv(route2) () End(route1) = End(route2),

l(Endv(route1)) = l(End(route1)),

Compatibility of two graphs in v means that we can align them in such
a way that v is aligned with the root of the second graph and edges go to
edges with identical labels. Moreover, by doing so we do not have to change
the graphs, or in other words, the intersecting parts are identical in both
graphs. In the construction of the final HRG we will only try to combine
compatible extended defining graphs. Additionally, it is intuitively clear
that even if D1 2 Exts1 is not compatible with D2 2 Exts2 , then it may
be possible to find another graph D3 2 Exts2 , which can be more (or less)
restrictive than D2, and compatible with D1. Otherwise, it should be the
case that the type definition of s2 prohibits D1 to describe any token.

Lemma 3.19. If D injectively describes u with �, v 2 V (D), �(v) = w,
and D2 injectively describes w, then D and D2 are compatible in v.

Proof. By Lemma 3.17, Endv(route1) = Endv(route2) i↵ TI(route1)(w) =
TI(route2)(w). At the same time End(route1) = End(route2) in D2 i↵
TI(route1)(w) = TI(route2)(w). Similarly,

l(Endv(route1)) = S(TI(route1)(w)) = l(End(route1)).

As a consequence of Lemma 3.19 we see that under certain conditions
two graphs describing one token (a token and another one under it) may be
combined.

We need to identify how one type definition interleaves with another.
To this end we introduce influence of vertex v 2 V (D)\r(D) on a graph
D 2 Exts1 as D\v = Routev(D) \ Route(D2), where D2 2 Extl(v) is any
compatible with D in v graph. The definition depends on the choice of D2,
but it will be fixed in the next definition. The influence set under vertex v
is V (D\v) = {w|w = Endv(r) 2 V (D), r 2 D\v}.

Definition 3.20. We say that an HPSG grammar has non-interactive
derivations if for every s 2 S, D 2 Exts there is a set of vertices P (D) ✓
C(D), such that

35

• if D2 and D3 are graphs in Extl(v) both compatible with D in v 2
P (D), thenRoutev(D)\Route(D2) = Routev(D)\Route(D3) (unique-
ness of intersection),

• V (D\v) does not intersect with V (D\u) for any two di↵erent v, u 2
P (D),

• holds [v2P (D)V (D\v) = V (D)\{r},

• and for every route r = f1.f2 . . . fk 2 Routev(D), v 2 P (D), either
r 2 D\v or Endv(f1) = u 2 P (D), u 6= v.

Every restriction has its own motivation which comes from general ob-
servations, rather than technicalities.

The first restriction actually says that if a type definition allows a certain
configuration under a token of this type, then another such configuration
should be similar to it. In HPSG this is what is achieved by having a
type hierarchy. Then, all type definitions should be consistent with the
hierarchy. Even though, there are only maximal types in S, we still have
subtyping restrictions in ⇥ as well as unspecified types of other implicitly
participating tokens corresponding to prefixes of P (s), or vertices of C(D).

Clause two does most of the job. In its essence the restriction is that
we can find a set of ‘nonterminals’ which do not interact. Any context-free
grammar has the property, that for any rule, say, S ! NP V P neither
before these NP and V P appeared in the derivation, nor after they merged
in S, there was no interaction between them. This also means that S does
not depend on how its daughters were generated. In HPSG every sharing
is a token-sharing. In particular this implies that the shared part may be
arbitrary big, and at the same time it might be crucial for further derivation.
It seems impossible to encode this kind of interactions between either NP
and V P , or S and NP in the abstract language of a second-order ACG. The
last but not least restriction is also about interactions. Namely, if there is
a sharing relation between ‘nonterminals’, then it may only exist for their
‘roots’. Otherwise, it would be just impossible to track down the relation
between them. We admit that the argument is not exhaustive, though.

Definition 3.21. Joint union S1 [R S2 of two disjoint (S1 \ S2 = ;) sets
S1 and S2 modulo a bijection R : A1 ! A2 of two subsets A1 ✓ S1, A2 ✓ S2

is a set Z and two injective maps �1Z : S1 ! Z, �2Z : S2 ! Z such that
�1Z(S1) [�2Z(S2) = Z, and �1Z(s1) = �2Z(s2) i↵ s2 = R(s1).

36

Fact. Joint union always exists. Moreover, let Z1 and Z2 both be the joint
union of S1 and S2 modulo R. Then, there is a bijection B : Z1 ! Z2 such
that B(�1Z1

(s1)) = �1Z2
(s1), B(�2Z1

(s2)) = �2Z2
(s2).

Lemma 3.22. Suppose there are functions f1 : S1 ! S and f2 : S2 ! S,
such that if s2 = R(s1) then f1(s1) = f2(s2). Then, there is f : S1[RS2 ! S
with f(↵i(si)) = fi(si) for i 2 {1, 2}.

Proof. As ↵1(S1)[↵2(S2) = S1[RS2, then we can simply define f(↵i(si)) =
fi(si) and assure its correctness. From ↵i(si) = ↵i(s0i) follows si = s0i, and
↵1(s1) = ↵2(s2) implies s2 = R(s1), but then our assumption leads to
f1(s1) = f2(s2).

Definition 3.23. If two graphs D1 2 Gr and D2 2 Gr are compatible in
v 2 V (D1), then the joint union of graphs D = D1 [v D2 consist of:

• V (D) = V (D1)[R V (D2), where R(v1) = v2 i↵ Endv(route) = v1 and
End(route) = v2 for some route 2 Routev(D1) [Route(D2),

• set of vertices E(D), such that e 2 E(D) i↵ there is e0 2 V (Di)
for some i 2 {1, 2}, such that e(1) = �i(e0(1)), e(2) = �i(e0(2)) and
e(3) = e0(3),

• r(D) = �1(r(D1)).

Lemma 3.24. Definition 3.23 is correct.

Proof. Initially, we need to establish that R is correctly defined and a bijec-
tion. First, the relationR is functional. Indeed, ifR(v1) = v2, Endv(route1) =
v1, End(route1) = v2 andR(v1) = v3, Endv(route2) = v1 and End(route2) =
v3, then from compatibility of D1 and D2 follows that v2 = v3. The same
arguments provide injectivity of R and this means, that it is a bijection of
two subsets of V (D1) and V (D2).

Labeling of vertices is external to the definition of graphs, therefore the
joint union should also be supplied with a labeling function. It would be
natural to inherit it from those of the two components.

Lemma 3.25. Assume D1 and D2 are compatible in v. Let l1 and l2 be
vertex labeling functions of D1 and D2 respectively, then D = D1 [R D2

is defined and there is l : V (D) ! S, such that l(↵i(vi)) = li(vi) for any
i 2 {1, 2}.

37

Proof. By Lemma 3.24 the D = D1 [R D2 is defined, and Lemma 3.22
provides such an l.

Now, we have the notion of joint union of compatible graphs. At the
same time Lemma 3.19 gives the necessary compatibility under the condition
that the two graphs describe parts of one and the same token. So, we may
combine extended defining graphs by means of joint union in order to gain
more enhanced descriptions of the current token. In the end, the process
should stop, yielding a graph which is a complete description.

3.1.4 Hyperedge replacement grammars

Hyperedge replacement grammars were first introduced in [1]. A hypergraph
is a generalization of a graph which allows edges to be incident to multiple
nodes. A hyperedge replacement consist in substituting a hyperedge in a
graph by another hypergraph and a hyperedge replacement grammar is in
simple words a set of pairs (hyperedge label, hypergraph) which are used
to build a graph language from the initial edge. Hyperedge replacement
grammars have a number of nice properties. First, substitution is not de-
pendent on the context in which the edge is found. Further, substitution is
sequentializable and parallelizable, meaning that substitution of a bunch of
edges can be performed simultaneously or one after another and the result
will be the same. Finally, the operation can be shown to be associative.

The idea of substitution nicely agrees with resource sensitivity of ACGs,
because a edge is only created once, and in the end it is always possible to
track down where exactly it comes from. Supported with the result of [30]
the trees generative powers of the two formalisms are proven to be equivalent.
ACGs can be imitated by HRGs with a quite straightforward embedding,
where hyperedge replacement corresponds to �-substitution M [x := N],
though, the reverse is a bit more involved.

Definition 3.26. Let � be an alphabet of edge labels, and � be an alphabet
of selectors. A hypergraph H over � and � is a tuple (V,E, lab, nod, ext),
where V is a finite set of vertices, E is a finite set of edges (hyperedges),
V \ E = ;, lab : E ! � is an edge labeling function, incidence function
nod associates a partial function nod(e) : � ! V with an edge e 2 E, and
the external function is a partial function ext : � ! V . The type of H is
type(H) = dom(ext) and the type of a node e is type(e) = dom(nod(e)).

The set of all graphs over � and � is denoted by G�,� or just G. In our
case, we put � = T⌃ and � = S [F [Acc, where Acc will be defined later.

38

Although � = T⌃ is infinite, a concrete grammar will only make use of a
finite subset of �.

To distinguish between the components of di↵erent graphs we may use
di↵erent notations for V = V (H) = VH , E = E(H) = EH , lab = labH ,
nod = nodH , and ext = extH .

Let H and K be hypergraphs, e 2 E(H), type(e) = type(K), then
hypergraph (H � e) +K = (V,E, lab, nod, ext), where V = V (H) [V (K),
E = (E(H)\{e}) [E(K), lab = labH [labK restricted to E, nod = nodH [
nodK restricted to E and ext = ext(H). The substitution of K in H for
e is H[e/K] = ((H � e) +K)/R = G, where R is the minimal equivalence
relation containing {nod(H)(e, s), ext(K)(s)) | s 2 type(e)}.

One can define projections �1V : VH ! VG, �1E : (EH\{e}) ! EG

and �2V : VK ! VG, �2E : EK ! EG. They satisfy nod(�iE(e))(s) =
�iV (nod(e)(s)) and preserve lab. Moreover, �iE are injective. We may occa-
sionally use �i which denotes �iV , or �

i
E , or both, depending on the context.

So far we have defined hypergraphs and the operation of substitution.
Projections provide a means to talk about which parts of the resulting graph
come from which graph used. They are pretty similar to the projections of
two sets into their joint union, though, it is not always the case that they
are injective. In case the functions nod of the node being substituted or ext
of the substituting hypergraph are not injective then the substitution may
merge some vertices.

In Definition 3.27 we define a class of substitutions, called plain sub-
stitutions, which do not merge vertices. We plan to use only these, partly
because they do not introduce information which is not contained in the
two hypergraphs, and partly because it is easier to describe a sequential
process of substitutions if previously created hypergraphs are passed further
unchanged.

Definition 3.27. If hypergraphs H and K, and the edge e 2 E(H) satisfy
the following condition:

nodH(e)(s2) = nodH(e)(s2) , extK(s1) = extK(s2),

for any s2, s2 in type(e) = type(K), then we say that the substitution of K
in H for e is plain.

Definition 3.28. If a substitution is plain, then we can use R as a bijection
between {nodH(e)(s) | s 2 type(e)} and {ExtK(s) | s 2 type(e)}. Pre-
cisely, it is defined as in R(nodH(e)(s)) = ExtK(s). Further, V (H[e/K]) =
V (H) [R V (K), E(H[e/K]) = (E(H)\{e}) [E(K). For e2 2 E(H), the

39

labeling function lab(e2) on H[e/K] is defined as labH(e2) and on E(K) —
as labK(e2). The incidence function nod satisfies nod(e1) = �1(nodH(e1))
or nod(e2) = �2(nodK(e2)).

All in all, a plain substitution is one with injective �iV . The vertex set of
the substitution is then the joint union of those of the participating graphs.

Definition 3.29. A hyperedge replacement grammar over � and � is
a tuple HRG = (N,T, P, Start), where N is a �-typed alphabet of non-
terminal edge labels. A �-typed alphabet is an alphabet N ✓ � together
with a mapping type : N ! }(�). T ✓ � is the alphabet of terminal edge
labels, disjoint with N , P is a finite set of productions and Start 2 N is the
initial nonterminal. A production p 2 P is a pair (n,G), n 2 N , G — a
hypergraph over N [T and �. It must also satisfy the equation type(n) =
type(G) and for every edge e 2 E(G) holds type(e) = type(labG(e)).

Again, we restrict ourselves to using only certain types of edges. We use
typed terminals, and namely, T = S[F , each terminal t 2 S has type of the
empty path {:} and it corresponds to a vertex label, whereas each terminal
f 2 F has type type(f) = {:, f}.

Definition 3.30. A hypergraph G meets feature structure require-
ments if for every v1 2 V (G), there is exactly one e 2 E(G), lab(E) 2 S,
nod(e)(:) = v1 and there are no two edges with labels from F and identical
nod and lab values.

Frankly speaking, Definition 3.30 is set up in such a way that it directly
corresponds to graphs we defined to describe tokens. The requirement de-
mands that vertices have unique labels and that edges are uniquely defined
by vertices incident to them and the labels.

Theorem 3.31. There is one-to-one correspondence between hypergraphs G
without nonterminal edges, meeting feature structure requirements, modulo
all possible port sequences, and completely labeled graphs of Gr modulo any
choice of the root.

Proof. For a graph H 2 G let us define ⌘(H) = G 2 Gr. First, put
V (G) = V (H). Then, for every edge e 2 E(H), such that lab(e) 2 F , create
an edge (nod(e)(:), nod(e)(lab(e)), lab(e)) in E(G). Further, if lab(e) 2 S,
then define l(nod(e)(:)) = lab(e). Thus, we have a labeled graph G and a
function l : V (G) ! S. It is completely labeled because for every vertex
v 2 V (G) = V (H) there is an edge e 2 E(H) (due to feature structure
requirements), such that lab(s) 2 S, hence l(v) = l(nod(e)(:)) = lab(e) is

40

defined. Moreover, feature structure requirements also provide that the
label is uniquely defined, as the edge e is unique. Although it is not
crucial, we also notice that every edge i = (i1, i2, i3) 2 E(G) is created
only once. Otherwise i = (nod(e1)(:), nod(e1)(lab(e1)), lab(e1)) = (nod(e2)(:
), nod(e2)(lab(e2)), lab(e2)), and then e1 = e2. The root of G can be any
vertex.

Now we provide the function µ : Gr ! G, such that ⌘µ = (ID)G, µ⌘ =
(ID)Gr, where (ID) are identity maps. For a graph G = (V (G), E(G), r(G))
and l : V (G) ! S we build H = (V (H), E(H), labH , nodH , extH) 2 G.
First, ext is any possible function form � to VH . Second, V (H) = V (G).
Then, for every v 2 V (G), introduce e 2 E(H), lab(e) = l(v) 2 S and
nod(e)(:) = v. Similarly, for every edge e 2 E(G), build an edge i 2 E(H),
such that nod(i)(:) = e(1), nod(i)(e(3)) = e(2) and lab(i) = e(3). One can
see that all edges are terminal. Feature structure requirements are fulfilled
for vertex labels by construction and for other edges because every e 2 E(G)
is identified by its e(1), e(2) and e(3).

It is not very di�cult to see that µ and ⌘ are reverse functions. Consider
M = ⌘µ(H) 2 Gr. Trivially, V (M) = V (H), lH(v) = lab(e) and nod(e)(:) =
v for v 2 V (M), e 2 E(µ(H)). By definition of ⌘, lM (v) = lM (nod(e)(:)) =
lab(e) = lH(v). Finally, every e = (e(1), e(2), e(3)) 2 E(H) corresponds to
i 2 E(⌘(H)) with nod(i)(:) = e(1), nod(i)(e(3)) = e(2) and lab(i) = e(3)
and i in turn corresponds to e0 = (e(1), e(2), e(3)) = e in M . The proof of
the other equality in very little way di↵ers from that given above.

