
Dialogue and Discourse 3(2) (2012) 11–42 doi: 0.5087/dad.2012.202

Semantics-based Question Generation and Implementation

Xuchen Yao xuchen@cs.jhu.edu
Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, USA

Gosse Bouma g.bouma@rug.nl
Information Science, University of Groningen, PO Box 716, 9700 AS Groningen, The Netherlands

Yi Zhang yzhang@coli.uni-sb.de

LT-Lab, German Research Center for Artificial Intelligence (DFKI GmbH)

Department of Computational Linguistics, Saarland University, 66123 Saarbrücken, Germany

Editors: Paul Piwek and Kristy Elizabeth Boyer

Abstract
This paper presents a question generation system based on the approach of semantic rewriting.
State-of-the-art deep linguistic parsing and generation tools are employed to map natural language
sentences into their meaning representations in the form of Minimal Recursion Semantics (mrs)
and vice versa. By carefully operating on the semantic structures, we obtain a principled way of
generating questions which avoids ad-hoc manipulation of syntactic structures. Based on the (par-
tial) understanding of the sentence meaning, the system generates questions that are semantically
grounded and purposeful. As the generator uses a deep linguistic grammar, the grammaticality of
the generation results is licensed by the grammar. With a specialized ranking model, the linguistic
realizations from the general purpose generation model are further refined for the question gen-
eration task. The evaluation results from QGSTEC2010 show promising results for the proposed
approach.

1. Introduction

Question Generation (QG) is the task of generating reasonable questions from an input, which can
be structured (e.g. a database) or unstructured (e.g. a text). In this paper, we narrow the task of
QG down to taking a natural language text as input (thus textual QG), as it is a more interesting
challenge that involves a joint effort between Natural Language Understanding (NLU) and Natural
Language Generation (NLG). Simply put, if natural language understanding maps text to symbols
and natural language generation maps symbols to text, then question generation maps text to
text, through an inner mapping from symbols for declarative sentences to symbols for interrogative
sentences, as shown in Figure 1. Here we use symbols as an organized data form that can represent
the semantics of natural languages and that can be processed by a machinery, artificial or otherwise.

The task of question generation contains multiple subareas. Usually, the approach taken for qg
depends on the purpose of the qg application. Generally speaking, a qg system can be helpful in
the following areas:

• Intelligent tutoring systems. qg can ask questions based on learning materials in order to
check learners’ accomplishment or help them focus on the keystones in study. qg can also
help tutors to prepare questions intended for learners or prepare for potential questions from
learners.
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• Closed-domain Question Answering (QA) systems. Some closed-domain qa systems use pre-
defined (sometimes hand-written) question-answer pairs to provide qa services. By employing
a qg approach such systems could be ported to other domains with little or no effort.

• Natural language summarization/generation systems. qg can help to generate, for instance,
Frequently Asked Questions from the provided information source in order to provide a list of
faq candidates.

In terms of target complexity, qg can be divided into deep qg and shallow qg (Graesser et al.,
2009). Deep qg generates deep questions that involve more logical thinking (such as why, why not,
what-if, what-if-not and how questions) whereas shallow qg generates shallow questions that focus
more on facts (such as who, what, when, where, which, how many/much and yes/no questions). Given
the current state of qg, most of the applications listed above have limited themselves to shallow qg.

We describe a semantics-based system, MrsQG1, that generates questions from a given text,
specifically, a text that contains only a single declarative sentence. This restriction was motivated
by Task B of the Question Generation Shared Task and Evaluation Challenge (QGSTEC2010; Rus
et al., 2010; Rus et al., this volume), which provides participants with a single sentence and asks
them to generate questions according to a required target question type. By concentrating on single
sentences, systems can focus on generating well-formed and purposeful questions, without having to
deal (initially) with text analysis at the discourse level.

The basic intuition of MrsQG can be explained by the following example. Think of generating a
few simple questions from the sentence “John plays football.”:

Example 1 John plays football.

(a) Who plays football?

(b) What does John play?

Natural Language
Text

Natural Language
Questions

TransformationSymbolic 
Representation

for Text

Symbolic 
Representation
for Questions

NLU NLG

Question Generation

Figure 1: The relation between Question Generation and its two components: Natural Language
Understanding (NLU) and Natural Language Generation (NLG).

1. http://code.google.com/p/mrsqg/
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When people perform question generation, a transformation from declarative sentences to in-
terrogatives happens. This transformation can be described at different levels of abstraction. An
intuitive one is provided by predicate logic:

Example 2 play(John, football) ⇐ John plays football.

(a) play(who, football) ⇐ Who plays football?

(b) play(John, what) ⇐ What does John play?

If the above abstraction can be described and obtained in a formal language and transformation
can be done according to some well-formed mechanism, then the task of question generation has a
solution.

We propose a semantics-based method of transforming the Minimal Recursion Semantics (MRS,
Copestake et al., 2005) representation of declarative sentences to that of interrogative sentences. The
mrs analysis is obtained from pet (Callmeier, 2000) running with the English Resource Grammar
(ERG, Flickinger, 2000) as the core linguistic component, while the generation function is delivered
by the Linguistic Knowledge Builder (LKB, Copestake, 2002).

The advantage of this approach is that the mapping from declarative to interrogative sentence is
done on the semantic representations. In this way, we are able to use an independently developed
parser and generator for the analysis and generation stage. The generator will usually propose
several different surface realizations of a given input due to its extensive grammatical coverage. This
means that the system is able to produce more diverse questions, but also that ranking of various
surface forms becomes an issue. Additional advantages of the semantic approach are that it is
to a large extent language independent, and that it provides a principled level of representation for
incorporating lexical semantic resources. For instance, given that “sport” is a hypernym of “football”,
we can have the following transformation:

Example 3 play(John, football) & hypernym(sport, football) ⇒ play(John, which sport)

The hypernym relation between “sport” and “football” can either be obtained from ontologies, such
as a list of different sports, or semantic networks, such as WordNet (Fellbaum, 1998).

This paper is organized as follows. Section 2 reviews related work in question generation and
explains why a semantics-based approach is proposed. It also identifies major challenges in the
task of question generation. After a brief background introduction in Section 3, Section 4 provides
corresponding solutions and describes our implemented system MrsQG. Specifically, Section 4.1
and 4.2 present the key idea in this paper. Evaluation results are presented in Section 5 and several
aspects of the proposed method are discussed in Section 6. Finally, Section 7 concludes and addresses
future work.

2. Related Work

Generally speaking, the following issues have been addressed in question generation:

1. Question transformation. As shown in Figure 1, this requires a theoretically-sound and
practically-feasible algorithm to build a mapping from symbolic representation of declarative
sentences to interrogative sentences.

2. Sentence simplification. Complex and long sentences widely occur in written languages. But
questions are rarely very long. On the one hand, complex input sentences are hard to match
against pre-defined patterns. On the other hand, most current question generation approaches
transform the input sentence into questions, thus it is better to keep the input short and
succinct in order to avoid lengthy and awkward questions. Thus sentence simplification is
usually performed as a pre-processing step.
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Figure 2: Three major problems (sentence simplification, question transformation and question
ranking) in the process of question generation, as shown in the framed boxes.

3. Question ranking. In the case of over generation, a ranking algorithm to grade the grammati-
cality and naturalness of questions must be developed. Furthermore, a good ranking algorithm
should also select relevant and appropriate questions according to the content requirements.

Figure 2 shows these three problems in an overview of a complete question generation framework.
The following section reviews research on these three issues in more detail.

2.1 Question Transformation

There are generally three approaches to question transformation and generation: template-based,
syntax-based and semantics-based.

Mostow and Chen (2009) reported on a template-based system under a self-questioning strategy
to help children generate questions from narrative fiction. Three question templates are used to
produce what/why/how questions. Of 769 questions evaluated, 71.3% were rated acceptable. This
work was further expanded by Chen et al. (2009) with 4 more templates to generate What-would-
happen-if, When-would-x-happen, What-would-happen-when and Why-x questions from informational
text questions. Template-based approaches are mostly suitable for applications with a special pur-
pose, which sometimes come with a closed-domain. The trade-off between coverage and cost is hard
to balance because human labor is required to produce high-quality templates. Thus, it is generally
considered unsuitable for open-domain general purpose applications.

