Ingredients and Recipe for a Robust Mobile
Speech-enabled Cooking Assistant for German

Ulrich Schéfer!, Frederik Arnold?, Simon Ostermann?, and Saskia Reifers?*

! wlrich.schaefer@dfki.de, German Research Center for Artificial Intelligence
(DFKI), Language Technology Lab, Campus D 3 1, D-66123 Saarbriicken, Germany
2 {arnold,ostermann,reifers}@kochbot.de, Saarland University, Computational

Linguistics Department, D-66041 Saarbriicken, Germany

Abstract. We describe the concept and implementation of Kochbot, a
cooking assistant application for smartphones and tablet devices that
robustly processes speech I/O and supports German recipes. Its main
functions are (1) helping searching in a large recipe collection, (2) read-
ing out loud the cooking instructions step-by-step, and (3) answering
questions during cooking. Our goal was to investigate and demonstrate
the use of speech assistance in a task-oriented, hands-free scenario. Fur-
thermore, we investigate rapid domain adaptation by utilizing shallow
natural language processing techniques such as part-of-speech tagging,
morphological analysis and sentence boundary detection on the domain
text corpus of 32,000 recipes. The system is fully implemented and scales
up well with respect to the number of users and recipes.

Keywords: natural language processing, speech, mobile application,
cooking assistant

1 Introduction and Motivation

With the advent of mobile devices such as smart phones and tablets, as well
as robust, speaker-independent, cloud-based speech recognition in the last few
years, new applications become feasible and marketable that researchers and
end users a decade ago could only dream of. In this paper, we describe the com-
ponents (ingredients) and methods (the recipe) of a mobile cooking assistant
application that runs with out-of-the box hardware, assuming a speech recogni-
tion in the cloud such as the Google Speech API that comes with the Android
mobile operating system?.

Moreover, the cooking assistant application itself runs on the mobile phone
as an “app”. Only the rather large recipe collection (32,000 recipes) currently
resides on a standard PC that can serve thousands of mobile clients with recipe
search via Internet, given that each recipe’s text only needs a few kilobytes.
Considering the memory reserve in current mobile devices, this recipe collection

* Preprint. The final publication is available at link.springer.com, LNAI 8077, pp. 212—
223, 2013. We thank Ulrike Schweitzer for permitting us to use her collection of more
than 32,000 recipes at http://ulrikesrezeptesammlung.de, and our pioneer users
for testing earlier versions of the app. A beta is available at http://www.kochbot .de.

3 http://dev.android.com/reference/android/speech/SpeechRecognizer .html

Robust Mobile Speech-enabled Cooking Assistant for German 213

could in principle also easily be moved to the clients. In other words, the current
system already now scales up with respect to the number of users and recipes.

The main tasks of the app are (1) helping searching in a large recipe col-
lection, (2) reading out loud the cooking instructions step-by-step, and (3) an-
swering questions during cooking. The purpose of our project was to investi-
gate and demonstrate the feasibility and use of speech assistance in a task-
oriented, hands-free scenario with state-of-art hardware. Furthermore, we in-
vestigate rapid, corpus-based domain adaptation by utilizing shallow natural
language processing (NLP) techniques such as part-of-speech tagging, morpho-
logical analysis and sentence boundary detection on the domain text corpus (the
recipes). By pre-processing the corpus of German recipes with these NLP tools,
we can quickly access and utilize domain knowledge instead of modeling every-
thing by hand (which some of the earlier approaches to cooking assistants did
through domain ontologies).

This paper is organized as follows. In Section 2, we discuss previous and
related work. Section 3 deals with the (networked) architecture of the overall
system. Section 4 presents the offline pre-processing stages. Section 5 explains
the mobile cooking assistant app itself: the user interface and different stages
of speech interaction in search and recipe reading out mode. We conclude in
Section 6 and give an outlook to future work.

