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Abstract—We present a technique for estimating crowd
density by using a mobile phone to scan the environment for
Bluetooth devices. The paper builds on previous work directed
to use Bluetooth scans to analyze social context and extends it
with more advanced features, leveraging collaboration between
close by devices, and the use of relative features that do not
directly depend on the absolute number of devices in the
environment. The method is evaluated on a data set from
an experiment at the public viewing event in Kaiserslautern
during the European soccer championship showing over 75%
recognition accuracy on seven discrete classes.

Keywords-Bluetooth scan based sensing; crowd sensing; col-
laborative sensing; participatory sensing

I. INTRODUCTION

Knowing the density of a crowd can be relevant for a
number of applications. Examples range from crowd control
and emergency services through urban planning to consumer
applications recommending where to go out (based where
many other people have also gone to). While in some
applications dedicated infrastructure such as access control
gates or CCTV cameras [1] may be used, in others it
would be desirable to be able to estimate crowd density
without pre-installed infrastructure. One possibility is to
recruit enough users to be able to estimate the density
from the number of devices which report from being in the
relevant area. The obvious disadvantage of this method is
that a significant number of users must be recruited, which is
not always possible. In this paper we present an alternative
method that requires only few users moving through the
environment with their mobiles scanning for discoverable
Bluetooth devices.

II. RELATED WORK AND PAPER CONTRIBUTIONS
A. Related Work

The work most similar to ours is by Nicolai et al. [2]
where the discovery time of Bluetooth devices as well
as the relation between the number of people and the
number of discoverable Bluetooth devices was investigated.
As opposed to our approach the work relied on static
Bluetooth sensing locations and only the absolute number of
discovered Bluetooth devices was used. Along the same lines
Morrison et al. [3] investigated crowd density estimation

in stadium-based sporting events. However they did not
attempt rigorous automatic classification and focused on
a visualization tool for Bluetooth logs. Another use case
of Bluetooth scanning is described in [4] by Kostakos.
They recorded passenger journeys in public transportation by
analyzing Bluetooth fingerprints. O’Neill et al. [S] presented
initial findings in Bluetooth presence and Bluetooth naming
practices. Table I shows an overview about different existing
Bluetooth scanning approaches.

Slightly distant from our work, Eagle et al. and Her-
mersdorf et al. showed [6], [7] how to recognize social
patterns in daily user activity, infer relationships and identify
socially significant locations from using Bluetooth scans.
Versichele et al. [8] performed an experiment at a mass
event where they covered an area with static Bluetooth
scanning devices to extract statistics and visitor profiles.
BLIP Systems [9] exploited a stationary Bluetooth based
people tracking system. Based on multiple Bluetooth zones
scenarios like queue length at airports or travel times by car
are indicated.

Campbell et al. [10] and Burke et al. [11] introduced the
general concept of people-centric sensing and participatory
sensing. Wirz et al. [12] demonstrated the specific need for
detecting potentially critical crowd situations at an early
stage during city-wide mass gatherings. They collected GPS
traces to create a crowd condition visualization which was
monitored by the city police.

B. Contributions

In this paper we present a Bluetooth scan based method-
ology which can detect different discrete crowd densities.
The main contributions beyond the related work above are
as follows:

1) We rely not just on the number of devices seen by
a Bluetooth scan, but also take information about
the link structure between actively scanning Bluetooth
devices, ratio of discovered devices in the current scan
window to previous scan windows, team-wise diversity
of discovered devices, number of semi-continuous de-
vice visibility periods, and device visibility durations
into account.