Syntax-based approaches include Wyse and Piwek (2009) and Heilman and Smith (2009), both
of which use a very similar method for manipulating syntactic trees. The core idea is to transform
a syntactic tree of a declarative sentence into that of an interrogative. Specific matching and trans-
formation rules are defined by experienced linguists and operate on tree structures. All operations
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are straightforward from a syntactic point of view. Heilman and Smith (2009) reported 43.3% ac-
ceptability for the top 10 ranked questions and produced an average of 6.8 acceptable questions per
250 words on Wikipedia texts.

Semantics-based approaches are less explored in previous research. Schwartz et al. (2004) intro-
duce a content question generator that uses the logical form to represent the semantic relationships
of the arguments within a sentence and generate wh-questions. However, the paper only introduces
the result of this generator whereas the inner mechanism is not presented. Sag and Flickinger (2008)
discuss the possibility and feasibility of using the English Resource Grammar for generation under
a Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag, 1994) framework. Minimal
Recursion Semantics is the input to erg and linguistic realizations come from the Linguistic Knowl-
edge Builder system. Successful applications are listed in support of their arguments for generating
through erg and lkb. In this paper, we present the implementation of a question generation system
following their proposed approach.

2.2 Sentence Simplification

Sentence simplification reduces the average length and syntactic complexity of a sentence, which is
usually marked by a reduction in reading time and an increase in comprehension.

Chandrasekar et al. (1996) reported two rule-based methods to perform text simplification. They
take simplification as a two stage process. The first stage gives a structural representation of a
sentence and the second stage transforms this representation into a simpler one, using handcrafted
rules. The two methods differ in that the structural representation is different and thus rules also
change accordingly (one uses chunk parsing and the other supertagging (Bangalore and Joshi, 1999)).
In natural language processing, the methods are also used as a pre-processing technique to alleviate
the overload of the parser, the information retrieval engine, etc. Thus the analysis of sentences is
no deeper than a syntactic tree. In the context of question generation, the analyzing power is not
confined to this level. For instance, Dorr et al. (2003) and Heilman and Smith (2010b) use a syntactic
parser to obtain a tree analysis of a whole sentence and define heuristics over tree structures. Cohn
and Lapata (2009) compress sentences by rewriting tree structures over synchronous tree substitution
grammar (STSG, Eisner, 2003).

2.3 Question Ranking

Question ranking falls into the topic of realization ranking, which can be taken as the final step
of natural language generation. In the context of generating questions from semantics, there can
be multiple projections from a single semantic representation to surface realizations. Velldal and
Oepen (2006) compared different statistical models to discriminate between competing surface real-
izations. The performance of a language model, a Maximum Entropy (MaxEnt) model and a Support
Vector Machine (SVM) ranker is investigated. The language model is a trigram model trained on
the British National Corpus (BNC) with 100 million words. Sentences with higher probability are
ranked better. The MaxEnt model and SVM ranker use features defined over derivation trees as
well as lexical trigram models. Their result shows that MaxEnt is slightly better than SVM, while
both models significantly outperform the language model. This result is mostly based on declarative
sentences. Our proposed question ranking module combines the MaxEnt model from Velldal and
Oepen (2006) with a language model trained on questions. Details are in Section 4.3.

Heilman and Smith (2010a) worked directly on ranking questions. They employed an overgenerate-
and-rank approach. The overgenerated questions were ranked by a logistic regression model trained
on a human-annotated corpus. The features used by the ranker covered various aspects of the ques-
tions, including length, N -gram language model, wh-words, grammatical features, etc. While 27.3%
of all test set questions were acceptable, 52.3% of the top 20% ranked questions were acceptable.
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2.4 Perception of Related Work

Among the three subtasks of question generation, most of the work related to sentence simplifi-
cation and question transformation is heavily syntax-based. The internal symbolic representation
of languages is encoded with syntax and transformation rules are defined over syntax. Depending
on the depth of processing, these syntactic structures can be either flat (with only pos or chunk
information) or structured (with parse trees). However, these approaches also introduce syntax-
specific limitations, including language dependencies, ad-hoc transformations and complex syntactic
formalisms. Semantics-based approaches are to some extent amenable to these problems. They have
more expressive power by utilizing lexical semantics resources and employing more flexible genera-
tors. Specifically, semantics-based methods involve both parsing to semantics and generating from
semantics, as well as transforming via semantics. Question generation happens to be one application
that requires all of these operations.

3. Background: Theory, Grammar and Tools

The proposed system consists of multiple syntactic and semantic processing components based on
the delph-in tool-chain (e.g. erg/lkb/pet), while the theoretical support comes from Minimal
Recursion Semantics. This section introduces all the components involved, but concentrates on the
parts that are actually used in later sections.

Figure 3 gives an overview of the functionalities of different components. Minimal Recursion
Semantics is a theory of semantic representation of natural language sentences with a focus on the
underspecification of scope ambiguities. pet is used as a parser to interpret a natural language
sentence into mrs with the guidance of a hand-written grammar. In turn, the generation component
of lkb takes in an mrs structure and produces various realizations as natural language sentences.
Both directions of processing are guided by the English Resource Grammar, which includes a large
scale hand-crafted lexicon and sophisticated grammar rules that cover most essential syntactic con-
structions of English, and connects natural language sentences with their meaning representations in
mrs. The tools are developed in the context of the delph-in2 collaboration, and are freely available
as an open source repository.

3.1 Minimal Recursion Semantics and English Resource Grammar

Minimal Recursion Semantics is a meta-level language for describing semantic structures in some
underlying object language (Copestake et al., 2005). While the representation can be combined
freely with various linguistic frameworks, mrs is particularly convenient to be encoded in typed
feature structures. As it turns out to be also practically suitable for encoding semantic compositions
in grammar engineering, it is no surprise to see mrs being adopted as the semantic representation for
most of the delph-in hpsg grammars. An mrs structure is composed of the following components:
ltop, index, rels, hcons, as shown in Figure 4.

ltop is the topmost label of this mrs. The index usually contains an event variable “e”, which
is co-indexed with the ARG0 property of the main predicate ( like v rel in this case), i.e. its bound
variable. rels is a bag of Elementary Predications, or EPs, in which a single ep means a single
relation with its arguments, such as like v rel(e2, x5, x9). Any ep with rstr and body features
corresponds to a generalized quantifier. It takes a form of rel(arg0, rstr, body) where arg0
refers to the bound variable and rstr puts a scopal restriction on some other relation by the “qeq”
relation specified in hcons (handle constraints). Here in Figure 4 the relation proper q rel(x5, h4,

2. Deep Linguistic Processing with HPSG: http://www.delph-in.net/
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INDEX: e2
RELS: <
[ PROPER_Q_REL<0:4>
  LBL: h3
  ARG0: x6
  RSTR: h5
  BODY: h4 ]
[ _like_v_1_rel<5:10>
  LBL: h8
  ARG0: e2 [ e SF: PROP TENSE: PRES ]
  ARG1: x6 
  ARG2: x9 
[ PROPER_Q_REL<11:17>
  LBL: h10
  ARG0: x9 
  RSTR: h12
  BODY: h11 ]
>
HCONS: < h5 qeq h7 h12 qeq h13 >

[ NAMED_REL<0:4>
  LBL: h7
  ARG0: x6 
(PERS: 3 NUM: SG)
  CARG: "John" ]

[ NAMED_REL<11:17>
  LBL: h13
  ARG0: x9 
(PERS: 3 NUM: SG)
  CARG: "Mary" ]

John likes Mary.
like(John, Mary)

Parsing
with PET

Generation
with LKB

John likes Mary.