2 Previous and Related Work

Various approaches to home cooking assistants and cooking tutoring dialog sys-
tems have been described in the literature. One of the earliest studies is Home
Cooking Assistant [8]. Its author conducted a small usability study. According
to this, over 80% of the testers thought that speech recognition is beneficial
although 50% also observed that the program had difficulties in understanding
them—it certainly suffered from the limited speech recognition capabilities on
a Laptop PC in the kitchen scenario in 2001. The Cooking Navi [4] was meant
to become a multimedia assistant and cooking teacher for beginners and experi-
enced users. Instead of speech, it used video material and added speech balloons
to explain cooking instructions. Cooking Navi also found a simplified commer-
cial descendant as Nintendo “Shaberu! DS Oryori Navi” that reads out loud 200
recipes in Japanese, and features instructional video clips, a cooking timer, in-
gredients calculator and a very simple speech recognition to turn pages. English
versions with the names “Cooking Guide: Can’t Decide What to Eat?”, “Per-
sonal Trainer: Cooking” and “Let’s Get Cooking” with 200-300 recipes each
appeared in 2008 and 2010, a few more similar sequels appeared in the US,
Japan and Europe. They all have in common editorially processed recipes, read
out loud by (famous) professionals, and only very limited interaction. However,
the commercial success of the Nintendo cooking guide series shows that there is
market potential.

More intelligent dialog-based approaches have been investigated in various
research projects. CookCoach [5] is a cooking tutoring assistant that supports

214 Schafer et al.

speech interaction and read out recipes. Its authors observed the necessity to
use a domain ontology, which they developed in OntoChef [7]. OntoChef con-
tains very general concepts such as recipe classes, food, part of food, ingredient,
unit, action, compound action, task and so on. However, it does not contain an
elaborate list of ingredients and their classification. Except the fact that he uses
a local speech recognizer, the scenario we have implemented is similar to the
one described by [2] for a cooking robot. Although the study work is written in
German, its author has implemented a cooking assistant for English speech I/0.

3 Architecture

The architecture of our cooking assistant is depicted in Fig. 1. The cooking
assistant code, the app, resides on the mobile device, indicated by the Android
logo at the top of the diagram. It contains all the program logic for user interface,
speech interaction, and natural language processing to split cooking instructions
into sentences, recognized quantities and units of ingredients, etc.

The app requires access to the Internet only for two purposes: (1) recipe text
server: the recipe collection is hosted on an Apache Solr* structured fulltext
search server at our premises. Using standard Lucene/Solr queries, it provides
fulltext search to find recipes with specific ingredients or categories such as
country; (2) speech recognition: as mentioned in the introduction, we use the
Google Speech API to perform ASR (automatic speech recognition) remotely.

/5

Fig. 1: Architecture overview.

Ie,
Clpeg

ich mochte etwas mit [nudeln] [tomaten]
und [m&hren] kochen .

Recognition

Fig.2: Main view with recognized speech;
identified ingredients are shown in brackets.

4 http://lucene.apache.org/solr/

Robust Mobile Speech-enabled Cooking Assistant for German 215
4 Offline Pre-processing

In this section, we describe how we pre-process the recipe corpus. Pre-processing
serves (1) as input for a static text analysis that e.g. computes what ingredients,
quantities, units etc. are, both globally for the complete recipe collection and
locally at runtime when a specific recipe is being cooked (Sect. 5.2), (2) as input
for filling the recipe text search index.

4.1 Recipe Markup Format

The purpose of our cooking app is to provide assistance that guides the user in
the cooking process step-by-step. Therefore, some minimal structuring of recipes
is required. We call it lightly stuctured recipe markup. Basically, it contains
the recipe title, ingredient lists, and cooking instructions, and optionally some
categories such as the country the recipe originates from, or vegetarian, for
children, etc. Finer-grained structure such as instruction steps (sentences), units
and quantities of ingredients will be ‘parsed’ by our system on the fly.

Several recipe markup languages based on XML have been proposed, for ex-
ample RecipeML?, formerly known as DESSERT, RecipeBook XMLS, CookML”
and REMLE. Compared to these partly very rich markup formats, our light
markup can be considered as least common denominator to which all other
markups could easily be transformed. This also means that we could incorpo-
rate other recipe resources with little effort. Of course, parsing of units and
quantities as we do it is not necessary in case markup already provides this in-
formation in separate fields. Figure 3 contains an example for the target markup
of a single recipe. We do not provide the full specification here, as its structure
is simple and shallow. The same markup is used to store recipes in the Apache
Solr server (Sect. 5.4), which returns found recipes in the same way, plus some
additional markup for query-processing related information.

4.2 Creating a Corpus with Recipe Markup

Originally, the recipes texts we used came in HTML format, structured in cat-
egories and in German. We downloaded all recipes and transformed the HTML
into our light recipe XML format using XPath, extracting the information we
needed. We then applied morphological analysis on the recipe texts in order to
normalize and abstract from morphological and spelling variants. During this
process, we discovered that many recipes in the collection contain OCR, (optical
character recognition) or typographic errors. We use three layers to standardize
and refine the recipes in this offline stage.