The correspondence given by Theorem 3.31 does not restrict the external
function and also it conceals the information of the root of a graph. Although
hypergraphs have no notion of root we assume that all hypergraphs obtained
by this correspondence also have a dedicated vertex which is the image of
the root of the object graph. The property of having functional features (as
well as root-connectedness) is not formulated for hypergraphs, but for some
hypergraphs G it will be established as such of ⌘(G).

Although certain hypergraphs with only terminal edges can be identi-
fied with graphs, there may of course occur hypergraphs with nonterminals.
For such a hypergraph H we may use its skeleton sk(H) which the same
hypergraph as H only without nonterminal edges.

Definition 3.32. Let G be a hypergraph, e 2 E(G) and p = (lab(e), R) 2 P
be a production. Then, G directly derives G0 = G[e/R] and we explicate it
by writing G)p G0 or just G) G0. If there is a sequence of derivations
G1) G2) · · ·) Gk, then we say that G1 derives Gk and denote it by

41

G1)⇤ Gk. The language generated by a HRG is

La(HRG) = {H 2 G | H = sk(H), Start•) H},

where Start• is a hypergraph which has one edge, labeled Start. For our
start symbol holds type(Start) = {:}, it has one vertex, and undefined ext.

We say that H 2 G describes (completely describes) a token u 2 U ,
under vertex v 2 V (H) if sk(H) satisfies feature structure requirements,
G = ⌘(sk(H)), supplied with r(G) = v, describes (completely describes) u.

3.1.5 Construction of HRG form HPSG

It is finally the time when we can construct the hyperedge replacement
grammar from the set of primitives we have formed on basis of a head-
driven phrase structure grammar. As atomic graphs we want to employ
D 2 Exts. However they are not su�cient in the form they exist now.
During derivation a graph may be accessed from above by a certain set of
routes. All vertices and edges along these routes should be removed from D
since, otherwise, they will be repeated creating not functional features and
contradicting to unique information source commitment.

Assume D 2 Gr, µ(D) 2 G and R 2 Route(D). Then, after removing
all edges along R in µ(D) one gets µ(D)�R. More precisely,

• V (µ(D)�R) = V (µ(D)),

• e 2 E(µ(D) � R), lab(e) 2 F i↵ e 2 E(µ(D)) and there are no r1 =
f1.f2 . . . fk and r2 = f1.f2 . . . fk.f in R such that nod(e)(:) = End(r1),
nod(e)(lab(e)) = End(r2),

• e 2 E(µ(D) � R), lab(e) 2 S i↵ e 2 E(µ(D)) and there is no r1 =
f1.f2 . . . fk 2 R, such that nod(e)(:) = End(r1).

There is another minor change to be done. Because we must make
sure that all vertices are expanded with all appropriate edges, introduce an
exception for µ(D)� ;. It may only appear in the initial productions or for
daughers of the root of such productions, as described later. µ(D) � ; is
defined as a set of µ(D0), whereD0 isD united with {(r, vf , f) | A(f)(l(r)) 6=
;} if those do not exist yet in D. The labels are restricted by l(vf) 2
A(f)(l(r)).

Now, we introduce possible expansions of graphs from Exts in the realm
of hypergraphs by creating nonterminals in them. We already suggested
that nonterminals will span over the sets V (D\v), v 2 P (D) and they be
labeled by a graph and the set of routes they are accessed by from outside.

42

Definition 3.33. Assume we have an HPSG grammar which has non-
interactive derivations. For every graph D 2 Exts (or D = G0, G 2 Exts)
and a set of routes R ✓ Route(D) (may be ;) we introduce the set GD,R of
all graphs H 2 G such that

• sk(H) = µ(D)�R or sk(H) = µ(D0) if R = ;,

• nonterminal edges of H are obtained in the following way: By the
assumption of the lemma, there is a set P (D) ✓ C(D) satisfying the
properties of Definition 3.20. Each new edge e corresponds to a vertex
v 2 P (D).

– The edge e has label lab(e) = D2(D\v), which consist of a graph
D2 2 Exts extending and a set of routes D\v = Routev(D) \
Route(D2).

– The type of e is Routes(Dv) \ Routesv(D) and the incidence
function complies to nod(e)(route) = Endv(route) 2 V (D) =
V (µ(D)). We say that e is rooted in nod(e)(:) = Endv(:) = v.

– D is compatible with D2.

• If R = ;, then there are more nonterminals for every new vertex vf of
D0 with labels D2(;), D2 2 Exts, s = l(vf).

• The external function is set by dom(ext) = R and ext(route) =
End(route).

Note that the set GD,R is defined for a pair D,R of a graph and a set
of routes, and every nonterminal of M 2 GD,R is also labeled by such a
pair, with the same meaning of R. The meaning of empty R is that we
did not extend the root vertex with all appropriate features. Since P (D) ✓
C(D) and all vertuces from C(D) are extended, an empty R may occur only
initially in a derivation.

The desired HRG is a tuple (N,T, P, S). We have already described the
set of terminals. Now let us define N as {(D(R)) | s 2 S,D 2 Exts _D =
G0, routes ✓ Route(D) _ routes = ;} [{Start}, type(D(R)) = R. Recall
that � = S [F [Acc. We are now able to set Acc to {D(R)} [{Start}.
The set of productions contains P = {(D(R),M)} [In, where M 2 GD,R,
and initial productions In are used to start derivations of all possible types.
More specifically, In = {(Start,M) | M 2 GD,;}.

An aspect of the definition worth mentioning now and which we have
not touched before is what initial productions are. If we from the beginning

43

assume that we are willing to describe every type in a model, then the given
definition is exactly what is needed. We did not extend defining types in
the root vertex then, and it should be done sometime in order to have a
complete description. If however we want our ACG grammar to generate
only sentences or some fixed set of types (as it is done in implementations of
PET or LKB systems) or some maximal configurations like in [56], it could
be fixed locally in the definition of initial productions.

Fact. The HRG constructed is finite.

Proof. The set T is the same as S [F . Nonterminals are defined by some
D 2 Exts and a set of routes in D. By Lemma 3.11, Exts is finite and thus
so is GD,R because for each vertex v 2 P (D) there is only finite choice of
nonterminals to be rooted there. Although Route(D) does not have to be
finite, we may restrict the set of nonterminals to those participating at least
in one production

For any derivation Start•) H1 · · ·) Hk = H and any v 2 V (H) or
e 2 E(H), assuming �Vi : VHi ! VHi+1 and �Ei : EHi ! EHi+1 , �

V
i : VMi !

VHi+1 , �
E
i : EMi ! EHi+1 are all the projections and pi = (Di(Ri),Mi), there

is a production pn which introduced this element (v or e). For convenience
purposes we may define

�V = �Vn �
V
n+1 . . .�

V
k�1 : VMn ! VH ,

�E = �En �
E
n+1 . . .�

E
k�1 : EMn ! EH ,

two maps which give the origin of v or e, �V (v0) = v, �E(e0) = e.

Fact. �E is always injective, whereas �V is injective if all substitutions are
plain. Moreover, nod(�E(e0))(s) = �V (nod(e0)(s)) since any ↵ and � preserve
the incidence function nod.

Lemma 3.34. Assume H 2 Gr is derived from Start•. For every non-
terminal e rooted in v, lab(e) = D(R) in H, if there is a production p =
(D(R),M), then the substitution of M in H for e is plain.

Proof. Let the derivation of H be Start•) H1 · · ·) Hk = H of minimal
length for which the conclusion is false. Consider �E and �V which intro-
duce e. Then, nonterminal e 2 EH is �E(e0) for some e0 2 EMn . Then,
nodH(e)(s) = �V (nod(e0)(s)) = �V (Endv0(s)), where Endv0(s) belongs to
V (Dn) = V (Mn) and v = nod(e)(:) = �V (Endv0(:)) = �V (v0), e0 is rooted
in v0. At the same time extM (s) = EndD(s) 2 V (D) = V (M). By con-
struction D is compatible with Dn in v0, thus for every s1, s2 in type(e) =

44

a

b

Figure 4: Schematic representation of a hypergraph which can be derived
by the constructed HRG

type(e0) = Route(D) \ Routev0(Dn) holds: nodH(e)(s1) = nodH(e)(s2) i↵
Endv0(s1) = Endv0(s2) i↵ EndD(s1) = EndD(s2) i↵ extM (s1) = extM (s2).
Therefore, the last substitution is plain and the conclusion of the lemma
always holds.

The next couple of lemmas and definitions all aim at proving Lemma 3.39.
They are technical and do not deserve any specific comments for each one
separately. To put together the ideas expressed by the lemmas, they give a
rough description of graphs, generated by our HRG. In such a graph non-
terminals may not have common nodes. Then, any edge either connects two
nodes of one terminal and is included in some path of the corresponding ac-
cessing R (inside a circle), or it connects two nonterminals, starts in the root
of one of them and is not in R, or it does not start in a node of a terminal.
Schematically, a derived graph looks like the one in Figure 4. The checked
circles represent nonterminals and their nodes. They may not intersect. The
edge a performs the function of passing the information above and the edge
b is the only allowed way of communication between nonterminals.

Definition 3.35. A hypergraph G 2 G is tree-like if for every two di↵erent
non-terminals n1 and n2 never holds nod(n1)(s1) = nod(n2)(s2).

Lemma 3.36. If G2 is derived from Start• then G2 is tree-like.

45

Proof. Assume the lemma does not hold and G2 has the minimal length of
the derivation with this property. Let p = (D(R),M) and n be a nontermi-
nal of G1, lab(n) = D(R) and and G1)p G2. Note, that the base case, i.e.
derivation of length zero, will also be considered along the lines.

There are several case of where n1 and n2 may come from. First, let us as-
sume that n1 = �1E(n

0
1), n2 = �1E(n

0
2), then nod(n1)(s1) = �1V (nod(n

0
1)(s1)),

nod(n2)(s2) = �1V (nod(n
0
2)(s2)). Since �

1
V is injective nod(n0

1)(s
0
1) = nod(n0

2)(s2)
and it contradicts to minimality.

In case, however, both n1 = �2E(n
0
1), n2 = �2E(n

0
2) come from M ,

n0
2 2 E(M), n0

1 2 E(M) we have nod(n0
1)(s1) = nod(n0

2)(s2). While
M 2 GD,R, nod(n0

1)(s1) = Endv01(s1) and nod(n0
2)(s2) = Endv02(s2). There-

fore, we now have Endv01(s1) = Endv02(s2) for di↵erent v01 and v02 in P (D).
Since the HPSG has non-interactive derivations, Endv01(s1) 2 V (D\v1),
Endv02(s2) 2 V (D\v2) it contradicts to V (D\v1) \ V (D\v2) = ;. Note,
that, if we were interested in the result of application of an initial produc-
tion, an almost identical argument would apply. There would be a couple
of additional nonterminals for each appropriate feature, not included yet in
the corresponding extended defining graph. So, thereby we also proved the
base case.

If now n1 = �1E(n
0
1), n2 = �2E(n

0
2), then nod(n1)(s1) = �1V (nod(n

0
1)(s1)).

For n2 we get nod(n2)(s2) = �2V (nod(n
0
2)(s2)), which leads to nod(n0

1)(s1) =
nod(n)(s) for some s 2 type(n), therefore G1 is not tree-like.

Lemma 3.37. Assume G 2 G is derived from Start•, n is a nonterminal of
G, lab(n) = D(R) and e 2 E(sk(G)). If v1 = nod(n)(s1), v2 = nod(n)(s2),
nod(e)(:) = v1, nod(e)(f) = v2, then s1.f 2 R.

Proof. Initially, let G = M 2 GD2,;. Let n be rooted in v. This implies
R = Routev(D2)\Route(D), s1 and s2 belong to R and Endv(s1) = v1. As
sk(G) = µ(D2) � ; = µ((D2)0), then ⌘(sk(G)) = (D2)0 and ⌘ maps e into
(v1, v2, f), hence s1.f 2 Routev(D2). Due to non-interactive derivations,
either s1.f = f1.f2 . . . fk.f 2 R or Endv(f1) = u 2 P (D), u 6= v. But
f1 2 R and V (D\v) \ V (D\u) ◆ u, which is prohibited by non-interactive
derivations.

If now G0)p G for nonterminal m rooted in u, then we may assume
that for G0 the conclusion is true as well as for M from p = (D0(R0),M).
Suppose n = �iE(n

0) and e = �jE(e
0). Under an assumption that i = j we

get
�iV (nod(e

0)(:)) = nod(e)(:) = nod(n)(s1) = �iV (nod(n
0)(s1)),

�iV (nod(e
0)(f)) = nod(e)(f) = nod(n)(s2) = �iV (nod(n

0)(s2)).

46

Then s1.f 2 R because the conclusion holds for G0, �iV are injective and
the labels of n and n0 coincide. If, though, i = 1 and j = 2, then again

�2V (nod(e
0)(:)) = �1V (nod(n

0)(s1)),

�2V (nod(e
0)(f)) = �1V (nod(n

0)(s2)).

It means nod(n0)(s1) = nod(m)(s3) and nod(n0)(s2) = nod(m)(s4). By
Lemma 3.36 it is impossible. In case i = 2 and j = 1 we obtain

�1V (nod(e
0)(:)) = �2V (nod(n

0)(s1)),

�1V (nod(e
0)(f)) = �2V (nod(n

0)(s2)).

This in turn leads to nod(e0)(:) = nod(m)(s3) and nod(e0)(f) = nod(m)(s4).
By induction, s3.f 2 R0 ✓ Route(D0). Moreover, End(s3) = ExtM0s3 =
nod(n0)(s1) = Endv0(s1), where n0 is rooted in v0. Therefore s1.f is a route in
Routev0(D0) and due to non-interactive derivations we either have s1.f 2 R
or prefix f1 of s1 goes to Endv0(f1) = u0 2 P (D0) but then u0 2 D0 \v0

\D0\u0 .

Lemma 3.38. Assume there is a nonterminal n in G, which is derived
from Start•, and a terminal e, f = lab(e) 2 F . Suppose also nod(e)(:) =
nod(n)(s) and nod(e)(f) 6= nod(n)(t) for any t 2 type(n). Then, s if the
empty path : and f /2 type(n).

Proof. In the derivation of G there are two productions, which introduced
e and n (or one production for both). We need to consider three cases
depending on the order of their emerging.

• Suppose n was introduces before e. Then, some other later production
p introduces e while canceling a nonterminal m. But this means that
all nodes of e are in nodes of m. Then, nodes of m intersect with those
of n and this contradicts to the property of being tree-like.

• Assume n and e are introduced by one production. Then their pro-
images n0 and e0 both belong to some D 2 Exts. They also have
the same property that nod(e0)(x1) = nod(n0)(s) and nod(e0)(x2) 6=
nod(n0)(t) for any t 2 type(n0) = type(n). Since the HPSG gram-
mar has non-interactive derivations, there is another m0, such that
nod(e0)(x2) = nod(m0)(t). Further s.f cannot be in the influence of
n0, therefore nod(e0)(x1) and nod(e0)(x2) are both in P (D). In partic-
ular, s =:.