Minimal Recursion Semantics

English Resource 
Grammar

Figure 3: Different components (pet/lkb/mrs/erg) of the hpsg-centralized delph-in community.
The predicate logic form like(John, Mary) can be further represented by Minimal Recursion Seman-
tics, a more powerful and complex semantic formalism, which is adopted in the English Resource
Grammar.



mrs

LTOP h1

INDEX e2

RELS 〈


proper q

LBL h3

ARG0 x5

RSTR h4

BODY h6

,
named

LBL h7

ARG0 x5

CARG ”Mary”

,


like v

LBL h8

ARG0 e2

ARG1 x5

ARG2 x9

,

udef q

LBL h10

ARG0 x9

RSTR h11

BODY h12

,
 red a

LBL h13

ARG0 e14

ARG1 x9

,[ rose n

LBL h13

ARG0 x9

]
〉

HCONS 〈

[
qeq

HARG h4

LARG h7

]
,

[
qeq

HARG h11

LARG h13

]
〉


Figure 4: MRS representation of “Mary likes red roses” with some linguistic attributes omitted.
Types are in bold. Features (or attributes) are in capital. Values are in �. Values in 〈〉 are list
values. Note that some features are token-identical. The suffix rel in relation names is dropped to
save space.
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like v

named(”Mary”)

proper q

rstr/h

arg1/neq

rose n

udef q

rstr/h

red a

arg1/eq

arg2/neq

Figure 5: The Dependency mrs structure of “Mary likes red roses”. Relations between eps are
indicated by the labels of arrowed arcs. Refer back to Figure 4 for the original mrs.

h6) with a “h4 qeq h7 ” constraint means that proper q rel outscopes the named rel, which has a label
h7.

mrs to some extent preserves the ambiguities that are inherent to natural language, and repre-
sents them in a compact way using underspecification. For instance, for the sentence “every man

loves a woman”, there are at least two major readings: every man loves the same woman or every
man loves a different woman. This sentence has only one mrs structure but two scopal readings: it
can either be that the ep for “a” outscopes the ep for “every” (every man loves the same woman) or
the other way around. Choosing mrs as our semantic formalism has gained a bonus for the present
application: semantic transformation operates on mrss that are not resolved to unambiguous logi-
cal representations, and generation also operates on such structures. Thus, the application can be
realized without being forced to do complete ambiguity resolution for the input sentence.

Dependency MRS (DMRS, Copestake, 2008) serves as an interface between flat and non-flat
structures. Recall that in Figure 4, the value of rels is a bag of eps. This flat structure is verbose
and does not easily show how the eps in an mrs are connected with each other. dmrs is designed to
be more direct in representing the direct relations between eps, but still preserves all of the original
semantic information.

A dmrs is a connected acyclic graph. Figure 5 shows the dmrs of “Mary likes red roses.”,
originally from Figure 4. The directional arcs represent regular semantic dependencies (i.e. the
semantic head points to its children) with the labels of arcs describing the relations in detail. A
label (e.g. arg1/neq) has two parts: the part before the slash is inherited from the feature name
of the original mrs; the part after the slash indicates the type of a scopal relation. Possible values
are: H (qeq relationship), EQ (label equality), NEQ (label non-equality), HEQ (one ep’s argument
is the other ep’s label) and NULL (underspecified label relationships).

The semantic composition rules are encoded in the English Resource Grammar, together with the
thorough modeling of the syntax. The grammar is based on the hpsg framework, and through over
15 years of continuous development, has achieved broad coverage while maintaining high linguistic
accuracy. It consists of a large set of lexical entries under a detailed hierarchy of lexical types, with
a modest set of lexical rules for production. The erg uses a Davidsonian representation in which
all verbs introduce events. This explains why the like v rel relation in Figures 3 and 4 has e2 as its
arg0.

3.2 Linguistic Knowledge Builder

We use the generation component of lkb for sentence realization. The Linguistic Knowledge Builder
is a grammar engineering platform for developing linguistic grammars in typed-feature structures
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and unification-based formalisms. It can examine the competence and performance of a grammar by
means of parsing and generation. The generation component takes as input a valid mrs structure,
and tries to find all possible realizations of the same meaning representation in natural language
sentences according to the grammar. The generator uses a chart-based algorithm as described in
Kay (1996), Carroll et al. (1999), Carroll and Oepen (2005). The latter two also tackle efficiency
problems. In case multiple realizations are available, the generator ranks them with a statistical
disambiguation model trained with large scale treebanks.

3.3 Parsing with PET

Although erg has a large lexicon, there are always unknown words in real text. Thus, a robust
processing strategy is needed as fallback. pet is a platform for doing experiments with efficient
processing of unification-based grammars (Callmeier, 2000). It employs a two-stage parsing model.
Firstly, hpsg rules are used in parsing. Since these rules are sometimes too restrictive and only
produce a partial chart, a second stage with a permissive pcfg backbone predicts a full-spanning
pseudo-derivation, and the fragmented mrs structures are extracted from these partial analyses.
(Zhang et al., 2007). The fragmented mrs does not have full feature structures for all constituents
because of rule conflict, otherwise it could have been parsed in the first stage.

4. Proposed Method

Recall in Section 2 we addressed three major problems in question generation: question transforma-
tion, sentence simplification and question ranking. A semantics-based system, MrsQG, is developed
to tackle these problems by corresponding solutions: mrs transformation for simple sentences, mrs
decomposition for complex sentences and automatic generation with rankings. Also, practical issues
such as robust generation with fallbacks are addressed.

Figure 6 shows the processing pipelines of MrsQG. The following is a brief description of each
step.

1. Term extraction. The Stanford Named Entity Recognizer (Finkel et al., 2005), a RegEx NE
tagger, an Ontology NE tagger and WordNet (Fellbaum, 1998) are used to extract terms.

2. fsc construction. The Feature Structure Chart (FSC) format3 is an xml-based format that
introduces tokenization and external annotation to the erg grammar and pet parser. Using
fsc makes the terms annotated by named entity recognizers known to the parser.

3. Parsing with pet. The chart mapping (Adolphs et al., 2008) functionality of pet accepts fsc
input and outputs mrs structures.

4. mrs decomposition. Complex sentences first need to be broken into shorter ones with valid and
meaningful semantic representation. Also, it must be possible to generate a natural language
sentence from this shorter semantic representation. This is the key point in our semantics-based
approach. Details in Section 4.2.

5. mrs transformation. Given a valid mrs structure of a sentence, we replace eps for terms with
eps for (wh) question words. Section 4.1 gives a detailed description with examples.

6. Generating with lkb. Given an mrs for a question, the generator of lkb produces possible
surface realizations.

7. Output selection. Given a well-formed mrs structure, lkb might give multiple outputs. De-
pending on how erg does generation, some output strings might not sound fluent or even

3. http://wiki.delph-in.net/moin/PetInputFsc
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Plain text
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Parsing
with PET
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Generation
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console/XML

FSC
XML

Apposition Decomposer

Coordination Decomposer

Subclause Decomposer

Subordinate Decomposer

Why Decomposer

MRS
XML

4

Figure 6: Pipelines of an MRS transformation based question generation system.

grammatical. Thus there must be ranking algorithms to select the best one. Details are in
Section 4.3.

8. Output to console/xml. MrsQG can output its results either to a console for user interaction,
or (to a file) in xml format for formal evaluation.

By way of illustration, we now present some actual questions generated by MrsQG:

Example 4 Jackson was born on August 29, 1958 in Gary, Indiana.

Generated who questions:
(a) Who was born in Gary , Indiana on August 29 , 1958?

(b) Who was born on August 29 , 1958 in Gary , Indiana?

Generated where questions:
(c) Where was Jackson born on August 29 , 1958?

Generated when questions:
(d) When was Jackson born in Gary , Indiana?

Generated yes/no questions:
(e) Jackson was born on August 29 , 1958 in Gary , Indiana?

(f) Jackson was born in Gary , Indiana on August 29 , 1958?

(g) Was Jackson born on August 29 , 1958 in Gary , Indiana?

(h) Was Jackson born in Gary , Indiana on August 29 , 1958?

(i) In Gary , Indiana was Jackson born on August 29 , 1958?

(j) In Gary , Indiana, was Jackson born on August 29 , 1958?

(k) On August 29 , 1958 was Jackson born in Gary , Indiana?

(l) On August 29 , 1958, was Jackson born in Gary , Indiana?

