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ABSTRACT
Our problem is one of a human-robot team exploring a
previously unknown disaster scenario together. The team
is building up situation awareness, gathering information
about the prescence and structure of specific objects of in-
terest like victims or threats. For a robot working with a
human team, there are several challenges. From the view-
point of task-work, there is time-pressure: The exploration
needs to be done efficiently, and effectively. From the view-
point of team-work, the robot needs to perform its tasks
together with the human users such that it is apparent to
the users why the robot is doing what it is doing. With-
out that, human users might fail to trust the robot, which
can negatively impact overall team performance. In this
paper, we present an approach to the field of semantic map-
ping, as a subset of robotic mapping; aiming to address the
problems in both efficiency (task), and apparency (team).
The approach models the environment from a geometrical-
functional viewpoint, establishing where the robot needs
to be, to be in an optimal position to gather particular in-
formation relative to a 3D-landmark in the environment.
The approach combines top-down logical and probabilis-
tic inferences about 3D-structure and robot morphology,
with bottom-up quantitative maps. The inferences result in
vantage positions for information gathering which are op-
timal in a quantitative sense (effectivity), and which mimic
human spatial understanding (apparency). A quantitative
evaluation shows that functional mapping leads to signifi-
cantly better vantage points than a naive approach.
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1 Introduction

When a rescue team reaches a disaster environment, they
seldom have information about the spatial organization of
it. The tasks of the rescue team are then to typically ex-
plore the environment, identify objects of interest such as
victims, fires, explosive risks; and perform actions such as
rescuing victims and extinguishing threats. Among these
tasks, exploration and identification of “objects of interest”
such as victims, hazardous substances are tasks that are per-
formable by the robot. See Fig. 1 for illustrations of envi-
ronments in which we have deployed human-robot teams.

For example, in responding to a tunnel traffic accident the
priority is to search for victims (inside cars), whereas in
a freight train accident we need to assess the presence of
dangerous materials. Exploration of the environment helps
build an awareness of the situation which proves invaluable
to rescue workers. The traditional method of a robot build-
ing up it’s own spatial awareness is by building a metric
map i.e. of laser scans and visual information. However
that alone is of limited use to a rescue worker.

Instead rescue workers might be more interested in a
semantic map, which is described in [17] as a map which
contains in addition to metric information, assignment of
mapped features (laser, vision) to entities of known classes.
Further knowledge of these entities might be present in
some knowledge base with an associated reasoning engine.
Known or commonly expected entities in the case of a car
crash would be cars, victims and so on. In our approach,
we make use of a handwritten OWL/RDF-based ontology
based upon objects of interest that may be observed in a
disaster environment, and their relation to each other. We
present this information in more detail in §3.2.

Our approach to semantic mapping address both ef-
ficiency (task), and apparency (team). Our focus is on the
robot exploring and understanding the spatial structure of
the disaster environment from the viewpoint of information
gathering. Objects of interest often “contain” (in the topo-
logical sense) additional information that can be retrieved
from it. For example, a car might contain victims or a bar-
rel might have a label identifying the explosive substances
present within. In the former case, it would help for the
robot to be in optimally computed position to gather infor-
mation relative to the car i.e., the presence and locations
of victims in the car. This is a process of inference and
discovery. Upon the perception of a particular landmark,
inference establishes whether the landmark might contain
particular objects of interest. Gathering information then
turns into verifying whether these hypotheses hold, and if
verified, substantiating them as facts.

The context of our task is one of collaboration be-
tween humans and robots, with both being problem-
holders. The humans need a robot to provide them with
information about an environment which is too dangerous
for them to (currently) enter, whereas a robot needs the hu-
mans to help it to make sense of the environment or to find



its way around. Complications in this collaboration arise
both in its task-work dimension, and the team-work dimen-
sion (cf. [11, 12]): Tasks typically need to be performed
under time-pressure, requiring the robot to execute them
efficiently and effectively; and, the way the robot does so
needs to be understandable or apparent for the human user
to trust the robot in determining and executing its own ac-
tions [6, 10].

