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Abstract—A challenge in brain computer interface (BCI)
applications is the reduction of time required for the acquisition
of training data, which is needed for a user specific calibration of
a BCI. This paper proposes an application oriented approach to
minimize the calibration time by transferring a classifier between
different types of error related potentials (ErrPs). A classifier
trained to detect a certain brain pattern is used to later detect
a brain pattern which is expected to be similar to the first one.
In the here presented approach, two different tasks (interaction
task/observation task) are performed within one scenario which is
developed to generate two types of ErrPs: interaction ErrPs and
observation ErrPs. Since almost twice as much training data can
be generated while performing the observation task compared
to the interaction task within the same calibration time, we use
the classifier trained on the data containing observation ErrPs to
evaluate it’s performance on the data containing the interaction
ErrPs. Presented results support our approach. We show that
a single trial detection of interaction ErrPs using the classifier
trained on observation ErrPs is possible and results on average
in a high detection performance of 0.77 balanced accuracy
[(TPR+TNR)/2], i.e., an average of recognition rate of correct
and erroneous trials of 77%. Without such classifier transfer, the
classification performance of observation and interaction ErrPs
is on average slightly higher (0.80 and 0.81 balanced accuracy,
respectively). Our results suggest that classifier transfer is feasible
and reduces calibration time. This is a relevant result from the
perspective of applying an ErrP-based brain-computer interface
in a realistic scenario in robotics.

Index Terms—Error related potentials (ErrPs), brain com-
puter interface, classifier transfer, single trial detection.

I. INTRODUCTION

Brain computer interfaces (BCIs) link the user’s intent
and an external device (computer, system, robot, etc.) by
interpreting the user’s brain signals measured by, e.g., the
electroencephalogram (EEG). Using such interface the user’s
intent can be translated into a control signal for an external
device [1], [2] with different aims of applications (see [3] for
a review). Although the P300 has been used for most BCI
applications [4]–[6], the investigation of error related potentials
(ErrPs) has been the focus of research in recent years. It has
not only been applied as a verification tool, e.g., during single
trial P300 detection, but also as an independent tool for simple
error monitoring or adaptation of erroneous behavior [7]–[13].
Hence, the ErrP can be used to improve the performance of
an external device by correcting the errors.

Such improvement of performance of a human or artificial
agent can be realized by single trial detection of ErrPs, which
are differently elicited depending on the context of application.
For example, ErrPs can be elicited in case that a) Own errors
are recognized after a false response (response error [14]), b)
Own errors or errors made by another agent (human or artificial
agent) are recognized after receiving the feedback indicating
the incorrectness of action (feedback error [15]), c) Errors
of an agent or other human are recognized when observing
their behavior (observation error [16], [17]), or d) Errors of
the interface linking human and an external system can be
recognized (interaction error [9]). The different types of errors
elicit different brain signatures, i.e., event related potentials: a)
response ErrP, b) feedback ErrP, c) observation ErrP, and d)
interaction ErrP.

In BCIs, the interaction ErrP has often been applied to
correct the interface. For example, the interaction ErrP can
be used to improve the performance of an external device, in
case that the external device (robot or other system) executes
an action that violates the user’s intent [9]. One reason for
such a wrong action of the external device is a failure of the
interface, i.e., the interface fails to interpret the user’s intent
and delivers a wrong command to the external device. When
applying error monitoring, e.g., during the behavior of a robot,
the robot’s behavior can be corrected or suitably adapted with
respect to the context of the situation/application by detecting
ErrPs in the observers EEG (i.e., observation ErrP) [17].

The focus of this study was to investigate the applicability
of interaction ErrPs and observation ErrPs in a realistic task
environment (e.g., targets with a simple semantics have to
be checked among the obstacles) for robotic applications
and brain-computer interfaces. Furthermore, we investigate the
transferability of a classifier between two types of ErrPs. We
propose that a classifier transfer is useful to reduce calibration
time in case that more training data can be collected for one
type of ErrP compared to another type of ErrP within the same
time of data collection. We found a work where a classifier
transfer between two different tasks containing the same type
of ErrP (observation ErrPs) was performed [13]. However, to
our knowledge there is no study on the transfer of a classifier
trained on one type of ErrP (e.g., observation ErrP) and tested