The examples show that the system generates various question types. Different word orders are
allowed by the general erg used in generation. Not all of these sound equally natural. Section
4.3 addresses this issue. The following sections present more details on steps that need further
elaboration.
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like v 1

named(”John”)

proper q

rstr/h

arg1/neq

named(”Mary”)

proper q

rstr/h

arg2/neq

like v 1

person

which q

rstr/h

arg1/neq

named(”Mary”)

proper q

rstr/h

arg2/neq

(a) “John likes Mary” → “Who likes Mary?”

sing v 1

named(”Mary”)

proper q

rstr/h

arg1/neq

on p

named(”Broadway”)

proper q

rstr/h

arg2/neq

arg1/eq

sing v 1

named(”Mary”)

proper q

rstr/h

arg1/neq

loc nonsp

place n

which q

rstr/h

arg2/neq

arg1/eq

(b) “Mary sings on Broadway.” → “Where does Mary sing?”

sing v 1

named(”Mary”)

proper q

rstr/h

arg1/neq

at p temp

numbered hour(”10”)

def implicit q

rstr/h

arg2/neq

arg1/eq

sing v 1

named(”Mary”)

proper q

rstr/h

arg1/neq

loc nonsp

time

which q

rstr/h

arg2/neq

arg1/eq

(c) “Mary sings at 10.” → “When does Mary sing?”

Figure 7: (continued in the next page)
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fight v 1

named(”John”)

proper q

rstr/h

arg1/neq

for p

named(”Mary”)

proper q

rstr/h

arg2/neq

arg1/eq

fight v 1

named(”John”)

proper q

rstr/h

arg1/neq

for p

reason q

which q

rstr/h

arg2/neq

arg1/eq

(d) “John fights for Mary.” → “Why does John fight?”

Figure 7: MRS transformation from declarative sentences to WH questions in a form of dependency
graph.

4.1 MRS Transformation for Simple Sentences

The transformation from declarative sentences into interrogatives follows a mapping between ele-
mentary predications (eps) of relations. Figure 7 shows this mapping. Many terms in preprocessing
are tagged as proper nouns (nnp or nnps). Thus the eps of a term turns out to consist of two eps:
proper q rel (a quantification relation) and named rel (a naming relation), with proper q rel outscop-
ing and governing named_rel. The eps of wh-question words have a similar structure. For instance,
the eps of “who” consist of two relations: which q rel and person rel, with which q rel outscoping and
governing person rel. Changing the eps of terms to eps of wh-question words naturally results in
an mrs for wh-questions.

Similarly, in where/when/why questions, the eps for the wh question word are which q rel
and place rel/time rel/reason rel. Special attention must be paid to the preposition word that usually
comes before location/time. In a dependency tree, a preposition word governs the head of the phrase
with a post-slash eq relation (as shown in Figure 7(bcd)). The ep of the preposition must be
changed to a loc nonsp rel ep (an implicit locative which does not specify a preposition) which takes
the wh word relation as an argument in both cases of when/where. This ep avoids generating
non-grammatical phrases such as “in where” and “on when”.

Generally, there is one rule per question type. The choice for a transformation rule is triggered
by the named entity output. Most questions regarding person/location/time can be asked in two
ways: either by who/where/when questions or by which person/location/time questions.
We encoded both types of these rules in the system. For instance, “on August 29, 1958” can be
transformed to either “when” or “on which date”. Both questions are generated at this point, and
we leave it to the question ranker to select the best one based on properties of the whole question.
As we also use an overgenerate-and-rank approach, we always try to generate as many questions as
possible.

Changing the sf (Sentence Force) attribute of the main event variable from prop to ques
generates yes/no questions. This is the simplest case in question generation.
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English Sentence Structure

Complex

dependent clause +
independent clause

Subordinate Clause

Causal | Non-causal
Relative Clause

Compound

coordination
of sentences

Simple

independent &
simple clause

Coordination

of phrases
Apposition Others

CoordinationSubclauseSubordinateWhy Apposition

Decomposer Pool

Decomposed
Sentence

Figure 8: The structure of English sentences and corresponding decomposers (in red boxes). Sentence
decomposition does not know the type of sentence beforehand thus all sentences will go through the
pool of decomposers. The dashed arrows just indicate which decomposer works on which type of
sentence.

4.2 MRS Decomposition for Complex Sentences

4.2.1 Overview

The mrs mapping between declarative and interrogative sentences only works for simple sentences.
It generates lengthy questions from complex sentences, as illustrated in Example 4. This is not a
desirable result, as too much unnecessary information is provided in the questions. Thus methods
must be developed to obtain partial but intact semantic representations from complex sentences, so
we can generate from simpler mrs representations. Note, however, that the production of lengthy
sentences is not a weakness of the generator, but in essence a problem of sentence simplification.
This is what our mrs decomposition rules intend to tackle from the semantic level.

MrsQG employs four decomposers for apposition, coordination, subclause and subordinate clauses.
An extra why decomposer splits a causal sentence into two parts, reason and result, by extracting
the arguments of the causal conjunction word, such as “because”, “the reason”, etc. The distribution
of these decomposers is not random but depends on the structure of English sentences.

English sentences are generally categorized into three types: simple, compound and complex
depending on the type of clauses they contain. Simple sentences do not contain dependent clauses.
Compound sentences are composed of at least two independent clauses. Complex sentences must
have at least one dependent clause and one independent clause.

Dependent clauses can be subordinate or relative clauses. Subordinate clauses are typically intro-
duced by a subordinating conjunction, while relatives are typically introduced by relative pronouns.
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Other phenomena that call for sentence simplification are coordination and apposition. Coordination
can be either clausal or phrasal.

Each type of sentence or grammar construction has a corresponding decomposer, shown in Figure
8:

• Apposition is formed by two adjacent nouns describing the same reference in a sentence. An
apposition decomposer simplifies the sentence “Search giant Google was found guilty” to
“Search giant was found guilty” and “Google was found guilty” in order to prevent an
ungrammatical replacement “*Search giant who was found guilty?”. Note that it is not
usually easy to directly replace the compound “Search giant Google” with a question word
since a named entity recognizer does not work well on compounds or noun phrase chunks.

• Coordination is formed by two or more elements connected with coordinators such as “and”,
“or”. A coordination decomposer simplifies the sentence coordination “John likes cats and

Mary likes dogs” to “John likes cats” and “Mary likes dogs” then generates from each
simpler sentence. However, it avoids splitting coordination of nouns. For instance, “the
cat and the dog live in the same place” is not split into “the cat live in the same

place”, which is nonsense and ungrammatical.

• A subordinate decomposer works on sentences containing dependent clauses. A dependent
clause “depends” on the main clause, or an independent clause. Thus it cannot stand alone as
a complete sentence. It starts with a subordinate conjunction and also contains a subject and
a predicate. For instance, the sentence “given that Bart chases dogs, Bart is a brave

cat”is decomposed into two parts: “Bart chases dogs”from the subordinate clause and“Bart
is a brave cat” from the independent clause. Note that in some cases the proposition of the
subordinate clause might be changed after decomposition. For instance, extracting “Bart
chases dogs” from “if Bart chases dogs, Bart is a brave cat” makes the proposition
“Bart chases dogs” true, while its true value is undetermined in the original sentence.

The following subsection takes the subclause decomposer as an example and illustrates how it works.
The order of applying these decomposers is not considered since in question generation from single
sentences text cohesion is not important.

4.2.2 Subclause Decomposer

A subclause decomposer works on sentences that contain relative clauses, such as this one. A relative
clause is mainly indicated by relative pronouns, i.e., who, whom, whose, which, whomever, whatever,
and that. Extracting relative clauses from a sentence helps to ask better questions. For instance,
given the following sentence:

Example 5 (a) Bart is the cat that chases the dog.

Extracted relative clause after decomposition:
(b) The cat chases the dog.
Parsing the above clause into logic form:
(c) chase(cat, dog)
Replacing named entities with question words:
(d) chase(which animal, dog) and chase(cat, which animal)
Generated questions from the transformed logic form:
(e) Which animal chases the dog?

(f) Which animal does the cat chase?