47

• Finally, let e appear first as e0. Then at another time, n0 appeared
while canceling some m0. This leads to the conclusion that n0 either
had both ends of e0 in its nodes or only one of them. The first subcase
together with Lemma 3.37 gives us that there is already some e00 2
E(D), such that e00(1) = Endv(s) and e00(1) = Endv(s.f) (e00(1) =
Endv(s) and e00(1) = Endv(s.f)). The second subcase reduces the
problem to identical, but with shorter derivation.

Now with all arsenal of facts about the structure of generated trees, we
may prove that they meet feature structure requirements and in a hyper-
edge sense have functional features. It meant that it is possible to convert
any generated hypergraph into a graph with functional features. It is not
required but it will also be root-connected. Then, if we provide any root
vertex it becomes possible to evaluate our HRG on all HPSG models by
revealing connection between hypergraphs generated and tokens of those
models. In the end we would like to know exactly which tokens we may
describe.

Lemma 3.39. Suppose D2 2 G was derived from Start•, then sk(D2) meets
feature structure requirements and additionally there are no two edges with
nod(e1)(:) = nod(e2)(:) and lab(e1) = lab(e2) (functional features in G).

Proof. Suppose the conclusion is false and consider the minimal length
derivation for such D2. Then, sk(D1) meets feature structure requirements,
v 2 VD1 , n is a nonterminal in ED1 , lab(n) = D(R1), rooted in v. There is
a production p = (D(R1),M), where M 2 GD,R1 , and D1)p D2.

Assume e1, e2 2 �1E(E(sk(D1))). If lab(e1), lab(e2) are in S, nod(e1)(:) =
nod(e2)(:) = v1 2 VD2 , then nod(ej)(:) = �1V (nod(e

0
j)(:)). Then, Lemma 3.34

provides us with injective projections and nod(e01)(:) = nod(e02)(:). Moreover
lab(ei) = lab(e0i), and since sk(D1) by inductive supposition satisfies the
conclusion of the lemma, e01 = e02, leading to e1 = e2. If, though lab(e1) =
lab(e2) are in F and nod(e1) = nod(e2), then also nod(e01) = nod(e02), hence
e01 = e02.

If e1, e2 2 �2E(E(sk(M))) = �2E(E(µ(D)�R1)) then the same argument
applies, because E(µ(D)�R1) ◆ E(µ(D)) and µ(D) meets feature structure
requirements and has functional features.

If then e1 2 �1E(E(sk(D1))), e2 2 �2E(E(sk(M))) and their labels belong
to S, then

�1V (nod(e
0
1)(:)) = nod(e1)(:) = nod(e2)(:) = �2V (nod(e

0
2)(:)),

48

where e0i are pro-images of ei. By Lemma 3.34 we have a plain substitu-
tion and R(nod(e01)(:)) = nod(e02)(:). Further, nod(e01)(:) = nod(n)(s), and
nod(e02)(:) = ExtM (s) = EndD(s), nod(e02)(:) = EndD(s). For the func-
tion �V constructed for n holds nod(n)(s) = �V (Endv0(s)). This means
that s lies in Routev0(Dn) \ Route(D) = R1. But sk(M) = µ(D) � R1,
nod(e02)(:) = EndD(s) for s 2 R1, which contradicts to the definition of
µ(D)�R1.

If though f = lab(e01) = lab(e02) 2 F , then similarly

nodM (e02)(:) = EndD(s1),

nodH(e1)(:) = �V (Endv0(s1)).

Since sk(M) = µ(D) � R1, ⌘(sk(M)) is defined and the edge e02 is
mapped into i2 = (EndD(s1), EndD(s2), f) 2 E(D). But by Lemma 3.37
and Lemma 3.38, or s1.f 2 R1, contradicting the definition of µ(D)�R1.

The uniqueness is proven, although we need to establish existence of a
‘label’ of every edge. Assume v1 2 V (D), then v = �1V (v

0
1) or v = �2V (v

0
2). In

the first case, there is e 2 E(sk(D1)), lab(e) 2 S, nod(e)(:) = v01 in sk(D1),
hence, nod(�1E(e))(:) = �1V (nod(e)(:)) = v. In the second case the same does
not always hold. It does not only if there is r 2 R1 = type(n), such that
v02 = End(r) = ExtM (r). Then, set v01 to nod(n, r). From this follows that
v=�2(v02) = �1(v01) and the case is deduced to the first one.

Conceptually, Lemma 3.40 should be particularly useful for the proof
of Lemma 3.39, but get the opposite direction implication. It claims that
the routes by which a nonterminal is accessed during its creation in some
M 2 GD,R remain the only routes it is accessed by until its removal.

Lemma 3.40. If n is a nonterminal of D1 rooted in v, lab(n) = D(R),
p = (D(R),M), then Routev(⌘(sk(D))) \Route(D) = R.

Proof. Certainly, R ✓ Routev(⌘(sk(D))) \ Route(D) because it was there
during the creation of n. Assume, however, there is some r 2 Routev(⌘(sk(D)))\
Route(D)\R such that r = r0.f and r0 2 R. Use p to derive D2 from D1.
That means that there is an edge ef = (Endr0 , Endr, f) in D and it is
passed to µ(D) � R. There is an edge with the same endpoints and the
label in ⌘(sk(D)), contradicting to the fact that D2 meets feature structure
requirements.

The last and decisive connection between hypergraphs and graphs that
we need to make (the first being that compatibility implies plainess) is that

49

substitution is equivalent to joint union of skeletons. This fact is not com-
pletely trivial as one might immediately think. Technically, non-obvious is
what exactly happens with the access routes (K in Lemma 3.41).

Lemma 3.41. If D1)p D, then ⌘(sk(D)) is isomorphic to ⌘(sk(D1)) [v

K, where p = (K(routes),M), n is a nonterminal rooted in v, lab(n) =
K(routes).

Proof. First of all ⌘(sk(D1)) [v K is defined only if K is compatible with
⌘(sk(D1)). From Lemma 3.40 follows, thatRoutev(⌘(sk(D1)))\Route(K) =
routes. As their common routes did not change from the introduction and
K was compatible with some Dn, moreover all substitutions are plain, then
K is compatible with ⌘(sk(D1)).

Let us start by establishing a bijection between vertices of the two graphs.
First,

V (⌘(sk(D))) = V (sk(D)) = V (D) = V ((D1)[n/M])) =

= V (D1) [R V (M) = V (sk(D1)) [R V (K).

Recall that R = {(nodD1(n)(s), extM (s)) | s 2 type(n) = routes}. By
definition, extM (s) equals End(s) in K. Analogously, nod(D1)(n)(s) =
�V ((Endv0(s)) = End�V (v0)(s) = Endv(s) in ⌘(sk(D)). This is exactly
V (⌘(sk(D1)) [v K).

Now, consider E(⌘(sk(D))). Assume edge e = (v1, v2, f) belongs to
E(⌘(sk(D))) = E(⌘(sk((D1)[n/M]))). Then there is e0 2 E(sk((D1)[n/M])),
and nod(e0)(:) = v1, nod(e0)(f) = v2, lab(e0) = f . The edge e0 belongs to
E(sk(D1)) or E(sk(M)) = E(µ(K)� routes).

At the same time e belongs to E(⌘(sk(D1)) [v K) i↵ there is either

• e• 2 E(⌘(sk(D1))), such that v1 = �1(e•(1)), v2 = �1(e•(2)), f =
e•(3), that equals to the statement that there is e0 2 sk(D1) with
nod(e0)(:) = v1, nod(e0)(f) = v2, lab(e0) = f , or

• or e• 2 E(K), such that e(1) = �2(e•(1)), e(2) = �2(e•(2)), e(3) =
e•(3), that equals to the statement that there is e0 2 µ(K)(= µ(e•))
with nod(e0)(:) = v1, nod(e0)(f) = v2, lab(e0) = f .

We observe that E(⌘(sk(D1)) [v K) contains at least the same edges
as E(⌘(sk(D))). What is not immediately clear from here is which edge
corresponds to those with e0 2 µ(K) but not e0 2 µ(K) � routes. For such
an edge e0 there are r1 and r2 = r1.f in routes = type(n), End(r1) =
nod(e0)(:), End(r2) = nod(e0)(f). There was an edge e00 2 Dk for some
Dk at the moment of creation of n. Assume the root of n0 was v0, then

50

Endv0(r1) = nod(e00)(:), Endv0(r2) = nod(e00)(f). Then e• = �E(e00) 2
sk(D1) satisfies nod(e•)(:) = �V (nod(e00)(:)) = �V (Endv0(r1)) = nod(n)(r1)
and nod(e•)(f) = �V (nod(e00)(f)) = �V (Endv0(r2)) = nod(n)(r2). Now, we
can see that �1(ebullet) = �2(e0), and the case is converted to the first one.

Finally, we need to assure that the labeling functions of ⌘(sk(D)) and
⌘(sk(D1)) [v K coincide. The proof is parallel to one given for edges.

3.1.6 Main result

This section is fully devoted to the main theoretical result of the paper and
its proof. We want to have a two-directional correspondence between tokens
and hypergraphs. For certain class of tokens we manage to indicate exact
derivations generating descriptions of this tokens, and for every produced
hypergraph we bring a token described by this hypergraph.

Lemma 3.42. Suppose D1 describes a token u under vertex r, via �1 :
V (⌘(sk(D1))) :! U, ver 2 V (D1) and v = �(ver). Assume also that D2

describes v via �2 and there is a production p 2 P , p = (D2(R),M) and
D1)p D for a nonterminal n rooted in ver. Then, there is a morphism �
from ⌘(sk(D)) to U such that �(�1V (r)) = w.

Proof. Using Lemma 3.41, we obtain that ⌘(sk(D)) is isomorphic to
⌘(sk(D1))[verD2. Each vertex v is either �1(v01) or �2(v2) for v1 2 V (⌘(sk(D1))),
v2 2 V (D2). Define �(v) = �1(v1) or �(v) = �2(v2) respectively. If
�1(v1) = �2(v2), then v2 = ExtM (s) = EndD2(s) and v1 = Endver(s)
in ⌘(sk(D1)). By Lemma 3.17, �2(v2) = TI(s)(�2(r(D2))) = TI(s)(v) and
�1(v1) = TI(s)(�1(ver)) = TI(s)(v), we establish correctness of the defini-
tion.

Let us check necessary conditions:

• �(r) = �1(r) = u,

• S(�(c)) = S(�i(ci)) = li(ci) = l(�i(ci)) = l(c).

• for every edge e0 = (v, u, f) 2 E(⌘(sk(D))) there is e 2 E(D2) or
e 2 E(⌘(sk(D1))) such that e(3) = e0(3), e0(k), k 2 {1, 2} equals
�i(e(k)). Therefore,

F(f)(�(v)) = F(�i(vi)) = �i(ui) = �(u).

51

Lemma 3.42 claims that every morphism of a graph produced by the
HRG at one step can be extended to a morphism of the graph on the next
step of the derivation. Together with Theorem 3.15 and Lemma 3.43 this is
basically all one may need to get the first statement of the main theorem.
The first two provide a morphism and the lemma that follows discovers that
every morphism is actually a complete description, since by construction, we
introduced all appropriate features of every vertex as soon as it appeared
and only the initial productions required some external interference. We
only need the version of Lemma 3.43 (Lemma 3.44) where G does not have
nonterminals, but its current formulation gives additional insight of when
all features appear (not mentioning that it makes it easy to have a good
inductive proof).

Lemma 3.43. Assume G 2 G, Start•)⇤ G and D = ⌘(sk(G)), then for
every vertex v1 2 V (D), for which there is no nonterminal n of G such that
nod(n)(s) = v1 for some s 2 type(n), and every f such that A(f)(l(v1)) 6= ;
there is exactly one e = (v1, v2, f) 2 E(D) and l(v2) 2 A(f)(l(v1)).

Proof. We proceed by induction by the length of the derivation of G. If the
length is one, then D 2 Exts for some s 2 S. There, nod(n)(s) = Endv0(s)
and sets {v | m = Endv0(s), v0 2 P (D)} cover V (D)\{r}. Since the only
production which was used is an initial production, then r was supplied with
the required edges.

If the derivation

S)p1 G1)p2 · · ·)pk Gk)pk+1 Gk+1 = G

is of length k+1. Then, Gk satisfies the conclusion of the lemma as well as
Mk from pk+1 = (D(R),Mk) does, for every vertex but the root of D. Let
also n be the nonterminal lab(n) = D(R) to which the production applies.
By Lemma 3.41, ⌘(sk(G)) is isomorphic to ⌘(sk(Gk)) [v D.

Now, pick any v1 2 V (⌘(sk(Gk))[vD) and f 2 F such thatA(f)(l(v1)) 6=
; and with the property that it is not a node of some nonterminal. Let v1 be
�1(v01). If it belongs to some non-terminal nod(m)(s) = v01, then the same
holds for v1 and �1(m), unless m = n and v01 = nod(n)(:), v1 = �1(r(D)).
Therefore, as the graph D is an extended defining graph, there if an edge
e0 with the right properties, which can be then mapped by �2. Otherwise,
by the inductive assumption there is e = (v01, v

0
2, f) 2 E(⌘(sk(Gk))) and

l(v2) 2 A(f)(l(v1)). Applying µ and then �1 gives the right edge.
That is it for existence. The uniqueness of such an edge follows from

Lemma 3.39.

52

Lemma 3.44. Assume G 2 La(HRG(HPSG)). If G describes u then G
completely describes u.

Proof. Suppose u = �(n) 2 U and f , such that w = F(f)(u) is defined. Then
l(n) = S(u), A(f)(S(u)) 6= ;. By Lemma 3.43, there is e = (n,m, f) 2
E(⌫(G)). Thus, �(m) = F(f)(�(n)) = w.

Now, in order to learn to reconstruct tokens we will again use Theo-
rem 3.15 and Lemma 3.45. We will construct an interpretation for each
hypergraph, which will in fact be ‘the hypergraph itself’. Then, this inter-
pretation must be a models, since every token has a graph from Exts, which
‘contains’ it. First, we restore this graph from Exts in the following.

Lemma 3.45. Assume G 2 La(HRG(HPSG)), D = ⌘(G), v 2 V (D),
then there is D0 2 Extl(v) such that D0 ✓ D and r(D0) = v.

Proof. Let the derivation of G be:

S)p0 G1)p1 · · ·)pk�1 Gk = G.

Since all substitutions are plain, that the set of vertices and terminal edges
of Gi grows monotonically with i. Moreover, in G1 every vertex, but the
root belongs to some nonterminal’s nodes and after each production exactly
one vertex stops being a node of a nonterminal. Thus, there is one particular
pi, which does this for v: Gi)Pi Gi+1. Then, by Lemma 3.41 ⌘(sk(Gi+1))
is isomorphic to ⌫(sk(Gi�1)) [v D for some D 2 Ds. Finally, we put D0 =
D ✓ G after application of ⌘�µ.

Definition 3.46. A token u is finite if there is only a finite number of
tokens v such that there is a path p, TI(path)(u) = v. A token u is called
acyclic if there are no paths, such that TI(path)(u) = TI(path.path2)(u)
and path2 is not empty.

Complete description of infinite tokens is an impossible task for our
generative approach and at the same time, if a token has unpredictable
sharing which makes it cyclic, then it has little distinction with an infinite
token because we may not embrace such a cycle in one type definition.

Fact. There exist exhaustive models which contain an isomorphic copy of
each token of every model.

The fact was proven by King [34] on also Pollard [52]. It is however
debatable which exhaustive model is the best one and what should be con-
sidered the generative capacity of a grammar. This choice is not for our
paper to make.