on another type of ErrP (e.g., interaction ErrP).
To investigate the feasibility of classifier transfer we used

the same scenario for the detection of interaction ErrPs and
observation ErrPs. Hence, we developed one scenario, in which
two different tasks could be performed to generate interaction
ErrPs and observation ErrPs separately. Before investigating
the classifier transferability, the performance of single trial
detection of interaction ErrPs and that of observation ErrPs
were separately evaluated. Afterwards interaction ErrPs were
detected by using the classifier trained on the observation
ErrPs. As mentioned above, this direction of classifier transfer
(transfer from observation ErrP to interaction ErrP) was chosen
because of the higher amount of training instances that could
be recorded in the observation task within the same time of
data collection.

In this paper, we present experimental results for four
subjects during the monitoring of errors made by the interface
(interaction ErrP) and when observing the actions of an artifi-
cial agent (observation ErrP). Based on the earlier mentioned
research goal the main findings are structured in two parts:
a) single performance: Performance of single trial detection
of interaction ErrPs and observation ErrPs trained and tested
without transfer and b) classifier transfer: Performance in
single trial detection of interaction ErrPs with a classifier
trained on examples of observation ErrPs.

II. METHODS

A. Data Acquisition

EEGs were acquired from four subjects (one female, age:
27 ± 3.16, normal or corrected-to normal vision) during
the monitoring of the erroneous behaviors in two different
experimental environments. EEGs were recorded using the
actiCap system (Brain Products GmbH, Munich, Germany),
in which 64 active electrodes were arranged in accordance to
an extended 10-20 system with reference at FCz. Impedance
was kept below 5 kΩ. EEG signals were sampled at 5 kHz,
amplified by two 32 channel Brain Amp DC Amplifiers (Brain
Products GmbH, Munich, Germany), and filtered with a low
cut-off of 0.1 Hz and high cut-off of 1 kHz.

B. Experimental Setup

We developed a scenario which allows to detect two types of
ErrPs (observation ErrP/interaction ErrP) separately, depending
on the task that was performed (interaction task/observation
task). The developed scenario was based on the same prin-
ciple of the scenario from [9], in which interaction ErrPs
were elicited during the monitoring of simulated errors of a
classifier.

Unlike the scenario described in [9], our scenario was closer
to a realistic, more application oriented one, since the task had
to be performed with respect to simple rules. These rules were
defined by target semantics, i.e., each target contained a simple
semantics (labeled number) based on which the order of targets
was defined. Further, there were restrictions in how to reach
the targets. These restrictions were realized by obstacles. The
task was to find an optimal way to reach the targets in an
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Fig. 1. Interaction task: 20 Targets placed among the obstacles (gray objects)
and spikes of targets had to be reached in a numeric order. To move the cursor,
subjects had to press four keys of a computer keyboard to move to the left,
right, up or down (details, see text).

numeric order while avoiding obstacles. Due to this realistic
character of the scenario we could not exclude errors made by
the subject (i.e., response errors). To differentiate between both
types of evoked ErrPs (evoked by response errors or interface
errors), we labeled them differently as response error and as
interface error. In this paper, we focused on the interaction
ErrP, but not on the response ErrP.

Using this scenario two tasks (interaction task/observation
task) were performed with a counter-balanced measure design.
That means, subjects were divided into two groups. One group
began with the observation task followed by the interaction
task and vice versa. Since we collected 7 data sets for each
task, the tasks were also counter-balanced within a subject.
This means, each subject began with the one task (e.g. inter-
action task) followed by the other (e.g. observation task), and
vice versa.

1) Interaction ErrP task: The task was to move the cursor
(blue) to reach 20 targets (red) within a numerical order (see
Fig. 1). After moving the cursor, its direction was depicted
as gray arrow in the previous position of the cursor. All
stimuli (cursor and targets) were displayed on a monitor placed
approx. 30 cm in front of the subject. The subjects were
instructed to bring the cursor to one of the 20 targets using
four keys of a computer keyboard to move to the left, right,
up or down. In case that a target was checked in the correct
order, the color changed from red to green. Otherwise the target
color remained red. To approach a realistic scenario, there were
some obstacles placed between targets (gray objects). Further,
the targets could only be reached from one side of a target.
The other three sides were blocked by spikes (red). In case
of touching these spikes, the cursor went back to the start
position as a penalty. The task was finished after checking all
20 targets in the correct order. Interface errors that occurred in
case that the actual cursor movement did not correspond to the
chosen key that was pressed by the subjects were simulated
with the probability of 9%. The possible directions of wrong
movements were uniformly distributed. Wrong movements left
traces depicted as red arrows (direction of errors). The task was
repeated seven times and thus 7 data sets for each subject were
recorded. Each set contained about 48 erroneous trials and 480



