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Abstract

The presented work contributes to research in the field of advanced man-machine
interaction and to research in the field of formalisation and verification of com-
plex systems. The paper describes for the first time embedded brain reading (eBR)
and presents a formal model for it. It illustrates how an error-prone approach like
brain reading (BR) can be applied safely by embedding it into the control of a
real system and by applying mechanisms that control for its correct function. This
work was motivated by the need to provide a detailed and well understandable
formal description of eBR. We first introduce eBR and point out its main features.
Next a general model for eBR is developed to describe the overall architecture,
integral parts and dependencies between those parts. The model is developed and
presented in a formal structured form that allows for application of optimisation
as well as verification techniques. We demonstrate using implementations that
the application of the formal model allows to check for completeness and correct-
ness to detect errors in implementations, which were invisible without formalising
eBR. In summary, the presented work contributes a formal model for a complex
system and shows that such a formal model can improve the overall system’s func-
tionality. For future work our results support the application of formal modelling
and verification techniques at the system level and the development of methods to
prove for correctness and completeness of complex systems during their develop-
ment.

keywords man/machine interface, rehabilitation, robots, telepresence, inspection and testing

1 Introduction

To interact intuitively with robotic systems in complex application scenarios advanced human-
machine interfaces (HMIs) are required that support humans on demand, allow intuitive interaction,
and provide intelligent operator support. This becomes more important as the complexity of sce-
narios increases. In Fig. 1 and 2 (multi-) robot telecontrol scenarios are depicted. In such complex
control scenarios an operator has to simultaneously telecontrol one or a group of robots while he
also has to respond to information that are relevant for the controlled systems and for the interaction
with other people.
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For advanced human-machine interaction, intelligent and adaptive interfaces must fulfil the changing
requirements of an operator during interaction. Knowledge about the operators requirements and
intentions can be gained by interpreting his brain state with respect to his current behaviour and
situation. To enable this, brain activity of a human can be recorded by means of different methods,
like the electroencephalogram (EEG) or functional magnet resonance imaging (fMRI). To analyse
such data brain reading (BR) can be applied. BR was introduced as a method to gain information
about hidden processes and states of the brain, i.e., the function of the mind (Coles, 1989). In Haynes
and Rees (2006) it could even be shown that BR can be applied to detect different conscious states of
the human, i.e., in his conscious perception. However, more functional questions like the decoding of
visual, auditory, perceptual or cognitive patterns are addressed as well. Most studies are investigating
fMRI data as for example in Kamitani and Tong (2005), in Miyawaki et al. (2008), in Naselaris et al.
(2009) or in Polyn et al. (2005), although some work is also done on EEG data (Coles, 1989; Suppes
et al., 2009).

For our purpose, we want to define BR as the online decoding of brain activity into otherwise hidden
information about the users functional or cognitive state, in this paper referred as brain state, with
respect to internal or external events that are relevant for the human-machine interaction. This
decoding takes place unnoticed by the user and requires no extra attention or cognitive resources of
the user it is applied to. To apply BR for human-machine interaction, it is further required that BR
enables the single trial, online analysis of brain activity of a human that is interacting freely with his
environment. Our definition of BR does in principle also cover invasive methods for brain activity
recording. However, invasive methods are not yet generally applicable in many fields of human-
machine interaction and will thus not be considered here. Furthermore, in the given examples we
focus on EEG data, since it is in comparison to other methods easy to record and to apply for the
improvement of human-machine interaction.

Similar to BR the implementation of passive brain-computer interfaces (BCIs) that are for example
applied for error detection in human-machine interaction (Zander and Kothe, 2011) requires the
analysis of passively evoked brain activity and provides information about the humans intentions,
situational interpretations or emotional states (Zander and Kothe, 2011). However, many passive
BCIs are implemented to detect brain states that are related to behaviour which was performed
previously, e.g., the detection of error related brain activity after a response error was performed.

The outcome of BR, i.e., detection of a current brain state, is for its application in human-machine
interaction used to interfere on future behaviour of a human during interaction. This is important,
since only by interfering future behaviour, HMIs can then be adapted with respect to the inferred
behaviour to enable a more intuitive interaction with better support. Figure 2 depicts how BR can be
applied to detect the brain state of ”movement preparation” for the adaptation of an interface, i.e.,
exoskeleton, to better support the future behaviour of ”movement onset” which is inferred from the
output of BR 1. Before movement onset (black vertical line in inserted diagram) continuous classifi-
cation of the EEG by BR shows an increasing score for the likelihood of the brain state ”movement
preparation” (blue curve in inserted diagram). Based on the score values the exoskeleton’s control
is adapted to better support the inferred behaviour ”movement onset”.