53

Theorem 3.47. Let I be any exhaustive model of HPSG grammar H.
Then, for every finite and acyclic token u 2 U there is a hypergraph G 2
La(HRG(H)), such that G completely describes u. For every hypergraph
G 2 La(HRG(H)) there is a finite token u which G completely describes.

Proof. First, it is su�cient to find a graph G which describes u and then by
Lemma 3.44 G completely describes u. Moreover, by Lemma 3.42 we only
need to provide a derivation where every nonterminal n rooted in v has label
D(R) such that D describes v. We need to make sure that every production
saves this property. For every production p = (D1(R1),M1) we have choice
of di↵erent M 2 GD1,R1 . All such possible M di↵er in what nonterminals we
introduce for every vertex v 2 P (D1). Additionally, D must be compatibly
with D1 in v. As we proved in Theorem 3.15 there is a D which injectively
describes �(v). At each step we chose exactly this D.

If D1 describes �(r(D1)), then by Lemma 3.19 D is indeed compatible
with D1. The derivation will stop. Otherwise, since each time we release
one vertex from being a node of a nonterminal, the hypergraph constantly
grows (the number of its vertices). Finally there will be a path p from the
root of length more that the number of tokens under v. Then at least for two
of the vertices on p will hold �(v1) = �(v2). By Lemma 3.17 TI(p1)(u) =
TI(p1.p2)(u).

Put D = ⌘(G) and let us define an interpretation I = (U,S,F). We set
U = V (D), S(v) = l(v), and F(f)(v) = v2 for an edge (v, v2, f) in E(D) (D
has functional features, which follows from Lemma 3.43). In order I to be
an interpretation it must satisfy S(F(f)(v)) 2 A(f)(S(v)), which follows
from Lemma 3.43 as well.

The map � is defined as �(v) = v and is obviously injective and we want
to establish that D describes u = �(r(D)).

• �(r(D)) = �(r(D));

• S(�(v)) = S(v) = l(v);

• for every edge e = (v1, v2, f), �(v2) = v2 = F(f)(v1) = F(f)(�(v1)).

For I to be a model, every token v, l(v) = s must satisfy ⇥s. By
Theorem 3.15 it is su�cient to prove that some D0 2 Exts describes v.
Exploiting Lemma 3.45, we get such a D0. It describes v via � restricted to
V (D0).

The token u is finite because U is finite. Since an exhaustive model
contains isomorphic copies of every token of every model, then there is a

54

token u0 isomorphic to u. Thus, G describes u0. And by Lemma 3.43, G
completely describes u0.

3.2 Implementation of an LCFRS parser

We suggest to re-implement a linear contex-free rewriting system parser, be-
cause LCFRS is now being under investigation of a number of other authors
and there are various approaches proposed of how to improve accuracy as
well as e↵eciency. At the same time implementational properties of ACGs
are not well investigated.

LCFRS [62, 63] were introduced as a class of formalisms in which a few
other known theories can be encoded, e.g. tree-adjoining grammars. It re-
tains simplicity of context-free grammars and posseses desirable properties
of semilinearity and polynomial recognition. LCFRS’s can in principle op-
erate on structures more complex than strings and use operations di↵erent
from concatenation. The significant requirement is though, that all rules
must be linear and non-erasing, e.g. they cannot add and remove variables
(to be demonstrated in definition).

Therefore, LCFRS is a family of formalisms. In di↵erent interpretations
it can generate string as well as tree languages. The generalisation over
context-free string languages that it makes is achieved by the ability of non-
terminals to represent discontinuous segments of a string. This additional
ability makes it possible to generate non-context-free languages. All in all,
LCFRS generates mildly context-sensitive languages, which are assumed to
be the class natural languages belong to.

3.2.1 Definition

Formally, LCFRS is a tuple G = (N,T, V, P, S) where N is a finite set of
nonterminal symbols supplied with a function dim : N ! N, dim(A) is
called fan-out of A. Sets T and V are terminals and variables respectively,
S 2 N the start symbol, dim(S) = 1, and P is a finite set of rewriting rules.
A rule has a non-terminal on the left side and a sequence of non-terminals
on the right side:

A(↵1, . . . ,↵dim(A)) ! A1(X
1
1 , . . . , X

1
dim(A1)

) . . . Am(Xm
1 , . . . , Xm

dim(Am)),

where Xi 2 V are variables and ↵j 2 (T [V)⇤ are terms over this variables
and terminals. Every variable on the RHS must occur exactly once on the
LHS. The rank of a rule is m, the number of non-terminals in the RHS. The
fan-out of a rule is dim(A), where A is the nonterminal symbol on the LHS.

55

Linear Context-Free Rewriting Systems:

Data-driven LCFRS Parsing

Laura Kallmeyer

University of Tübingen

Summer term 2010

PLCFRS Parsing 1 9 July 2010

Kallmeyer LCFRS

Overview

1. Introduction

2. Weighted Deduction Systems

3. Knuth’s Algorithm

4. PLCFRS Parsing

5. Grammar Extraction

6. Experiments

7. Conclusion

PLCFRS Parsing 2 9 July 2010

Introduction (1)

[Kallmeyer and Maier, 2010, Maier, 2010,

Maier and Kallmeyer, 2010]

Discontinuous constituents and non-projective dependencies are

rather frequent, in particular in so-called free word order languages.

Fronting example from German:

S

VP

VP

PROAV VMFIN VVPP VAINF

darüber muß nachgedacht werden

about it must thought be

“It must be thought about it”

PLCFRS Parsing 3 9 July 2010

Kallmeyer LCFRS

Introduction (1)

root aux

pp aux

r Darüber muß nachgedacht werden

PROAV VMFIN VVPP VAINF

• Appr. 25% of the sentences in Negra display discontinuous

constituents.

• Even for English, appr. 20% of the sentences in the Penn

Treebank contain discontinuous constituents.

PLCFRS Parsing 4 9 July 2010

Figure 5: A tree used to extract LCFRS rules

A probabilistic liner context-free rewriting system is a LCFRS together with
a function P ! R wich provides probabilities of the grammar rules.

3.2.2 Grammar extraction

An algorithm to read a PLCFRS grammar from a corpus with crossing
branches was proposed in [41]. It is a rather straighforward generalization
of the usual algorithm for CFG, except only that discontinuities must be
properly represented. Here, is a short description of the algorithm with an
example. Consider the discontinuous tree from Figure 5.

It has a discontinuous VP node darüber nachgedacht. For each node in
a tree we construct a rule, which may be used to build this constituent from
its daughters. Assume the constituent contains the words w1, w2, . . . , wk.
For each 1 i k we create a variable Xi. Each daughter N is assigned
the sequence of varibles {Xj | wj 2 N} where by wj 2 N we mean that the
word wj is a descendant of N . The LHS of the new rule has the same label
as the parent node and takes the sequence of all the variables such that Xi

preceeds Xj if i < j. For instance the other VP darüber nachgedacht werden
is initially assigned variables {X1, X2, X3} corresponding to the three words
of the phrase. Its VP daughter is assinged {X1, X2} and VAFIN daughter
is assigned {X3}. In the next step every pair of variables whose words are
adjacent is merged. The merging is repeated with new variables representing
now subsrings of the original string w1w2 . . . wk until there is nothing to
merge. Finally variable of the LHS of the rule are concatenated if they are

56

adjacent in the string. In our example the upper-most rule

S(X1, X2, X3, X4) ! V P (X1, X3, X4)VMFIN(X2)

is reduced to

S(X1, X2, X3) ! V P (X1, X3)VMFIN(X2)

and then to
S(X1X2X3) ! V P (X1, X3)VMFIN(X2)

The grammar extracted from our tree is then:

lexical rules non� lexical rules
PROAV (darüber) ! ✏ S(X1X2X3) ! V P (X1, X3)VMFIN(X2)
VMFIN(muß) ! ✏ V P (X1, X2X3) ! V P (X1, X2)V AINF (X2)

V V PP (nachgedacht) ! ✏ V P (X1, X2) ! PROAV (X1)V V PP (X2)
V AINF (werden) ! ✏

One can see that the grammar extracted from a corpus can be used to
analyse this corpus, providing correctness to the method. Only one addi-
tional non-empirical generalization is made — context-freeness of deriva-
tions, which is an essential part of LCFRS. No unneseccary assumptions are
made about discontinuities, e.g. we could have as well extracted the rule

V P (X1, X2, X3) ! V P (X1, X2)V AINF (X2)

for darüber nachgedacht werden.
The ability to systematically represent discontinuities in a language model

is a great advantage, which allows reading grammars directly from treebanks
with crossing branches. Usually in treebanks used for probabilistic context-
free parsing long dependencies are reduced to minimum, whereas here we
gain more control over them. Moreover, a better consent can be achieved
among annotators when it is always possible to directly represent argument
relations. For instance the topicalized Bus in Example 4 is a complement of
gefahren and we will extract the rule V P (X1, X2) ! NP (X1) V V PP (X2).

(4) Bus ist Karl gefahren
Bus has Karl driven
Karl has driven a bus

An ordered rule is a rule such that for every nonterminal A in the RHS
and every pair of variables X1 and X2, X1 preceeds X2 in the RHS, i↵

57

X1 preceeds X2 in the LHS. While extracting the grammar we may only
form ordered rules. This assures that even non-concatenated variables of
a nonterminal are always in a preceedence relation, though not a direct
preceedence. Moreover, we order the RHS nonterminals by the position of
their left-most continuous segment. It allows for more concise presentation
with improved visial perception of rules and also a tighter connection to
CGF rules

To obtain the probabilies for our language model we use simple maximum
likelihood estimates. During grammar extraction we count occurencies of
every grammar rule, and then after all preprocessing steps the probability
of a rule A(. . .) ! B(. . .) C(. . .) is estimated as

#(A(. . .) ! B(. . .) C(. . .))P
#(A(. . .) ! . . .)

.

where the sum is taken over all rules with the LHS nonterminal A. It is
worth noticing here that even though discontinuous and continuous nodes
in the corpora may have the same label, e.g. NP s can be continuous or
discontinuous, the LCFRS formal definition demands each nonterminal to
have exactly one fan-out. In particular, we must introduce di↵erent nonter-
minals for continuous and discontinuous nodes in the corpus with the same
label, e.g. NP1 for continuous NP s, or NP3 for NP s containing three non-
adjacent parts. Then the impact of this on the probability estimation is that
for continuous and discontinuous rules probabilities are counted separately,
dim(A) is the same for all entrances of A in the fraction.

3.2.3 Preprocessing

After extracting the grammar, there are several techniques to improve its
quality including lexicalization, markovization, and category split.

Lexicalization is a widely used method first successfully applied to PCFG
parsing of English (Collins [7]). It consists in adding additional information
to non-terminal nodes, namely its lexical head. In particular, it can be useful
to recognize subcategorization patters, as the plain model does not provide
any information of this kind and, thus, is incapable of distinguishing, for in-
stance, transitive and intransitive verbs. Lexicalization makes the grammar
much more sparse, thus, it requires more training data and cannot also be
used on a par with certain other modifications.

Markovization is another technique to improve accuracy, previously ap-
plied to PCFG parsing [7, 35]. The problem it solves is two-folded. First,
due to e↵eciency constraints or limited size of the training corpus, we cannot

58

S

NN V P

ADV VMFIN NP PP

Figure 6: Non-markovized tree

find some (sometimes many) rules that we need to parse an unseen sentence,
hence sparseness of the data and low coverage. On the other side, the limited
amount of (thus not very informative) categories, generalize to strongly (the
same example as with lexicalization applies here). Markovization consists
in enriching categories with contextual information. There are two kinds of
context: vertical and horizontal. Vertical context contains the first v cate-
gories on the path from a node to the root and horizontal context containg
the categories of h neighbours of a node.

Vertical context is usuallty more e↵ective with PCFG parsing, both En-
glish and German, than horizontal. That suggests that the trainig data is
su�cient to more extent than the categories are informative. However with
LCFRS the two classes of continuous and dicontinuous rules may expose
behaviour di↵erent from one another, especially taking into account that
dicontinuities may be underrepresented in the training data. We hypoth-
esize that horizontal context may have a stronger e↵ect on discontinuous
constituents.

Consider the tree in Figure 6 and its markovized counterpart in Figure 7.
In the markovized tree, the square brackets identify the head node, trian-
gular brackets show that the node is intermediate. Superscripts are used to
show the parent node, which is included as the vertical context. They are
discharged from lexical entries, because they are not given to the parser as
input. The intermidiate nodes are used to limit horizontal context. They
group the head node first with all h its right neighbours and then with its
h left neighbours. Markovization can be considered as partial binarization
of the grammar, which however also a↵ects the extracted probabilities.

Another possible solution to the coarse label deficiency is to split cate-
gories into more informative sub-categories, according to manually or auto-

59

S

< S : NN [V PS] >

NN < S : [V PS] >

V PS

< V PS : ADV [VMFIN] >

ADV < V PS : [VMFIN] NP PP >

< V PS : [VMFIN] >

VMFIN

NP PP

Figure 7: Markovized tree, h = 2, v = 2

60

matically chosen criteria. This is a less productive approach, though it may
have more linguistic support and produce clearer descriptions. In [40] they
split V P s into V P s with participles, with zu-infinitives and with infinitives
(without zu). Nodes labeld S can be split into relative clauses and just
sentenses.

Markovization, lexicalization and node split were successfully applied
to PCFG parsing of English. Markovization, for instance, is reported to
improve accuracy by approximately 6%. As parsing of German is concerned,
these techniques do not exhibit the same influence. Overall, markivization
adds 3%, for lexicalization the results in the literature flactuate between 0%
and 2% and node split improvement is not very significant.

3.2.4 Binarization

Every LCFRS can always be binarized, i.e. all rules will have at most
rank two. This allows for quicker and simpler parsing algorithms. Accuracy
is not a↵ected by binarization, because the initial set of rules is not changed
and the probabilities remain the same, all intermediate rules having the
probaility 1.

The binarization can be done in various ways. The most strainghtfor-
ward approach is to binarize from left to right (or right to left). Then
the rule S ! V P NP PP will be modified to S ! V P (NP + PP) and
(NP + PP) ! NP PP . This strategy does not optimize the parsing com-
plexity and does not form coherent structures. A better way is head-driven
(head-outward) binarization, i.e. the head of the rule consumes its sisters
one by one, usually first from one side, then the other. Fewer rules are cre-
ated and they are more sensible. Note that markovization may have already
introduced some or the intermadiate substructures.

There is also an optimal binarization for LCFRS which creates a gram-
mar with rules of minimal possible fan-out [22]. Althought the fan-out
a↵ects the parsing complexity, other binarization techniques can lead to
better performance. In [20] an algorithm miminising the theoretical parsing
complexity was proposed, however it only gives the best theoretical com-
plexity without giving any respect to distribution of the grammar rules. A
comparison of binarization methods was presented in [60].

3.2.5 Parsing

As in its essence derivations in an LCFRS analysis are context-free, usage
of a chart for representing partial parsing results is possible, allowing for

61

polinomial parsing time. The time to parse a sentense ! with a binarized
grammar G is O(|G| · |!|p)), where |!| is the length of the sentence and |G| is
the size of the grammar. The power p is the maximal parsing complexity of
the rules in G. The parsing complexity in turn is defined as fL + fR1 + fR2,
where fL is the fan-out of the left-hand side of the rule and fR1 and fR2 are
the fan-outs of the right-hand side nonterminals.

We implement a modified probabilistic CYK parser for context-free gram-
mars in Chomsky normal form [59, 64]. The technique which enables the
genaralization made is weighted deductive systems. In general weighted
deductive systems are logical systems consisting of axioms, which are logi-
cal formulae, and inference rules, which explain how more formulae can be
obtained from the given ones.