® http://www.formatdata.com/recipeml/

5 http://www.happy-monkey.net/recipebook/
" http://www.kalorio.de/cml/cookml.html

8 http://reml.sourceforge.net/

216 Schafer et al.

<doc>

<field name="category'">Teigwaren</field>
<field name="subcategory'">Lasagne, Canneloni und Maultaschen</field>
<field name="title">Cannelloni al forno</field>
<field name="ingredients">50 g gerducherter durchwachsener Speck

100 g gekochter Schinken

2 mittelgrofle Zwiebeln

1 Zucchini (ca. 200 g)

1 Méhre (ca. 150g)

200 g gemischtes Hackfleisch

125 g Mozzarella-Kése

250 g Cannelloni (dicke Nudelrdhren zum Fiillen)

[...1
</field>
<field name="preparation">

1. Speck und Schinken wiirfeln. Zwiebeln schélen, Gemiise putzen,

waschen. Alles fein wiirfeln. Speck und Hack in 1 EL 01 anbraten.

Schinken, Gemiise und H&alfte Zwiebeln mitdiinsten. 3 gehackte
Tomaten, 1 EL Mark und Wein zufiigen, wiirzen.</str>
</field>

<field name="preparation_time">1 Std 15 Min</field>
<field name="degree_of _difficulty">normal</field>
<field name="servings'">vier Portionen</field>
<field name="vegetarian">Nein</field>

</doc>

Fig. 3: Example of recipe markup as used in the Apache Solr index.

Step 1: Regular expressions. The first step consists in removing markup and
unwanted characters using regular expressions. Furthermore, we separate the
cooking instructions from the ingredients list.

Step 2: Morphology. We use the SProUT system[3] with its built-in MMORPH
[6] lemmatizer and morphological analysis tool for German to get parts of speech,
genus, etc. for every word. We extract a simplified format and suppress all ana-
lysis details not needed for our purposes. At the same time, we extract e.g. all
possible ingredients along with their number of occurrences in the corpus. We
describe in Sect. 5 how this information is used to answer questions on ingre-
dients and their quantity, and in speech recognition at multiple stages to rank
ambiguous ASR output. Moreover, we also extract recipe titles which we need
for search index preparation.

Step 3: Part-of-speech tagging. To select the most probable morphological
reading according to context, we use the trigram-based part-of-speech (PoS)
tagger TnT [1]. TnT takes care of the context and delivers a probability for each
possible PoS tag. We use it to filter the morphological variants in the MMORPH
output by choosing the PoS tag with the highest probability for each word in a
recipe which considerably reduces the number of morphological variants.

5 Online System (Cooking Assistant App)

This section describes the core of the cooking assistant app, its user interface
with different views for recipe search, step-by-step cooking and reading out mode.
We also discuss details such as its ingredients (quantity) parser and the cooking

Robust Mobile Speech-enabled Cooking Assistant for German 217

step parser. The app needs Internet connection for speech recognition (Sect. 5.3)
and for downloading recipes. Downloading only happens once when a recipe is
viewed for the first time. There is no need for downloading again as long as a
recipe is stored as one of the last 20 viewed recipes (Letzte Rezepte) or marked
as a favorite recipe by the user (Mein Kochbuch). Apart from speech recognition
and downloading recipes, an Internet connection is not required—everything else
is processed on the mobile device.

5.1 User Interface

The UI design goal was to make an easy-to-use application which can be con-
trolled using voice commands but also through standard touch interactions. The
app consists of several views of which the most important ones will be described
in detail below.

Initial view. The first view, which appears upon startup, presents the user with
four different buttons (Fig. 2). The topmost one gives access to the last viewed
recipes (Letzte Rezepte). Mein Kochbuch is the user’s personal cookbook where
favorite recipes can be stored. Rezepte A-Z gives the user access to three lists
in columns, a list of categories, a list of countries and a list of ingredients from
which she or he can choose an item to start a search for that particular category,
country or ingredient. The button at the bottom leads to a random recipe that
changes on every reload or when shaking the device.