However, the output of BR has to be taken with care since the classification of the brains activity
by means of methods available today and by the fact that a human is a very complex system which
is hard to model, cannot be done error free. Hence, control mechanisms have to be implemented
that assure reliability of predictions or check for their correctness. We argue that predictions made
based on the outcome of BR analysis should not be used to directly control a machine, but to adapt
its control-interface. This adaptation should not be implemented such that a control command is for
example reverted, as it is usually the case in error potential based BCIs (Ferrez and Millán, 2008;
Seno et al., 2010), since also the detection of errors from the EEG can be incorrect and can result
in an erroneous correction of a command. In the given example, the detection of the brain state
”movement preparation” is hence not used to directly change the behaviour of the exoskeleton.
Instead, it is applied to adapt its control. The more likely movement preparation is detected by BR,
the shorter the user has to press against the force sensors that release the system from a locked in rest
mode to a free run mode. In detail, the output of BR is used to change the time-threshold of the force
sensors that have to be triggered for the release of the system from rest mode. This adaptation of the
control allows a faster response of the exoskeleton on the inferred change in behaviour, i.e., start of

1see video ”Movement prediction for exoskeleton control” referenced in Section Supporting Media
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movement, and reduces the force that has to be applied by the operator. However, the integrated force
sensors have to be triggered to allow a change of mode, hence the inferred behaviour must always be
confirmed by the sensors (Folgheraiter et al., 2012). This prohibits faulty system behaviour in case
of misclassification of the brain activity by BR or in case of a false inference about an upcoming
behaviour.

From the above discussion it can be generalised that BR has to be fully integrated into the control
of an HMI to enable its safe adaptation. For such embedded BR (eBR), an automated description of
the current situation and behaviour of the human with respect to the interaction that is taking place
is required. Thus, the behaviour of a human has to be analysed constantly and in an online manner
to automatically mark or label situations and behaviour that are relevant for the interaction. For this
labelling of data not only sensors that are integrated in the HMI but also additional physiological or
psychophysiological measures (Coles, 1989) or information about the situation that is gained from
the analysis by other supportive systems can be used. In the given example, instead of using sensors
to confirm the inferred behaviour, the detection of muscle activity by the analysis of the electromyo-
gram (EMG) (Hodges and Bui, 1996; Kirchner et al., 2013; Tabie and Kirchner, 2013) could also be
used to confirm movement onset. Further, a combination of different (psycho-)physiological mea-
sures, like EEG and EMG (Kirchner and Tabie, 2013) , can improve the quality of the predictions
and thus the behaviour of the HMI to enable the HMI to adapt to different conditions.

The main challenges for improving man-machine interaction by eBR is the implementation of com-
plex rules and requirements: complex application and communication rules, robotic control mech-
anisms, system design and rules for interpreting EEG data with respect to brain states and for the
inference of upcoming behaviour as well as the application of control mechanism that assure a fault
free behaviour of the whole system after the integration of eBR. To give a good description for
such a complex system is challenging and especially difficult if scientists from different fields are
involved. Errors in implementations are under such conditions hard to avoid. This motivated us to
deduce a general, formalised model for eBR that can be applied to different implementations (see
Section 2). We do not make use of a formal specification approach, but we introduce a rigorous
specification of all interfaces. Out of this a formal description, as e.g., a Kripke structure, can di-
rectly be derived. Based on the investigations that were performed for this paper we describe in
Section 3 that the developed and applied formal model improved our approach by (1) contributing
a detailed description of the system, (2) optimising underlying procedures, (3) enhancing general
reproducibility and (4) improving comparability with similar approaches, (5) pointing out small but
relevant differences between approaches that cannot be derived otherwise, and by (6) easing the de-
tection of errors in implementations. Our results are summarised in Section 4, where we discuss why
the application of formal modelling and verification techniques at the system level (Drechsler and
Große, 2005; Tabakov et al., 2008) is important for different fields of application and for pursuing
new paths in advanced human-machine interaction.

2 A Formal Model

In this section we present a general formal description of eBR for the adaptation or control of HMIs.
Figure 3 depicts the developed formal model for eBR, which requires HMIs that not only control the
application or robotic system but can be adapted by predictions made based on the analysis of brain
activity to better support humans during interaction and can further control, i.e., drive and correct,
eBR. Furthermore, the HMI itself or supportive systems must detect behaviour or situations that are
relevant for the interaction in order to label the digitised EEG, i.e., to mark instances in the EEG
data or situations during interaction that have to be analysed by eBR. The eBR system does analyse
the relevant EEG data which is recorded at time t = i to detect brain states that allow the inference
of future behaviour at time t = q, with i < q. To improve eBR, other systems can be integrated
that allow the analysis of other data (e.g., EMG and eye movement) to detect human behaviour that
might be relevant for the interaction. These supportive systems can either produce markers for BR
and hence trigger BR (bold lines from MG in Fig. 3) or give feedback to the HMI and BR system,
to, e.g., approve the behaviour that was predicted (dotted lines pointing towards the HMI in Fig. 3)
to control or to correct BR, i.e., to decide whether the output of BR is or was valid.