The CYK algorithm in the form of a deductive system [47] works as
follows. One by one, it builds items, which are partial analises of the input
string. In the context-free case an item is a triple [A, i, j], where A is a
category label, i j are indices denoting two positions in the string. Assume
the original string is w1w2 . . . wk. Then, if we form an item [A, i, j] it means
that there is complete parse of the substring wi+1wi+2 . . . wj with the root
label A. The deductive system, then, consists of:

• Axioms: [A, i, i+ 1] for each grammar rule A ! wi+1

• Goals: [S, 0, k] if S is the sentence label

• Inference rules: [B,i,j] [C,j,l]
[A,i,l] for each grammar rule A ! B C

Here the goal items are those that we are searching for. Since there are
parses of every substring wi+1 rooted in A for each grammar rule A ! wi+1,
then the axioms can always be formed. Moreover, if we have two parses for
adjacent substrings wi+1 . . . wj and wj+1 . . . wl and a grammar rule A !
B C, where B and C are the roots of these parses, then there is also a parse
of the substring wi+1 . . . wl. Thus, the inference rules exactly tell us how to
generate items.

A weighted decuctive system also assignes weights to its items. They
signify the cost of creation of an item. In our case the weights can be sub-
stituted by the probabilities of the corresponding parses with a probabilistic
context-free grammar. To avoid underflow, we apply the logarithm to the
probabilities. Then, in the deductive system we have:

• Axioms:
| log(p)| : [A, i, i+ 1]

for each grammar rule p : A ! wi+1

62

• Inference rules:

x1 : [B, i, j] x2 : [C, j, l]

x1 + x2 + | log(p)| : [A, i, l]

for each grammar rule p : A ! B C

Here, w : I denotes an item I with its weight equal to w, and p : A ! B
means that the rule A ! B has that probability p in the PCFG that we have.
Assuming independence of grammar rules application one can conclude the
in this deduction system an item | log(p)| : [A, i, j] is formed, i↵ there is a
partial parse of wi . . . wj rooted in A whose probability is p.

Thus far we can only do exhaustive parsing. But first, it is not always
needed, and second, exhaustive parsing is slower than searching only for the
best parse. When only looking for the best parse one may need an algorithm
which decides in which order new items must be created.

We are only interested in the most probable parse and for that one can
use Knuth’s algorithm. It requires two sets: chart and agenda. The chart
contains items whose minimal possible weight we already obtained. For
instance, for every rule pi : Ai ! wi we put the items | log(pi)| : [Ai, i, i+ 1]
in the chart because there is no other parse of the substrings wi with a
smaller weight and rooted in Ai. The agenda contains the items whose
wieght can still be changed. The algorithm is given below.

63

while A 6= ; do
remove the best item x : I from A and add it to C;
if I is a goal item then

stop and output true;
else

for all items y : J deduced from I and items in C do
if C contains J then

do nothing;
else

if A contains z : J for some z then
if z y then

do nothin;
else

update the weight of J in A to y;
end

else
add y : J to A;

end

end

end

end

end
Algorithm 1: Knuth’s algorithm

We proceed as follows: take the best item from the agenda and try to
combine it with all items of the chart, the results are added to the agenda,
and the item is moved to the chart. We stop if the best item on the agenda
is a goal item. The algorithm returns the most probable item, and its
correctness is provided by monotonicity of the weighting function, i.e. every
new item has higher weight than the items from which it was formed, and
only the best item is taken from the agenda at each time. To reconstruct
the parse, one needs to store in every item pointers to the ones that were
used to form it.

LCFRS parsing can be done in an almost identical fashion. However the
form of items must be changed. Now an item is a tuple [A, ⇢], where the
range vector ⇢ 2 (N ⇥ N)dim(A) is a sequence of left and right coordinates
of the segments (ranges) that A spans over. For instance, in Figure 5, to
parse the sentence we would at least need to find the items [V P, (0, 1), (2, 3)],
[V P, (0, 1), (2, 4)], and [S, (0, 4)] (assuming darüber= w1). Obviously, if all
symbols A have dim(A) = 1, then all items have the exact form as those

64

used for CFG parsing.
Any inference rule

x1 : [B, ⇢B] x2 : [C, ⇢C]

x1 + x2 + | log(p)| : [A, ⇢A]

is obtained from an instanciation A(⇢A) ! B(⇢B) C(⇢C) of a grammar
rule. To obtain an instanciation of a rule one must substitute all vari-
ables by ranges and concatenation of variables by concatenation of ranges.
For example, the rule S(X1X2X3) ! V P (X1X3) VMFIN(X2) can be in-
stantiated as S((0, 4)) ! V P ((0, 1), (2, 4)) VMFIN((1, 2)). Similarily, the
axioms are of the form 0 : [A, (i, i+ 1)], for each rule A(wi+1) ! ✏ if we use
gold POS tags. Or, alternatively, another non-zero weight may be applied
if the POS tags are not given in the input. It is also worth noticing that
we do not allow instantiations like [V P, (0, 1), (1, 2)], when distinct ranges
in an nonterminal can theoretically be concatenated. By doing so with the
grammars extracted from our corpora we do not miss any generalization,
because there are no rules that can cancel such zero-length gaps. At the
same time a substantial speed-up is archieved, because of the reduction in
the size of the chart.

As an example, assume the grammar consists of the following rules:

0.33 : S(X1X2X3X4) ! A(X1, X3) B(X2, X4) 1.0 : C(c) ! ✏
0.33 : S(X1) ! D(X1) 1.0 : D(d) ! ✏
0.33 : S(X1) ! E(X1) 1.0 : E(e) ! ✏

0.5 : A(X1, X2) ! C(X1) C(X2)
0.5 : A(X1, X2) ! E(X3) E(X4)
1.0 : B(X1, X2) ! D(X1) D(X2)

The parser is given the input line cdcd. Figure 8 shows in steps how
the parsing algorithm works. The table shows the changes of the chart,
which grows monotonously one item at a time and all the newcoming items
have higher or the same weights as any chart item. The agenda is a priority
queue. We insert items in the agenda and we also need to pop the best item,
i.e. the item with the lowest weight. For e�cient parsing these operations
better be done in sub-linear time.

The algorithms outputs log(12) : [S, (0, 4)] with the poiners to the items
used to form it.

This algorithm is rather simple to implement and it is also intuitively
clear. The most important implementational properties of such parsing al-
gorithm are the speed of locating items in the chart and agenda and the

65

steps chart agenda
0 0 : [C, (0, 1)], 0 : [D, (1, 2)],

0 : [C, (2, 3)], 0 : [D, (3, 4)],
1 0 : [C, (0, 1)] 0 : [D, (1, 2)], 0 : [C, (2, 3)],

0 : [D, (3, 4)]
2 0 : [C, (0, 1)], 0 : [D, (1, 2)] 0 : [C, (2, 3)], 0 : [D, (3, 4)],

log(3) : [S, (1, 2)]
3 0 : [C, (0, 1)], 0 : [D, (1, 2)], 0 : [D, (3, 4)], log(2) : [S, (1, 2)]

0 : [C, (2, 3)], log(2) : [A, (0, 1), (2, 3)],
4 0 : [C, (0, 1)], 0 : [D, (1, 2)], log(3) : [S, (1, 2)], log(2) : [A, (0, 1), (2, 3)],

0 : [C, (2, 3)], 0 : [D, (3, 4)] log(3) : [S, (3, 4)], log(2) : [B, (1, 2), (3, 4)],
5 0 : [C, (0, 1)], 0 : [D, (1, 2)], log(3) : [S, (1, 2)], log(3) : [S, (3, 4)],

0 : [C, (2, 3)], 0 : [D, (3, 4)], log(2) : [B, (1, 2), (3, 4)]
log(2) : [A, (0, 1), (2, 3)]

6 0 : [C, (0, 1)], 0 : [D, (1, 2)], log(3) : [S, (1, 2)], log(3) : [S, (3, 4)],
0 : [C, (2, 3)], 0 : [D, (3, 4)], log(12) : [S, (0, 4)]
log(2) : [A, (0, 1), (2, 3)],
log(2) : [B, (1, 2), (3, 4)]

7� 8 0 : [C, (0, 1)], 0 : [D, (1, 2)], log(12) : [S, (0, 4)]
0 : [C, (2, 3)], 0 : [D, (3, 4)],
log(2) : [A, (0, 1), (2, 3)],
log(2) : [B, (1, 2), (3, 4)]

log(3) : [S, (1, 2)], log(3) : [S, (3, 4)],

Figure 8: Parsing with LCFRS

66

quantity of unused items in them. In [4] a range of parsing strategies op-
timized with respect to these properties was presented. Di↵erent strategies
use other types of items and a bigger number of inference rules. More refined
items can improve the speed of locating them and also cancel earlier some
redundancies. A speed-up of up to 20 times is archieved there.

Although it might be more practical to use one of the proposed algo-
rithms, we restrain outselves to the basic algorithm for its simplicity. More-
over, for the data we worked on, we did not face any serious implementa-
tional memory or time deficiencies. As was already mentioned, the absolute
charactiristics of our implementation only play a secondary role, and parsing
strategies do not a↵ect the quality of the parse either.

3.2.6 Baseline

The TIGER corpus was parsed using many formalisms as we show in Sec-
tion 2. We can use as a baseline the results of one of the works discussed,
but it would be impossible to do direct comparison for very di↵erent parsers.
The closest to the LCFRS formalism is CFG. The comparison of the two will
exactly show what kind of impact LCFRS makes. Fortunately, the parser
that we implement can be used to parse with CFG without any change.
The only discontinuities the parser can possibly create have to be in the
grammar rules. Parsing under the same conditions allows for both accuracy
and performance comparison.

To obtain a context-free grammar from a corpus with crossing branches
there exist three natural methods based on either copying nodes or moving
them. When accepting the node-raising approach, one takes a discontinuous
node and re-attaches its daughters to the node’s parent until the node be-
comes continuous. Consider the tree in Figure 9. It has two discontinuous
V P nodes. First, the node labelled PROAV is raised to the higher V P
node and, then, to the S node. The resulting tree is given in Figure 10. It
can be used both for CFG training and testing.

When doing node-splitting and node-adding, one splits a node according
to its continuous segments, or adds a copy of a node respectively (see [27]
for more detail). The accuracy of all three approaches di↵ers by at most 3
percent, node-raising being the most accurate. At the same time only node-
splitting provides a method to recover the intended discontinuous trees, but
at the price of worse parsing performance and heavier interference with the
rule frequency distribution.

67

S

VP

VP

PROAV VMFIN VVPP VAINF

Figure 9: Discontinuous tree

S

VP

VP

PROAV VMFIN VVPP VAINF

Figure 10: Continuous tree

68

3.2.7 Evaluation

In [39] three di↵erent evaluation metrics were considered to evaluate the
performance of a PLCFRS: EVALB, tree-distance measure and dependency
evaluation.

EVALB is a modification of the PARSEVAL measure to account for
possible crossing branches. This measure compares two sets of tuples for
the result of parsing and the expected result. Each tuple

(Label, {(l1, r1), (l2, r2), . . . , (ln, rn)})

consist of a node label and the continuous segments of the sentence it spans
over. It identifies one constituent of the tree, so that continuous constituents
have one segment and discontinuous have more than one. Given the set of
tuples P of the parse and the set of tuples G of the gold standard tree
the recall is defined as r = #(P\G)

#G , the precision is p = #(P\G)
#P , and the

f -score 2⇤p⇤r
p+r . Even though EVALB was criticized in [28], it allows one to

compare results with previous work in PCFG as well as LCFRS. Moreover,
we are solely interested in the relative changes in accuracy, while the absolute
results are less important.

Tree-distance measure [2] compates two trees on the basis of operations of
node deletion, insertion and label swap. The more operations are needed to
convert one tree into another, the more di↵erent the trees are. This measure
compares any trees and is independent from the notion of discontinuity, thus
it can nicely be used for LCFRS parsing evaluation. It is a less linguistically-
oriented measure, though it is very similar to EVALB. A direct node-wise
analysis and intuitively correct evaluation of how good the parser captures
discontinuities are not possible.

Dependency evaluation [37] consists in comparison of dependency graphs.
It evaluates pair-wise connections of the words in a string. However, to ob-
tain dependency graphs one must identify the dependencies in the phrase-
structure tree, which makes this technique a bit subjective. The most im-
portant di↵erence from constituent evaluation is that there is no hierarchical
grouping of words. Therefore the flat structures of the TIGER corpus will
be punished less in the case of a small mistake.

Any of the tree measures could be possibly used. We are mostly inter-
ested in revealing specificities of LCFRS and in particular its performance
on discontinuities. Therefore, the choice of EVALB is clearly justified.

69

4 Empirical evaluation

4.1 Data

In this section we present the set-up and results of our experiments. First,
we describe the common setting of all the experiments. Then we talk about
our general observations concerning the corpus and the grammars extracted.
After that, we have a closer look at di↵erent modifications of the initial
grammar and the corpora.

The treebank we use is the TIGER treebank(Section 2.2). In the version
of the corpus that we use, there are overall 50429 sentences, which we reduce
to exactly 50k. For di↵erent experiments we may need the full version or
a smaller subcorpus. Therefore we take the first 18k sentences, which is
approximately the size of the NEGRA corpus (minus 2k for testing), to be
the small training corpus (denoted NEGRA here). The bigger corpus is at
least two times larger and comprises the first 48k sentences (TIGER). The
sentences with IDs from 48001 to 50000 are chosen for testing. The size
of the test set is, thus, 10% of NEGRA and 5% of TIGER. The numbers
coincide with those of previous experiments in this area and reside in the
usual range accepted for our task. The test set is denoted as TEST and the
development set DEV is taken to be sentences from 46001 to 48000.

The original data is not ideal in several respects. The sentence annota-
tion includes punctuations which require additional attention. First, if we
use the original annotation where punctuations are usually attached high at
the sentence level, then the amount of discontinuous rules extracted grows
significantly, and importantly they do not really correspond to any ‘true’ dis-
continuities. Another approach is to re-attach punctuation low to nearest
nodes with the help of a heuristics. We do not expect any noticeble improve-
ment of parsing results after that. And even the opposite, as we will discover
further in the experiments, the problem of sparsity already clearly manifests
itself, and adding new information with unknown impact can complicate the
problem. There are also a few sentences containing nothing else but punc-
tuation and nonwords, which we remove from consideration. Therefore, we
exclude all punctuation from the annotation. Neither do we add additional
punctuation.

Another dubious piece of annotation is the artificial root nodes labled
V ROOT that appear in many sentences. The annotators were allowed to
put prhrases of any entry in the treebank under the V ROOT if they, for
instance, did not form a sentence. Consider the tree in Figure 11. Notice
that the discontinuous PP disappears if the punctuation is removed and we

70

Von
APPR
Dat
von

Keyvan
NE

*.Dat.Sg
Keyvan

Dahesch
NE

*.Dat.Sg
Dahesch

(
$(

(

Frankfurt
NE

Neut.Nom.Sg
Frankfurt

a.
APPRART
Masc.Dat
am

M.
NE

Masc.Dat.Sg
Main

)
$(

)

PNC PNC

PN

AC NK

PP

PNC MNR

PN

AC NK PAR

PP

VROOT

Figure 11: Discontinuous tree

have to create an artificial rule V ROOT ! PP in the grammar.
A detailed consideration shows that this artificial category was not cre-

ated by a good, consistent pattern. Its usage is either triggered by the
newspaper specific extracts of text, like, for example, advertisments, or can
be explained on the pragmatical level, which as we think should not be han-
dled by a parser anyway. A radical but simple solution is chosen, to retain in
TEST only utterances rooted in S or direct daughters of the V ROOT node,
also labeled by S. We also create no corresponding rules with V ROOT .
TEST reduces to 1581 sentences. This decision also clarifies how the goal
items of the parser must look like, namely exactly [S, 0, k] where k is the
sentence length. At the same time, evaluation seems to be a bit less fair be-
cause the parser is always given the absolute true value of the sentence root
and, thus, in every parse there is always one correctly parsed constituent.
E↵eciency could also su↵er from passive items labeled V ROOT and now we
avoid this problem.