Menubar. Most of the views have an “Action Bar”?, a menubar on the top of
the screen (see top of Fig. 2 and 5). It shows one or more icons that give the user
quick access to important functionality. The icons are: a microphone for starting
speech recognition, a magnifying glass for opening a search field, and three dots
for opening a menu.

Search view. Starting a search, either by using the search field, voice command
or the Rezepte A-Z view, will take the user to the search view (Fig. 5). The search
view shows a list of recipes matching the given search criteria. On top of the
list is an area that can be expanded and collapsed. It shows information such a
the number of recipes found, search words, the category, or ingredients to occur
or not to occur in the recipe. Scrolling to the bottom of the list will load more
recipes if available. Choosing one of the recipes will take the user to another
view showing an overview over the recipe.

Recipe overview. The recipe overview shows information such as general in-
formation about the recipe, a list of ingredients and a list of instructions. At
the bottom of the screen, there are two buttons. They both take the user to the
same screen, the step-by-step view.

Step-by-step view. The step-by-step view is different from the other views.
It uses the full screen and therefore does not have a menubar (Fig. 7). There
are two versions of the step-by-step view. The version accessible from the right
button is meant as a ‘silent preview’ of the step-by-step mode, it comes without
continuous speech recognition (Sect. 5.3) and the steps are not read out loud.

9 http://developer.android.com/guide/topics/ui/actionbar.html

218 Schafer et al.

accessible from’
different views!

C)

Treffer: 127
Ich méchte etwas mit <ingredients> kochen. Suchbegriffe: nudeln, tomaten,
[want to cook something with <ingredients>." m&hren
Zeig mir Rezepte aus <country>. Kategorie:
“Show me recipes from <country>.” Enth. Zutaten:
Such mir etwas fiir <title>. = .
““Search me something for <title>.” Verb. Zutaten: Ingwer
‘Was kann ich mit <ingredients> kochen? Bandnudeln Bologneser Art

“What can I cook with <ingredients>?"

I Bolognese-Lasagne mit
show Nur Rezepte mit <ingredients>. 109 9
all “Only recipes with <ingredients>.” Spinat
) Keine Rezepte mit <ingredients>.
matchmg “No recipes with <ingredients>.”
recipes Ich mag <ingredients>.
I like <ingredients>.” —— T
Ich hasse <ingredients>. Bunte Gemiise-Nudeln
fill “I dislike <ingredients>?"
extended
1 STV
search Bunte Tagliatelle

! with standard speech recognition

Fig. 4: Dialog for search. Fig. 5: Search view.

The other version reachable from the left button is the “real” step-by-step view,
each step is read out loud and the user can interact with the app by using swipe
gestures or voice commands (Sect. 5.3) to go to the next or previous step, or
initiate question dialog.

5.2 Recipe Processing

Each recipe XML document (example in Fig. 3) has a number of fields, e.g.
the recipe title, a category, a subcategory and possibly a subsubcategory, a field
containing the ingredients, a field containing the instructions and some fields for
other information such as calories or preparation time.

Ingredients parser. In order to be able to answer questions such as Wie viele
Tomaten brauche ich? ‘How many tomatoes do I need?’; the ingredients field
needs to be parsed. Normally every line contains one ingredient, consisting of an
ingredient name, an amount and a unit (example: evtl. 2-3 Teel. Ol ‘optionally 2-
3 tbs o0il’). However, there are many exceptions in the actual recipes. Parsing an
ingredient line is therefore divided into different steps to recognize the (partially
optional) fields ingredient, quantity and unit.

Step parser. For a hands-free interaction with the app while cooking, the steps
are read out loud in the step-by-step view (Sect. 5.1). To be able to do this,
sentences in the field preparation (Fig. 3) are separated. This is done by splitting
the text after each full stop, except if the full stop belongs to a word from a
list of stop words including common abbreviations. To give an example, the
preparation field from Fig. 3 is divided into 22 steps/sentences (shortened here
for space reasons):

Robust Mobile Speech-enabled Cooking Assistant for German 219

weiter = zuriick wiederholen| Hallo| Frage
“forward” | “back” “repeat” “hello” | “question” r Schritt 2]

* i f-/ & 1 Zwiebeln schélen, Gemiise
ﬁ putzen, waschen.

Action
- step forward
- step back
- repeat step
- answer question Wie viele Tomaten soll

ich nehmen?

k“l—low many tomatoes do I need?”
Gehe einen Schritt weiter.
“Go to the next step.”