(a) (b) (c)

Figure 1. Examples of where we have deployed human-
robot teams: Tunnel accident (a), earthquake (b), train ac-
cident (c). (a) and (c) are at training areas, (b) is real-life
(Mirandola, Italy; July’12).

Our approach achieves efficiency by considering how
the structure of the landmark, the functional capabilities of
the robot, and the actually observed situation around the
landmark, all interact to establish positions where a specific
action can be optimally executed. We formulate optimal-
ity as a quantitative measure of the success of the action,
e.g. maximum visibility into a landmark given position
and sensor models. Apparency is achieved by basing van-
tage point selection on the kinds of the inferences humans
tend to make about space and “affordances,” i.e. from a
functional-geometrical understanding of space [5]. For ex-
ample, if the robot needs to look into a container-like object
like a car, it makes more sense to be at openings (windows)
rather than an arbitrary end (e.g. the tailpipe). Doing so
naturally facilitates making better observations, but it also
results in behavior which a human user can intuitively ex-
plain – and thus, possibly, trust.

An overview of the paper is as follows. §2 relates our
approach to other work on knowledge gathering, and active
visual search. §3 describes the approach in more detail,
including offline- and online workflows. §4 presents the
experimental setup, and first quantitative results comparing
our approach to a naive one, on a tunnel accident use case.
The paper ends with conclusions.

2 Related Work

The basis of our research comes from the field of seman-
tic mapping. Semantic mapping in the field of robotics is
still curtailed largely to indoor and/or controlled environ-
ments. [17] provides several cases of semantic relations
used to identify and label different planes of an indoor
scenario based on their relative orientation. Using similar
methods, the authors also demonstrate the identification of
a ground plane in an outdoor scenario. Other indoor seman-
tic mapping approaches include using laser scan patterns to

classify rooms [8] and determining the type of room based
on the objects found in them [21]. Such approaches use
very basic semantics, unlike our approach which uses hu-
man readable ontologies based on task-specific knowledge
of human beings. A precursor to our approach was [23],
where authors demonstrated a method for an indoor robot
to recognize common indoor themes like doors, and the re-
gions for interacting with them. The authors use spatial
knowledge based on human interactions with doors to draw
it’s conclusions. A recent approach using spatial ontologies
was [18], where an indoor robot observed the interaction of
a human being with a kitchen environment and then uses
an ontology derived from this knowledge to interact with
the objects in that environment.

Another aspect of our approach comes from robotic
exploration of unstructured and previously unknown envi-
ronments. The current state of the art in mobile robotics is
limited in terms of autonomous planning and exploration
of such environments. We would like the robot to be ca-
pable of (collaborative) forms of exploration for informa-
tion gathering, similar to those discussed by e.g. Wyatt et
al [22]. We would like to cast exploration as a continual
planning & execution process in which inferences are made
over what information is missing, where such information
might be gathered, and what actions to perform in order to
gather this information.

This is different from an exhaustive search of the
disaster scene, as would result from typical information-
theoretic approaches to spatial exploration; cf. [19]. It is
more similar to active visual search techniques, in which
vantage points are planned in a particular space to search
for (or observe) a known object. This is potentially a hard
problem to restrict. In [7], an indirect search is suggested,
where searching for one object helps restrict the search pos-
sibilities for a target object. However, Tsotsos [20] showed
even this problem to be NP-hard in the general case. Plan-
based approaches like [1] then couple semantic knowledge
of spatial structure, like basic containment relations, with
search heuristics to help structure the search. A demon-
stration of this approach is even shown in large, unknown
spaces [2, 3]. Our approach relates to work in active visual
search, in that we reason about possibilities for information
gathering in an “indirect search” way (like [7]). We then
use continual planning to drive discovery i.e., we make in-
ferences on the objects we observe which generates new
plans for information gathering.