To provide a baseline we prepare modifications of each set with resolved
crossing branches. We resort to the node raising technique as describes in
Section 3.2.6. All the sets including the test set are then modified. They re-

71

ceive the names NEGRA-CFG, TIGER-CFG, and TEST-CFG respectively.
We do not recover the original discontinuous structure and evaluate on the
modified set.

Due to time and computer performance capabilities we have to restrict
the maximal size of a sentense fed to the parser to 25. Finally, the TEST set
contains 1357 utterances. The average sentence length in TIGER is 15.23,
thus we are covering much longer sentences than an average one.

4.2 General overview

Now we extract the grammars from the training sets. The average RHS
length computed for TIGER is 4.28. At the same time the average tree
depth is 5.1, and 4.66 for sentences of length no more than 25. As expected
we may conclude that the trees are rather flat. The proportion #nonterminals

SentenceLength
equals 0.49.

Then, the grammar rules are binarized using the head-outward bina-
rization. The following table summarizes the data after all preprocessing
steps.

TIGER TIGER� CFG NEGRA NEGRA� CFG
Size 47957 47957 17980 17980
Rules 32728 30977 17399 16290

Rules� bin 51413 56709 27697 29814
LHSfan� out 1.2 1.0 1.19 1.0

Discontinuous trees comprise 27.8% of the corpus and discontinuous
nodes make up 1.8% of all nodes and 5.5% of all nonlexical nodes. The
number of rules with dim(LHS) > 1 is 5649 (17.2% of all rules, in TIGER).
The average frequency of discontinuous rules is 3.44, whereas for the con-
tinuous rules it is 12.4. We observe a lack of frequent discontinuous rules,
as compared to continuous ones. That was of course expected as disconti-
nuities are rarer than continuous nodes. At the same time every sixth rule
and only every 20th node is discontinuous, hence, greater sparseness. This
may lead to poorer coverage and precision on discontinuous constituents.

4.3 Coverage

We perform the following experiment. We want to predict to which extend
this underrepresentation of discontinuous rules a↵ects the parsing coverage.
To this end we generate two grammars, one of the sentences 0-46k of TRAIN

72

and the other of the DEV set. The second grammar represents the set of
rules that are indispensable to correctly parse the small corpus. For both
corpora used in the experiment we do all the preprocessing steps as with the
corpora that we use for parsing. Then the percentage of rules of the second
grammar missing in the first is calculated separately for continuous and
discontinuous rules, once considering their frequncies in the DEV grammar
and once not.

Continuous Discontinuous
TRAIN 26126 5426
DEV 3505 576

Missing 952 (27%) 224 (39%)
Missing � Freq 7% 25%

The row Missing shows how many rules are missing. Then, Missing�
Freq counts each rule as many times as it appears in the second grammar.
Note here the importance of these numbers, especially Missing � Freq,
which tells us how many nodes (contituous or discontinuous) may not in
principle be found, hence, an upper bound on the recall of corresponding
nodes.

The table confirms our expectations. 39% discontinuous of rules are
missing as opposed to 27% of missing continuous rules. The numbers im-
prove with frequencies considered, as more frequent rules are more likely to
appear. We notice also that this number drops quicker for continuous rules,
suggesting that discontinuities have a more uniform distribution. The find-
ings imply that the highest possible recall that we may have on discontinuous
nodes is 75%, which is a bit discouraging.

This problem in turn will also a↵ect the overall parse quality quite a lot,
because discontinuous node’s segments are usually located in the context
independent of the node’s context. If it is not recognized correctly, the
entire parse is very likely to mix up completely. If we, for instance, miss a
discontinuous rule which has two segments, then, ther will be two remote
unrecognised nodes, deteriorating the parse from di↵erent positions, whereas
a missing continuous rule only introduces errors in one place. It seems
possible that the overall parse quality may to a larger degree depend on the
ability to recognize discontinuities, in comparison to usual continuous rules.
It is surprising that so far in the literature there have been no node-wise
report on that matter. We are going to give it in the following sections.

Among the discontinuous missing rules the most frequent are VPs with
separated prepositional or adverbial modifiers and topicalized NPs. There

73

are overall many classes with rather consistent patterns that one can dis-
tinguish. The following table contains several examples of rules that we
found.

Rule
V P � PP V P (X0X1, X2) ! NP (X0)V V INF (X1)PP1(X2)
V P �ADV V P (X0, X1X2X3) ! ADV (X0)NP (X1)PP (X2)V V INF (X3)
V P �NP V P (X0, X1X2X3) ! NP (X0)PROAV (X1)NP (X2)V V PP (X3)
NP � S NP (X0X1X2, X3) ! PDAT (X0)AP1(X1)NN(X2)S1(X3)

Another prominent class presented there is NP s with extraposed relative
clauses. These discontinuities are very easily recognized, they have an NP -
like combination of categories and a separated S, whose function in the
corpus is labeled by RC (relative clause). There are rather few extraposed
relative clauses also for PP s and V P s.

The conflict arising with the appearence of discontinuous rules is that,
there are too many possibilities to create a discontinuity and too few are
actually presented in the corpus. If, for instance, there are x possibilities
to form a continuous V P , how many discontinuous V P rules we may need?
Assuming a V P can be intermixed with the subject and possibly another
verb, which, with the average length of the RHS of 4, can take at least 5-6
di↵erent positions. Then the number of required rules becomes 5x. But, as
we know discontinuous nodes comprise only 5% of all nodes and, therefore
the discontinuities have so to say 5⇥ 20 = 100 times less training data.

Searching for a possible way to recover the missing rules we introduce a
notion of a similar rule. Given a rule

R = A(↵1, . . . ,↵dim(A)) ! A1(X
1
1 , . . . , X

1
dim(A1)

) . . . Am(Xm
1 , . . . , Xm

dim(Am))

we form the word w = ↵1↵2 . . .↵dim(A) 2 (T [V)⇤. Note that we only have
such rules when ↵i belongs to V ⇤, thus w 2 V ⇤, and w = X1X2 . . . Xk is
a permutation of all variables of the RHS. Recall that a nonterminal may
only have one value of the dim function. Therefore A has actually in our
notation the name AX, where X = dim(A). All divisions of the vector w
into subvectors

S = X1 . . . Xn1 , Xn1+1 . . . Xn2 , . . . , Xnl�1+1 . . . Xnl=k

there is a rule

AY (S) ! A1(X
1
1 , . . . , X

1
dim(A1)

) . . . Am(Xm
1 , . . . , Xm

dim(Am))

74

with the same RHS as R, the same ordering of the variables but di↵erent
restrictions of the distance between them, direct precedence may be inter-
changed with just precedence. Here, Y is the length of the sequence S. The
set of all these rules form the class of similar rules, which are also similar to
R. Consider the rules NP (X0X1, X2) ! PPOSAT (X0)NN(X1)CS(X2)
and NP (X0X1X2) ! PPOSAT (X0)NN(X1)CS(X2), dropping dim val-
ues in the labels. They are similar because they only di↵er in the number
and positions of the commas in the LSH. TIGER lacks the first rule but has
the second one.

We discover that among all 224 missing discontinuous rules 85 (38%)
have similar in the grammar. By recovering those we may potentially greatly
increase the theoretical recall upper-bound on the discontinuous nodes. Un-
fortunately adding all similar rules of those present in the grammar is both
linguistically inadequte, will cause overgeneration, and technically implausi-
ble due to significant slowdown of parsing speed. We have to choose carefully
only those similar rules that are empirically supported and do not overload
parsing.

Extraposition in German is very frequent. Extraposed relative clauses
are one of the most frequent instanses of the usage of discontinuous rules as
we will see in Section 4.4. There are manyNP (a few PP and V P) variations
which accept extraposed relative clauses, that is why there are missing rules
for the phenomena. The range of such NP s is similar (or identical) to that of
NPs with adjacent relative clauses. This, together with the fact that relative
clauses occur chiefly at the end of an NP allows us to add to the grammar
a small number of rules that are responsible for extraposition which should
be there but are absent because of low frequency and lack of training data.
All in all, we add 434 rules to NEGRA, among them 262 rules for NP s, and
to TIGER we add 780 rules and 422 rules respectively.

However, direct addition of new rules to the grammar is only one way
to solve the problem, which can be applied to other phenomena, but we
observed that it is not as fruitful as the next approach. It in some sense
adds all possible missing rules for extraposed relative clauses. Given a node
in a tree, i.e. obtained by the application of the rule NP (X0X1X2, X3) !
PDAT (X0)AP1(X1)NN(X2)S1(X3), we create an intermediate NP as in
NP (X0X1X2, X3) ! PDAT (X0)AP1(X1)NN(X2) and attach the rela-
tive clause later with NP (X1, X2) ! NP (X1)S(X2). There is only one
discontinuous rule to cover the phenomenon, thus, nothing is missing. Ad-
ditionally, this way we do not need to assign any ad hoc probabilities to the
new rules and interfere with the maximum likelihood estimates. A relative
comparison of parsing results with and without the modification is given in

75

Section 4.5.5.
The method described may be used jointly with node split. We divide

all S and CS nodes into relative clauses SRC and CSRC and just sentences
according to their function. We try node split separately and together with
the tree modifications for extraposition.

4.4 E↵eciency

In this section we focus on the e↵eciency of parsing with LCFRS. The gen-
eralization over CFG made by LCFRS is that discontinuous constituents are
allowed. CFG is parsed very quickly, much faster than LCFRS. The source
of this ine�ciency is obviously the discontinuous rules. The size of a gap is
not limited by anything. Thus in the chart and the agenda there will always
be much more items. If, for instance, in the CFG parse of a sentence of
lenght k all possible item form the set of the size k(k+1)

2 , for LCFRS with
the maximal fan-out two, the same number is already O(k4).

We concentrace on disconinuous rules of the generated grammars. We
collect certain statistics about the training corpus. First, the most frequent
rules are found and their meaning established. Second, all gaps occuring
in the corpus in the gap positions of these rules are collected. We believe
that using the information about the rules’ essence and the gaps one can
significantly improve on e↵eciency and accuracy. A number of steps can
be made. One can integrate information about the gaps in the rule, so
that it will only apply if the gaps are filled with certain categories or have
certain lengths. At the same time one can decide that a few discontinuities
can be resolved from the beginning, as with preprocessing for CFG but less
radically. Both ways lead to inproved parsing speed.

Here, we list some of the most frequent rules in TIGER with their fre-
quencies.

Rule Frequency
1 NP (X0X1, X2) ! ART (X0)NN(X1)S(X2) 376
2 PP (X0X1X2, X3) ! APPR(X0)ART (X1)NN(X2)S(X3) 186
3 V P (X0, X1) ! PP (X0)V V PP (X1) 609
4 V P (X0, X1X2) ! V P (X0, X1)V AINF (X2) 350
5 V P (X0, X1X2) ! V P (X0, X1)V APP (X2) 223
6 PP (X0, X1) ! PROAV (X0)V P (X1) 186
7 NP (X0, X1) ! PPER(X0)V P (X1) 355

Most of the rules are easily interpreted. Consider the first two rules.

76

They represent the most frequent NP and PP patterns, ART + NN and
APPR+ART+NN , followed by an extraposed relative clause. For instance,
it can be extracted from the following pair of an extract and a constinuent
of this extract:

(5) ... ihnen auch die Rechte geben die mit diesem Mandat verbunden
sind.
die Rechte die mit diesem Mandat verbunden sind

The gaps may have 66 di↵erent variations (for the NP rule), which do
not suggest any particular pattern. This finding confirms that extraposition
is an unbound dependency.

The third rule is created because one of the PP modifiers of a participle
is located far from the verb. In the corpus the finite verb and the subject of
a sentence are located above the VP with the infinite verb, its complements
and modifiers. As infinite verbs are placed at the end, a gap is formed if a
modifier appears before the subject or the finite verb.

(6) Auch in Schiras wurden vier Gottesfeinde gehenkt.
Auch in Schiras gehenkt

Consider also the tree in Figure 9. The rule

V P (X1, X2) ! PROAV (X1) V V PP (X2)

is created because the finite verb VMFIN is attached higher. In the same
tree we observe application of the rule 4 of the table. It serves to pass the
gap higher in the tree, because the subject and the main verb come even
higher.

If one looks at this rule more closely, one may observe that it can be
though of as a usual context-free rule, as two adjacent constituents are con-
catenated. The rule resembles V P (X0X1) ! V P (X0)V AINF (X1), though,
they are not similar in the sense that we defined. It would be also interest-
ing to observe how many similar rules in this sense are in the grammar and
whether we may profit from using this similarity. We leave this question to
the future work.

The rules like 3, 4 and 5 have more consitent gap patterns than rules
1 and 2. For instance, in Figure 12 one can find all gap patterns with
frequincies for rule 5. There, under the item Other we put all other than
presented patterns, which are actually very alike but with di↵erent variation
on the NP .

77

V AFIN +NP 109
NP 37

V AFIN 19
V AFIN +NN 6
V AFIN +NE 6

PPER 4
V AFIN + PPER 3

NN 3
Other 36

Figure 12: Gap patterns with frequencies

Although there are still many of them, their overall appearence in most
cases can be described as V AFIN + NP or with one of the components
missing. Therefore, in theory there should be a method to use this infor-
mation to help parsing, either by re-arranging the tree or by introducing
information about gaps in the grammar rules. We do not have a direct and
precise solution, but we want to point out that the formalism loses poten-
tially very useful information. Moreover, the previously described type of
rules that pass gaps also suggests that the gap in the LHS and that in the
RHS should be equated, so that, the rule becomes a CFG rule.

Rule 7 is used for explitive es and the following is the typical construction
in German that uses rule 6:

(7) ... müßte damit rechnen festgenommen zu werden.
damit festgenommen zu werden

4.5 Parsing

4.5.1 Parser

We implement the parsing algorithm as described in section 3.2.5. The
code is written in Java and all the experiments are conducted on an Intel
i5-2520M CPU 2.50Ghz processor.

After binarization all rules as hashed by two tables and can be quickly
found by their left or right nonterminal in the RHS. The agenda is imple-
mented as a priority queue. It allows for logarithmic best element extraction
time as well as logarithmic new element insertion time. Unfortunately, we

78

Start

VP NP

0

1

2

3

3

4

3

4

[VP, (0,1)]

[VP, (0,1), (2,3)] [VP, (0,1), (3,4)]

[NP, (3,4)]

Figure 13: A tree from the TIGER corpus

constantly need to update the weights, which involves inserting new ele-
ments as well as removing old ones. Removal may take linear time because
of possible rearrangements of the structure. We decide to allow duplicate
items with di↵erent weights in the agenda and then quickly pass them if they
are already in the chart. The insertion and extraction of the best element
remain fast. The agenda does not grow too quickly because of this as well.