It is impossible to ask a short question such as (e) and (f) directly from the original sentence (a)
without dropping the main clause. A subclause decomposer serves to change this situation.
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be v id

named(”Bart”)

proper q

rstr/h

arg1/neq

cat n 1

the q
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arg2/neqarg1/eq
arg2/neq
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arg2/neq

(a): Bart is the cat that chases the dog.

(b): Bart is the cat. (c): The cat chases the dog.

decompose({ chase v 1},{})
decompose({ be v id},{},keepEQ = 0)

Figure 9: A subclause decomposer extracts relative clauses by finding all non-verb eps that are
directly related to a verb ep. It also relaxes scope constraint from a relative clause. A strict eq
relation in the top graph represents an np “the cat that chases the dog”. Relaxing it to neq
generates a sentence “the cat chases the dog.” in the bottom right graph.
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be v id

named(”Mary”)

proper q

rstr/h

arg1/neq

girl n 1

the q

rstr/h

with p

live v 1

named(”John”) proper q
rstr/h

arg1/neq

arg1/eqarg2/eq
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(a): Mary is the girl John lives with.

(b): Mary is the girl. (c): John lives with the girl.

decompose({ with p},{})
decompose({ be v id},{},keepEQ = 0)

Figure 10: Subclause decomposition for relative clauses with a preposition. The preposition ep
with p connects the subclause with the main clause. After decomposition, the dependency relation

between with p and girl n 1 is relaxed from arg2/eq in (a) to arg2/neq in (c).
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Though relative pronouns indicate relative clauses, in an mrs structure, these relative pronouns
are not explicitly represented. For instance, in Figure 9(a), there is no ep for the relative pronoun
”that”. However, the verb ep chase v 1 governs its subject by a post-slash eq relation. This
indicates that chase v 1 and cat n 1 share the same label and have the same scope. After decom-
posing the sentence, this constraint of the same scope should be relaxed. Thus in the mrs of “The
cat chases the dog.”, chase v 1 and cat n 1 have different scopes, indicated by a post-slash neq
relation. A generic decomposition algorithm should have a scope-relaxing step at the final stage.

It is also possible to form a relative clause by leaving out the object of a preposition. Although
there is usually a relative pronoun in such cases (Example 6a), it can also be left out (Example 6b):

Example 6 (a) Mary is the girl with whom John lives. (with a relative pronoun)
(b) Mary is the girl John lives with. (zero relative pronoun)

The erg produces an identical mrs for such cases. The preposition is the word that connects the
relative clause to the main clause. Thus the subclause decomposer first starts from the preposition
rather than the verb in the relative clause, as shown in Figure 10.

4.2.3 General Algorithm

In this subsection we describe the general algorithm for sentence decomposition. This generic algo-
rithm is the key step for decomposing complex mrs structures. Before describing it, we first sum up
the dependencies between eps and their intricacies. Note that the following is only a list of examples
and is incomplete.

• arg*/eq: a special case that indicates scope identity.

– Adjectives govern nouns, such as brave a 1 → cat n 1 from “a brave cat”.

– Adverbs govern verbs, such as very+much a 1→ like v 1 from“like ... very much”.

– Prepositions govern and attach to verbs, such as with p → live v 1 from “live with

...”.

– Passive verbs govern and modify phrases, such as stir v 1→ martini n 1 from“a stirred

martini”.

– In a relative clause:

∗ Verbs govern and modify phrases that are represented by relative pronouns, such as
chase v 1 → cat n 1 from “the cat that chases ...” in Figure 9.

∗ Prepositions govern phrases that are represented by relative pronouns, such as with p
→ girl n 1 from “the girl whom John lives with”.

• arg*/neq: the most general case that underspecifies scopes.

– Verbs govern nouns (subjects, objects, indirect objects, etc), such as chase v 1→ named(“Bart”)
and chase v 1 → dog n 1 from “Bart chases dogs”.

– Prepositions govern phrases after them, such as with p → girl n 1 from “lives with

the girl” in Figure 10(c).

– Some grammatical construction relations govern their arguments, such as compound name
→ named(“Google”) from “Search giant Google”.

• arg*/null: a special case where an argument is empty.

– Passive verbs govern and modify phrases, e.g. in chase v 1→ dog n 1 from“the chased

dog” and “the dog that was chased”, chase v 1 has no subject.
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• arg*/h: a rare case where an argument qeq an ep.

– Subordinating conjunctions govern their arguments, such as given+that x subord →
be v id from “Given that arg2, arg1.”.

– Verbs govern verbs, such as tell v 1 rel→ like v 1 rel from“John told Peter he likes

Mary.”.

• null/eq: a rare case where two eps share the same label but preserve no equalities.

• rstr/h: a common case for every noun phrase.

– A noun is governed by its quantifier through a qeq relation, such as proper q→ named(“Bart”)
from “Bart”.

• l|r-index/neq: a common case for every coordinating conjunction.

– Coordinating conjunctions govern their arguments, such as and c → like v 1 from “l-
index and r-index”.

• l|r-hndl/heq: a special case for coordination of verb phrases. Coordination of noun phrases
do not have these relations.

– The governor’s argument is its dependent’s label, such as but c→ like v 1 from “l-hndl
but r-hndl”.

We first give a formal definition of a connected dmrs graph, then a generic algorithm for dmrs
decomposition.

Connected DMRS Graph
A Connected DMRS Graph is a tuple G = (N,E,L, Spre, Spost) of:
a set N , whose elements are called nodes;
a set E of connected pairs of vertices, called edges;
a function L that returns the associated label for edges in E;
a set Spre of pre-slash labels and a set Spost of post-slash labels.
Specifically,
N is the set of all Elementary Predications (eps) defined in a grammar;
Spre contains all pre-slash labels, namely {arg*, rstr, l-index, r-index, l-hndl, r-hndl,
null};
Spost contains all post-slash labels, namely {eq, neq, h, heq, null};
L is defined as: L(x, y) = [pre/post, . . .]. For every node x, y ∈ N , L returns a list of pairs
pre/post that pre ∈ Spre, post ∈ Spost. If pre 6= null, then the edge between (x, y) is directed:
x is the governor, y is the dependant; otherwise the edge between x and y is not directed. If
post = null, then y = null, x has no dependant by a pre relation.

Algorithm 1 shows how to find all related eps for some target eps. It is a graph traversal
algorithm starting from a set of target eps for which we want to find related eps. It also accepts a
set of exception eps that we always want to exclude. Finally it returns all related eps to the initial
set of target eps.

There are two optional parameters for the algorithm that define different behaviors of graph
traversal. relaxEQ controls whether we want to relax the scope constraints from /eq in a subclause
to /neq in a main clause. It works on both verbs and prepositions that head a relative clause.
Examples of this option taking effect can be found in Figure 9(c) and 10(c). keepEQ controls
whether we want to keep a subclause introduced by a verb or preposition. It is set to true by
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Algorithm 1 A generic decomposing algorithm for connected dmrs graphs.

function decompose(rEPS, eEPS, relaxEQ = 1, keepEQ = 1)

parameters:
rEPS: a set of eps for which we want to find related eps.
eEPS: a set of exception eps.
relaxEQ: a boolean value of whether to relax the post-slash value from eq to neq for verbs and
prepositions (optional, default:1).
keepEQ: a boolean value of whether to keep verbs and prepositions with a post-slash eq value
(optional, default:1).
returns: a set of eps that are related to rEPS
;; assuming concurrent modification of a set is permitted in a for loop
aEPS ← the set of all eps in the dmrs graph
retEPS ← ∅ ;; initialize an empty set
for tEP ∈ rEPS and tEP /∈ eEPS do

for ep ∈ aEPS and ep /∈ eEPS and ep /∈ rEPS do

pre/post← L(tEP, ep) ;; ep is the dependant of tEP
if pre 6= null then ;; ep exists

if relaxEQ and post = eq and (tEP is a verb ep or (tEP is a preposition ep and pre =
arg2)) then

assign ep a new label and change its qeq relation accordingly
end if
retEPS.add(ep) , aEPS.remove(ep)

end if

pre/post← L(ep, tEP ) ;; ep is the governor of tEP
if pre 6= null then ;; ep exists

if keepEQ = 0 and ep is a (verb ep or preposition ep) and post = eq and ep has no empty
arg* then

continue ;; continue the loop without going further below
end if
if not (ep is a verb ep and post = neq or post = h) then
retEPS.add(ep) , aEPS.remove(ep)

end if
end if

end for
end for

if retEPS 6= ∅ then
return decompose(rEPS ∪ retEPS, eEPS, relaxEQ = 0) ;; the union of two

else
return rEPS

end if
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default. If set to false, the relative clause will be removed from the main clause. Examples can be
found in Figure 9(b) and 10(b).

