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Abstract
This article summarizes research on several interrelated gen-

eral issues that can arise in the design and development of user
modeling systems: the learning and subsequent adaptation of
general user models on the basis of empirical data; the model-
ing of temporally variable properties of users, in particular time
pressure and cognitive load; and the user-adaptive planning of
interactions under uncertainty. The methods and results are in-
tegrated and illustrated with a prototype of a mobile assistance
system for travelers in an airport.

1 Introduction
As you browse the articles and reports in this special issue,

you will notice that there are many ways in which an inter-
active system can adapt to its users (cf. also [5]). This arti-
cle explores the adaptation of an assistance system to a user’s
situation-dependent resource limitations. At the same time, it
addresses several fundamental issues that arise with other types
of user modeling as well.

Whether a user is able to conduct a spoken dialog with a sys-
tem successfully depends in part on the appropriateness of the
system’s utterances with respect to the user’s current situation.
This dependence holds especially for mobile systems, whose
users may suffer from resource limitations induced by the en-
vironment. We present for such a mobile system a multilevel
approach to achieving adaptivity with respect to the user’s time
pressure and cognitive load.

A large international airport is just one domain that creates
various situations for which adaptive assistance promises to be
helpful. People may appreciate being guided to gates, check-
in counters, fast food restaurants, and duty-free shops. They
may want to be assisted when using facilities like check-in ma-
chines, ticket machines, and credit card phones. Whereas today
people rely on posted signs and on preformulated operating in-
structions, an adaptive assistance system will provide support
that is tailored to the current needs of an individual user.

After an introductory example of adaptive assistance and an
overview of the READY1 system, we will survey four focal
research areas within the READY project: (1) empirical stud-
ies concerning users’ resource limitations; (2) user modeling
with dynamic Bayesian networks for making inferences about
resource limitations of the user; (3) the learning of Bayesian
networks from empirical data; and (4) decision-theoretic meth-
ods for planning the system’s interaction with the user. Finally,
we will show how results from all of these areas enable the
prototype system to deal with the introductory example.

1REsource-Adaptive Dialog sYstem.

2 Adaptive Assistance: Example

Passenger
�

’s flight is delayed. Since her business partner is
going to pick her up at the destination airport,

�
wants to make

a phone call to inform him about her late arrival. She finds a
phone which requires the use of a credit card. Since

�
has not

used this particular type of credit card phone before, she con-
sults her mobile PDA-based airport assistance system � . The
help system instructs

�
step by step about how to operate the

phone.
�

executes � ’s detailed instructions without difficulty.
Passenger � arrives late at the airport. Having overslept, he

rushed out of his house and forgot to turn off his electric heater.
There are just a few minutes left until boarding time, but since� is worried about a possible fire in his flat, he wants to call
his neighbor before boarding. The only phone � can find re-
quires the use of a credit card—and � has likewise not yet used
this type of credit card phone. His mobile assistance system �
adapts to his needs, presenting the information needed to oper-
ate the phone as concisely as possible: It gives several simple
instructions in one turn, but at the same time it takes care not to
overload � with information at any one moment. � makes his
call quickly and later reaches the gate just in time.

Operating a credit card phone requires a sequence of actions.� could, for example give the following eight instructions:
1. “Get out your credit card.”
2. “Lift the receiver.”
3. “Dial 0.”
4. “After the tone, dial 9.”
5. “After the tone, enter your credit card number.”
6. “Enter two digits for the month of expiration.”
7. “Enter two digits for the year of expiration.”
8. “After the tone, dial the desired number.”
There are many ways of presenting this sequence of instruc-

tions, ranging from (a) giving just one instruction at a time to
(b) giving all of them before the user � starts to execute the
first instruction. With the latter approach, � is likely to forget
some of the instructions before executing them, either perform-
ing the task incorrectly or requiring � to repeat instructions. On
the one hand, the former approach can take a long time, since� has to confirm the execution of each instruction (e.g., by say-
ing “OK”) before � can give the next one. In general, some
strategy lying between these two extremes will be best; but the
most promising strategy should be determined on the basis of
the current situation and user model.