To apply eBR in a specific application, two rules have to be defined: (1) RBR for processing of
brain activity and prediction of the brain state and (2) RAHMI for inferring on future behaviour
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(based on the predicted brain state) as well as for the adaptation of the HMI to better support the
inferred behaviour and to control for correctness of the inference that was made. Both, the first
and the second rule together define how BR is embedded into the system. However, the BR rule
RBR can in most cases be kept the same for different applications as long as the same brain states
have to be detected and the same labels are provided by the HMI, supportive systems or BR system
itself (Section 2.2), while the adaptation rule RAHMI is likely different for different applications and
depends on the way the output of BR is used to improve man-machine interaction. In the following
we formalise all parts of the model as depicted in Fig. 3. Different parts of the model are relevant
for BR as well as for embedding BR (REC, MG, WS, and SP in Fig. 3) and others are only relevant
for eBR (PB, A, and C in Fig. 3).

2.1 Recording and Analog-Digital Conversion of Brain Activity (REC)

As explained before, any method that allows fast recording and analysis of brain activity can be
used for BR. Here, we will focus on the EEG as source for brain activity for the given reasons. First,
the analogue brain signal A (A ∈ Rc), which is recorded with standard recording devices with c
channels (electrodes) from the brain at time t (t ∈ R), is transferred into a digital output signal

O(t) =


d1(t)
d2(t)
.
.

dc(t)

 , (1)

with dl ∈ N′,N′ ⊂ N, l ∈ [1, c] and N′ = {−2u,−2u + 1, ..., 2u}, with u ∈ N, u = z − 1, with z ∈ N,
where z is the bit with and c is the number of channels, t = n∆t, n ∈ Z and ∆t is the sampling
interval.

The analogue-to-digital conversion (ADC in, Fig. 3) takes place on hardware side and is hence,
dependent on the hardware that is used, e.g., bit width z of the AD-converter. The signal is sampled
with a hardware specific sampling frequency f = 1/∆t. For a certain time point i the output of the
AD-converter is

o(i) =


d1(i)
d2(i)
.
.

dc(i)

 . (2)

2.2 Labelling of Behaviour and Situations: Marker Generation (MG)

To analyse the digital signal by eBR to detect brain states certain segments or windows of the signal
O(t) have to be chosen for further processing. The choice is made based on the relevant current
behaviour or relevant situations during interaction that allows and requires the prediction of future
behaviour. In the example of the adaptation of the exoskeleton’s control by eBR (Fig. 2), the change
from rest mode to teleoperation is a relevant situation. During rest mode it is relevant to detect the
brain state ”movement preparation” by BR to infer on the behaviour ”movement onset”. For training
of the classifier in BR this change of behaviour is automatically detected by sensors in the exoskele-
ton and labeled in the EEG data. For the application of eBR it is only relevant to automatically
detect the onset of a rest situation to trigger BR for the detection of ”movement preparation”. For
training and application, automated labelling of EEG data with respect to mode changes is done by
the HMI.

As mentioned before, other supportive systems that analyse interaction behaviour based on other
data, like the EMG in the example given in Fig. 2, which can also be analysed to detect movement
onset, i.e., the change from a rest mode to teleoperation mode, can be used. In the example shown
in Fig. 1 EOG or eye movement detection by eye tracking can be used to detect the focussing of
important target objects like warning messages that require a response of the operator to trigger
BR analysis for the detection of brain states. Depending on the detected brain state an assump-
tion on whether these focused warnings have been perceived as important by an operator or not is
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possible. These assumption about the perceptional state of the operator then allows to infer on pos-
sible future behaviour, i.e., the likeliness of response behaviour of the operator on important target
objects. Based on the inferred behaviour the HMI called ”operator monitoring system” that is ap-
plied in the application depicted in Fig. 1 can than be adapted with respect to the tolerated response
times (Kirchner et al., submitted)2.

Furthermore, markers can be generated based on the outcome of the analysis of recent EEG instances
by BR to adapt an classifier (Wöhrle et al., 2013). Important is that any marker is generated in an
automated fashion based on predefined rules, e.g., in the first example the behaviour of movement
onset is detected only in case the operator is in a rest position, since only in this situation movement
onset is relevant. In all cases, to mark relevant behaviour or situations at a time point t = i in the
EEG stream, the digital signal o(i) is hence labelled by an automatically generated marker m(i) of
a certain type. A marker m(t) is specific to the application or type of interaction and can be defined
as

m(t) ∈MApl,MApl = {−2u,−2u + 1...2u}, (3)

with one type of m(t) for no marker.

In some cases it is required to cut several windows with respect to a certain marker that was provided
by the HMI or an additional supportive system to label a behaviour or situation. To enable this,
additional markers might be added that define the distance between the windows. These markers are
introduced by the eBR system itself as defined in the BR rule RBR.

Adding markers to each output o(i) ∈ O results in the signal om(i) defined as

om(i) =


d1(i)
d2(i)
.
.

dc(i)
m(i)

 , (4)

with m(i) ∈ {−2u,−2u + 1...2u}.