! continuous speech recognition Kannst du das wiederholen?
% standard speech recognition “Could you repeat that?”

Fig. 6: Command dialog in the step-by-step Qrhritt 2

view.
Fig. 7: Step-by-step view.

1. Speck und Schinken wiirfeln

2. Zwiebeln schédlen, Gemiise putzen, waschen.

3. Alles fein wiirfeln.

4. Speck und Hack in 1 EL 01 anbraten.

5. Schinken, Gemiise und Hialfte Zwiebeln mitdiinsten.

6. 3 gehackte Tomaten, 1 EL Mark und Wein zufiigen, wiirzen.

..

—/

5.3 Speech Input

To model user interaction with the cooking assistant, a JavaCC'® grammar was
developed. The grammar is divided into different parts that reflect the inter-
action stages such as searching, cooking (read out) mode, etc. (Fig. 4, 6, and
8). For speech recognition, we use the Google Speech API in the app. The API
offers two different modes. Standard speech recognition (SSR) is used to process
full sentences containing questions or commands (Fig. 4). After a speech input
pause with a configured threshold length, the input is interpreted as a complete
utterance. The second mode, continuous speech recognition (CSR), is used to
recognize user interaction in the reading out mode (Fig. 6). Here, only single
words are recognized, since there is no defined end of speech.

Standard speech recognition. Before starting speech recognition, the app
checks if speech input is available. Then a speech object is created and some
options are set, such as the language, the maximum number of recognized sen-
tences to be returned, and whether partial results are to be returned or not. In
the standard speech recognition mode, we do not want to receive partial results.

10 https://javacc. java.net

220 Schafer et al.

Find Best-Match
Parse process

5 possible \} sort sentences > JavaCC »
l: + grammar Result Match
sentences, tag special words

Speech Input Z{

Fig. 8: Speech recognition workflow.

Speech Output Google
TTS

When recognition is started, a window opens and prompts the user for speech
input. After silence over threshold time, the window closes automatically and
the input is sent to Google ASR.

Continuous speech recognition. The second mode is what we call “continu-
ous speech recognition”!!. It is important for a hands-free scenario in the kitchen.
To initialize CSR, the speech API is initialized in the same way as for SSR, ex-
cept that it is asked to return partial results. There is no guarantee to receive full
sentences anymore or anything useful at all because the speech recognition does
not wait for a sentence to be finished but instead just returns results when it
sees fit. Everything that is returned by the speech API is split into single words
and those are compared with a list of keywords to spot for. Once one of those
words is found, the continuous recognition is stopped and some action such as
starting the normal recognition is executed. Thus, the continuous recognition is
only used to detect single command words as shown in Fig. 6.

Finding the most appropriate ASR match. This applies to the SSR mode
(Fig. 4, 8). As mentioned before, we chose the generic Google Speech API for the
speech input part of the cooking assistant since it is easy to connect with Java
code and is known to be reliable and available on all Android devices. However,
the major disadvantage of this speech recognizer is the fact that it cannot be
adapted to a specific domain or scenario. Therefore, we decided to establish
a rating system that takes into account the current activity where the speech
recognition takes place. Additionally, to make word matching more robust, we
apply two different stemmers (from Apache Solr/Lucene) concurrently. They
work corpus-independently and need only little space and working time.

The general idea is to give a score point for each word in a single match if the
activity-specific corpus contains the word. There are three different “scanners”
that correspond to three different areas that are checked: complete recipe corpus,
current recipe and grammar.

Corpus scanner. This scanner basically uses the general ingredients corpus that
was extracted from all available recipes. It is used in all kinds of search since
we assume that users often will search for ingredients. We use a bundle of four
different corpus versions: (1) a stem corpus, extracted using SProUT with the

11 The “continuous speech recognition” is based on an open source project which can
be found at https://github.com/gast-1lib/gast-1ib/blob/master/speech.md

Robust Mobile Speech-enabled Cooking Assistant for German 221

MMORPH stemmer, (2) a string corpus, containing the literal ingredient entries
including their morphological variants, (3) a stemmed version of the latter one,
stemmed using the 'Lucene’ stemmer, (4) the same again, but stemmed using
the ’Snowball’ stemmer. Moreover, to support search for particular recipes, we
also take into account the recipe titles. Thus, we additionally use a title corpus
for scoring. The score increases as the title gets longer, i.e. Spaghetti mit Erbsen-
Rahm-Sof$e und Parmesan ‘Spaghetti with pea-cream-sauce and Parmesan’ gets
a higher rating than just Schweinebraten ‘roast pork’.