3 Overview of READY

Figure 1 shows the components of READY and the ways
in which they interact. The components are represented in a
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Figure 1. Components of READY.

cake diagram. The slices within the cake represent the sys-
tem’s on-line components, while those sticking out represent
components that are active in a preceding off-line initialization
phase. In Experiments, we gather information about behaviors
and actions of users through experiments. These data are used
to parametrize the decision-theoretic planning process, as well
as to learn initial Bayesian networks (“BNs”) for the modeling
of individual users.

A user interacts with READY via the User Interface, which
passes the input to the Interaction Manager. The Interaction
Manager performs a first rough action and response planning
and provides the User Modeling component with information
about how the user made his request. Input information—
that is, what the user wants to do or to know—is transferred
to Decision-Theoretic Planning. Communication between User
Modeling and Decision-Theoretic Planning is handled by the In-
teraction Manager. In particular, Decision-Theoretic Planning
receives from User Modeling information about the user’s cur-
rent state. The BNs for user modeling are adapted after each (or
several) user transactions by BN Adaptation, in a semi-on-line
way. After the assistance information has been put together by
Decision-Theoretic Planning, it is presented to the user via the
User Interface.

4 Empirical Grounding in
Experiments

Empirical studies with system users usually serve the goal
of evaluating an existing system. By contrast, the goal of the
experiments to be summarized here was to establish a quanti-
tative foundation for suitable modeling and adaptation for the
future system. The experiments concerned two central topics,
the generation of system output and the analysis of user input,
respectively.
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Figure 2. Main results of Experiment 1: Percentage of errors
(left) and execution times (right) as a function of the number
of instructions, the presentation mode, and the presence of a
secondary task.

4.1 Experiment 1: Stepwise vs. Bundled
Instructions

The focus of interest here is to decide when it is better to
present instructions in a stepwise mode (i.e., one at a time) or
in a bundled mode (i.e., all at once).

Twenty-four subjects were presented with a rather abstract
user interface: At the top there was a “lamp” that occasionally
turned red or green; the main part of the screen contained 6 sets
of 4 “radio buttons” of the sort typically used in dialog boxes
for the setting of system parameters (for details see [6]). The
primary task of the subjects involved clicking on radio buttons
according to the system’s spoken instructions. Each sequence
of instructions comprised 2, 3, or 4 instructions, which were
presented in a stepwise or a bundled way. The blinking lamp
was used as a secondary task that created additional cognitive
load: Subjects had to press the space bar whenever the same
color appeared twice in succession.

As is shown in the right-hand side of Figure 2, the bundled
presentation yields an increasing speed advantage with larger
numbers of instructions. But this advantage is associated with
an increasing probability of errors, especially when the user is
distracted by a secondary task (see the left-hand side of the fig-
ure). In addition to illustrating these general relationships, the
experiment yields fine-grained quantitative data about execu-
tion times and error probabilities that can serve as a basis for
user modeling and decision-theoretic planning.

4.2 Experiment 2: Symptoms of Resource
Limitations in the User’s Speech

This experiment was designed to lay the foundations for a
system that can recognize resource limitations of a user on the
basis of � ’s speech.

The 32 subjects were presented with a two-dimensional vir-
tual airport scenario, in which they were to act as if they were
walking through the airport using an assistance system (for fur-
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Figure 3. Accuracy of a learned Bayesian network in recogniz-
ing whether a subject in Experiment 2 is under time pressure
(left) or is navigating through the virtual airport (right) on the
basis of the features of the subject’s speech in a given number
of utterances.

ther information see [13]). In a condition with especially high
cognitive load, they had to visit several locations along the way.
While they were navigating through the screen (using the arrow
keys on the keyboard), a picture was presented in a corner of the
screen. This picture conveyed the topic of a question that the
subject was to formulate (e.g., “My suitcase is broken. Where
can I buy a new one?”). The subject’s utterances were recorded
for later analysis.