2.3 Windowing of Relevant Instances (WS)

For processing, the labelled data has to be segmented into windows that must have a certain length
depending on the characteristics of the hidden signal. In this paper for the sake of simplicity we use
rectangular windows, although other types of windows might in principle be possible and suitable
and will not be excluded from the general model. Based on the markers and a predefined BR rule
RBR the signal O(t) is cut into instances, i.e., windows W

m(t)
x defined as

Wm(t)
x = {O(t) | Rm(t)

low < t < Rm(t)
up }, (5)

where x is the number of windows chosen for one marker type m at a certain time point i, Rm(t)
low

for the start of the window and R
m(t)
up for the end. For a certain marker m(i) several windows can

be cut. These windows can overlap over a certain time period, start and end before or after the time
t = i. Different windows of different types W ′ ⊂ W , where W is the space of windows, may be of
interest during training or test of eBR as defined by the BR rule RBR.

2.4 Signal Processing, Classification and Post-processing (SP)

During the last step of eBR all relevant windows are processed within a signal processing chain:
SPf ◦ SPf−1...SP1. This transfers W ′ ⊂ W to Y as output of signal processing and classification.
The output for processing a relevant Wm(i) is yi ∈ Y . Each output yi can be correlated to a prediction
score for the likelihood of a brain state that was present in the past, since yi is only available at time
t = k, with

2see video ”Recognition of warnings during teleoperation” referenced in Section Supporting Media
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k = Rm(i)
up + j, for Rm(i)

up > i (6)
or

k = i + j, for Rm(i)
up ≤ i,

with j is the time required for all steps of SP.

2.5 Inference of Behaviour (PB)

The mapping between the output yi ∈ Y as the likelihood for a certain brain state si ∈ S as defined
by the BR rule RBR and the likelihood of future behaviour bq ∈ B which may require an adaptation
of the HMI is defined by the adaptation rule RAHMI . Based on the output yi a possible future
behaviour (bq) at time t = q, with q > k, can thus be inferred to adapt the HMI before the future
behaviour is expressed.

The prediction time p, defined as p = q−k, must thus be positive (p > 0). Further, to adapt the HMI
at t = p for the future behaviour some adaptation time r is required which depends on the adapted
system and its control mechanism. To adapt an HMI early enough p > r must be fulfilled. Thus,
it is not enough to infer a certain behaviour bq before it is executed but it must be predicted early
enough to enable the adaptation of the HMI before the inferred behaviour bq is expressed at time
t = q. Hence, an effective prediction time pe is required which can be defined as

pe = p− r, (7)

with pe > 0.

2.6 Adaptation of the HMI (A)

Adaptation requires a certain time r and takes place between time t = k and t = k+r. The mapping
between S and B and the kind of adaptation is defined by the adaptation rule RAHMI . The kind and
strength of adaptation may not only depend on the inferred behaviour B but also on the output of
systems that control the adaptation, e.g., the HMI itself or other supportive systems (Fig. 3).

2.7 Control and Correction of the Adaptation of an HMI (C)

Since BR analysis and thus the detection of the brain state S cannot always be correct and also
the mapping between the detected brain state S and the inferred behaviour B might be wrong or
contain uncertainties (i.e., a behaviour b∗q ∈ B∗ might be executed that was not inferred (b∗q 6= bq)),
it is important to implement control mechanisms into the eBR approach that either correct false
adaptations of the HMI or prevent them.

To correct inappropriate adaptation, the expressed behaviour b∗q of the human has to be monitored
and compared with the predicted behaviour bq to search for discrepancies. If such discrepancies
are detected the HMI can be adapted again (or readapted) to better meet the detected behaviour b∗q .
Should a wrong adaptation of the HMI possibly result in a malfunction of the HMI, it is not useful to
implement control mechanisms that analyse the discrepancy between a predicted behaviour bq and
the expressed behaviour b∗q . In this case, it is better to combine the prediction made based on brain
activity analysis with predictions made based on other measures like the EMG. By implementing
automated control and correction, a malfunction of the whole system in case of misclassification of
the brain state S by BR or falsely inferred behaviour B is avoided.

3 Evaluation of the Model in Real Applications

In the following we will evaluate the developed formal model based on two implementations that
are first described in a more descriptive fashion to point out relevant parts for eBR and then in a
formal way with applied rules. We show on parts of both implementations that the formal model
contributes a detailed description (of those parts) that not only enhances reproducibility of each
individual implementation but also improves comparability between implementations. The later is
shown by actually comparing parts of the implemented formal model for both implementations (see
Section 3.1). We show that even small differences, e.g., in choice of training or testing instances,
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can be covered by the formal model for eBR. Further, we show that the formalisation of complex
applications is not only a prerequisite to apply verification methods but does already help to optimise
procedures and to avoid or ease the finding of errors that are otherwise invisible or at least very hard
to be found (see Section 3.2).