Functional mapping was coined in [23] in which we
consider only ontological inference to establish functional
aspects of space. In our previous paper, [13] we discussed
empirical results from end-user experiments with human-
robot teams [6] in which human users tele-operating a robot
(UGV) displayed “exactly” the kind of behavior in select-
ing optimal viewpoints for exploration as predicted by our
approach. Our novelty in the current paper, is the combina-
tion of top-down ontological inferences about the structure
of 3D landmarks, with Support Vector Machines(SVM)-
based probabilistic inference for determining optimal po-



sitions relative to a given landmark and (inferences over)
a given robot morphology including physical shape and
sensor characteristics. We thus provide a more precise,
functional-geometrical characterization of space in terms
of the environment and the way the robot (given its con-
figuration) can interact with it. Furthermore, we provide a
setup for quantitative analysis of the approach (in simula-
tion), and present first experimental evaluation results. The
idea of deriving inferences from ontologies detailed with
task-specific human knowledge comes from papers such
as [9, 23]. Our approach makes a concise model of opti-
mal positions for performing specific tasks similar to the
approach [18]. Their work concerns pick and place oper-
ations in a kitchen scenario and the authors use point dis-
tribution models to reduce the dimensionality of successful
poses, in order to sample from during testing. We make use
of SVMs to concisely represent successful poses in func-
tional mapping.

3 Approach

In the following subsections, we detail various aspects of
our approach.

3.1 Link to Autonomy

Autonomous navigation of an unstructured disaster envi-
ronment is a collaborative task, where full robot autonomy
is currently beyond our scope. We have conducted sim-
ulated search and rescue exercises with firefighters in Ger-
many and Italy and also been involved in a real rescue effort
after the earthquake in Mirandola, Italy in 2012. We no-
tice that rescue workers come under a lot of stress in such
exercises and have to often conduct several tasks simulta-
neously e.g., rescuing victims, observing a scene, convey-
ing information to superiors and discussing plans. In or-
der to reduce the stress on the robot operator, we would
like to provide any amount of autonomy that the robot can
achieve, relevant to the task at hand. For example if the task
was locating victims in a car crash scenario, we would like
the robot to proceed to the most viable points of gathering
this information, provide continuous video feed to the op-
erator and only have the operator intervene if the operator
does not agree with the robot’s plan or if the robot is stuck
and requires teleoperation.

Our ideas stem from different levels of autonomy that
[16] describes in a scale of autonomous human-robot col-
laboration. The authors explain how human-robot collab-
orative action can vary in degrees of autonomy as per the
situation, from level 1 being complete teleoperation to level
10 being complete autonomy. We find this kind of a model
to be very useful, and use it in different parts of our project
as well. For example, when the vision component detects
a crashed car with a low level of accuracy, it will ask the
user to verify the detection, which falls under level 4 of
“suggesting one alternative”. In our approach to functional

Figure 2. A screenshot of a simulated scenario with the
NIFTi robot. The red arrows indicate the vantage point
poses for looking into the detected car.

mapping and planning, we indicate to the human operator
the poses that the robot proposes to visit and embed them
in the real camera feed. The robot then executes that plan
and allows the human operator the possibility of vetoing the
suggestion. This falls under a high level 7 in the levels of
autonomy, namely “(the robot) executes automatically, and
necessarily informs the human”. The descibed scenario is
demonstrated in a screenshot of our human operator inter-
face shown in Fig. 2, where a simulated rescue scenario is
underway at the firefighter school (SFO) in Montelibretti,
Italy.

3.2 Ontology

Our use of semantic mapping is to attach meaningful cat-
egories to areas in the metrical map. In [24], a mobile
robot drives around an indoor scenario and assigns labels
to certain areas based on their physical charecteristics. It
first generally labels all explored areas as ontological in-
stances of the class Area. Based on further exploration, it
is then able to further classify them as of class type Room
or Corridor based on the analysis of the metrical map. It
does so by using a hand-written ontology and by reasoning
about categories based upon relations of specificity like is-
a i.e., Room is-a Area. Further if an object of class Couch
is found in this area, through a relation of object contain-
ment it could make an associative relationship e.g., Room1
has-a Couch. Fig. 3 shows a sample of our ontology of a
car accident domain where similar relationships are shown.
The arrows signify the classification relationship is-a, and
several has-a relationships have been indicated for the class
AudiR8. The has-a relationships specify for e.g., the geo-
metrical structure of the car like the positions and dimen-
sions of the windows and the car cabin.