Table I: Bluetooth crowd sensing strategies in related work

Bluetooth Description

Measurement

Setup

Gate flow A Bluetooth scanning device is positioned sta-
measurements tionary near a narrow entry/gate/turnstile/security
(cumulative check point etc. This is mostly accomplished with

people counting) fixed Bluetooth scanning hardware. The number of
discovered Bluetooth devices is summed up over
time to make a statement about the current crowd
density in a bounded area. Instantaneous crowd

density evaluations are not possible. [5]

Queue
measurements
(waiting time)

A Bluetooth scanning device is positioned near
a queue or waiting area (i.e. supermarket check-
out/airport check-in/public transport etc.) to mea-
sure the time between the appearance and disap-
pearance of unique Bluetooth devices to estimate
the current waiting time. This is useful for esti-
mating a relatively small group of locally bounded
stationary people. This approach does not consider
dynamic people who are not bound to a single
location. [9], [13]

Checkpoint Two or more specific Bluetooth scanning devices
measurements are fixed at two or more separate places with a well
(people flow known distance to each other. Time is measured
detection) between a discovery of a unique device at place

1 and place 2. This approach is similar to queue
length estimation but works in a more widespread
area. Requirement of this approach is that people
are walking from place 1 to place 2 and that the
crowd density has a direct relationship with the time
needed between both places. [8]

Solitary stationary One Bluetooth device is located at a specific loca-

measurements tion (i.e. shop etc.) with limited dimensions. The

(instantaneous people instantaneous number of discoverable Bluetooth

counting) devices in the covered area is mapped to a number
of people by assuming a fixed proportion between
the number of discoverable Bluetooth devices and
the number of people. [2]

Collaborative and
in combination of

This novel approach is considered in this paper.
With multiple people equipped with ubiquitous

stationary smartphones we present new features to evaluate
and dynamic the crowd-density instantaneously. The collabora-
measurements tion allows a coverage of a larger area and a crowd-

(crowd density) density estimation with features which are even

independent of the proportion between discoverable
Bluetooth devices and the number of people.

2) We propose a method to combine the sensor informa-
tion from several mobile phones carried by different
stationary and dynamic close by users (only 0.2% of
all people are equipped with a Bluetooth scanning
mobile phone) to determine the crowd density in an
area of 2500m2.

3) We propose relative” features based on the ratio be-
tween values observed by different devices, rather than
on the absolute number of Bluetooth IDs seen during
a scan. This makes the system more robust against
variations in the number of discoverable devices that
may result from the background of the people in the
crowd rather than the crowd density.

We evaluate the method on a data set recorded during

3 days at the European soccer championship public viewing
event in Kaiserslautern which is attended by thousands of

visitors. Looking at seven discrete densities that cover the
range from a nearly empty space (around 0.01 people per
m?) to dense crowd (above 2.0 people per m?) we demon-
strate recognition rates of over 75% using both relative and
absolute features. This is over 30% better than the simple
approach from previous work that relies on the number of
devices found solely.

III. APPROACH

A. Background

The foundation of our Bluetooth based crowd density
sensing technique is based on the general observation that
many people have the Bluetooth transceivers of their mobile
phone in the discoverable mode as default setting. This is
illustrated in Table II and Figure 1 on data sets from 5
different locations and venues across Europe: (1) several
soccer games from the German first and second division,
collected in and around the stadium, (2) the world-famous
Munich Oktoberfest beer festival, (3) the England-France
soccer game at Wembley Stadium in November 2010, (4)
a music festival in Malta, and (5) the 3-day European
championship public viewing event in Kaiserslautern.

From the above only the Munich Oktoberfest beer festival
and the public viewing event in Kaiserslautern data was
collected explicitly for crowd density estimation and thus
contains crowd density ground truth that is used for the
quantitative evaluation later in the paper. During the Munich
Oktoberfest experiment we only had a small number of
people walking synchronously back and forth on the event’s
main street. Regarding the Octoberfest experiment we only
can utilize a subset of the features presented in this paper
because of the lack of information of the bi-directional
link structure between actively scanning Bluetooth devices.
The Kaiserslautern public viewing experiment gives us a
complex data set with asynchronously walking or standing
people and all feature calculation requirements to demon-
strate our approach.