Fig. 2 depicts a real robotic application for telemanipulation and telepresence3. In this scenario two
different implementations for eBR are applied to adapt: (i) an exoskeleton in the implementation
AExo and (ii) an operator monitoring system (OMS) in the implementation AOMS. In (i) BR detects
brain states that are related to movement preparation. In (ii) it detects brain states that are related
to target recognition, i.e., recognition of important information. The detected brain states are then
used to infer on upcoming behaviour: In (i) on the onset of self-initiates arm movements and in (ii)
on response behaviour of the subject to the given task. For both inferred upcoming behaviours the
interfaces are adapted: In (i) the exoskeleton is adapted to react faster on inferred movement onset
and in (ii) the OMS is adapted to permit a longer response time in case that response behaviour is
inferred.

In the following we define a formal description for both implementations. To improve the behaviour
of an exoskeleton during telemanipulation4 in the implementation AExo (Fig. 2) eBR is used to de-
tect the brain state of movement preparation SMP and no movement preparation SnoMP to prepare
the HMI, i.e., exoskeleton, for the execution of self-induced movements B∗MO in case of SMP . As-
sumptions about the brain states S are made based on the output Y of a trained classifier as result of
the analysis of brain activity as defined in the BR rule RMov . Adaptation of the exoskeleton’s con-
trol are made based on a mapping between Y and the likelihood of an inferred upcoming behaviour
b∗q with b∗q ∈ B∗MO as defined in the rule for adapting the HMI RAExo. In this implementation eBR
does reduce the effort, i.e., required force, the user has to invest to lockout the system from a rest
position and by this allows a smoother and more intuitive interaction (Folgheraiter et al., 2012). In
short, the more likely the upcoming behaviour b∗q is, the shorter a subject will have to press against
force sensors that are integrated in the exoskeleton to release the exoskeleton from a supporting rest
position in which it keeps the operator’s arm in a fixed position.

To improve the operators support by an OMS5 (Fig. 1 and 2) in AOMS we implemented an approach
that automatically analyses the operators brain state to predict whether he recognised important
information (i.e., whether he is in the brain state of SCPerc) and will thus likely respond to them
(show response behaviour B∗CPerc) or whether he did not recognise important information (i.e.,
is in the brain state SnoCPerc) and will likely not respond. The rules for the predictions of both
possible brain states are defined in the BR rule RPerc. Made predictions are used to adapt the OMS
with respect to the tolerated response time, i.e., only a short response time is allowed in case that no
response is predicted and a long response time is allowed in case a response is predicted as defined
in the adaptation rule RAOMS (Kirchner et al., 2010).

3.1 Coverage of Differences in Implementations by the Model

When formally comparing the implementations AExo and AOMS important differences exist with
respect to, e.g. the windowing procedures, the rules for adding makers by BR and the type of per-
formed control and correction. These differences must be considered and become very important
when both implementations should be integrated in one flow, i.e., to adapt the OMS and the ex-
oskeleton within one application and by one eBR flow as it is the case in the scenario displayed in
Fig. 2. On the other hand, we will show that despite those differences the general model does fit
both implementations.

In both implementations the analog signal A ∈ R124(t) was recorded with 124 channels. After
digitisation with 16 bit it was sampled with f = 5000 Hz as defined in the BR rules RPerc and
RMov .

3see video ”Telecontrol scenario” referenced in Section Supporting Media
4see also video ”Movement prediction for exoskeleton control” referenced in Section Supporting Media
5see video ”Recognition of warnings during teleoperation” referenced in Section Supporting Media
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Table 1: Implementations of part WS (Fig. 3) of the model for training of eBR.

AdpatExo (WS in training) AOMS (WS in training)

W
m(t)
x as defined in BR rule RMov: W

m(t)
x as defined in BR rule RPerc:

windows for training of eBR: In AExo windows are chosen before windowing, since movement
preparation SMP happens before movement onset (Kornhuber and Deecke, 1965; Balconi, 2009).
Same is true for instances of type SIgn in AOMS. However, instances for SCPerc have to be
chosen after windowing since the choice of window depends on the response of the operator.

Instances from the rest period are chosen to train for Instances of the class of behaviour
the class SnoMP : B∗CPerc are defined as:

W
mrespx
1 = {O(t) | i},

Only markers of type mnoMP are considered with m(i) = mresp1 , or
that occur within the rest period between m(i) = mresp2 , Rmrespx

low = ims,
the markers moffset and monset in case there is no and R

mrespx
up = i + 1ms.

other marker 2000 ms before and after mnoMP .
W

mrelx
1 = {O(t) | i},

with m(i) = mrel1 , or
WmnoMP

1 = {O(t) | (i− 1000ms) < t < i}, m(i) = mrel2 , Rmrelx
low = ims,

with m(i) = mnoMP . and R
mrelx
up = i + 1000ms are

chosen for the class SCPerc, if
To select instances of the followed by W

mrespx
1 = {O(t) | i}.

brain state SMP , two windows The rule makes sure that after
within each rest period with respect to an instance si