In a condition with lower cognitive load, subjects had to ask
questions in a similar way, but they did not have to navigate
through the airport. A further experimental variable concerned
time pressure: whether subjects were instructed to complete
their question as quickly as possible or to formulate it espe-
cially clearly.

A conventional analysis of the results showed that many fea-
tures of the subjects’ speech were in fact affected by the exper-
imental manipulations. These features range from the articu-
lation rate (number of syllables per second) to the presence of
disfluencies such as interrupted sentences.

The data were also used for the learning of Bayesian net-
works (see Section 6) that could recognize resource limitations
on the basis of a user’s speech. As can be seen in Figure 3,
in this specific experimental environment the presence of time
pressure can be recognized quite well. Whether a user is navi-
gating or not can be recognized reasonably well only when the
user is not under time pressure, since time pressure leads to
shorter, less revealing utterances.

5 User Modeling With Dynamic
Bayesian Networks

Bayesian Networks ([14, 8]) have become increasingly pop-
ular as an inference technique for user modeling (see e.g., [4]).
In a BN (see the example shown in Figure 4), directed arcs
depict uncertain (often causal) relationships among variables.
Tables of conditional probabilities that represent the nature and
strength of these relationships are associated with the arcs.

There are mainly two properties of BNs that make them well
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Figure 4. Overview of a dynamic Bayesian network for the
recognition of a user’s resource limitations.

suited for application in a user modeling context: (a) the possi-
bility of interpreting the networks’ arcs in terms of relationships
among domain variables, which is helpful in both the construc-
tion and the explanation of the user model; and (b) their abil-
ity to handle uncertainty in the domain under consideration,
which is typically pervasive where inferences about a user are
involved.

Dynamic Bayesian networks (DBNs) overcome the static na-
ture of standard BNs. The DBN shown in Figure 4 illustrates
how a DBN includes a sequence of time slices and various types
of nodes. DBNs are especially suitable when user modeling
concerns temporally variable properties of users.

READY is to adapt to a user’s resource limitations of time
pressure and cognitive load largely on the basis of two types
of evidence in � ’s behavior: (a) features of � ’s speech and (b)
properties of � ’s manual input behavior, such as button presses
and taps on the screen with a stylus. When new evidence ar-
rives, a new time slice is added to the DBN.

The temporal variability of time pressure and cognitive load
is taken into account in the DBN in that each dynamic node that
represents one of these properties in a given time slice has only
a probabilistic relationship with the corresponding instance in
the next time slice (these relationships are shown in Figure 4 as
dashed arcs). By contrast, the base rates that represent stable
properties of � ’s behavior, such as a general tendency to use
High Force when tapping the screen, are realized as static nodes
that have the same impact on each time slice. The base rates can
be saved and reused by � for this particular user.

A BN for the interpretation of speech symptoms was learned
on the basis of Experiment 2 (Section 4.2), while the BN for
the interpretation of features of manual input behavior was con-
structed on the basis of a literature study ([11]). The combina-
tion of these two BNs allows � to make inferences about � on
the basis of (simulated) multimodal input.
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Figure 5. Overview of BN learning procedures. (Cylinders
represent repositories of data and BNs, ellipses stand for al-
gorithmic procedures, and boxes symbolize larger conceptual
entities. The flow of information between these components is
depicted by directed arcs.).

Manual input behavior is mapped onto relatively abstract
motor symptoms (see [11] for details). For example, “tapping
very hard on the screen” is mapped onto High Force. In con-
nection with motor symptoms, it is also important to take � ’s
prior knowledge into account. Otherwise, � ’s lack of knowl-
edge about how to operate the assistance system might be mis-
interpreted in terms of time pressure or cognitive load.

After the instantiation of the relevant evidence nodes, the
DBN is evaluated, and new estimates of � ’s time pressure and
cognitive load can be sent to the decision-theoretic planning
module.