Ezxample: Assume we would say Ich mdéchte Canneloni al forno kochen ‘1 want to
cook Canneloni al forno’. The corpus scanner would then start a lookup over its
corpus bundle and try to find some correspondence and the best possible score.
There are two possibilities:

— A rating of +1 for Canneloni, which is an ingredient
— A rating of +3 for Canneloni al forno, which is a recipe title

The match gets a rating of 4+3 here since we are looking for the best match.
Recipe scanner. Similar to the corpus scanner, the recipe scanner checks for
ingredients in a question. However, this time, it is restricted to ingredients that
are used in the recipe locally in the step-by-step view. We do not want to take
care of ingredients occcurring only in other recipes since questions on those
ingredients are irrelevant for the current recipe. Here, the bundle contains only
three corpora: (1) the already mentioned recipe text, containing ingredients, (2)
a stemmed version of the latter one, stemmed by the 'Lucene’ stemmer, (3) the
same again, but stemmed by the 'Snowball’ stemmer.

Ezample: Assume we are already cooking and forgot how many zucchinis we
need. In this case, we could ask Wie viele Zucchinis brauche ich? ‘How many
zucchinis do I need?’. Afterwards, the scanner would start a look-up and find
Zucchini as a relevant ingredient and thus increase the match rating by 1. We
could also assume that the speech API had returned the potential match Wie
viel Zucker brauche ich? ‘How much sugar do I need?’, since both words Zucchini
and Zucker sound similarly in German. This match would get no point, since
Zucker ‘sugar’ is an ingredient in fact, but not a relevant one for this recipe.
Grammar scanner. This last scanner is the most important one since it uses
the JavaCC grammar belonging to the current recognition for scoring. In a first
step, it chooses the appropriate grammar rule that should match the current
speech input. This matching of the current activity to a grammar rule is hard-
coded. When the rule is chosen, we read in the rule and solve all JavaCC tokens
that are used and mapped to “real” words. Afterwards, these words are thrown
into a bag of words and serve as corpus. This scanner is very important since it
simulates an input expectation which is not used in the speech recognition so far,
i.e. it partially solves the problem that the Google API is domain-independent.
By choosing one rule, we set a special context in which we expect the match to
take place in. Tests showed that this step has the highest influence on the general
scoring of matches. In contrast to the other scanners, we do not use a stemmer
here, since the grammar should take care of different word forms anyway.
Ezxample: Assume that while cooking we forgot how many zucchinis we need.

222 Schafer et al.

In this case, we could ask Wie viele Zucchinis brauche ich? ‘How many zucchinis
do I need?’. Afterwards, the scanner would start a look-up in the grammar
and find multiple word correspondences in the bag of words for the matching
grammar rule: The score should be +4 since the bag of words should contain
wie, viel, brauche and ich. These three scanners look at every possible match
that the ASR is returning and allocate scores to each of them. Afterwards, the
matches are sorted according to their rating. The grammar then basically tries
to parse the most appropriate match first; if this is not successful, it tries the
next one and so on (cf. loop in Fig. 8).

Marking phrases in a sentence. After choosing the best match from speech
input as described before, or sorting them according to their relevance, we mark
special phrases such as ingredients or recipe titles. The assumption is that these
are relevant for search or answering questions. Special markers in the JavaCC
grammar use them as pre-terminals. To mark them, we collect all possible titles,
ingredients, categories, countries and combinations of the latter that occur in the
match. We afterwards choose the most appropriate one out of all possibilities
and mark the appropriate parts of the string. Fzample: In Ich will etwas mit
Spaghetti und Tomaten kochen ‘I want to cook something with spaghetti and
tomatoes’, we would mark Spaghetti and Tomaten as ingredients: Ich will etwas
mit [Spaghetti]; und [Tomaten]; kochen (Fig. 2).

5.4 Recipe Text Server

All recipes are stored on an Apache Solr server. An example document is shown
in Fig. 3. The searchable fields (i.e. title, ingredients, category or country) are
stored in two versions, a stemmed one and a unchanged version. The unchanged
version is needed for sorting and searching for categories.
Recipe search. A user search process is divided into different parts. The first
step is generating a so called search object. In subsequent user questions (or
requests), it can then be altered to fit the user’s wishes, e.g. by adding ingredients
that have to or must not be contained in the recipe. Each time the search object
changes, a new Solr query is constructed from the given information and is sent
to the Solr system.