CPerc an instance
one monset marker are chosen: of type B∗CPerc follows

(the target was perceived).
Wmonset

1 = {O(t) | (i− 950ms) < t < (i + 50ms)},
with Rmonset

low = i− 950ms Wmirr
1 = {O(t) | i},

and Rmonset
up = i + 50ms. with m(i) = mirr,

Rmirr
low = ims, and

Wmonset
2 = {O(t) | (i− 1100ms) < t < (i− 100ms)}, Rmirr

up = i + 1000ms are
with Rmonset

low = i− 1100ms chosen for the class SIgn

and Rmonset
up = i− 100ms. in case there is no marker

of type mrespx
or mrelx

2000 ms before or after
a marker mirr.
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The output of analog-digital conversion is defined as

o(i) =


d1(i)
d2(i)
.
.

d124(i)

 , (8)

with dj ∈ N′,N′ ⊂ N and N′ = {−215,−215 + 1, ..., 215}.

Further, in both implementations markers are defined as

MAOMS = MAExo = {−215,−215 + 1, ..., 215} (9)

and m(t) = −1 for no marker.

Here the main difference between both implementations is that markers for training of BR were
generated by different systems as allowed by the formal model (Fig. 3). In AOMS the HMI, the eBR
system itself, and a position tracking system (PTS) as a supportive system generate the required
markers, whereas in AOMS only the HMI generates markers.

For the implementation of AOMS it was important to understand the rules for choosing training ex-
amples (rules are given in Table 1). The formalisation of eBR was used here to better understand
the procedures. In this particular application (Fig. 2), it was not possible to generate enough train-
ing examples for the class SnoCPerc. Instead of using methods that can cope with few training
examples (Fazli et al., 2009; Lotte and Guan, 2010) we decided to substitute the examples of the
underrepresented class with examples that were expected to evoke similar brain activity to achieve
a higher prediction performance (Kirchner et al., submitted). Threshold adaptation was developed
to later cope with the fact that the built classifier is not optimal to classify in the test case (Metzen
and Kirchner, 2011). In AOMS, brain activity present during the brain state SIgn that is evoked by
ignored, unimportant stimuli (labeled by mirr) was expected to be similar to brain activity present
during the brain state SnoCPerc that was evoked by important stimuli (labeled by mrel) to which the
user did not respond (see Table 1). Thus, windows Wm(t)

x as defined in BR rule RPerc with Wmirr
1

were chosen to train for the brain state SnoCPerc, while windows defined by Wmrel
1 were chosen to

train for the brain state SCPerc in case there was a response on the important warning, i.e., Wmrel
1

was followed by an instance of type W
mresp

1 .

While instances for the training classes SCPerc in AOMS were, as described before, chosen after
windowing just by defining an order of instances, instances for the class SMP in AExo were not
chosen after windowing but with respect to their distance in time to the marker monset during win-
dowing (see Table 1 for more details). The marker monset labels the time point of movement onset
of the user’s arm after a rest period. Note that two windows are defined for each monset (Kirchner
et al., 2013). Although both implementations show differences in the procedure for choosing rele-
vant instances (windows), both implementations are covered by the model (Figure 3). This shows
that our model is general enough to cover differences in implementation, while still allowing a de-
tailed description of relevant parts of the implementation.

More examples for the capability of the model to cover differences in the implemented procedures
can be given for the test phase, i.e., application of eBR. The main difference between both imple-
mentations during test is, that in AOMS it is known when to classify EEG instances Wmrel

1 , since
only after an important information (warning) is presented to the user a classification of the brain
state (SCPerc versus SnoCPerc) is required. On the other hand in AExo it is not known at what
time classification by BR is important, since it is unknown at what time the operator wants to start
to move (to end a rest period). Here, instances WmBRwin

1 are therefore cut continuously, i.e., every
50 ms (Table 2) based on the marker mBRwin that is automatically added by the BR system to label
the end of each instance.

For adapting the exoskeleton in AExo, the adaptation time r is more relevant than for adapting the
OMS in AOMS and continuous prediction of relevant behaviour is only required in AExo (Table 3).
Here, the BR continuously provides values for Y and sends them to the HMI while the exoskeleton
makes only use of an output yi in case it was locked in for some time (4 s in this implementation),
i.e., is in a rest period. Thus, during test the HMI does control its adaptation as defined in the
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Table 2: Implementations of part WS (Fig. 3) of the model for test of eBR.

AdpatExo (WS in test) AOMS (WS in test)

W
m(t)
x is defined in BR rule RMov . W

m(t)
x is defined in BR rule RPerc.

windows for test of eBR: In AExo windows are chosen independent of
the state of the HMI. In AOMS they are chosen with respect to the state
of the HMI, i.e., in case that a warning was presented.