Segmentation Spatial Filtering

Feature Extraction

Classication

window [0s - 1s] 
after stimulus

xDAWN

time domain features
[0.16s-0.6s, 0.16s-0.8s]

SVM

Detrending
mean = 0

Decimation

5000Hz to 50Hz

Bandpass-Filter

0.5-10 Hz

Feature Normalization
[mean = 0, SD = 1]

Fig. 2. Data flow: The continuous EEGs were segmented, normalized,
decimated, band pass filtered, and the signal to noise ratio was enhanced by
applying a spatial filter (xDAWN). The features that were extracted from the
spatial filter were normalized and finally used to train the classifier. A support
vector machine (SVM) was trained on the two classes: correct and erroneous
events.

correct trials. To avoid the same task pattern, the target order
was randomized for each run. All subjects needed about 2
minutes to reach all 20 targets (i.e., each run took 2 min).
Three different labels for the classification were generated
during the task: a) correct trial (Corr): cursor movements that
corresponded to the pressed key (i.e. correct movements), b)
erroneous trial Type I (InterErr): cursor movements that did
not correspond to the key pressing of subjects (i.e. simulated
interface errors), and c) erroneous trial Type II (RespErr): the
errors made by the subject (e.g., touching the spikes of a target
or violating the target order). In this study, we focused only
on two labels: Corr and InterErr.

2) Observation ErrP task: The task was to observe the
performance of an artificial agent. Unlike in the interaction
task, not the subjects but an artificial agent performed the
task. The subjects were only observing the behavior of the
agent. As in the interaction task, all stimuli (cursor and targets)
were displayed on a monitor placed approx. 30 cm in front
of the subject. Cursor movements left traces depicted as gray
arrows pointing towards the chosen direction. The errors of the
agent could be recognized by the movements deviated from
the correct path to reach the targets. Such wrong movements
of the cursor left traces depicted as red arrows (directions of
errors). The subjects could recognize the wrong movements
of the cursor without developing and executing a strategy to
find the correct path. The path to reach the targets and its
deviation (errors) from the correct path were hard coded, in
which 99 erroneous events were generated. To obtain the fixed
determined amount of erroneous trials, the chosen path to reach
the targets were not optimal compared to the path chosen by
the subjects in the interaction task. The empirical ratio of
error and correct trials after the task were 1:10 as for the
interaction task. The speed of key pressings were also hard
coded. Since subjects paused quite often to find the correct
path, their average movement speed was significantly slower
compared to the agent. As for the interaction task, 7 runs
were collected (each run took 2 min) and the target order
was randomized per run. For the observation task two labels
were generated: a) correct trial (Corr): the movements that

did not deviate from the path to reach the targets (i.e. correct
movements) and b) erroneous trial (ObsErr): the movements
that deviated from the path to reach the targets (i.e. wrong
movements).

C. Data Set

We recorded seven data sets for each subject per task
(interaction task/observation task).

1) Single trial detection of interaction ErrP and observa-
tion ErrP: To enable a fair comparisons in detection perfor-
mance between the interaction ErrP and observation ErrP, four
data sets recorded during the interaction task were merged into
one data set (total approx. 192 erroneous trials and 1920 correct
trials, calibration time of 8 min) for each subject (inter-set
design) and two data sets recorded during the observation task
were merged into one data set (total 198 erroneous trials and
1980 correct trials, calibration time of 4 min) for each subject
(inter-set design). In this way, an approximately equal number
of erroneous trials were used for the evaluation for each task.
Note that the ratio of correct and erroneous trials (1:10) were
the same for the both tasks.