6 Learning Bayesian Networks
Two well-known problems are those of how to initialize the

two parts of BN user model—i.e., which initial conditional
probabilities and which initial structure to use. Often the sec-
ond problem is relatively manageable: It may be fairly easy to
identify an adequate structure on the basis of theoretical con-
siderations regarding the causal relations among entities of in-
terest in the domain. Although some previous work in user
modeling has applied standard BN learning techniques to these
problems (see e.g., [9, 12]), to our knowledge no previous work
has addressed the specific issues that arise when these methods
are applied in a user modeling context. In the READY project,
we have developed tools for an integrated approach to learn-
ing and adapting BNs for user-adaptive systems, as is shown in
Figure 5. This methodology is flexible with regard to several
dimensions that will be addressed in the rest of this section (al-
though the current READY prototype does not make use of all
aspects of the methodology).

Off-line learning and on-line adaptation The first two di-
mensions (shown as gray boxes in Figure 5) are off-line learn-
ing and on-line adaptation. During the off-line phase, a general
user model is learned on the basis of data concerning previous
system users or data acquired by experiments such as those de-
scribed in Section 4. This model is in turn used as a starting

point for the interaction with a particular new user: The initial
general model is adapted to the individual current user, and it
can be saved after the interaction for future application to this
user.

The off-line learning procedure yields not only a general
model but also parametric information concerning adaptation
to individual users. The general idea is that some parts of the
learned general user model should be adapted to an individ-
ual user faster than others. For example, Experiment 1 (Sec-
tion 4.1) showed that subjects performed similarly with regard
to their error rates but differed rather widely in terms of their
average execution times. Accordingly, it makes sense to adapt
the part of the model that is related to execution time to the
individual user faster than the part related to errors. A formal
exposition of this idea and a comparison of alternative methods
of adaptation to individual users can be found in [7].

Experimental data and usage data Two further dimen-
sions concern the nature of the data that are available. We
distinguish between experimental data and usage data (see the
upper part of Figure 5). Experimental data are collected in
controlled environments (cf. the experiments presented in Sec-
tion 4). Usage data are collected during real interactions be-
tween users and the system. Usage data often include more
missing data, and rare situations may not be represented, while
experimental data in general do not represent the real usage sit-
uations very accurately. Often, a combination of the two types
of data is available. Because of our off-line/on-line approach
we can handle this combination, for example, by (a) learning
a general model of the relationships between resource limita-
tions and speech symptoms on the basis of experimental data
and then (b) adapting the model using usage data concerning
speech symptoms of the individual user.

Learning the conditional probabilities and structure of
a BN Since a BN comprises two components, the learning
and adaptation tasks are also two-dimensional: (a) learning
the conditional probability tables and (b) learning the BN’s
structure. In a user modeling context, we often have to deal
with sparse data, but in most cases we have additional domain
knowledge available. Our approach involves introducing such
domain knowledge into the learning procedures so as to im-
prove the accuracy of the learned BNs, especially when the
data are sparse (see the upper left-hand part of Figure 5). For
the learning of the conditional probabilities, we developed a
new method in which the user model’s designer can label the
BN’s arcs with plus (+) or minus ( µ ) signs, respectively, before
learning takes place. These signs are intended to reflect mono-
tonic relationships between variables; for example, the hypoth-
esis that distraction increases the likelihood of user errors. This
additional knowledge guides the learning algorithm through the
search space by in effect penalizing solutions that violate (some
of) the specified qualitative constraints (see [15] for details).
For exploiting prior knowledge about the structure of BNs, var-
ious approaches are available, including straightforward ones
such as specifying in advance that the learned structure must
contain particular arcs.

Degree of interpretability Many researchers have argued
that the interpretability and transparency of user models are key
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factors that determine the acceptance of user-adaptive systems
(see, e.g., [5]). In particular, a system that is able to explain its
recommendations or decisions may be better accepted by users.
This goal of interpretability is one motivation for allowing the
incorporation of prior knowledge in the learning of BNs: Even
if prior knowledge does not make a BN more accurate, it may
be worth incorporating because of the way in which it increases
interpretability.