We use a handwritten OWL/RDF-based ontology
with manufacturer information about “car-accident” do-
main entities such as cars, robots, their sensors and so on.
In our previous paper [13], we retrieved geometrical fea-
tures of car models and functional and geometrical features
of robot and sensor models from the ontology to use in our
computation of optimal poses for finding victims.



Figure 3. An excerpt of the car accident domain ontology. Details of a car with geometrical information as well as computed
SVM models for visibility can be seen.

In this paper, we extend the ontology to include infor-
mation of the car cabin (i.e., the space where the passengers
are seated). As will be explained in §3.3, we then com-
pute information regarding the optimal “vantage points”,
to look for victims inside the car cabin. We do so by query-
ing the ontology for physical and functional parameters of
the scene and use them as spatial parameters in our cal-
culation of these vantage points. This is done during an
offline step, and is added back to the ontology as explained
in §3.4. We use SVMs to concisely represent the vantage
points. The relationship has-a for representing the vantage
points for the car Audi R8 in terms of SVM models can
also be seen in Fig. 3. It is important to note that although
we are computing the optimal positions for looking into
a Car through a Window, our approach is relevant to any
members connected by the is-a relation to these entitites
i.e. Container and Opening. Thus it may be just as easily
applied to inspection of a container on an automatic pack-
aging line, robots working on automobile production etc.

To extract information from the ontology we submit
queries to the HFC reasoning engine with a standard OWL-
DL rule set and some custom rules [14, 15]. For example,
to retrieve geometrical information about the corner points
of the car cabin of the Audi R8, we submit the query:

SELECT DISTINCT ?pnt WHERE <funcmap:AudiR8>
<funcmap:hasPart> ?carcabin & ?carcabin <rdf:type>
<funcmap:CarCabin> & ?carcabin <funcmap:hasShape>
?shape & ?shape <funcmap:hasPoint> ?pnt

We submit similar queries to retrieve information
about the SVM models that we store, robot and sensor in-
formation etc.

3.3 Measure Of Visibility

The measure of visibility is a measure of the likelihood
of a human operator succesfully locating a victim through
looking at the robot’s camera feed from a certain position
around a car. In [13], we used the area of the car window

visible in the visualization cone of the robot’s camera(the
viewable volume in front of a camera) as shown in Fig. 4,
comparing it to the average size of a human face, which
would be detectable by a vision component running face
detection algorithms. However, we found that face detec-
tion is unreliable in smoky environments that we typically
find in such disasters, and the measure was not very accu-
rate as it ignored the rest of the car cabin where victims
may also be found. As mentioned in our discussion about
sliding autonomy in §3.1, our scenario is one where the op-
erator is overviewing the video feed provided by the robot.
We feel the operator is in a better position to do a critical
task such as determining if a certain area in a smoky video
feed contains a part of a human being, thus removing the
autonomy from the robot in that particular task.

In our current approach, we feel a better measure of
visibility would be the volume of the car cabin, which is
where the passengers are located, that is visible from a cer-
tain robot position. The idea is that, if we then plot a path
of such viable locations, we want to maximize the volume
of the car cabin visible in the robot’s camera feed while
the robot maneuvers through that path. That will then give
the human operator the highest possible chance of locating
a victim in the region of the car cabin. To have an idea
of the volume of the car cabin, we fill the model of the
car cabin with equal radii packing spheres in a hexagonal
close-packing arrangement, as shown in Fig. 4. This ar-
rangement has the highest packing density. We then calcu-
late the visibility measure from any robot position around
the car as, the ratio of the packing spheres visible from that
location to the total number of packing spheres. The algo-
rithm for computing the visibility measure is then given by
Algorithm 1.