All decomposers except the apposition decomposer employ this generic algorithm. Figures 9 to
10 are marked with corresponding function calls of this algorithm that decompose one complex mrs
structure to two simpler ones.

4.3 Automatic Generation with Rankings

MrsQG usually produces too much output. The reasons are twofold: firstly, pet and erg “over-
parse”. Sometimes even a simple sentence has tens of parsed mrs structures due to subtle distinctions
in the grammar. Secondly, lkb and erg overgenerate. Sometimes even a simple mrs structure has
tens of realizations, due to word order freedom, lexical choice, etc. Thus ranking is needed to select
the best output.

Generation from lkb has already incorporated the MaxEnt model by Velldal and Oepen (2006),
which works best for declarative sentences as its training corpus does not include questions. To rank
questions, we could have trained the MaxEnt model on questions. But this requires a syntactically
annotated (in hpsg treebank style) question corpus, which is time consuming and expensive to
create. Thus we took a shortcut to simply use language models trained on questions only.

To construct a corpus consisting of only questions, data from the following sources was collected:

• the Question Answering track (1999-2007)4 of the Text REtrieval Conference (TREC, Voorhees,
2001)

• the Multilingual Question Answering campaign (2003-2009)5 from the Cross-Language Evalu-
ation Forum (CLEF, Braschler and Peters, 2004)

• a Question Classification (QC) dataset (Li and Roth, 2002, Hovy et al., 2001)6

• a collection of Yahoo!Answers (Liu and Agichtein, 2008)7

The whole language model training procedure follows a standard protocol of“build-adapt-prune-test”.
Firstly we build a small language model for questions only. Then this language model is adapted
with the whole English Wikipedia8 to increase lexicon coverage. Finally we prune it for rapid access
and test it for effectiveness. The IRST Language Modeling Toolkit (Federico and Cettolo, 2007) was
used.

To combine the scores from both the MaxEnt model and the language model, we first project
the log-based MaxEnt score to linear space and then we use a weighted formula for linear scores to
combine the linear MaxEnt score with the sentence probability from the language model.

Suppose for a single mrs representation there are N different realizations R = [r1, r2, . . . rN ].
P (ri|me) is the normalized MaxEnt score for the i-th realization under a Maximum Entropy model
me. P (ri|lm) is the probability of each of the N different realizations given the language model lm.
With two rankings P (ri|me) and P (ri|lm) we can borrow the idea of F-measure from information
retrieval and combine them:

R(ri) = Fβ = (1 + β2) P (ri|me)P (ri|lm)
β2P (ri|me) + P (ri|lm) (1)

With β = 1 the ranking is unbiased. With β = 2 the ranking weights P (ri|lm) twice as much as
P (ri|me).

4. http://trec.nist.gov/data/qamain.html
5. http://celct.isti.cnr.it/ResPubliQA/index.php?page=Pages/pastCampaigns.php
6. http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
7. http://ir.mathcs.emory.edu/shared/
8. http://meta.wikimedia.org/wiki/Wikipedia_Machine_Translation_Project

30

http://trec.nist.gov/data/qamain.html
http://celct.isti.cnr.it/ResPubliQA/index.php?page=Pages/pastCampaigns.php
http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
http://ir.mathcs.emory.edu/shared/
http://meta.wikimedia.org/wiki/Wikipedia_Machine_Translation_Project


Semantics-based Question Generation and Implementation

Interrogatives Declaratives
TREC CLEF QC YahooAns All Wikipedia

Sentence count 4,950 13,682 5,452 581,348 605,432 30,716,301
Word count (K) 36.6 107.3 61.1 5,773.8 5,978.9 722,845.6
Words/Sentence 7.41 7.94 11.20 9.93 9.88 23.53

Table 1: Statistics of the data sources. “All” is the sum of the first four datasets. Wikipedia is about
120 times larger than “All” in terms of words.

Figure 11 illustrates how question ranking works. Since the MaxEnt model is only trained
on declarative sentences, it prefers sentences with a declarative structure. However, the language
model trained with questions prefers auxiliary fronting. The weighted score can help to select the
best interrogative sentences.

5. Evaluation

The evaluation of question generation with semantics was conducted as part of the Question Gen-
eration Shared Task and Evaluation Challenge (QGSTEC2010; Rus et al., 2010; Rus et al., this
volume). Participants are given a set of inputs consisting of an input sentence + question type and
their system should generate two questions for each type. Question types include yes/no, which,
what, when, how many, where, why and who. Input sources are Wikipedia, OpenLearn9 and Yahoo!
Answers. Each source contributes 30 input sentences. There will be 360 questions generated in total.

Evaluation was conducted by independent human raters (but not necessarily native speakers).
They follow the following criteria:

1. Relevance. Questions should be relevant to the input sentence. Best/worse score: 1/4.

2. Question type. Questions should be of the specified target question type. Best/worse score:
1/2.

3. Syntactic correctness and fluency. The syntactic correctness is rated to ensure systems
can generate sensible output. Best/worse score: 1/4.

4. Ambiguity. The question should make sense when asked more or less out of the blue.
Best/worse score: 1/3.

5. Variety. Pairs of questions in answer to a single input are evaluated on how different they
are from each other. Best/worse score: 1/3.

Note that all participants were asked to generate two questions of the same type. If only one question
was generated, then the variety ranking of this question receives the lowest score and the missing
question receives the lowest scores for all criteria.

5.1 Evaluation Results

Four systems participated in Task B of QGSTEC2010:

• Lethbridge (Ali et al., 2010), University of Lethbridge, Canada

9. http://openlearn.open.ac.uk
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Unranked Realizations from LKB for
“Will the wedding be held next Monday?”

Next Monday the wedding will be held?
Next Monday will the wedding be held?
Next Monday, the wedding will be held?
Next Monday, will the wedding be held?
The wedding will be held next Monday?
Will the wedding be held next Monday?

            MaxEnt Scores

4.31  The wedding will be held next Monday?
1.63  Will the wedding be held next Monday?
1.35  Next Monday the wedding will be held?
1.14  Will the wedding be held next Monday?
0.77  Next Monday, the wedding will be held?
0.51  Next Monday will the wedding be held?
0.29  Next Monday, will the wedding be held?

              Language Model Scores

1.97  Next Monday will the wedding be held?
1.97  Will the wedding be held next Monday?
1.97  Will the wedding be held next Monday?
1.38  Next Monday, will the wedding be held?
1.01  The wedding will be held next Monday?
0.95  Next Monday the wedding will be held?
0.75  Next Monday, the wedding will be held?

          Ranked F1 Scores

1.78  Will the wedding be held next Monday?
1.64  The wedding will be held next Monday?
1.44  Will the wedding be held next Monday?
1.11  Next Monday the wedding will be held?
0.81  Next Monday will the wedding be held?
0.76  Next Monday, the wedding will be held?
0.48  Next Monday, will the wedding be held?

Figure 11: Combined ranking using scores from a MaxEnt model and a language model. The final
combined scores come from Equation 1 with β = 1. All scores are multiplied by 10 for better
reading. Note that the question “Will the wedding be held next Monday?” appears twice and
has different scores with the MaxEnt model. This is because the internal generation chart is different
and thus it is regarded as different, even though the lexical wording is the same.
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input sentences output questions
count %(/90) mean std count %(/360) mean std

MrsQG 89 98.9 19.27 6.94 354 98.3 12.36 7.40
WLV 76 84.4 19.36 7.21 165 45.8 13.75 7.22

JUQGG 85 94.4 19.61 6.91 209 58.1 13.32 7.34
Lethbridge 50 55.6 20.18 5.75 168 46.7 8.26 3.85

(a) coverage

Page 1

MrsQG WLV JUQGG Lethbridge

0.00%

10.00%

20.00%
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50.00%

60.00%
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80.00%

90.00%

100.00%

Coverages on input and output
(generating 360 questions from 90 sentences)

sentences
questions

(b)

Table 2: Generation coverage of four participants. Each was supposed to generate 360 questions in
all from 90 sentences. “mean” and “std” indicate the average and standard deviation of the input
sentence length and output question length in words.