The other data sets were collected for different purposes,
such as inertial navigation and activity recognition. However
all data sets include regular Bluetooth scans collected over
periods of days by several volunteers walking through the
area of the specific event during times of different crowd
density. It can be seen that the median of the number
of devices discovered per scan is between 8 and 13 with
thousands of distinct devices having been recognized over
the course of each experiment. Figure 1 shows that only less
than 10% of the scans returned no discoverable devices and
up to 50 devices were seen when in dense crowd.

We observed that most discoverable Bluetooth devices
are smartphones and cell phones mostly manufactured by
Samsung, Nokia and Sony Ericsson. See table III and
table IV for complete listings.



Table II: Statistics about performed Bluetooth crowd-density experiments. This publication covers the public viewing event in Kaiserslautern during the European

soccer championship.

Event Duration Participants Number of Average devices Median devices  Discriminative
Bluetooth scans  per scan per scan devices

Kaiserslautern 3 days 10 4100 5.84 6 410

public viewing event (DE)

Munich Oktoberfest (DE) 3 days 3 2775 13.35 13 4454

Malta open-air festival (MT) 3 days 12 5500 8.70 8 1088

Wembley Stadium (UK) 1 day 6 4958 15.44 10 2509

Allianz Arena Soccer (DE) 4 day 10 14087 10.87 8 3944

Table III: Types of discovered Bluetooth devices

Bluetooth major device class Percentage
Smartphone 72%
Mobile phone 28%
Laptop 0.2%
Cordless phone 0.02%
Audio/Video headset 0.01%
Other 0.04%

Table IV: Bluetooth device manufacturers

Bluetooth device manufacturer Percentage
Samsung 29%

Nokia 32%

Sony Ericsson 12%

RIM 7%

LG 7%

Texas Instruments 3%

HTC 1%

Other 8%

Kaiserslautern Public
Viewing Event

Allianz Arena

20 0 %010 20 30 40 B
Malta Experiment Wembley Stadium Experiment

Figure 1: Distribution showing the fraction of the number of Bluetooth devices
discovered in a 15 second time window at multiple experiment venues.

B. General Considerations

An obvious way to estimate crowd density is to perform
a scan for discoverable devices and assume that the number
of devices it returns is an indication of the number of people
in the vicinity defined by Bluetooth range (typically around
10m). Unfortunately, this simple approach contains a number
of problems.

Firstly, there is the issue of sufficient statistics. With the
scan limited to a radius of about 10m (approximately a circle
with 300m? area) anything between a few and a few hundred

people can be within range. While in a dense crowd with a
few hundred people we may get a representative sample, in
less crowded areas we are likely to see very strong variations
between samples. Assuming the probability of any single
user having a discoverable Bluetooth device to be 10% the
probability that no device is seen when 20 people are within
range is 0.9%° = (.12. Thus we may sometimes be in a group
of people who do not even have activated mobile phones
while at other times we may be surrounded by a group where
everyone has an active Bluetooth device.

Secondly, there is the question of signal attenuation. At
2.4GHz (which is the transmission frequency of Bluetooth)
the human body has a high absorption coefficient. This
means that in a dense crowd (where we would expect to
have good statistics) the effective scan range is reduced and
therefore “falsifying” the results.

Finally, we have to consider cultural factors. This means
that the average number of people carrying a discoverable
Bluetooth device may significantly vary depending on who
the persons in the crowd are. For the same crowd density at
a student party of a technical university a different number
of devices may be present than at a fifth division soccer
game in a poor rural area.

To mitigate the influences above our method does not
rely solely on the absolute number of discovered devices.
Instead we also use the average signal strength and signal
strength variations. In addition, we look at collaborative
estimation from several (up to around 10) devices. In doing
so, we focus on differential features that are not directly
dependent on the absolute number of discoverable devices
in the environment or the absolute signal strength. As shown
in the evaluation section IV the above measures lead to over
30% improvement in recognition rate over a method based
on the absolute number of discovered devices.

C. Features

We are calculating our features based on multiple partially
distributed sensors because we want to achieve a statement
of the crowd density of the whole event area as we assume
all sensors together are covering a large portion of the area
during movement in the area.