The chart is designed to be a decision tree. Every item has coordinates:
the labels, left and right ends of the continuous segments. For example, the
item [V P, (0, 1), (2, 3)] may be encoded as the vector (V P, 0, 1, 2, 3). In this
representation all possible items can be thought of as vectors in a vector
space, only not all vectors have the same length and may have string as well
as numeral values. We locate items in a decision tree, a leveled tree with
edges going from level k to level k + 1 are labeled with possible values of
the k coordinate. For instance for the items [V P, (0, 1), (2, 3)], [V P, (0, 1)],
[NP, (3, 4)], and [V P, (0, 1), (2, 4)] the tree from Figure 13 will be created.
Three nodes there contain the corresponding items, the rest are empty.

A new item is inserted in the chart in the position determined by its
coordinates. With this representation it is possible to search for items with
unknown structure without iterating over the chart. For instance, when
parsing we may extract the item [A, (0, 1), (3, 4)] from the agenda and want

79

TIGER TIGER� CFG NEGRA NEGRA� CFG
Parsed 1337 1356 1355 1356

Complete match 434 450 402 387
Recall 0.768 0.780 0.768 0.779

Precision 0.784 0.781 0.762 0.769
F � score 0.765 0.776 0.761 0.769

Parsing speed 5622 1797 1897 868
Avg. chartsize 90696 22540 54437 14531

Figure 14: Statistics on all sentences

to apply the rule

C(X1X2, X3X4) ! A(X1, X3) B(X2, X4)

to it. Then, we need to find any item in the chart with the label B, first
coordinate X2 = (1, x) where 1 < x 3, and X4 = (4, y) with 4 < y. This
search query can easily be executed by our decision tree.

4.5.2 First experiments

In this section we present the results of our parsing experiments with un-
modified and non-markovized grammars. The following tables shows the
sentence level performance (as opposed to node-wise performance) of CFG
and LCFRS parsers separately for sentences with continuities and without
as well as for all sentences.

The results are given for all sentences (1357 all, 997 continuous and 360
discontinuous). For those that were not parsed we add 1 to precision and
0 to recall. Most of the parsing failures time-outs (1 minute), that we put.
The parsing speed in the tables is given in ms/sentence. In the CFG case by
discontinuous sentences we mean those that were discontinuous before the
crossing branches were resolved.

The first basic observation that we make is that CFG and LCFRS pro-
duce parses of almost the same quality. The quality of CFG parising is a
little bit better for all kinds of data. As we observed in Section 4.4 many of
the most important gaps have consistent patters. Thus, after the resolution

80

TIGER TIGER� CFG NEGRA NEGRA� CFG
Parsed 987 996 995 996

Complete match 376 360 349 339
Recall 0.801 0.810 0.801 0.809

Precision 0.811 0.808 0.793 0.796
F � score 0.791 0.804 0.792 0.797

Parsing speed 4210 1472 1437 711
Avg. chartsize 68020 18287 41406 11867

Figure 15: Statistics on continuous sentences

TIGER TIGER� CFG NEGRA NEGRA� CFG
Parsed 350 360 360 360

Complete match 58 50 53 48
Recall 0.674 0.694 0.676 0.694

Precision 0.708 0.706 0.676 0.694
F � score 0.675 0.697 0.674 0.692
Avg. speed 9528 2694 3169 1303

Avg. chartsize 153495 34322 90528 21908

Figure 16: Statistics on discontinuous sentences

81

GOLD\PARSE 0 gaps 1 gap 2 gaps 3 gaps
0 gaps 910 72 5 0
1 gap 94 196 10 0
2 gaps 7 18 18 2
3 gaps 0 0 2 3

Figure 17: Corelation of the numbers of gaps betweet the gold standard and
the parsing results

we obtain quite regular combinations. Raising nodes within V P s with ver-
bal complexes should not cause irregularities. However raising extraposed
relative clauses seems to be more random while they can then attach to
a very wide range of phrases. The same can be said about the expletive
‘es’ under PPER in the rule NP (X0, X1) ! PPER(X0)V P (X1) for which
there are also no regular gaps.

With discontinuous sentences both parsers seem to have significantly
more trouble than with continuous ones. This is, of course, not surprising,
because discontinuous rules are less frequent and therefore the LCFRS parser
will first try to form more probable continuous ones.

The parsing speed of LCFRS is approximately 3 times slower that that
of CFG. The chart also has on average 3-4 times more items. Although the
parsing accuracy does not increase much after switching from NEGRA to
TIGER, significantly more exact matches are obtained. Thus far, the parser
does not seem to cope well with discontinuities, neither does it maintain
the e↵eciency of CFG. One may ask whether the parser is at all capable of
catching discontinuities, or maybe they can in many cases be substituted
by more frequent continuous attachments. The Figure 17 shows that as
we parse the numbers of existing discontinuities and those found correlate
surprisingly well (even acounting for possible random concidence).

We see that it is not the case that discontinuities are never found. Among
297 sentences with one discontinuous node we miss only 104. Knowing from
Section 4.3 that we would in any case miss approximately 25% of rules,
the results are encouraging. The number of wrongly created discontinuous
constituents is comparable to that of missing ones, therefore we have a
balance between overgeneration and undergeneration.

All in all, we may conclude that the probabilistic model that we use is
appropriate for the task, and the bad quality is cause by:

82

Label f �measure precision recall goldFreq parseFreq
AV P 0.389 0.468 0.333 111 79
V P 0.687 0.666 0.709 626 667
CNP 0.692 0.698 0.687 252 248
NP 0.724 0.722 0.725 2407 2419
PN 0.739 0.800 0.687 262 225
PP 0.764 0.764 0.766 1988 1993
S 0.928 0.921 0.936 1833 1862
AP 0.570 0.631 0.521 315 260
V Z 0.991 0.982 1.000 109 111

Figure 18: Parsing results on continuous nodes

• mainly, very low coverage of discontinuous rules, and probably

• insu�cient training on discontinuous data, thus, bad probabilty esti-
mation and usage of wrong rules.

The latter can be approached by smooting of the probabilities, but we
are more ambitious about solving the first problem as was described in
Section 4.3.

4.5.3 Going nose-wise

We also evaluate parsing results for each node label separately. This evalu-
ation should reveal the categories causing most problems as well as present
to some extent independently the discontinuous part of the parses. In Fig-
ure 18 we have the most frequent category labels of continuous nodes and
the parse quality on them. The numbers are calculated for parsed sentences.
The training set is TIGER.

The good quality on the S nodes is partially due to our decision to
parse only sentences rootes in S. This may also be the reason why our
results are several points higher than that of the similar systems refered
to in Section 2.3.3. The most important and frequent categories NP , V P ,
and PP give approximately 72%, 69%, and 76%. Now let us turn to the
discontinuities in Figure 19 (only most frequent categories).

83

Label f �measure precision recall goldFreq parseFreq
PP 0.507 0.486 0.529 34 37
V P 0.429 0.467 0.397 290 246
NP 0.235 0.231 0.239 88 91

Figure 19: Parsing results on discontinuous nodes

v = 1 v = 2 v = 3
h = 1 0.755 0.780 0.769
h = 2 0.769 0.774 0.746
h = 3 0.768 0.770 0.740
h = 1 0.765 0.769 0.740

Figure 20: Di↵erent markovization parameters

These numbers are significantly lower. However, what we again observe
is that even for less frequent, and not presented in this table, categories there
is a very strong correlation between the numbers of rules found and expected.
We are coming to the same conclusion as in the end of Section 4.5.2. We
can also see the low recall on V P s, which agrees with the finding that very
many of the missing rules are those that construct discontinuous V P s.

4.5.4 Markovization

We try di↵erent markovization parameters, adding vertical and horizontal
contexts to the nodes as described in Section 3.2.3. The Figure 20 shows all
di↵erent variations that we tried on the TIGER training set.

Unlike the previously reported results and results for English, markoviza-
tion in our case does not add more than 2% to the initial results. There are
various reasons. First, the trees are rather plain and the vertical contex is
not as informative now. Second, as we excluded the V ROOT nodes, there is
one level less. As with the growth of the vertical and horizontal context the
results only deteriorate after v = 2 and h = 1, we quickly reach the maximal
acceptable level of sparseness. Note, also, that the results for NEGRA show
the same relative changes. Importantly, or best result v = 2, h = 1 requires
very much the horizontal context, the result for v = 2, h = 1 are more than

84

Label f �measure precision recall goldFreq parseFreq
AV P 0.137 0.240 0.097 125 50
V P 0.388 0.459 0.336 1543 1131
NP 0.279 0.338 0.238 408 287
PP 0.480 0.591 0.405 185 127
AP 0.095 0.155 0.068 132 58

Figure 21: Discontinuous nodes, no markovization

1% lower.
The vertical context provides a significant e↵eciency improvement in-

creasing the speed 3 times with v = 2, and by 9 with v = 3. It is crucial
for parsing with TIGER, as we are already approaching our computational
limits, and becomes even more important with the addition of more training
data or more rules, which is indicated by our findings as a necessity. Hor-
izontal context, though, slows down parsing and, therefore, we could not
parse all the sentences with h = 0, v = 2 and h = 0, v = 3 within our time
limit. But the results on parsed sentences show alike numbers.

Compared to general results, the results restricted on discontinuous
nodes, Figures 21 and 22, are improved greatly. Here we decide to used an
extended test set of all discontinuous sentences (all 1870 of them) found in
10k sentences. We parse with the grammar extracted from NEGRA, as the
entire TIGER corpus is not availiable (10k sentences are used for testing),
the accuracy results do not di↵er much, and there are less sentences without
a parse (the grammar is smaller). The markovization parameters are chosen
to be h = 1 and v = 2. The evaluation is done on parsed sentences, thus,
the frequencies may slightly di↵er between the two tables.

4.5.5 Re-attachment of relative clauses

Here we present the e↵ects of adding new rules to better recognize extraposed
relative caluses. The training and test sets remain those from the previous
chapter. We try two approaches: di↵erentiate sentences with relative clauses
from those without, and reconstruct the trees with relative clauses the way
we described in Section 4.3. The average parsing speed does not change
much. The improved results are given in Figure 23. It is also worth noticing

85

Label f �measure precision recall goldFreq parseFreq
AV P 0.309 0.491 0.226 124 57
V P 0.418 0.506 0.357 1535 1085
NP 0.327 0.380 0.287 407 308
PP 0.533 0.583 0.492 185 156
AP 0.230 0.396 0.161 130 53

Figure 22: Discontinuous nodes after markovization

Label f �measure precision recall goldFreq parseFreq
AV P 0.308 0.483 0.226 124 58
V P 0.419 0.507 0.358 1541 1086
NP 0.349 0.423 0.297 408 286
PP 0.543 0.587 0.505 186 160
AP 0.227 0.396 0.159 132 53

Figure 23: Results with after re-attaching relative clauses

that the number of sentences which did not receive a parse after exhaustive
parsing dropped from 8 to 5.

Now with node splitting, the results are even better (Figure 24). Some
relative improvement after the splitting was already reported in [40]. Here,
we see that the two methods can naturally suplement each other.

We conclude, that a significant parsing accuracy improvement can be
achieved by an external automatic corpus modification.

86

Label f �measure precision recall goldFreq parseFreq
AV P 0.281 0.461 0.202 124 54
V P 0.421 0.512 0.358 1539 1076
NP 0.366 0.440 0.314 408 291
PP 0.555 0.579 0.532 186 171
AP 0.242 0.440 0.167 132 50

Figure 24: Results with reconstructed trees and split S category

5 Conclusion

In this thesis we touched upon di↵erent properties of such formalisms as
HPSG, LCFRS, and ACG. On the one side we have a more linguistically
aware HPSG, whose mechanisms allow to process complex language phe-
nomena. It produces very accurate parses but the coverage requires a lot of
e↵ort to improve. At the same time, it was only recently that HPSG was
subjected to modification allowing for parsing dicontinuities in a direct way,
which, however, results in a significant slow-down.

At the same time discontinuities are essential in natural languages, es-
pecially for so-called relatively free word order languages like German. The
proportion of sentences with discontinuities in German is close to 30%. Thus,
it is not very surprising the German grammars in the HPSG formalism face
great di�culties.

There is a class of mildely context-sensitive formalisms that are con-
siderd as appropriate for modeling natural languages. Among them we find
LCFRS and ACG, which in fact were proved to be weakly equivalent. These
formalisms handle discontinuities with realtive ease, but lack means to ex-
press other linguistic generalizations. It seems possible that establishing
strict theortical connection between HPSG and ACG is profitable for both
formalisms including LCFRS.

We made the first step towards revealing these connections. We came
with certain conditions for a grammar in HPSG formalism, under which it
may be represented as a hyperedge replacement grammar. And those in
turn can be imitated as ACGs. Though, the conditions strongly restrict the
grammar’s ability to use sharing. It is of course related to the fact that ACG
is resource-sensitive and sharing is the same as duplication. The remaining

87

‘tree skeletons’ of the feature structures remain practically untouched. The
general picture is that HPSG can be converted into ACG if all its type def-
initions are ‘like’ LCFRS ruls, they only pass substructures (or variables in
LCFRS) up in the derivation and choose their direct substructures (daugh-
ters). Moreover, certain type of shring is additionally allowed between these
substructures. This may be thought as a mutual restriction on variables of
an LCFRS rule. In some sense we already use such restrictions to say that
the variables of a continuous rule must be adjacent segments in the string
and those of a discontinuous rule may not be adjacent. We admit that our
condition can possibly be loosened and hopefully, after a more detailed con-
sideration it will be possible to distinguish exactly which features of HPSG
machinery may be modeled in the formalism based on a resource-sensitive
logic.

The condition we state may by fulfilled on the subpart of HPSG de-
voted to semantics, for instance the Mininal Recursion Semantics (MRS)
for HPSG, hence MSR can be introduced as a component of LCFRS. For
the syntax, whether the syntactic part can be modified or simplified to ful-
fill the condition is not trivial to answer. Sharing plays an important role
there and is restrictive with respect to further derivation, thus, neither it is
resource sensitive, nor are their derivations context-free. As future plans we
consider implementing a convertion of a German HPSG grammar into an
ACG or LCFRS, or at least its maximally possibly subparts.

In the second, practical part of this research we looked deeper into the
intricacies of the LCFRS implementation. The recently developed methods
of reading a grammar facilitate research in this area with automatically
extracted large scale grammars. The TIGER corpus is a treebank of German
with crossing branches. It is a great platform for experiments with LCFRS.
We implemented an LCFRS parser with the aim of investigating the flaws
of the formalism and its strength. We present the first, as to our knowledge,
analisys of the node-wise performance of the parser and directly compare
it to that of the CFG parser, which is a restriction of our LCFRS parser
to continuous items. We pay most attention to discontinuous structures, as
only they di↵erenciate LCFRS from CFG. The result of our work consists
of the analyses of the parsing results and the extracted grammars together
with a description of actual and potential problems and suggestions about
their solutions which are also supported by out theoretical results. We
conduct a few experiments to improve extraposed relative clauses recognition
to confirm the positive e↵ect of grammar enrichments.

We investigate the most frequent rules on the di↵erent kinds of gaps they
can accept. It turns out that in many cases discontinuous rules have rather

88

consistent gap patterns. This property suggests that one may inform the
rules or the parser so that the gaps, which are now arbitrary, also convey
restrictive information.

Our implementation achieves state-of-the-art accuracy results and even
better, because of various simplifications that we make. These simplifica-
tions are introduced in order to make the work of the parser less dependent
on the annotation and issues which are not adressed yet by current grammar
extraction mechanisms.