As described earlier, the app has a view where the user can choose a category
to search for. Searching for the stemmed category would in some cases lead to a
problem. For example, a stemmed search for torten mit obst ‘tortes with fruit’
would match all categories containing one of the three words, except mit ‘with’
which is a stop word, and return not only recipes with the exact same category.
To deal with this problem, the search object can be set to search the original fields
and not the stemmed ones. Another problem that arose was that a user might
want to search for a group of ingredients such as Nudeln ‘noodles’ or Gemiise
‘vegetables’ but that a search for recipes containing the actual word Nudeln or
Gemiise would only return a small number of recipes. We therefore manually
extended the Solr server index by a manually curated synonyms list based on
the full list of ingredients and categories that was extracted initially. Now, a
search for Nudeln also returns recipes that contain only the word Spaghetti.

Robust Mobile Speech-enabled Cooking Assistant for German 223

5.5 Speech Output

For Text-to-speech (TTS), we use the Google Text-to-speech API. For obvious
reasons, this has some limitations. It is for example not possible to modify pro-
nunciation. For domain-specific expressions such as amount range, we therefore
change the text string before passing it to Google TTS to pronounce it properly.
Out of the box pronunciation of abbreviations (Teel. ‘tbs’, min.), range con-
structs (‘1-2’) and constructs like ‘5 x 5 cm diameter’ was initially quite bad.
We improved it by adding code that replaces abbreviations using regular expres-
sions before sending them to TTS. Here, it was particularly helpful to have a
list of abbreviations with their frequencies from ingredient parsing (Sect. 5.2).

6 Summary and Outlook

We have described the components and implementation of a mobile, speech-
enabled cooking assistant for 32,000 German recipes. The system is fully im-
plemented and runs stably and fluently. Due to its design with only a lean,
well-scaling recipe text server in addition to cloud-based Google ASR, the app
can easily be installed on thousands of mobile devices. Future work would extend
the approach to utilizing linguistic parsing in both query and answer candidate
sentences to further abstract from linguistic variants. Then, more complex ques-
tion processing (example: “show me recipes where eggs are steamed with milk”)
would be possible. Furthermore, integration of sensors and devices such as bar-
code reader, electronic thermometers, kitchen scales, or stereo camera as further
ambient assistance tools could be helpful. Due to the corpus-based approach to
recognizing domain keywords, adaptation to further languages and applications
such as interactive user manuals or repair guidance systems should be easy.

References

1. Brants, T.: TnT — A statistical part-of-speech tagger. In: Proc. of 6th ANLP. pp.
224-231. Seattle, Washington (2000)

2. Chouambe, L.C.: Dynamische Vokabularerweiterung fiir ein grammatikbasiertes Di-
alogsystem durch Online-Ressourcen (2006), Studienarbeit, University of Karlsruhe

3. Drozdzynski, W., Krieger, H.U., Piskorski, J., Schéifer, U., Xu, F.: Shallow process-
ing with unification and typed feature structures — Foundations and applications.
Kiinstliche Intelligenz 1, 17-23 (2004)

4. Hamada, R., Okabe, J., Ide, I.: Cooking navi: Assistant for daily cooking in kitchen.
In: Proc. of 13th ACM Int. Conf. on Multimedia. pp. 371-374. Singapore (2005)

5. Martins, F.M., Pardal, J.P., Franqueira, L., Arez, P., Mamede, N.J.: Starting to cook
a tutoring dialogue system. In: SLT Workshop, 2008. IEEE. pp. 145-148 (2008)

6. Petitpierre, D., Russell, G.: MMORPH — the Multext morphology program. Tech.
rep., ISSCO, University of Geneva (1995)

7. Ribeiro, R., Batista, F., Pardal, J.P., Mamede, N.J., Pinto, H.S.: Cooking an on-
tology. In: Euzenat, J., Domingue, J. (eds.) Artificial Intelligence: Methodology,
Systems, and Applications, LNCS, vol. 4183, pp. 213—221. Springer (2006)

8. Wasinger, R.: Dialog-based user interfaces featuring a home cooking assistant
(2001), unpublished manuscript, University of Sydney, Australia