1) Feature: Averaged sum of distinct devices discovered
by all sensors in scan window: This simple feature describes
the current number of discovered distinct devices for every
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Figure 2: Bluetooth link structure graph showing all 10 actively scanning smart-
phones (colored) and discovered devices (black nodes) during the experiment.

snap-shot (a Bluetooth scan window is hereafter also referred
to as a snap-shot) of the experiment. For each snap-shot each
of the sensors delivers a set of unique devices identified by
the unique Bluetooth MAC address.

Calculating the union of all discovered devices (by all
sensors) divided by the number of sensors results in this
feature. Bluetooth devices discovered by multiple sensors at
the same time are not influencing this feature.

This feature relies directly on the level of distribution of
the sensors over the event area. Since the Bluetooth range is
very limited a sensor distribution over a larger area obviously
leads to a larger number of distinct devices and the other way
around.

The downside of this feature is its direct relation to the
ratio of discoverable Bluetooth devices to the number of
people to be detected.

See figure 3 for a visualization of the feature during one
experiment.

2) Feature: Ratio bi-directional link structure of sensors
to average pairwise distance of sensors multiplied with
average sensor speed: This composite feature characterizes
the context of the snap-shot of the collaborative sensor data
more explicit.

The feature takes the bi-directional Bluetooth link struc-
ture between the sensors (actively scanning Bluetooth de-
vices are hereafter also referred to as sensors) into account.
A directional link (hereafter also referred to as sensor
discovery) between a pair of sensor ’a’ and ’b’ is defined
as established when sensor ’a’ discovers sensor ’b’ in
the current snap-shot. Another directional link is defined
as established when sensor ’b’ discovers sensor ’a’. This
implies a pair of sensors might both link to each other or
one sensor links to the other or none of both sensors links
to the other. All combinations of pairs between sensors are
monitored. Maximum established links between ten sensors
would be 90 links, the minimum number of established links
would be zero. The bi-directional link structure is defined
as the sum of all links between all sensors.

The average pairwise distance calculation is based on
the GPS sensor data information. A snap-shot contains
multiple GPS locations per sensor (GPS location is sampled
at 1Hz). Only locations with a GPS accuracy better than
15m are taken into account. Based on the filtered locations
we calculate the average since most promising location of
the sensor. For each pair of sensors we calculate the distance
between them. There are n!/2/(n — 2)! distances calculated
per snap-shot where n is the number of sensors. The distance
between all sensor pairs is then averaged. The average speed
is calculated for every snap-shot and each individual sensor
based on averaged GPS information per snap-shot each with
an accuracy of better than 15m. Afterwards the average
speed is calculated for all sensors. Finally, the feature is
calculated by the number of bi-directional links divided by
the average pairwise distance of sensors multiplied with the
average sensor speed. It is important to mention that this
feature is completely independent of external (others than
the used Bluetooth sensors) discoverable Bluetooth devices.
It uses the relationship between the number of links to the
distance between sensors, based on the assumption that a
more dense crowd shields the sensor links heavier than in a
low dense crowd with the same underlying distance.

See figure 4 on page 5 for a visualization of the feature
during one experiment.

3) Feature: Ratio of discovered devices in current snap-
shot to discovered devices in last x minutes: This feature
characterizes the crowd movement during the snap-shot of
the collaborative sensor data more explicit.

Newly detected Bluetooth devices in a snap-shot are
defined as a set of all unique devices discovered during the
snap-shot by all sensors. Calculating the union of unique
discovered devices by all sensors in a snap-shot leads to the
collaborative measurement. The second part of the ratio is
the size of the set of unique Bluetooth devices discovered
during previous 15 snap-shots (depending on the size of
the snap-shot, this signifies a monitoring of the previous
1 to 10 minutes). Finally, the feature is calculated by the
size of the collaborative set of discovered devices at the
snap-shot divided by the size of the collaborative set of
Bluetooth devices discovered before. This implies that the
value is smaller in a less moving crowd than in a more likely
moving crowd. This is caused by the fact that the number
of different devices seen during x snap-shots is smaller if
there is less movement (less devices are rushing by) than
for strong crowd movement (high crowd flow).