2) Single trial detection of interaction ErrP using the clas-
sifier trained on the observation ErrP: From the perspective
of the application it is practical to use the data collected by
the observation task to train the classifier, since the calibration
time for detecting interaction ErrPs can be reduced compared
to using the data collected by the interaction task to train the
classifier. To test such possible advantage, we used one data
set collected from the observation task (99 erroneous trials,
calibration time of 2 min) for training the classifier and one
data set collected from the interaction task (48 erroneous trials)
for evaluation.

D. Preprocessing and Classification

Fig. 2 illustrates the data flow for preprocessing and classifi-
cation. Based on the type of events (correct/erroneous trial) the
continuous EEG signal was segmented into epochs from 0 ms
to 1000 ms after each event type. All epochs were normalized
to zero mean for each channel, decimated to 50 Hz, and band
pass filtered (0.5 to 10 Hz). The xDAWN [18] was used as
a spatial filter to enhance signal-to-noise ratio. After applying
the xDAWN the number of 64 physical channels was reduced
to 8 pseudo channels.

To determine whether a large time window is necessary for
a successful detection of interaction ErrP and observation ErrP,
respectively, we investigated the classification performance in
case of using the features extracted from a large time window
compared to the features from a small time window. As shown
in Fig. 3, the ERP curve for each subject showed a more clear
separation of second and third negativity peak for observation
ErrPs compared to interaction ErrPs. For the observation ErrP,
the first negativity and second positivity were reduced for
Subject 1 and Subject 2, whereas the third negativity was
increased for those subjects. Based on the pattern of the second
and third negativity peak of interaction ErrP and observation
ErrP for each subject, two time windows were used for
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(a) Interaction ErrP
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(b) Observation ErrP

Fig. 3. Averaged Event Related Potential (ERP) for the difference error-minus-correct trials at channel FCz for each subject and the grand average over all
subjects. Only artifact-free EEG trials were used. a) Interaction ErrP: A first negative peak was observed around 270ms after the erroneous events, followed by a
positive peak around 380ms. After that, a negative peak occurred around 600ms after the erroneous events. b) Observation ErrP: Similar to the interaction ErrP,
a first negative peak occurred around 250ms after the erroneous events, followed by a positive peak around 350ms. Also two negative peaks were observed
around 600ms and 850ms after the erroneous events. For Subject 1 and Subject 2, the first negativity and second positivity were reduced for the observation
ErrP compared to the interaction ErrP, whereas the third negativity was increased for the observation ErrP.

TABLE I
CLASSIFICATION PERFORMANCE (MEAN±STANDARD DEVIATION) OF EACH SUBJECT ON CORRECT AND ERRONEOUS SINGLE TRIALS AND THE AVERAGE OF
THEM FOR TWO DIFFERENT TYPES OF ERRP: INTERACTION ERRP AND OBSERVATION ERRP (INTER-SET DESIGN). NOTE THAT TWO TIME WINDOWS WERE

USED FOR FEATURE EXTRACTION: 0.16 S–0.6 S AND 0.16 S–0.8 S

Interaction ErrP Observation ErrP

Training instances (erroneous/correct): approx. 192/1920 Training instances (erroneous/correct): 198/1980
calibration time of 8 min calibration time of 4 min

0.16–0.6 s Subject 1 Subject 2 Subject 3 Subject 4 Average Subject 1 Subject 2 Subject 3 Subject 4 Average

bACC 0.79±0.06 0.81±0.06 0.82±0.04 0.80±0.06 0.81±0.01 0.79±0.04 0.83±0.05 0.78±0.05 0.77±0.06 0.79±0.03
TPR 0.70±0.12 0.70±0.11 0.72±0.10 0.72±0.11 0.71±0.01 0.76±0.10 0.75±0.12 0.72±0.10 0.66±0.11 0.72±0.05
TNR 0.88±0.04 0.92±0.02 0.93±0.03 0.89±0.03 0.91±0.02 0.83±0.04 0.92±0.03 0.84±0.03 0.88±0.03 0.87±0.04
0.16–0.8 s Subject 1 Subject 2 Subject 3 Subject 4 Average Subject 1 Subject 2 Subject 3 Subject 4 Average