To demonstrate the visual region that can be seen by a
camera, we use a visualization cone that contains the re-
gions that a camera can see from a certain position. In
Fig. 4, we can see the visualization cone from a certain
position around the car model looking towards it. Let the
visualization cone have a horizontal angle H and a vertical



Figure 4. (clockwise from top-left) :(a) A sketch of a robot
looking inside a car, the camera’s visualization cone with
horizontal angle H and vertical angle V is able to view
an area A of the car window;(b) a car cabin(pink frame)
with packing spheres (multi-coloured);(c) a sketch of a
visualization cone of a robot’s camera(black) looking at
a car cabin (pink) through car windows (blue polygons),
also shows search spaces(red), car outline(green) and robot
pose(blue arrow). Figures (b) & (c) are constructed from
information extracted from the ontology for the Ladybug3
camera and an Audi R8 car

angle V, rhv be a ray of the cone with angles h and v, R be
the reliable range of vision for the camera in this scenario,
pcam be the camera, S be the set of packing spheres, rsph be
their radii and W be the set of window polygons. Let the
expressions ray(A,B) be a ray from point A to B, dist(A,B)
be the orthogonal distance between A and B, proj(A,B) be
the projection of ray A on ray B, and int(A,B) be the point of
intersection of ray A on polygon B. In Algorithm 1, equa-
tion 6 isolates only those spheres that the current ray passes
through. Equations 7 and 9, then are criteria on whether the
length of intersection of the ray and the point, and that of
the ray and window; are less than the visual range of the
camera. The visibility measure is then calculated in Equa-
tion 19.

3.4 Support Vector Machines (SVM)

We use SVMs to form concise models of high-visibility
yielding vantage point poses. We use the RBF kernel and
our 3 input parameters are the X, Y coordinates and the
2D angle of the robot with respect to the detected car(θ).
In Fig. 4, we can see car windows and search spaces cor-
responding to each of them. Using linear iterators(lin),
say of 10-2 of searchspace side length, and angular itera-
tors(ang), say (π/16); for each search space we generate a
search set(S) of 16 ∗ 104 robot poses. For each of these
poses, we then compute the measure of visibility(vismes)
as described in §3.3.

Of these values, a large number give zero visibility.
The others give varying amounts of positive visibility. We
use a system of set of varying thresholds(T), based upon
the top percentile of positive visibilities. We think this will
give the human operator, a choice between very high vis-
ibility (say top 10%) or a larger range of visibilities (say
top 50%). The online step of the algorithm is very fast,
so the human operator may switch between various ranges
of visibilities very easily if desired. The thresholds also
help in the evaluation of the method in §4. We choose a
specific threshold thus classifying the set S into 2 classes.
We choose the best RBF kernel parameters (c and γ) by
performing cross validation through coarse(CG) and fine
grid(FG) search parameters on these 2 classes. We then
use these best parameters to create an SVM model (Msp,t)
for this particular search space and threshold, consisting
of about 500 support vectors. The robot would finally store
the SVM model along with the search space parameters and
the threshold to the ontology.

Algorithm 1 Computing visibility of car cabin from single robot pose

1: nsph ← 0
2: Ntot ← |S|
3: for h← 0, H do
4: for v ← 0, V do
5: for all sc ∈ S do
6: if dist(rhv, sc) < rsph then
7: if proj(ray(pcam, sc), rhv) < R then
8: for all win ∈W do
9: if dist(int(rhv, win), pcam) < R then

10: nsph ← nsph + 1
11: S ← S − sc
12: end if
13: end for
14: end if
15: end if
16: end for
17: end for
18: end for
19: vismes← nsph/Ntot

Typically a robot (r) would perform these steps offline
on all car models (V) present in it’s ontology. For a car
model(v) we get the search space set (SP) and from both
robot and car we get the physical (window, car cabin di-
mensions) and functional (camera range, view angles) pa-
rameters (paramphy,fun). These steps are shown in Algo-
rithm 2.

One iteration of the offline workflow takes about 6
hours on a fairly powerful computer (8 core, 2.8GhZ). We
argue that this is acceptable, since this offline process has to
be performed only once on every robot for every car model
present in the ontology. The SVMs also clearly reduce the
dimensionality of the vantage point poses, enabling them
to be stored easily in an ontology. Retrieval of SVM model
can be easily done through queries, and once retrieved com-
puting the classification for a test pose is a simple process.