See figure 5 for a visualization of the feature during one
experiment.

4) Feature: Average team-wise diversity of discovered
devices per scan window (ratio not concurrent devices to
concurrent devices): We define a team by two persons
staying in close adjacency while each person is carrying a
sensor. A team can either move dynamically or be stationary,
but continuously stays together.



This feature takes into account the feam-wise diversity
of discovered Bluetooth devices for each snap-shot. In this
context we define diversity as the ratio between the number
of Bluetooth devices not concurrently discovered and con-
currently discovered devices. Not concurrently discovered
devices are defined in set theory as the symmetric difference.
Either sensor ’a’ or sensor ’b’ but not both sensors discover
the same device in a snapshot. Concurrent devices appear
both in the current snap-shot of sensor ’a’ and sensor ’b’.
The ratio is averaged for all teams in each snap-shot for a
collaborative measurement.

This feature calculates the diversity of discovered devices
between two sensors which are close to each other. This
gives us a value depending on the crowd between and around
the team as well as the unambiguousness of the two sensor
measures.

See figure 6 on page 5 for a visualization of the feature
during one experiment.

5) Feature: Average number of semi-continuous unique
device visibility periods (finite state machine approach):
We define a semi-continuous device visibility period per
sensor as the number of consecutive snapshots, whereas
in each snapshot a unique device is discovered with the
exception of very short vanishings during the period. A
short vanishing is defined as a single snap-shot without a
discovery among other snap-shots including the presence
of a specific device. Multiple short vanishings may appear
during a semi-continuous device visibility period. The period
ends when a device vanishes at least for two consecutive
snap-shots. The same unique device then may reappear again
or vanish for a longer time or forever.

The data is further processed by calculating the sum
of present semi-continuous unique device visibility periods
during a snap-shot. By definition, the sum of unique devices
might include a device which is not seen in the current snap-
shot. We implemented the calculation of this feature by a
finite state machine for each unique device (d) and for each
sensor (s). Resulting in d * s finite state machines. Finally,
the collaborative overall average value is calculated per snap-
shot over all sensors. The feature value can be high for a
small number of discoverable devices which are in range for
a longer time. The value can be low for a high number of
discoverable devices which are in range for a shorter time.

See figure 7 on page 6 for a visualization of the feature
during one experiment.

6) Feature: Average durations of semi-continuous unique
device visibility periods (finite state machine approach):
This feature is based on semi-continuous device visibility
similar to to feature III-C5 but calculates the duration.
Therefore the pre-processing is similar to feature III-CS5.

The duration of a semi-continuous visibility of a unique
device is defined as the number of sequential snap-shots
where a specific device is seen. This duration factors into
all snap-shots that the semi-continuous visibility is covering.
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Figure 3: Feature: ’Size of device set of all distinct discovered devices by all
sensors in time frame’. Overview of crowd density levels shown by different
background grey levels.
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Figure 4: Feature: ’Ratio bi-directional link structure of sensors to average
pairwise distance of sensors multiplied with average sensor speed’
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Figure 5: Feature visualization of "Ratio of discovered devices in current snap-
shot to discovered devices in last x minutes’
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Figure 6: Feature visualization of ’Average team-wise diversity of discovered
devices per scan window (ratio not concurrent to concurrent)’

Averaging the duration for one sensor of all device visibility
durations at one snap-shot is the value per sensor. Averaging
this value of all sensors per snap-shot results in the value of
this feature.

See figure 8 for a visualization of the feature during one
experiment.



(a) nearly empty (c) low

(d) moderate
0.01-0.05 people/m?20.05-0.2 people/m? 0.2-0.3 people/m? 0.3-0.4 people/m? 0.4-1.0 people/m?

(f) very high (g) extremely high
1.0-2.0 people/m?  2.0++ people/m?