bACC 0.78±0.06 0.81±0.05 0.82±0.04 0.80±0.06 0.81±0.02 0.81±0.05 0.85±0.05 0.78±0.05 0.80±0.05 0.81±0.03
TPR 0.69±0.12 0.69±0.11 0.71±0.10 0.71±0.11 0.70±0.01 0.77±0.10 0.75±0.10 0.71±0.10 0.69±0.11 0.73±0.04
TNR 0.87±0.04 0.93±0.02 0.92±0.03 0.89±0.03 0.90±0.03 0.85±0.04 0.94±0.02 0.84±0.03 0.91±0.03 0.89±0.05

feature generation: a) [0.16 s–0.6 s] and b) [0.16 s–0.8 s]. Thus,
features were extracted from 8 channels after spatial filtering,
between 0.16 s and N s where N = [0.6, 0.8], for a total of 240
features (8 channels × 30 data points= 240) for first window
[0.16 s–0.6 s] and 320 features (8 channels × 40 data points =
320) for second window [0.16 s–0.8 s].

The extracted features were used to train the classifier. We
used a linear support vector machine (SVM) [19] to classify
the correct and erroneous trials. For each training, SVM param-
eters were optimized with an internal 5-fold cross validation
using a grid search among the determined complexity values
of the SVM [100, 10−1, ... , 10−6]. Due to the unbalanced
ratio of the erroneous and correct trials (1:10), we determined
the class weight of 5.

E. Evaluation

As a metric for classification performance we used the
arithmetic mean of true positive rate (TPR) and true negative
rate (TNR), so-called balanced accuracy (bACC), where the
erroneous trials belonged to the positive class.

First, we evaluate the performance of single trial detection
of interaction ErrP and observation ErrP separately. For evalua-
tion 10×10-fold cross validation was performed on the merged
data set for each task (interaction task/observation task). The
merged data set was split into 9 training sets and 1 validation
set. For training, total approx. 192 erroneous trials and 1920
correct trials (calibration time of 8 min) were used for the
interaction task and total 198 erroneous trials and 1980 correct
trials (calibration time of 4 min) for the observation task.
To find whether a small time window could be sufficient to
detect two different types of ErrPs and whether there could
be a difference in classification performance depending on
the length of time window, we compared two different types
of ErrPs for each time window. For that the classification
performance was analyzed using repeated measures ANOVA
with time window [0.16 s–0.6 s, 0.16 s–0.8 s] and ErrP type
(observation, interaction), and subject (subject 1–subject 4) as
within-subjects factors.

Second, we evaluate the classifier transferability between
two different types of ErrPs. In our case, the classifier transfer
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Fig. 4. Comparison in classification performance (bACC) between the two time windows [0.16-0.6 s, 0.16-0.8 s] for each type of ErrP [interaction ErrP/observation
ErrP] and for each subject, respectively (interaction of classification performance with time window and subject). For pairwise comparisons, Bonferroni correction
was applied. Note: mean balanced accuracy (bACC = [(TPR+TNR/2)]) with standard error were presented for each time window and each type of ErrP (blue
triangle: first time window for interaction ErrP, blue square: second time window for interaction ErrP, red reversed triangle: first time window for observation
ErrP, red circle: second time window for observation ErrP).

from the observation ErrP to the interaction ErrP was of
interest, since we could collect more data from the observation
task compared to the interaction task for the same duration of
data collection per run. Thus, the classifier was trained on the
data containing the observation ErrP, collected by one set of
the observation task (99 erroneous trials, calibration time of
2 min). After that, the trained classifier was used to evaluate
the data containing the interaction ErrP collected by one set
of interaction task (48 erroneous trials). To compare the single
trial detection of interaction ErrP using a classifier trained on
the data containing the interaction ErrP (8 min calibration time)
compared to the using a classifier trained on only one data
set containing the observation ErrP (2 min calibration time),
the data was analyzed using repeated measures ANOVA with
transfer (transfer, no transfer) and subject (subject 1–subject
4) as within-subjects factors.

III. RESULTS

A. Classification performance for each type of ErrP

Table I and Fig. 4 show the classification performance on
correct and erroneous single trials for two different types of
ErrPs (interaction ErrP/observation ErrP) in the same scenario.

We obtained a classification performance for interaction
ErrPs and observation ErrPs with an average balanced accuracy
of 0.81 and 0.80, respectively. Across subjects and time
windows, there was no significant difference in classification
performance between interaction ErrP and observation ErrP
[main effect of ErrP type: F (1, 99) = 1.337, p = 0.25].