• MrsQG, Saarland University, Germany

• JUQGG (Pal et al., 2010), Jadavpur University, India

• WLV (Varga and Ha, 2010), University of Wolverhampton, UK

In this section we describe the evaluation result of MrsQG in comparison with other systems.

5.1.1 Generation Coverage

The low coverage number in most cases of Table 2 shows that generation from all input sentences
and from all required question types was not an easy task. None of the systems reached 100%.
Among them, MrsQG, WLV and JUQGG generated from more than 80% of the 90 sentences but
Lethbridge only managed to generate from 55.6% of them. As for the required 360 questions, WLV,
JUQGG and Lethbridge only generated around 40% ˜ 60% of them. Most systems can respond to
the input sentences but only MrsQG has a good coverage on required output questions. Figure 2b
in Table 2 illustrates this.

Good coverage on required questions usually depends on whether the employed named entity
recognizer is able to identify corresponding terms for a question type and whether the reproduction
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Relevance Question Type Correctness Ambiguity Variety
MrsQG 1.61 1.13 2.06 1.52 1.78
WLV 1.17 1.06 1.75 1.30 2.08

JUQGG 1.68 1.19 2.44 1.76 1.86
Lethbridge 1.74 1.05 2.64 1.96 1.76
best/worst 1/4 1/2 1/4 1/3 1/3
Agreement 63% 88% 46% 55% 58%

(a)

Relevance Question 
Type

Correctness Ambiguity Variety
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Results per criterion  without penalty on missing questions

WLV
MrsQG
JUQGG
Lethbridge
Worst

(b)

Table 3: Results per participant without penalty for missing questions. Lower grades are better.
Agreement closer to 100% indicates better inter-rater reliability. ”Worst” indicates the worst possible
scores per evaluation category.

rule covers enough structural variants. It also depends on whether the systems have been tuned
on the development set and the strategy they employed. For instance, in order to guarantee high
coverage, MrsQG can choose to sacrifice some performance in sentence correctness. Some systems,
such as WLV, seemed to focus on performance rather than coverage. The next subsection shows this
point.

5.1.2 Overall Evaluation Grades

Two human raters gave grades to each question according to the established criteria. Then all grades
were averaged and inter-rater agreement was calculated. Due to the fact that most systems do not
have a good coverage on required questions (c.f. Table 2), the final grades were calculated with and
without penalty on missing questions.

Table 3 presents the results without penalty on missing questions. Grades were calculated based
only on generated questions from each system. Out of all grading criteria, syntactic correctness and
fluency appears to be the hardest for all systems. Apparently, syntactic or semantic transformations
do not guarantee grammaticality and fluency of the generated question. The best scores are obtained
for question type and relevance. This is not surprising, as the question type is given and the questions
are generated on the basis of a single sentence.
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Relevance Question Type Correctness Ambiguity Variety
MrsQG 1.65 1.15 2.09 1.54 1.80
WLV 2.70 1.57 2.97 2.22 2.58

JUQGG 2.65 1.53 3.10 2.28 2.34
Lethbridge 2.95 1.56 3.36 2.52 2.42

(a)

Relevance Question 
Type

Correctness Ambiguity Variety
0.00
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1.50

2.00

2.50

3.00

3.50

4.00

Results per criterion with penalty on missing questions

MrsQG
WLV
JUQGG
Lethbridge
Worst

(b)

Table 4: Results per participant with penalty for missing questions. Lower grades are better. ”Worst”
indicates the worst possible scores per evaluation category.

Table 4 shows the results if all questions that should be generated are taken into account. If a
system failed to generate a question, it is assumed this system generates a question with the worst
scores in all criteria. Since WLV, JUQGG and Lethbridge have relatively low coverage (between
40% ˜ 60%), their scores deteriorate considerably. The scores for MrsQG are not affected that much,
as it has a coverage of 99%.

The inter-rater agreement for the scores shown by Table 3 is not satisfactory. A score of over
80% usually indicates good agreement but only question type has achieved this standard. Landis
and Koch (1977) have argued values between 0–.20 as slight, .21–.40 as fair, .41–.60 as moderate,
.61–.80 as substantial, and .81–1 as almost perfect agreement. According to this standard, all the
agreement numbers for other criteria only show a moderate or weakly substantial agreement between
raters. These values reflect the fact that the rating criteria were ambiguously defined.

5.1.3 Evaluation Grades per Question Type

QGSTEC2010 requires eight types of questions: yes/no, which, what, when, how many, where, why
and who. Figure 12 shows the individual scores of MrsQG on these questions. The quality of
these questions mostly depends on the term extraction component. For instance, if a named entity
recognizer fails or the ontology cannot provide a hypernym for a term, a which question cannot
be properly generated. In general, MrsQG did the worst for which questions and the best for who
questions. This reveals the strong and weak points of the term extraction component employed in
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Figure 12: Performance of MrsQG per question type. Numbers in () indicate how many questions
were generated regarding each question type. The number in worst() is the sum of all questions.
”Worst” indicates the worst possible scores per evaluation category.

MrsQG. Also, why questions involve more reasoning than others. Since MrsQG does not have a
reasoning component, it received the worst score in “ambiguity” on why questions.

6. Discussion

This section discusses various aspects in question generation with semantics. Some of the discussion
is based on a theoretical perspective while some involves implementation issues. The merits of deep
processing with semantics are emphasized but their disadvantages are also addressed.

6.1 Generation with Semantics can Produce Better Sentences with Fewer Rules

One semantic representation can lead to several surface realizations. With a good ranking mechanism
the best realization can be selected, which makes the generated question even more natural than the
input sentence in some cases. Take the English active and passive voice as an example:

Example 7 (a) The dog was chased by Bart.

Question generated from syntactic transformation:
(b) By whom was the dog chased?

Extra question generated from semantic transformation:
(c) Who chased the dog?

By replacing the term with question words and fronting auxiliary verbs and question words, a syntax-
based system will normally only generate questions as good as (b). A semantics-based system,
generating from chase(who, the dog), can produce both the passive form in (b) and the active form
in (c). In most contexts, (c) would be preferred. (c) is shorter than (b) and sounds more natural.

One might argue that with special treatment and carefully tested transformation rules, a syntax-
based system is capable of generating questions both in active and passive voices. But then again,
similar problems arise in the case of di-transitive verbs:

Example 8 (a) John gave the waitress a one-hundred-dollar tip.
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Asking a question on the tip giver:
(b) Who gave the waitress a one-hundred-dollar tip?

Extra question generated from semantics-based system:
(c) Who gave a one-hundred-dollar tip to the waitress?

A syntax-based system should have no problems producing (b). However, an additional rule is
required to generate (c). For a semantics-based system, both (b) and (c) can be generated from the
logical form give(who, one-hundred-dollar tip, waitress) and no special rules are required.

Generally in a semantics-based system, the generator is responsible for realizing a sentence in
all the ways a language’s grammar permits. The question transformer only needs to address the
semantic divergence between different questions. Thus, a semantics-based system in general requires
fewer rules to generate more questions (i.e. more word order variation) than a syntax-based system.

6.2 Interface to Lexical Semantics Resources

Although one semantic representation can produce multiple syntactic realizations, this procedure is
handled internally through chart generation with erg. Also, different syntactic realizations of the
same meaning can be symbolized into the same semantic representation through parsing with erg.
Thus MrsQG is relieved of the burden to secure grammaticality and is able to focus on the semantics
of languages. This in turn makes MrsQG capable of incorporating other lexical semantics resources
seamlessly. For instance, given the predicate logic form have(John, dog) from the sentence “John
has a dog” and applying ontologies to recognize that a dog is an animal, a predicate logic form
have(John, what animal) for the question “what animal does John have” can be naturally derived.