(e) high

Figure 10: Crowd density classes ranging from nearly empty to extremelyhigh. Excerpts of the HD ground truth video.
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Figure 7: Feature visualization of ’Average number of semi-continuous unique
device visibility periods’

Figure 8: Feature visualization of ’Average durations of semi-continuous unique
device visibility periods (finite state machine approach)’

Figure 9: Satellite image of the event area with GPS traces of the Bluetooth
discoverers.

1V. EVALUATION
A. Experimental Environment

To evaluate our features we set up three experiments
on three days during the European soccer championship
2012 at the official public viewing event at the town-
center (marketplace called ’Stiftsplatz’) of Kaiserslautern
(Germany). The evaluated experiment area has a dimension
of 48.5 to 48.5 meters allowing up to 5200 people to enter
the fenced area.

Each experiment had a duration of about 4 hours con-
sisting of 2 hours before the soccer championship kick-off
began, 45 minutes during the first half of the soccer match,
15 minutes during the half time break, 45 minutes during

the second half of the soccer match, and 20 minutes after
the game.

We started our experiment early before spectators began
entering the event area. During two hours the area was then
filled up to a level where no more people where allowed to
enter the area by the event organization for safety reasons.

We gathered sensor data of different crowd densities
including levels nearly empty (0.01 —0.05people/m?), very
low (0.05 — 0.2people/m?), low (0.2 — 0.3people/m?),
moderate (0.3 —0.4people/m?), high (0.4 —1.0people/m?),
very high (1.0 — 2.0people/m?), extremely high (2.0 +
people/m?). See figure 11 for the complete course of the
crowd density levels during the experiment and figure 10
with excerpts from the ground truth video for each crowd
density class.
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Figure 11: Crowd density ground truth information

The crowd flow was moderate during the filling phase of
the event since attendees went slowly from the event entry
towards the big screen in the opposite corner. There was no
crowd flow during the first and second half of the soccer
match. During the break the crowd flow range was between
moderate and high. Beyond the end of the soccer match
the crowd flow was very high since the attendees wanted to
leave the event area through multiple exits as fast as possible
because the German soccer team had lost the match. See
figure 12 for the complete course of the crowd flow. Our
presented crowd density measurement technique is robust
to differing crowd flow levels as they are not considered
in the labeling procedure of the feature vectors and are not
correlated to the crowd density levels.
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Figure 12: Crowd flow ground truth information

B. Experimental Setup

For each experiment we recruited 10 students. We divided
the students into 5 teams with 2 students each. Team



members always stayed in close contact (up to 1 meter
distance) to each other. Teams were instructed to be either
stationary (2 teams, 4 students) or dynamic (3 teams, 6
students).

Stationary is defined as continuously standing on the spot.
We placed stationary teams near the entrance of the area.
One team near the left side and the other team on the right
side of the entry.

Dynamic is defined as continuously walking around on
the event area. Teams were told to walk on a curved path
covering 3 sides of the event area and mostly covering the
edge regions (see below for exceptions) of the crowd since
those regions were common to walk on because nearby food
and beverage stands.

The idea behind the stationary and dynamic scripted setup
is to represent a natural behavior of people during such
events. Some people are standing still watching the perfor-
mance. Other people are walking around to food/beverage
stands, meet friends, change to a better viewing spot etc.

Multiple dynamic teams are allowed to walk asyn-
chronously. The walking speed of dynamic teams is not
scripted, allowing to choose the personal optimum walking
speed (we can determine the walking speed by evaluating
our GPS log information). We allowed teams to move to
a self determined place in the middle of the crowd during
the first and second half of the soccer match excluding the
break.

In a real-life scenario people do not have to be categorized
to behave stationary or dynamically continuously. Smart-
phone sensor information allows to dynamically detect the
type of behavior. Because of this random natural behavior
we do not manually apply any information to our algorithms
about stationary or dynamic behavior.

Each student was equipped with one Android smartphone
which is placed in the trousers pocket.