Instances of class SnoMP or Instances of class SCPerc or
SMP are defined as: or SnoCPerc are defined as:

WmBRwin
1 = W

mrelx
1 = {O(t) | i},

{O(t) | (i− 1000ms) < t < i}, with m(i) = mrel1 , or
with m(i) = mBRwin, m(i) = mrel2 , Rmrelx

low = ims,
Rmonset

low = i− 1000ms, and R
mrelx
up = i + 1000ms.

and Rmonset
up = i.

model but has no influence on the eBR system, while the OMS in AOMS is actively requesting
predictions from the eBR system after warnings and is thus controlling both the eBR system and
its own adaptation. Finally, the HMI does control correction procedures. For both implementations
it controls whether the inferred behaviour, BMO or BCPerc is actually executed, i.e., B = B∗.
However, in AExo, the behaviour of the HMI is only changed in case the execution of it is detected
(see explanations given in Section 1), while in AOMS the behaviour of the OMS is changed right
away with respect to the outcome of BR by, e.g., extending the allowed response time in case that
BCPerc is predicted (Table 3). This adaptation is then only controlled afterwards by monitoring the
actual response behaviour B∗ of the user by the OMS. Hence, in case that BCPerc was predicted but
B∗noCPerc (B 6= B∗) is detected by the HMI within the extended allowed response time a second
warning is presented.

In summery, we showed that for the given implementation examples different procedures are applied
for the generation of markers, for choosing training windows, for the choice of relevant situations
that require BR and for the adaptation of the HMIs by eBR. To allow this, different parts of the
model are differently implemented. Despite those differences in implementation of the model the
general formal model can be applied for both implementation examples and can be used to formalise
the different parts and to compare for differences.

3.2 Detection of Implementation Errors by Formalisation

The application of the formal model does not only allow to compare different implementations but
enables the detection of implementation errors within an individual implementation of the formal
model. In the following we give two examples for errors that could only be detected by formalising
both implementations. Both errors were due to the implemented control mechanism for eBR (C in
Fig. 3) ”invisible” and would not lead to faulty behaviour of the system but would reduce perfor-
mance and adequacy in the adaptation of the HMI. Hence, supervising the correctness of the total
systems behaviour would not allow to uncover the here described implementation errors.

By formalising the implementation AExo with respect to the general model of eBR we could uncover
an implementation error that was caused by misinterpreting the outcome Y of SP for the adaptation
(A) of the HMI (Fig. 3). On the exoskeletons control side it was expected that in the case of no
movement preparation no value, i.e., yi = 0 should be the output of BR. However, Table 3 shows that

10



Table 3: Implementations of part A (Fig. 3) of the model for adapting the HMI.

AdpatExo (A) AOMS (A)

The output Y modulates the time threshold The output Y modulates the allowed
Tth of the force sensors in the exoskeleton, response time (RT) for the user
i.e., in case of BCRes the user has to press that is controlled by the OMS as
shorter against sensors to lockout the system defined in RAOMS .
from rest while executing B∗CRes as
defined in the adaptation rule RAExo.

Tth(k) = (TMax
th − (1− 2(y − 0.5)) + TMin

th For yi = 1 the allowed RT is increased
from 2 s to RTmax = 10 s

with yi = 1 for minimal time threshold TMin
th

and maximum movement prediction impact for yi = −1 no adaptation of RT
here: TMin

th = 10 ms, since control takes place (RTmin = 2 s).
frequency is 100 Hz and
with yi ≤ 0.5 for maximal time threshold
TMax
th experimentally determined to avoid

unwanted lockout.

The time that is required for each adaptation r The time that is required to adapt RT r
depends on the frequency of predictions made takes r ≈ 12ṁs and can be neglected
by BR (here every 50 ms) and the time required since adaptation is only required
to adapt the time threshold Tth (here 10 ms). before RTmin reduced by R

mrel
up

and j.
The adaptation time r for a certain time point i
is in the worst case ri = 60 ms. An The OMS requests predictions of
effective prediction pe = (q − k)− r can be as the brain state by eBR
early as 190 ms before an movement onset only after the presentation of
bq

∗MO since a high classification important information (targets)
performance can be achieved at k = q − 250 ms, to adapt RT if bq∗

CPerc

with q = 0 ms (Folgheraiter et al., 2011) is not executed before RTmin

before B∗MO.
The HMI controls the eBR system
and its own adaptation.
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eBR was not just predicting the brain state of movement preparation SMP (in case of yi > 0.5) but
also the brain state of no movement preparation SnoMP (in case of yi ≤ 0.5), which is not relevant
for this application. In this faulty implementation the exoskeleton would erroneously have been
adapted for a faster lockout in case of yi ≤ 0.5 although no movement preparation was predicted
by BR. This error would not have changed the total behaviour of the exoskeleton but would have
resulted in an inadequate adaptation of the exoskeleton and possibly reduced comport for the user.