7 Decision-Theoretic Planning
The dynamic Bayesian networks described in the previous

two sections give us a powerful means for making inferences
about � ’s current situation. But how can � use this informa-
tion to adapt to � ’s needs? For example, how can � present
the instructions for operating the credit card phone in the way
which is most appropriate to the situation at hand? Or in terms
of decision theory: how can � present the instructions in such
a way that they promise the maximum expected utility for � ?
To achieve this, � needs to plan the dialog with the user several
steps ahead. In effect, � should consider the likely outcomes of
all possible instruction strategies, in order to be able to choose
the most promising one.

7.1 Modeling of Dialogs With Markov Decision
Processes

A decision-theoretic approach has already been applied to
the learning of dialog strategies in spoken dialog systems (see,
e.g., [10]). The underlying representation—a Markov deci-
sion process (MDP, see e.g., [1, 3])—can also be used for
planning in stochastic environments. We have already applied
decision-theoretic planning, for example, to generate sequences
of location-aware and situation-dependent navigation recom-
mendations (see [2]). In the context of an adaptive assistance
dialog (as well as in the navigation scenario), decision-theoretic
planning allows � to consider uncertainties about how success-
fully the user will execute instructions. Markov decision pro-
cesses are particularly well suited to the handling of trade-offs
between competing goals—in our example, the trade-off be-
tween completing instructions without error versus completing
them as quickly as possible.

We make the following basic assumption, which is supported
by the empirical data of Experiment 1 (Section 4.1): the proba-
bility that � executes an instruction incorrectly depends in part
on how long � is required to remember the instruction before
executing it. Moreover, some steps are inherently more error-
prone than others, and some require a longer time for execution
than others (e.g., dialing a single digit vs. entering a complete
credit card number).

Within the framework of Markov decision processes, the
possible courses of the dialog between � and � are modeled in
terms of states connected by stochastic transitions. Each state
is defined by a set of features; for example, one feature is the
number of instructions that � needs to keep in working mem-
ory at a given point in the dialog (see [6] for details). Each
transition has a certain cost—the times for the system to give
an instruction or for the user to execute an instruction—and a
probability for the successful completion of the action in ques-

tion. Finally, each goal state of the MDP is associated with a
reward, which is to be weighed against the costs of the actions
required to reach the goal state.

Through the application of a standard algorithm such as
value iteration (see, e.g., [3]) to an MDP, a policy can be de-
rived: a mapping from (dialog) states to actions (utterances).
On the basis of the policy, � can always determine the optimal
utterance to make in the dialog state in which it finds itself—as
long as the dialog proceeds in a way that is consistent with the
underlying MDP.

7.2 The Influence of the User Model

When the user modeling component has inferred a high de-
gree of time pressure in � , what impact should this inference
have on the dialog planning process? One way of modeling
time pressure is to assign a high cost to each second of time
that is required by an action performed by � or � . Where � is
planning sequences of instructions, increasing the cost of time
causes � to derive policies that involve relatively large bundles
of instructions. This is the general result that one would ex-
pect intuitively, since such policies tend to lead to faster task
completion.

When the user modeling component has inferred a high de-
gree of cognitive load in � , the probabilities within the MDP of
correct executions of actions by � in the various states should
be lowered. (For example, the data of Experiment 1 made it
possible to estimate the relevant transition probabilities for two
different levels of cognitive load.) As one would expect, the
policies that result in this case tend to be more careful, involv-
ing smaller bundles of instructions or even stepwise presenta-
tion.

8 Example Dialog

8.1 The User Interface

The example dialog will be easier to read after a brief in-
troduction to the user interface of the READY prototype. The
user interface is realized on a workstation display as a simula-
tion of a handheld device. So that we can simulate the use of
a broad range of types of input and output, the prototype does
not include components such as real speech recognizers and
synthesizers; instead, all input and output is specified with the
typical modalities of graphical workstations (e.g., menus and
graphical and textual displays).