We deployed Android smartphones of different types
including HTC Desire, Google Nexus and Samsung Nexus
S each based on the most recent version of the Android
operating system. On all devices we were running our cus-
tom Android application called ContextRobot which records
multiple sensor data streams onto the microSD card for later
off-line analysis. Our Android applications continuously
scanned for discoverable Bluetooth devices (a Bluetooth
scan is defined as a time interval which emits a set of
unique Bluetooth device with the restriction of unrepeated
occurrences of a unique device). A single log entry of a
device discovery during a Bluetooth scan is associated with a
timestamp, a serial Bluetooth scan interval number, personal
Bluetooth device name, unique Bluetooth id (Bluetooth
MAC address), and the Bluetooth signal strength as a RSSI
(received signal strength indication) value.

An exact temporal begin and end of a Bluetooth scan-
ning interval cannot be specified during the recording of
Bluetooth sensor data since the operating systems restricts

to certain length of scan intervals depending on internal
thresholds. The average duration of a Bluetooth scan interval
is about ten seconds (with little variations). Our application
triggers a new Bluetooth scan when the previous scan has
ended. Multiple collaborative Android devices recording
Bluetooth scans intervals are synchronized in an off-line
manner. At a given time window of a length of 20 seconds
we determine one scan interval which fits this window
entirely.

In addition to Bluetooth sensor information we record lo-
cation information by the GPS sensor at a frequency of 1H z.
Our Android application continuously records timestamp,
latitude, longitude and accuracy onto the microSD cards.
Figure 9 visualizes the walking traces of the dynamic team
members. Location information is required for some feature
computations which rely on distances between multiple
students and their walking speed.

For obtaining ground truth data about the crowd density
we set up a HD video camera on top of a neighbored hotel
building with view of the whole event area. Figure 10 shows
excerpts of the video footage for different crowd density
classes. The ground truth labels are based on the video
footage which we labeled every 10-15 minutes with a crowd
density class ranging from nearly empty to extremely high.

C. Results

We analyzed the collaborative features for crowd density
classification with a granularity of 40 seconds to achieve
a statement of the overall crowd density at the event area.
Nevertheless, some feature calculations are inspecting a few
preceding sensor values, but we do not apply any additional
filtering by applying a sliding window to the data.

We trained a decision tree classifier with all features and
evaluated it with 10-fold cross-validation. We achieve an
accuracy of 75.3% for estimating the correct crowd density
class on seven discrete crowd density classes. Figure 13
shows the confusion matrix of the classification results.
The majority of the predictions are distributed along the
diagonal. False classifications are prevailingly located near
the diagonal implying a classification in an adjacent crowd
density class.

Even without features relying on the absolute number
(without feature III-C1 and III-C5) of discoverable Bluetooth
devices we achieve a classification accuracy of 67.8%. See
figure 14 for the confusion matrix of the classification
results.

V. CONCLUSION AND FUTURE WORK

We have shown how Bluetooth scan data from just a
few users equipped with standard mobile phones can be
used to estimate crowd density. The core of the method is
the comparison and fusion of data from different devices
which leads to over 30% improvement in accuracy over a
simple single device approach. The just over 75% accuracy
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Figure 13: Confusion matrix with six features. With features depending on
number of discoverable Bluetooth devices.
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on seven classes must be seen in the context of noisy ground
truth resulting from arbitrary class definition, extrapolation
between the ground-truth based crowd density extraction
every 10 to 15 minutes and inaccuracies in the counting
process. In addition, confusions occur nearly exclusively
between neighboring classes (see figure 13 and figure 14).
Note that the experimental data did not include the totally
empty space” class which can be trivially recognized from
the near absence of Bluetooth devices and could be easily
integrated into the system.

In summary, we believe that the method presented in
this paper is potentially useful for many applications. To
further improve this method future work will focus on better
understanding and modeling the relative features. We will
also collect data from other events and countries to verify the
hypothesis that the relative features are robust against culture
related differences in the percentage of people carrying
discoverable Bluetooth devices.
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