For the observation task, a higher classification perfor-
mance for the second time window [0.16 s–0.8 s] was achieved
compared to the first time window [0.16 s–0.6 s] except for
one subject [interaction of time window with ErrP type and
subject: F (3, 297) = 1.17, p = 0.32, first window vs. second
window: the statistical values, see Fig. 4]. The difference in
classification performance between first and second window

TABLE II
CLASSIFICATION PERFORMANCE (MEAN±SD) OF INTERACTION ERRP

USING THE CLASSIFIER TRAINED ON THE OBSERVATION ERRP. NOTE THAT
THE TIME WINDOW FOR FEATURE EXTRACTION WAS 0.16–0.6 S.

Classifier Transfer: Observation ErrP → Interaction ErrP

Training instances (erroneous/correct): 99/990
calibration time of 2 min

Subject 1 Subject 2 Subject 3 Subject 4 Average

bACC 0.82±0.01 0.70±0.04 0.76±0.01 0.81±0.01 0.77±0.06
TPR 0.73±0.01 0.55±0.13 0.58±0.03 0.80±0.02 0.67±0.12
TNR 0.91±0.01 0.84±0.06 0.94±0.01 0.82±0.02 0.88±0.06

was not observed for the interaction task (an average balanced
accuracy of 0.81 for both time window, details, see Fig. 4).

Based on this result, only the first window was selected to
later detect interaction ErrPs using a classifier trained on the
data containing observation ErrPs. By selecting the small time
window [0.16 s–0.6 s] we could also reduce the dimensionality
of feature space which could be relevant for an application.

B. Classification performance for classifier transfer

Table II show the classification performance on correct
and erroneous single trials collected during the interaction
task, where a classifier trained on data collected during the
observation task was used.

We obtained an average balanced accuracy of 0.77 across all
subjects. The success of classifier transfer from the observation
ErrP to the interaction ErrP was subject-specific: For two sub-
jects the classification performance in case of using a classifier
trained on observation ErrPs was reduced compared to the case
of using a classifier trained on interaction ErrPs [interaction of
transfer with subject: F (3, 27) = 11.81, p < 0.001, classifier
transfer vs. no classifier transfer: the statistical values, see
Fig. 5]. In other words, for two subjects we obtained a high
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Fig. 5. Comparison in classification performance (mean and standard error)
between two cases: no classifier transfer and classifier transfer. The standard
error was very low for the case of classifier transfer. For pairwise comparisons,
Bonferroni correction was applied.

classification performance using the classifier transfer with the
calibration time of 2 min which was as good as in the case of
no classifier transfer with the calibration time of 8 min.

IV. CONCLUSION

In this study, we have achieved a high performance in
single trial detection of interaction ErrP and observation ErrP,
respectively (an average balanced accuracy of 0.80 and 0.81,
respectively) in a more realistic, application oriented scenario
if compared to the study described in [9]. The result from
two different lengths of time windows proved that the small
window [0.16 s–0.6 s] is sufficient to detect the interaction ErrP,
whereas the observation ErrP can be detected with a higher
classification performance in case of using the larger time
window [0.16 s–0.8 s].

Furthermore, our approach shows the feasibility of classifier
transfer, i.e., the applicability of a classifier that is trained on
observation ErrPs to classify interaction ErrPs. Since we could
collect twice as much training data containing the observation
ErrP compared to the interaction ErrP during the same time
of data collection in our scenario, it was reasonable to test
whether the classifier trained on observation ErrPs could be
used for single trial detection of interaction ErrPs. Our results
indicate a successful application of a classifier trained on the
data containing the observation ErrP to the data containing the
interaction ErrP.

Although the performance of detecting interaction ErrPs
in case of using the classifier trained on observation ErrPs
compared to using the classifier trained on interaction ErrPs
is more subject-specific, from the perspective of application
such classifier transfer is very useful to reduce the calibration
time, i.e., two minutes of EEG recording is sufficient to
calibrate the system for some subjects who show no significant
difference between transfer case and no transfer case (no
classifier transfer with calibration time of 8 min vs. classifier
transfer with calibration time of 2 min: 0.79 vs. 0.82 for
subject 1, 0.80 vs. 0.81 for subject 4, see details Results and
Table I Interaction ErrP vs. Table II).
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