The experiments obviously point out at the underrepresintation of dis-
continuities in the corpus. And the problem is of course not in the corpus
but rather in the idea of reading grammars from corpora. All possible dis-
continuous rules constitute a very large class of rules. At the same time
discontinuous nodes are 20 times rarer than continuous ones. The basic ob-
servation is that a great deal of discontinuous rules are already present in
the grammar as continuous rules but with one or more gaps. It implies sev-
eral things. First, the number of discontinuous rules may potentially grow
over the number of continuous rules. Second, the grammars extracted even
from the smaller corpora like NEGRA already contain a lot of missing rules,
though, without gaps.

We try many combinations of markovization parameters and report pars-
ing result. There have been a thorough report on the influence of markoviza-
tion parameters on CFG parsing of German with grammars extracted from
the TIGER corpus, but they cannot be applied to LCFRS parsing without
neglecting discontinuities. These findings also confirm the hypothesis that
the grammars lack discontinuous rules. They show that adding horizontal
context is vital to the parsing results, especially restricted to discontinuous
nodes. And horizontal context can be thought as adding, in some sense,
similar rules generalizing the given rules.

This corresponds to what we do with extraposed relative clauses. Namely,
we reconstruct the trees in such a way that relative clauses, adjacent or not,
are attached after other daughters are combined into a phrase, NP or PP .
By doing so, we use the fact that relative clauses are modifiers. For instance,
an NP with modification or not, it still remains as an NP . Moreover, if
the relative clause can be adjacent, then in principle it can also me sepa-
rated. Our results give significant improvement on the discontinuous NP
and PP nodes. Since other most frequient missing discontinuous rules rep-
resent ADV and PP modification, we find in our soonest plans an extension
of our method to modification in general. Another possible solution that we
plan to try in the future consists in selecting which discontinuities should be
left and which should be resolved the same way as we do for CFG parsing.

89

References

[1] Michel Bauderon and Bruno Courcelle. Graph expressions and graph
rewritings. Mathematical Systems Theory, 20(2-3):83–127, 1987.

[2] Philip Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1-3):217–239, June 2005.

[3] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and
George Smith. The TIGER treebank. In Proceedings of the workshop
on treebanks and linguistic theories, pages 24–41, 2002.

[4] H̊akan Burden and Peter Ljunglöf. Parsing linear context-free rewrit-
ing systems. In Proceedings of the Ninth International Workshop on
Parsing Technology, Parsing ’05, pages 11–17, Stroudsburg, PA, USA,
2005. Association for Computational Linguistics.

[5] Bob Carpenter. The Logic of Typed Feature Structures. Cambridge
University Press, Cambridge, 1992.

[6] Michael Collins. Three generative, lexicalised models for statistical
parsing. In Proceedings of the eighth conference on European chapter of
the Association for Computational Linguistics, EACL ’97, pages 16–23,
Stroudsburg, PA, USA, 1997. Association for Computational Linguis-
tics.

[7] Michael Collins. Head-driven statistical models for natural language
parsing. Comput. Linguist., 29(4):589–637, December 2003.

[8] Ann Copestake and Dan Flickinger. An open source grammar develop-
ment environment and broad-coverage english grammar using hpsg. In
IN PROCEEDINGS OF LREC 2000, pages 591–600, 2000.

[9] Berthold Crysmann. On the e�cient implementation of German verb
placement in HPSG. In Proceedings of RANLP 2003, pages 112–116,
Borovets, Bulgaria, 2003.

[10] Berthold Crysmann. Relative clause extraposition in german: An e�-
cient and portable implementation. Research on Language and Com-
putation, 3:61–82, 2005.

[11] Micheal W. Daniels. Generalized ID/LP grammar: a formalism for
parsing linearization-based HPSG grammars. PhD thesis, The Ohio
State University, 2005.

90

[12] Philippe de Groote. Towards abstract categorial grammars. In Asso-
ciation for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference,
pages 148–155, 2001.

[13] Philippe de Groote. Tree-adjoining grammars as abstract categorial
grammars. In TAG+6, Proceedings of the sixth International Workshop
on Tree Adjoining Grammars and Related Frameworks, pages 145–150.
Università di Venezia, 2002.

[14] Philippe De Groote and Sarah Maarek. Type-theoretic extensions of
Abstract Categorial Grammars. In R. Muskens, editor, Proceedings of
Workshop on New Directions in Type-theoretic Grammars, pages 19–30,
2007.

[15] Philippe de Groote and Sylvain Pogodalla. m-linear context-free
rewriting systems as abstract categorial grammars. In R. T. Oehrle
et J. Rogers, editor, Proceedings of Mathematics of Language - MOL-8,
Bloomington, Indiana, Etats-Unis, pages 71–80, Jun 2003.

[16] Philippe De Groote and Sylvain Pogodalla. On the expressive power of
Abstract Categorial Grammars: Representing context-free formalisms.
Journal of Logic, Language and Information, 13(4):421–438, 2004.

[17] Stefanie Dipper. Grammar-based corpus annotation. In Anne Abeille,
Thorsten Brants, and Hans Uszkoreit, editors, Proceedings of the Work-
shop on Linguistically Interpreted Corpora LINC-2000 , Luxembourg,
pages 56–64, 2000.

[18] Amit Dubey and Frank Keller. Probabilistic parsing for german us-
ing sister-head dependencies. In IN PROCEEDINGS OF THE 41ST
ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTA-
TIONAL LINGUISTICS, pages 96–103, 2003.

[19] Jay Earley. An e�cient context-free parsing algorithm. Commun. ACM,
26(1):57–61, January 1983.

[20] Daniel Gildea. Optimal parsing strategies for linear context-free rewrit-
ing systems. In Human Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Association for Compu-
tational Linguistics, HLT ’10, pages 769–776, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

91

[21] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[22] Carlos Gomez-rodriguez, Marco Kuhlmann, Giorgio Satta, and David
Weir. Optimal reduction of rule length in linear context-free rewriting
systems. In In Proc. of NAACL 09:HLT, 2009.

[23] Thilo Götz and Walt Detmar Meurers. Compiling hpsg type constraints
into definite clause programs. In Proceedings of the 33rd annual meeting
on Association for Computational Linguistics, ACL ’95, pages 85–91,
Stroudsburg, PA, USA, 1995. Association for Computational Linguis-
tics.

[24] Johan Hall and Joakim Nivre. A dependency-driven parser for German
dependency and constituency representations. In Proceedings of the
Workshop on Parsing German, pages 47–54, Columbus, Ohio, June
2008. Association for Computational Linguistics.

[25] Julia Hockenmaier. Creating a ccgbank and a wide-coverage ccg lex-
icon for german. In In Proc. of the 44th Annual Meeting of the
ACL and 21st International Conference on Computational Linguistics
(COLING/ACL-2006, pages 505–512, 2006.

[26] Tilmann N. H”ohle. Der Begri↵ ‘Mittelfeld’. Anmerkungen ”uber die
Theorie der topologischen Felder. In Akten des Vii.Internationalen
Germanisten-Kongresses G”ottingen 1985, volume 3, pages 329–340.
Niemeyer, T”ubingen, 1986.

[27] Yu-Yin Hsu. Comparing conversions of discontinuity in PCFG parsing.
Indiana University, 2009.

[28] Josef van Genabith Ines Rehbein. Evaluating evaluation measures. In
Proceedings of the 16th Nordic Conference of Computational Linguistics
NODALIDA-2007, pages 372–379, Tartu, 2007. University of Tartu.

[29] Laura Kallmeyer and Wolfgang Maier. Data-driven parsing with prob-
abilistic linear context-free rewriting systems. In COLING, pages 537–
545, 2010.

[30] Makoto Kanazawa. Second-order abstract categorial grammars as hy-
peredge replacement grammars, 2007.

[31] Andreas Kathol. Linearization-Based German Syntax. PhD thesis,
Ohio State University, 1995.

92

[32] Stephan Kepser and Uwe Mönnich. (Un-)Decidability results for head-
driven phrase structure grammar. In Giuseppe Scollo and Anton Ni-
jholt, editors, Proceedings of Algebraic Methods in Language Processing
(AMiLP-3), pages 141–152, 2003.

[33] Bernd Kiefer, Hans-Ulrich Krieger, and Melanie Siegel. An HPSG-to-
CFG approximation of Japanese. In In Proceedings of Coling 2000,
2000.

[34] Paul John King. A Logical Formalism for Head-Driven Phrase Structure
Grammar. University of Manchester, 1989.

[35] Dan Klein and Christopher D. Manning. Accurate unlexicalized pars-
ing. In Proceedings of the 41st Annual Meeting on Association for Com-
putational Linguistics - Volume 1, ACL ’03, pages 423–430, Strouds-
burg, PA, USA, 2003. Association for Computational Linguistics.

[36] Sandra Kubler, Jelena Prokic, and Rijksuniversiteit Groningen. Why
is german dependency parsing more reliable than constituent parsing.
In In Proceedings of the Fifth Workshop on Treebanks and Linguistic
Theories (TLT, pages 7–18, 2006.

[37] Sandra Kübler and Heike Telljohann. Towards a dependency-oriented
evaluation for partial parsing. In Proceedings of Beyond PARSEVAL
– Towards Improved Evaluation Measures for Parsing Systems (LREC
2002 Workshop), 2008.

[38] Sandra Kubler and Universitat Tubingen. How do treebank annotation
schemes influence parsing results? or how not to compare apples and
oranges. In In RANLP, pages 293–300, 2005.

[39] Wolfgang Maier. Direct parsing of discontinuous constituents in ger-
man. In Proceedings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages, pages 58–66, Los
Angeles, CA, USA, June 2010. Association for Computational Linguis-
tics.

[40] Wolfgang Maier and Laura Kallmeyer. Discontinuity and Non-
Projectivity: Using Mildly Context-Sensitive Formalisms for Data-
Driven Parsing - Errata. 2010.

[41] Wolfgang Maier and Anders Søgaard. Treebanks and mild context-
sensitivity. In Philippe de Groote, editor, Proceedings of the 13th Con-

93

ference on Formal Grammar (FG-2008), pages 61–76, Hamburg, Ger-
many, 2008. CSLI Publications.

[42] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert Mac-
intyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger.
The penn treebank: Annotating predicate argument structure. In In
ARPA Human Language Technology Workshop, pages 114–119, 1994.

[43] Stefan Müller. Deutsche Syntax deklarativ. Head-Driven Phrase Struc-
ture Grammar für das Deutsche. Number 394 in Linguistische Arbeiten.
Max Niemeyer Verlag, Tübingen, 1999.

[44] Stefan Müller. Parsing of an HPSG grammar for German: Word or-
der domains and discontinuous constituents. In Jost Gippert and Pe-
ter Olivier, editors, Multilinguale Corpora. Codierung, Strukturierung,
Analyse. 11. Jahrestagung der Gesellschaft für Linguistische Datenver-
arbeitung, pages 292–303, Prag, 1999. enigma corporation.

[45] Stefan Müller and Walter Kasper. HPSG analysis of German. In
Wolfgang Wahlster, editor, Verbmobil: Foundations of Speech-to-Speech
Translation, pages 238–253. Springer, Berlin, 2000.

[46] Reinhard Muskens. Separating syntax and combinatorics in categorial
grammar. Research on Language and Computation, 5(3):267–285, 2007.

[47] Mark-Jan Nederhof. Weighted deductive parsing and knuth’s algo-
rithm. Computational Linguistics, 29(1):135–143, 2003.

[48] Slav Petrov and Dan Klein. Improved inference for unlexicalized pars-
ing. In Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguis-
tics; Proceedings of the Main Conference, pages 404–411, Rochester,
New York, April 2007. Association for Computational Linguistics.

[49] Sylvain Pogodalla. Computing semantic representation: Towards ACG
abstract terms as derivation trees. In Proceedings of the Seventh In-
ternational Workshop on Tree Adjoining Grammar and Related For-
malisms (TAG+7), pages 64–71, May 2004.

[50] Carl Pollard. Covert movement in logical grammar. In Logic and Gram-
mar, pages 17–40, 2011.

[51] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.
The University of Chicago Press, Chicago, 1994.

94

[52] Carl J. Pollard. Strong generative capacity in HPSG. In Gert We-
belhuth, Jean-Pierre Koenig, and Andreas Kathol, editors, Lexical and
Constructional Aspects of Linguistic Explanation, pages 281–297. CSLI
Publications, 1999.

[53] Anna N. Ra↵erty and Christopher D. Manning. Parsing three german
treebanks: lexicalized and unlexicalized baselines. In Proceedings of the
Workshop on Parsing German, PaGe ’08, pages 40–46, Stroudsburg,
PA, USA, 2008. Association for Computational Linguistics.

[54] M. Reape. A logical treatment of semi-free word order and bounded
discontinuous constituency. In Proc. of the 4th EACL, pages 103–110,
Manchester, UK, 1989.

[55] Ines Rehbein and Josef van Genabith. Automatic acquisition of lfg
resources for german as good as it gets. In Proceedings of LFG09:
13-16 July 2009, Cambridge, UK / 14th Lexical Functional Grammar
Conference, pages 480–500, Stanford, Ca, 2009. CSLI Publications. MP.

[56] Frank Richter. Closer to the Truth: A New Model Theory for HPSG.
In James Rogers and Stephan Kepser, editors, Model-Theoretic Syntax
at 10. Proceedings of the ESSLLI’07 workshop MTS@10, pages 99–108.
Trinity College, Dublin, 2007.

[57] Christian Rohrer and Martin Forst. Improving coverage and pars-
ing quality of a large-scale LFG for German. In Proceedings of the
Language Resources and Evaluation Conference (LREC-2006), Genoa,
Italy, 2006.

[58] Sylvain Salvati. Encoding second order string ACG with Deterministic
Tree Walking Transducers. In Shuly Wintner, editor, The 11th con-
ference on Formal Grammar, FG Online Proceedings, pages 143–156,
Malaga, Spain, 2007. CSLI Publications.

[59] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.
On multiple context-free grammars. Theor. Comput. Sci., 88(2):191–
229, 1991.

[60] Andreas van Cranenburgh. E�cient parsing with linear context-free
rewriting systems. In EACL, pages 460–470, 2012.

[61] Jorn Veenstra, Frank Henrik Müller, and Tylman Ule. Topological field
chunking for german. In proceedings of the 6th conference on Natural

95

language learning - Volume 20, COLING-02, pages 1–7, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics.

[62] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing
structural descriptions produced by various grammatical formalisms.
In In Proceedings of the 25th Annual Meeting of the Association for
Computational Linguistics, pages 104–111, 1987.

[63] David Weir. Characterizing Mildly Context-Sensitive Grammar For-
malisms. PhD thesis, Department of Computer and Information Sci-
ence, University of Pennsylvania, 1988. Available as Technical Report
MS-CIS-88-74.

[64] Daniel H. Younger. Recognition and parsing of context-free languages
in time n3. Information and Control, 10(2):189–208, 1967.

[65] Yi Zhang and Hans-Ulrich Krieger. Large-scale corpus-driven pcfg ap-
proximation of an hpsg. In Proceedings of the 12th International Confer-
ence on Parsing Technologies, pages 198–208, Dublin, Ireland, October
2011. Association for Computational Linguistics.

[66] Yi Zhang, Rui Wang, and Stephan Oepen. Hybrid multilingual parsing
with hpsg for srl. In Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL 2009): Shared Task,
pages 31–36, Boulder, Colorado, June 2009. Association for Computa-
tional Linguistics.

96

