
Eype - Using Eye-Traces for
Eye-Typing

Sabrina Hoppe
DFKI GmbH
Saarbrücken, Germany
sabrina.hoppe@dfki.de

Florian Daiber
DFKI GmbH.
Saarbrücken, Germany
florian.daiber@dfki.de

Markus Löchtefeld
DFKI GmbH
Saarbrücken, Germany
markus.loechtefeld@dfki.de

Figure 1: Eye-typing using eye-traces.

Copyright is held by the author/owner(s).
CHI’13 Workshop on Grand Challenges in Text Entry, April 28,
2013, Paris, France.

Abstract
Current eye-typing systems are suffering from the needed
dwell timeout which limits the possible entry rate. In this
position paper we discuss how the usage of eye-traces on
on-screen keyboards could be used for almost dwell
timeout free gaze based communication. This could
significantly increase the entry rate of eye-typing systems.

Author Keywords
eye typing, eye traces, text entry, swype

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces. Input devices and strategies

Introduction and Motivation
Users with motor-disabilities such as the motor neuron
disease (MND) or other motoric impairments that are not
able to move any body extremity are often reliant on
eye-tracking for communication with their environment.
Especially text-to-speech engines controlled by the eyes
are of increased importance for such users. When eye
tracking is used for interaction the gaze position is most
commonly used as a simple cursor, as done by Ware [7],
who proposed dwell time based approaches as well as
manual selection of attended targets. Unfortunately, dwell
time based approaches are prone to the Midas Touch



effect [1]. Besides other [6], eye-typing – gazing on letters
of an on-screen keyboard – is the most wide spread
approach for gaze-based communication. Unfortunately
current eye-typing systems often suffer from the used
dwell-timeouts where the user has to fixate the letter he
wants to write for a certain time. This leads to entry rates
of up to 20 wpm [4]. Even though approaches based on
either a zoomable interface [6] or eye-gestures [8] have
been explored they still reached on average a maximum of
26 wpm [6]. With a simulated dwell-free eye-typing
system Kristensson and Vertanen achieved an entry rate
of 46 wpm [2]. This indicates that dwell-time free systems
will increase the performance drastically but would never
be able to keep up with physical keyboards. To our
knowledge no working implementation has yet been
presented that would allow such dwell-free input. In this
paper we describe our investigations towards an eye-typing
technique called Eype that aims to minimize dwell-times.
By applying the concept of [3, 9] that is also utilized for
example in Swype 1 we use eye-traces for text entry. This
allows minimizing the dwell-time and could possibly even
pave the way for dwell free eye-typing.

Concept and Challenges
Although we apply concepts that are also used in touch
systems (c.f. [3, 9]), eye-traces fundamentally differ from
gestures on physical devices. The main differences and
possible improvements are briefly discussed in the
following.

Visual search
For physical systems, the eyes are more or less
independent of the finger, i.e. the user can perform a
visual search with his eyes, while the finger stays at a
button and waits for the target identification. For Eype,

1htttp://www.swype.com

this is not possible, because every eye movement the user
does while searching will be used as an input trace.
Though this problem will become less important for
well-trained users, one could consider keyboard layouts
based on digraph frequencies to reduce search time or
highlight characters that are likely to follow the last input.
A new keyboard layout might be refused by people who
just temporarily want to use Eype, while it is an option for
impaired people who do not use a qwerty keyboard in
their every day life anyways.

Initial letter
A related problem concerns the matching of input traces
to words from a dictionary. Swype can strongly rely on
the initial letter, because the user performs a pointing
task to indicate this letter. In Eype however, the first
letter is also chosen via the eye tracker and is therefore
not more reliable than any other letter in a word. This
could be solved by either using a dwell time for the initial
letter or adapting the matching algorithm.

Improvements on the matching from input to words
To cope with the uncertainty caused by the challenges
above, other strategies to match input traces to words
might be useful: for example, linguistic aspects like word
frequencies could be considered.

In order to design a system that takes all these aspects
into account, one could perform a user study. The
influence of visual search by novices could be one
objective as well as ways to detect search behavior, e.g.
by analyzing gaze speed. Moreover, different keyboard
layouts and the influence of a dwell time for the first letter
could be explored.

htttp://www.swype.com


Implementation
As hardware we used a Tobii X 60, a static binocular eye
tracker that produces data with a rate of 60Hz, which was
put in front of a 23.6” Display. The application was
implemented in the .NET framework using C#. The
configuration and calibration was done using the
Tobii SDK 3.0 RC 13.
The process of finding the word the user wanted to type
can be divided into 2 main steps: First, the input data is
processed to a trace of characters. This trace is then
compared to expected traces for a set of words from a
dictionary.

Figure 2: original input for ’here’

Figure 3: button representation

Figure 4: final input trace

From gaze data to eye-traces
As discussed above, eye-traces suffer from a certain
uncertainty. Figure 2 illustrates what a typical input for
the word ’here’ looks like. While the user is still typing,
we get the coordinates of his points of gaze (POG). These
are matched to the buttons that are closest to the POG,
so that a word is finally represented as a sequence of
buttons. See Figure 3 for the button trace gained for the
example input.