Apart from using hypernym-hyponym10 relations to produce which questions, other lexical se-
mantic relations can be employed as well. Holonym-meronym11 relations can help ask more specific
questions. For instance, given that a clutch is a part of a transmission system and a sentence “a
clutch helps to change gears”, a more specific question “what part of a transmission sys-

tem helps to change gears?” instead of merely “what helps to change gears?” can be asked.
Also, given the synonym of the cue word the task of lexical substitution can be performed to produce
more lexical variations in a question.

Using lexical semantics resources needs the attention of a word sense disambiguation component.
A misidentification of the sense of word might lead to nonsense questions. So expanding the range
of questions with lexical semantics resources should be used with caution.

Note that there is no distinct difference between semantics-based system and syntax-based system
in the ability to incorporate lexical semantics resources. But in terms of expressive simplicity and
ease of use, a semantics-based system seems to us a more natural way to utilize lexical semantics
resources.

6.3 Language Independence and Domain Adaptability

In theory, MrsQG is language-neutral as it is based on semantic transformations. As long as there
is a grammar12 conforming with the hpsg structure and lkb, adapting it to other languages should
require little or no modification. However, the experience in multi-lingual grammar engineering has
shown that although mrs offers a higher level of abstraction than syntax, it is difficult to guarantee
absolute language independence. As a syntax-semantics interface, part of the mrs representation
will inevitably carry some language specificity. As a consequence, the mrs transfer rules need to be
adapted for the specific grammars, similar to the situation in mrs-based machine translation (Oepen
et al., 2004).

The domain adaptability is confined to the following parts:

10. Y is a hypernym of X if every X is a (kind of) Y; Y is a hyponym of X if every Y is a (kind of) X.
11. Y is a holonym of X if X is a part of Y; Y is a meronym of X if Y is a part of X.
12. For a list of available grammars, check http://wiki.delph-in.net/moin/MatrixTop

37

http://wiki.delph-in.net/moin/MatrixTop


Yao, Bouma and Zhang

1. Named entity recognizers. For a different domain, the recognizers must be re-trained. MrsQG
also uses an ontology-based named entity recognizer. Thus collections of domain-specific named
entities can be easily plugged-in to MrsQG.

2. hpsg parser. The pet parser needs to be re-trained on a new domain with an hpsg tree-
bank. However, since the underlying hpsg grammars are mainly hand-written, they normally
generalize well and have a steady performance on different domains.

6.4 Limitations of Proposed Method

A semantics-based question generation system is theoretically sound and intuitive. But the im-
plementation is limited to tools that are currently available, such as the grammar, the parser, the
generator and the preprocessors. The central theme of MrsQG is mrs, which is an abstract syntactic-
semantic interface employed by erg. The parser and generator cannot work without the erg either.
Thus the erg is indeed the backbone of the whole system. The heavy machinery employed by a
deep precision grammar decreases both the parsing and generation speed and requires large mem-
ory footprints. Thus MrsQG needs more resources and time to process the same sentence than a
syntax-based system does.

On the parsing side, MrsQG is not robust against ungrammatical sentences, due to the fact that
erg is a rule-based grammar and only accepts grammatical sentences. The grammar coverage also
decides the system performance in terms of recall value. But since erg has been developed for over
ten years with great effort, robustness against ungrammaticality and rare grammatical constructions
is only a minor limitation to MrsQG.

On the generation side, all parsed mrs structures in theory should generate. But there exists the
problem of overgeneration. As shown by Velldal and Oepen (2006), the MaxEnt model achieves a
64.28% accuracy on the best sentence and 83.60% accuracy on the top-5 best sentences. Thus the
question given by MrsQG might not be the best one in some cases.

On the preprocessing side, the types of questions that can be asked depend on the named entity
recognizers and ontologies. If the named entity recognizer fails to recognize a term, MrsQG is only
able to generate a yes/no question that requires no term extraction. Even worse, if the named entity
recognizer mistakenly recognizes a term, MrsQG generates wrong questions that might be confusing
to people.

On the side of sentence simplification, the decomposed sentences are not necessarily grammatical.
Even grammatical sentences might not make sense due to lack of information. For instance, given
a restrictive relative clause, “Bart is the cat that chases the dog”, one does not ask “who is

the cat?” but rather “Who is the cat that chases the dog?”. In this case, sentence simpli-
fication produces questions that are too vague and that cannot be understood without a context.
Our proposed system can only rely on the question ranking module to select a best one. In some
other cases, such as the hypothetical clause “if Bart chases dogs, Bart is a brave cat”, the
subordinate decomposer might extract a false statement “Bart chases dogs” or “Bart is a brave

cat”, then a question that cannot find its answer from the input would be generated. Ruling out
these types of questions require either some extra rules, or a textual entailment module to judge
whether the extracted simple clause can be inferred from the original sentence.

From the theoretical point of view, the theory underlying MrsQG is Dependency Minimal Recur-
sion Semantics, a variant of mrs. dmrs provides a connecting interface between a semantic language
and a dependency structure. Although still under development, it has been successfully applied to
question generation via MrsQG . However, there are still redundancies in dmrs (such as the non-
directional null/eq “dependence”). Some of the redundancies are even crucial: a mis-manipulation
of the mrs structure inevitably leads to generation failure and thus makes the mrs transformation
process fragile. Fixing this issue is not trivial however, which requires the joint effort from the mrs
theory, the erg grammar and the lkb generator.
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From the application point of view, MrsQG limits itself to only generating from single sentences.
Expanding the input range to paragraphs or even articles is more interesting for applications but
needs more sophisticated processing. Thus MrsQG currently only serves as a starting point for the
full task of question generation.

7. Conclusion and Future Work

This paper introduces the task of question generation and proposes a semantics-based method to
perform this task. Generating questions from the semantics of languages is intuitive but also has
its difficulties, namely sentence simplification, question transformation and question ranking. This
paper proposes three methods to address these issues: mrs decomposition for complex sentences to
simplify sentences, mrs transformation for simple sentences to convert the semantic form of declar-
ative sentences into that of interrogative sentences, and hybrid ranking to select the best questions.
The underlying theoretical support comes from a dependency semantic representation (dmrs) while
the backbone is an English deep precision grammar (erg) based on the hpsg framework. The core
technology used in this paper is mrs decomposition and transfer. A generic decomposition algo-
rithm is developed to perform sentence simplification, which boils down to solving a graph traversal
problem following the labels of edges that encode linguistic properties.

Evaluation results reveal some of the fine points of this semantics-based method and also chal-
lenges that indicate future work. The proposed method works better than most other syntax/rule-
based systems in terms of the correctness and variety of generated questions, mainly benefiting
from the underlying precision grammar. However, the quality of yes/no questions is not the best
among other question types. This indicates that the sentence decomposer does not work very well.
The main reason is that it does not take text cohesion and context into account. Thus sometimes
the simplified sentences are ambiguous or even not related to the original sentences. Enhancing
the sentence decomposer to simplify complex sentences but still preserving enough information and
semantic integrity is one of the future works.

The low inter-rater agreement shows that the evaluation criteria are not well defined. Also,
the evaluation focuses on standalone questions without putting the task of question generation
into an application scenario. This disconnects question generation from the requirements of actual
applications. For instance, an intelligent tutoring system might prefer precise questions (achieving
high precision by sacrificing recall) whilst a closed-domain question answering system might need
as many questions as possible (achieving high recall by sacrificing precision). Since the research of
question generation has just started, efforts and results are still in a preliminary stage. Combining
question generation with specific application requirements has been put into the long-term schedule.

To sum up, the method proposed by this paper produces so far the first open-source semantics-
based question generation system. It properly employs a series of deep processing steps which in
turn lead to better results than most other shallow methods. Theoretically, it describes the linguistic
structure of a sentence as a dependency semantic graph and performs sentence simplification algo-
rithmically, which has its potential usage in other fields of natural language processing. Practically,
the developed system is open-source and provides an automatic application framework that com-
bines various tools for preprocessing, parsing, generation and mrs manipulation. The usage of this
method will be further tested in specific application scenarios, such as intelligent tutoring systems
and closed-domain question answering systems.
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