In the upper left-hand corner of the Graphics / Text widget
in Figure 6, the small map shows the content of the simulated
PDA screen. The manual input to the PDA is simulated with a
description of the content of the input and the way in which it
is entered. For example, in the upper right-hand corner of the
Graphics / Text widget, it has been specified that � was pre-
sented with a Map, in which she Clicked on the Phone. Below,
it has been specified (among other things), that � at first clicked
next to the target, though quite Close to it.

Speech input is realized analogously (see the Speech widget
on the right in Figure 6). In our example, the utterance of �
is specified as having the content I’d like to use this... and an
Articulation rate of 4-8 syll/sec.

5



Figure 6. Screen shot of the user interface of the READY prototype.

The manual and the speech input are two parts of a multi-
modal utterance expressing � ’s desire to use a particular phone.� ’s multimodal output is displayed in an analogous fashion
via the interface.

The two small panels shown at the top of Figure 6 display
aspects of the system’s internal processing.

8.2 Assisting Passenger ¶
We now return to the example of passenger � that was intro-

duced in Section 2. � is in a hurry when he requests help from
the airport assistance system. His articulation rate is high, and
on his first attempt he does not click accurately on the phone
icon displayed on his PDA’s display, clicking slightly next to it
instead. Instantiation of the nodes corresponding to these two
symptoms in the dynamic Bayesian network causes � to in-
fer a relatively high level of time pressure. The updated user
model is now used to parameterize the decision-theoretic plan-
ning process. A dialog policy is computed which determines
the � ’s next four instructions. � starts with a single instruc-
tion:� : “Get out your credit card.”� waits for feedback (e.g., � might say something like

“OK, I’ve got my credit card ready now . . . ”).� then bundles the next two instructions:

� : “Lift the receiver.”� : “Dial 0.”� waits for feedback.
In principle, � could have given the first three instructions in

one bundle. Many factors contributed to the decision to give the
first one separately; one of them is the relatively long duration
of the action of getting out the credit card, which decreases
the likelihood that any subsequent instructions within the same
bundle would be remembered accurately.

Although � ’s articulation rate has meanwhile decreased to a
moderate level, � ’s estimate of � ’s time pressure is still rela-
tively high, since the DBNs incorporate the assumption that the
degree of time pressure is unlikely to change suddenly at any
given moment. There is still no evidence for an unusual level
of cognitive load.� now bundles the next two instructions:� : “After the tone, dial 9.”� : “After the tone, enter your credit card number.”� waits for feedback.

These instructions would not be bundled if the actions were
to be performed in the reverse order: After the complex action
of entering the credit card number, the probability of remem-
bering any other instruction would be relatively low.� gives the last three instructions stepwise:� : “Enter two digits for the month of expiration.”

6



� waits for feedback.� : “Enter two digits for the year of expiration.”� waits for feedback.� : “After the tone, dial the desired number.”� waits for feedback.
This choice of stepwise presentation is influenced in part by

the working memory demands of the actions involved. For ex-
ample, entering information about the expiration date is classi-
fied as being more demanding than lifting the receiver).

9 Relation to Other User Modeling
Research

To a greater extent than most other user modeling research,
the work summarized here represents basic research concern-
ing general issues that can arise in the development of many
different types of user modeling system, such as: How can gen-
eral user models be learned on the basis of empirical data, and
how can they subsequently be adapted to individual users and
different situations? How can diverse sources of evidence be
exploited in the modeling of temporally variable properties of
users? How can resource limitations of time pressure and cog-
nitive load be conceptualized in a way that is simple enough
for on-line user modeling yet realistic enough to give rise to
appropriate system adaptations? How can a system that offers
recommendations plan several steps ahead, taking into account
uncertainty about how the user will respond to its recommen-
dations?

The ultimate value of this research will be determined in part
through efforts to adapt its results for use in more application-
oriented systems (for example, at our neighboring German Re-
search Center for Artificial Intelligence).
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