To avoid sequences with a high number of repetitions like
’xyxy’, Eype eliminates this kind of traces if they are
longer then 3 characters. This reduces the difference in
length of an actual input and the optimal input, because
most repetitions are caused by inaccuracy of the tracking
system. However, this method could clearly be improved.
For example, it could be checked, if there is a word in the
dictionary that actually contains these repetitions. For
most letter combinations like ”qwqw” this is definitely not
the case. See Figure 4 for the final input trace. Note, that
this trace is what the program internally uses for
processing, not what will be displayed as feedback for the
user.

From character traces to a word
The system uses a word list saved in a data structure,
such that we can map each character to the list of words
starting with this character and at the same time, each
word is linked to its optimal character trace: this is the
trace that would have been the result, if a user had
connected all the characters using the shortest way and
there were no technical inaccuracies. To find the correct
word, we thus need to compare the input to an
appropriate set of words and evaluate their similarity.

Finding an appropriate set of words
A simple approach to find a set of similar words is to use
all words starting with the same character. As discussed
above, eye typing without dwell times cannot rely on the
initial character. Therefore a neighborhood of initial
letters could be used instead. However, this would
dramatically increase search space. Moreover, words that
have too long or too short optimal traces for an input are
eliminated.

Similarity evaluation
Once we have found a subset of words of possible
candidates we need to compare their optimal traces to the
actual input. This is done for each possible word by the
Needleman-Wunsch-algorithm [5]. Even though originally
it was designed to find similarities between amino acid
sequences it can easily applied to matching two character
traces based on single comparisons between elements of
the traces. The similarity of single characters is evaluated
by a classification into three groups: equal, different and
neighbors. A numerical value is assigned to every pair and
finally, the best path is the one with the largest result
from summing up all the values on it. To find the largest
value, it is not necessary to compute all possible paths.
Instead, dynamic programming is exploited to efficiently



derive the optimal solution.

Moreover, the sum of values also provides a comparable
similarity measure that can be used to derive the closest
word or a list of close words. This also raises the question,
if it is feasible to offer the user several close words so that
he can still correct the system in case his eye-trace was
misinterpreted.

Conclusion
In this position paper we described our initial approach to
overcome the need dwell time for eye-typing on on-screen
keyboards. We propose to use the eye traces of users and
compare their character traces against a dictionary using
the Needleman-Wunsch-algorithm. Even though our
approach still suffers from some not yet explored
drawbacks such as the problem of defining the first letter,
we think that it can be a valuable contribution to the
workshop. Furthermore we hope that the workshop helps
us defining further directions of this project.

Acknowledgments
This research project is partially supported by the Nuance
Foundation.

References
[1] Jacob, R. J. K. What you look at is what you get: eye

movement-based interaction techniques. In
Proceedings of the SIGCHI conference on Human
factors in computing systems: Empowering people
(1990).

[2] Kristensson, P. O., and Vertanen, K. The potential of
dwell-free eye-typing for fast assistive gaze
communication. In Proceedings of the Symposium on
Eye Tracking Research and Applications, ETRA ’12,

ACM (New York, NY, USA, 2012), 241–244.
[3] Kristensson, P.-O., and Zhai, S. Shark2: a large

vocabulary shorthand writing system for pen-based
computers. In Proceedings of the 17th annual ACM
symposium on User interface software and technology,
UIST ’04, ACM (New York, NY, USA, 2004), 43–52.

[4] Majaranta, P., Ahola, U.-K., and Špakov, O. Fast
gaze typing with an adjustable dwell time. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, ACM (New
York, NY, USA, 2009), 357–360.

[5] Needleman, S. B., and Wunsch, C. D. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of
Molecular Biology 48, 3 (1970), 443 – 453.

[6] Tuisku, Outi and Majaranta, Päivi and Isokoski, Poika
and Räihä, Kari-Jouko. Now Dasher! Dash away!:
longitudinal study of fast text entry by Eye Gaze. In
Proceedings of the 2008 symposium on Eye tracking
research &#38; applications, ETRA ’08, ACM (New
York, NY, USA, 2008), 19–26.

[7] Ware, C., and Mikaelian, H. H. An evaluation of an
eye tracker as a device for computer input. SIGCHI
Bull. 17 (1986), 183–188.

[8] Wobbrock, J. O., Rubinstein, J., Sawyer, M. W., and
Duchowski, A. T. Longitudinal evaluation of discrete
consecutive gaze gestures for text entry. In
Proceedings of the 2008 symposium on Eye tracking
research &#38; applications, ETRA ’08, ACM (New
York, NY, USA, 2008), 11–18.

[9] Zhai, S., and Kristensson, P.-O. Shorthand writing on
stylus keyboard. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’03, ACM (New York, NY, USA, 2003), 97–104.


	Introduction and Motivation
	Concept and Challenges
	Visual search
	Initial letter
	Improvements on the matching from input to words

	Implementation
	From gaze data to eye-traces
	From character traces to a word
	Finding an appropriate set of words
	Similarity evaluation


	Conclusion
	Acknowledgments
	References