Algorithm 2 Offline workflow
1: for all v ∈ V do
2: SP ← GetSearchSpaces(v)
3: paramphy,fun ← GetParameters(r, v)
4: for all sp ∈ SP do
5: S ← GenerateSearchSet(sp, lin, ang)
6: for all s ∈ S do
7: vismes←MeasureOfVisibility(s)
8: end for
9: S ← (S, vismes)

10: for all t ∈ T do
11: S ← ClassifyThreshold(S, t)
12: CG← (..2−9, 2−7, 2−5, 2−3, 2−1, 2, 4, 8, 16..)
13: for all cg ∈ CG do
14: (ccg, γcg)← CrossValidation(cg, S)
15: end for
16: (cb, γb)← max(ccg, γcg)
17: FG← (..(cb, γb).2

−0.3, (cb, γb).2
−0.1..)

18: for all fg ∈ FG do
19: (cfg, γfg)← CrossValidation(fg, S)
20: end for
21: (cb, γb)← max(cfg, γfg)
22: Msp,t ← CreateSVMModel(cb, γb, S)
23: AddToOntology(Msp,t, sp, t, lin, ang)
24: end for
25: end for
26: end for

3.5 Online Workflow

Fig. 5 shows the online workflow, which takes place af-
ter the offline workflow has been completed for every car
model. In step 1, when a car is detected, the robot retrieves
from the ontology for that particular car model each search
space and threshold, the SVM model and linear and an-
gular iterators it had stored in the last step of the offline
process. In step 2, a particular search space and threshold
are chosen. All search spaces may be chosen one at a time,
or a certain search space may be chosen for proximity to
the robot to have a quick look. The thresholds are cho-
sen according to the operators choice, based on the type of
visibility desired, i.e. high visibility or a broad range of vis-
ibilities. In step 3, using the linear and angular iterators of
the search space, a random robot pose is generated. Next,
the robot pose is checked against the SVM model to see
if it is classified in the class of visibility above the thresh-
old. This process is repeated till a suitable pose is found.
For all the cases that we have tested, this takes a very short
amount of time, upto 5 seconds. We believe this is a reason-
able amount of time for getting a pose that might yield good
visibility. Additionally, it is also possible to check the mea-
sure of visibility for this pose against the car model, which
can be evaluated very quickly. However, this is usually not
necessary as the cross-validation performed in the offline
step usually produces a very high rate (> 95%), as the suc-
cessful cases are well ordered and can easily be clustered.

Finally, this vantage point pose can be used as a planning
coordinate.

Figure 5. Schematics of the online functional mapping
workflow

4 Experiment

We found our method difficult to evaluate during real ex-
periments, due to unreliable results from the vision and
navigation components, which are managed by other part-
ners in our project. This is expected as given the severe en-
vironmental conditions (uncertain lighting, smoke, rough
and uneven terrain, unexpected obstacles) in these scenar-
ios, the current state of the art approaches in these fields do
not perform robustly. Thus it is difficult to obtain test data
from a real scenario. Instead we run the offline workflow
as usual, and generate the poses from the online workflow.
We then check the measure of visibility obtained from these
poses on a simulated car model which is generated from the
car dimensions of the ontology.

We compare the visibility obtained from these poses
to pose obtained from a more naive approach. For the naive
approach, we wanted to choose poses that do not consider
the structure of the car but are aware of the position and
size of the car. These dimensions can easily be seen from a
2D occupancy map, like one that is generated from a laser
scan with 2D mapping. The positions of the naive approach
were random points around the car up to a distance of the
search space length of 3m. The directions of the robot for
the naive approach, were chosen such that they pointed to
any point on the model of the car. Thus the robot in the
naive approach has an understanding of where the car is,
but does not know what parts it is composed of e.g., win-
dows.

We calculated the measures of visibility obtained
from 5000 robot poses generated from the functional map-
ping approach and the naive approach. We performed ex-
periments with 2 robot models and 2 car models and got
consistent results for all the cases.