In the implementation OMS an error was found within the implementation of the part SP of the
model (Fig. 3). Here, training of eBR should take place on instances of type W

mrel1
x and W

mrel2
x

(Table 1). Instances of type W
mrel1
x are first warnings and instances of type W

mrel2
x are repeated

second warnings that are visually highlighted (by changing the colour). During test BR does analyse
the brain state after both types of warnings to enable inference of response behaviour by eBR.
However, in the setting a third type of warning was used (Wmrel3

x ). This third warning was very
strong. We expected that the user would in all cases respond to this warning, especially since the
control of the robot was removed from the user after the warning was shown for 1000 ms. Hence,
it was not required to detect the brain state after the presentation of the third warning. Further,
EEG patterns evoked by the third warnings (type W

mrel3
x ) were quite different compared to EEG

patterns evoked by the warnings of type W
mrel1
x and type W

mrel2
x . Thus, by training the classifier

on instances of type W
mrel3
x performance in the classification of the brain state for instances of type

W
mrel1
x and W

mrel2
x might have dropped. By formalising this implementation the error was found.

Both examples show that the developed formal model for eBR enabled the detection of errors in im-
plementations and that a clear definition of rules and the kind of outcome of subsystems is important
for the overall functionality of the whole system.

4 Conclusion and Outlook

In the presented work we developed for the first time a general, formal model for eBR, which was
developed by our group for the safe adaptation of interfaces in robotic applications using unreliable
data, i.e., EEG data, to allow a better support of inferred upcoming interaction behaviour. The devel-
oped formal model does focus on the interaction between subsystems, thus it does not describe how
exactly each subsystem with respect to its functionality or the individual data processing, e.g., kind
of signal processing and classification methods, is implemented, but describes what kind of data
and information is used, exchanged and transferred between subsystems. We showed and discussed
on implementation examples that (1) the developed formal model fits different implementations,
(2) covers differences in the implemented procedures of different parts of the model, and (3) could
uncover errors that are difficult or not at all to find without formalisation. A formal model for com-
plex systems, as presented here, enables a very detailed as well as clear description of procedures.
This becomes more important as more interdisciplinary research is required to develop complex sys-
tems for advanced human-machine interaction, since it can ease their implementation for different
applications as explained using examples.

We further want to state that the formalisation of eBR is important for the introduction of this
approach in practical use cases and industry, since it allows to verify that eBR functions error-free
while being adaptive to different requirements. One application of growing interest is robotic-based
rehabilitation. To apply robotic systems for rehabilitation, it has to be assured that a developed
system works correctly and is thus safe to be applied on human. The challenge is to guarantee that
such systems are correct and complete when developed (Drechsler et al., 2012) and work error-
free while being adaptive to different requirements of different groups of patients and their state in
rehabilitation (Kirchner et al., 2013). Alternatively, also approaches can be studies that start with a
formal specification, like Event-B (see Abrial et al., 2010).

However, not only in medical applications more intense and intuitive interaction between humans
and technical systems is required, but also new paths have to be followed for improving interaction
in different application fields of industry. These new and advanced approaches should allow real
cooperation between technical systems and human, be it for the general improvement of workflows,
to allow a technical system to make use of human cognitive resources or for an individually and
situation specific support of elderly employees in, e.g., heavy physical work. To allow such ad-
vanced human-machine interaction, technical systems must understand the human’s intention. Its
interpretation might not be free of errors, as it is also true when human interpret human’s intentions.
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We showed that eBR thanks to the implemented automated control mechanism allows to deal with
possibly ambiguous interpretation of the humans intention. However, online monitoring of the cor-
rectness and completeness of complex systems’ behaviour and interaction behaviour is required to
apply eBR in industry and for medical purposes. To establish such monitoring formal models for
complex systems constitute the main precondition to apply verification tools on system level and
can already help to better understand such complex systems and intra-system dependencies as well
as to detect hidden errors as shown in this work.

Supporting Media

As supporting media videos are available that show the ”Telecontrol scenario”
(http://youtu.be/8YHhjQiv6JE) depicted in Fig. 2 with both implementations of eBR: ”Move-
ment prediction for exoskeleton control” (http://youtu.be/fiI4MKPTFg0) and ”Recognition of
warnings during teleoperation” (http://youtu.be/8WEVZz6bpJU).
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Wöhrle, H., Teiwes, J., Kirchner, E. A. and Kirchner, F. (2013), “A framework for high performance
embedded signal processing and classification of psychophysiological data”, APCBEE Pro-
cedia. International Conference on Biomedical Engineering and Technology (ICBET-2013),
Elsevier, Kopenhagen, Denmark.

14



Zander, T. O. and Kothe, C. (2011), “Towards passive brain-computer interfaces: applying brain-
computer interface technology to human-machine systems in general”, Journal of Neural En-
gineering, Vol. 8 No. 2, pp. 025005.

15



Figures

Figure 1: Multi-robot control supported by embedded brain reading.
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Figure 2: Left: Telecontrol of a real robotic arm through a labyrinth by means of an exoskeleton and
simultaneous responses to warnings by the operator: embedded brain reading adapts exoskeleton
control and operator monitoring system. Right: Prediction of movement preparation in single trial
(blue line) before movement onset (black vertical line) to support movement onset. Time (x-axis)
shows absolute time from the start of the experiment to a chosen single example of BR output.
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Figure 3: Model for embedded brain reading in a formal structured form.
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