Table 1 summarizes the results. We used as robot
models the robot developed during the NIFTi project which
is equipped with a Ladybug 3 omnicamera at a height of 40
cm and the popular Pioneer PeopleBot equipped with two
Flea 2 cameras fitted on the top of the robot at a height of



Case Threshold Naive Functional
Visibility Algorithm Mapping

Percentage Visibility Visibility
50% 1.3732 % 2.6416%

1 25% 1.3012 % 3.4687%
10% 1.3623 % 4.6090%
50% 0.9352 % 1.5547%

2 25% 0.9107 % 1.6379%
10% 0.8997 % 2.0271%
50% 6.9358 % 11.6519%

3 25% 7.4886 % 15.8252%
10% 7.3456 % 22.5355%

Table 1. Comparison of achieved positional visibility by naive
algorithm and functional mapping. Case 1 was with the NIFTi
robot and the Audi R8, case 2 with the NIFTi robot and the BMW
3Series Sedan and case 3 with the Pioneer PeopleBot and the Audi
R8.

about 145 cm. From the results, we see that even using a
poor threshold of 50% i.e., using 50% of non-zero visibility
poses as a basis for the SVM model yields almost twice as
good visibility of the car cabin as the naive approach. As
we reduce the successful visibility threshold percentage to
25% and 10% we get even better results with about thrice
as good visibility as the naive approach. We see a similar
trend among all the robot and car models tested. Also, the
visibility from the naive approaches are rather uniform in
all the cases demonstrating that 5000 poses are enough for
a reasonable comparison. The difference in height and the
use of an additional camera would explain the much higher
visibility for the Pioneer PeopleBot. In our computation of
visibility measure, we only add the shared visibility of any
attached cameras once. Fig. 6 shows 300 poses generated
from the functional mapping workflow and the naive algo-
rithm for case 1. We choose 300 as it is not as crowded as
5000 poses and the directionality of the generated poses of
the functional mapping approach are clear and evident.

5 Conclusions

We demonstrated a method for the interaction of a robot
with 3D landmarks in a search and rescue environment,
based upon ontological knowledge, both pre-existing and
additionally computed, as an aid to collaborative efforts by
human-robot rescue teams. In particular, we analyzed the
case of victim search inside crashed cars. We developed
a workflow that concisely represents successful poses of
looking into cars (of the order of 100s of thousands) into
200-500 3-attribute SVM vectors per opening that affords
such visibility. We store these SVM vectors and the corre-
sponding search spaces into the ontology, which is retriev-
able during real-time operation. The time taken to gener-
ate a successful pose from these SVM models is about 1-5
seconds which is acceptable in real-time. We performed
experiments on some car models and robot configurations

Figure 6. 300 poses generated for a test case by the (top)
Functional Mapping and (bottom) Naive algorithms. The
red and green arrows are the poses, pink frame in the cen-
ter is the car cabin, blue polygons are windows and red
polygons are the search spaces

and found that poses thus generated by the functional map-
ping workflow perform far better than those by an algo-
rithm naive of the ontological knowledge.

In the future, we plan to perform experiments with a
navigating robot, with a camera on a movable arm and plan
trajectories around several crashed cars that optimize the
amount of visualization inside these cars. Further, we plan
to extend the notion of openings and containers to other
use cases e.g., entering a hole into a room of known dimen-
sions, climbing a known stairway and so on.
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[17] Andreas Nüchter and Joachim Hertzberg. Towards
semantic maps for mobile robots. Robot. Auton. Syst.,
56(11):915–926, November 2008.

[18] M. Tenorth and M. Beetz. Towards practical and
grounded knowledge representation systems for au-
tonomous household robots. In Proceedings of the
1st International Workshop on Cognition for Techni-
cal Systems, 2008.

[19] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
Probabilistic Robotics. Intelligent Robotics and Au-
tonomous Agents. The MIT Press, Cambridge, MA,
2005.

[20] J. K. Tsotsos. On the relative complexity of active vs.
passive visual search. International Journal of Com-
puter Vision, 7(2):127–141, 1992.

[21] Shrihari Vasudevan, Stefan Gächter, Viet Nguyen,
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A. Vrečko. Self-understanding and self-extension:
a systems and representational approach. IEEE
Transactions on Autonomous Mental Development,
2(4):282–303, 2010.

[23] H. Zender, P. Jensfelt, and G.J.M. Kruijff. Human-
and situation-aware people following. In Proceed-
ings of the 16th IEEE International Symposium on
Robot and Human Interactive Communication (RO-
MAN 2007), pages 1131–1136, August 2007.
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